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Abstract. The present work is devoted to the analysis of density-dependent, incompressible fluids in a 3D
torus, when the Froude number ε goes to zero. We consider the very general case where the initial data do
not have a zero horizontal average, where we only have smoothing effect on the velocity but not on the density
and where we can have resonant phenomena on the domain. We explicitly determine the limit system when
ε → 0 and prove its global wellposedness. Finally, we prove that for large initial data, the density-dependent,
incompressible fluid system is globally wellposed, provided that ε is small enough.

1. Introduction

In this paper, we want to study the motion of an incompressible, inhomogeneous fluid whose density profile
is considered to be a perturbation around a stable state, which is describe be the following system

(PBSε)



∂tv
ε + vε · ∇vε − ν∆vε − 1

ε
ρε−→e 3 =− 1

ε
∇Φε,

∂tρ
ε + vε · ∇ρε +

1

ε
v3,ε = 0,

div vε = 0,

(vε, ρε)|t=0 = (v0, ρ0) ,

in the regime where the Froude number ε → 0. Here, the vector field vε and the scalar function ρε represent
respectively the velocity and the density of the fluid and ν stands for the viscosity. For a more detailed discussion
about the physical motivation and the derivation of the model, we refer to [39], [38], [40]. We also refer to the
monographs [16] and [35] for a much wider survey on geophysical models.

Let us give some brief comments about the system (PBSε). In a nutshell, there are two forces which
constrain the motion of a fluid on a geophysical scale: the Coriolis force and the gravitational stratification.
The predominant influence of one force, the other, or both gives rise to substantially different dynamics.

The Coriolis force (see [42] for a detailed analysis of such force) is due to the rotation of the Earth around
its axis and acts perpendicularly to the motion of the fluid. If the magnitude of the force is sufficiently large
(when the rotation is fast or the scale is large for example), the Coriolis force “penalizes” the vertical dynamics
of the fluid and makes it move in rigid columns (the so-called Taylor columns). This tendency of a rotating fluid
to displace in vertical homogeneous columns is generally known as Taylor-Proudmann theorem, which was first
derived by Sidney Samuel Hough (1870-1923), a mathematician at Cambridge in the work [28], but it was named
after the works of G.I. Taylor [45] and Joseph Proudman [36]. On a mathematical point of view, the Taylor-
Proudman effect for homogeneous, fast rotating fluids is a rather well understood after the works [2, 3, 14, 22]
and [27]. In such setting, we mention as well the work [26] in which the authors consider an inhomogeneous
rotation, the very recent work [19] in which fast rotation for nonhomogeneous fluids was considered and the
works [20,21] and [33] in which fast rotation was considered simultaneously with weak compressibility.

Beside the rotation, one can consider a fluid which is inhomogeneous and whose density profile is a lineariza-
tion around a stable state, we refer to [6, 16] and references therein for a thorough derivation of the model.
In such situation, we can imagine that the rotation effects and stratification effects are equally relevant: the
system describing such effect is known as primitive equations (see [6] and [16]). The primitive equations and
their asymptotic dynamic as stratification and rotation tend to infinity at a comparable rate are as well rather
well understood on a mathematical viewpoint: we refer to the works [7–12,22,41] and references therein.

Now, we will briefly discuss the gravitational stratification effect, which is the main physical phenomenon
concerning the system (PBSε) for a inhomogeneous fluid, subjected to a gravitational force pointing downwards.
Gravity force tends to lower the regions of the fluid with higher density and raise the regions with lower
density, trying finally to dispose the fluid in horizontal stacks of vertically decreasing density. A fluid in such
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configuration (density profile which is a decreasing function of the variable x3 only) is said to be in a configuration
of equilibrium.

Let hence consider a fluid in a configuration of equilibrium and let us imagine to raise a small parcel of the
fluid with high density in a region of low density. Since such parcel is much heavier (in average) than the fluid
surrounding it, the gravity force will induce a downwards motion. Such motion does not stop until the parcel
reaches a layer whose density is comparable to its own, and inertially it will continue to move downwards until
sufficient buoyancy is provided to invert the motion, due to Archimedes principle. This kind of perturbation of
an equilibrium state induces hence a pulsating motion which is described by the linear application

(1.1)
(
u1,ε, u2,ε, u3,ε, ρε

)
7→ 1

ε

(
0, 0,−ρε, u3,ε

)
,

which appears in (PBSε). The application (1.1) is called stratification buoyancy and we will base our analysis
on the dispersive effects induced by such perturbation.

To the best of our knowledge, there are not many results concerning the effects of the stratification buoyancy.
In [18], there was a first attempt to perform a multiscale analysis when Rossby and Froude number are in different
regimes, while in [38] and [46], the authors studied the convergence and stability of solutions of (PBSε) when
the Froude number ε→ 0 in the whole space R3. In [39] the system (PBSε) is studied in nonresonant domains
when the initial data has zero horizontal average. We mention as well the very recent works [30–32,43,44].

In this paper, the unknowns (vε, ρε) are considered to be functions in the variables (x, t) ∈ T3 × R+ being
the space domain T3 the three-dimensional periodic box

T3 =

3∏
i=1

R /aiZ , ai ∈ R.

Compared to [39], we consider the much more general case with the following additional difficulties

(1) Initial data are considered with generic horizontal average. This point seem marginal, but as showed
in this paper, the dynamics induced by initial data with nonzero horizontal average create additional
vertical gravitational perturbations, the control of which is highly non-trivial (see as well [25]).

(2) Generic space domain may present resonant effects.
(3) Density profiles are only transported and do not satisfy a transport-diffusion equation and so do not

possess smoothing effects.

From now on we rewrite the system (PBSε) in the following more compact form

(PBSε)


∂tV

ε + vε · ∇V ε −A2 (D)V ε +
1

ε
AV ε = −1

ε

(
∇Φε

0

)
,

V ε = (vε, θε) ,

div vε = 0,

V ε|t=0 = V0,

where

A =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , A2 (D) =


ν∆ 0 0 0
0 ν∆ 0 0
0 0 ν∆ 0
0 0 0 0

 .(1.2)

The additional difficulties (1)–(3) listed above are the main difficulties in the present work and they modify
significantly the dynamic of (PBSε) compared to the results proved in [39], as already mentioned. Let us hence
start describing the effects induced by the hypothesis made in the point 1: we will see in the following that the
dynamics of the solutions of (PBSε) in the limit regime ε→ 0 is essentially governed by the effects of the outer
force ε−1AV ε.

1.1. A survey on the notation adopted. All along this note we consider real valued vector fields, i.e.
applications V : R+ × T3 → R4. We will often associate to a vector field V the vector field v which shall be
simply the projection on the first three components of V . The vector fields considered are periodic in all their
directions and they have zero global average

∫
T3 V dx = 0, which is equivalent to assume that the first Fourier

coefficient V̂ (0) = 0. We remark that the zero average propriety stated above is preserved in time t for both
Navier-Stokes equations as well as for the system (PBSε).
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Let us define the Sobolev space Hs
(
T3
)
as the set of all the tempered distributions f such that

(1.3) ‖f‖Hs(T3) =

(∑
n∈Z3

(
1 + |ň|2

)s ∣∣∣f̂(n)
∣∣∣2)1/2

<∞,

where f̂(n) is the usual n-th Fourier mode of f . Since we shall consider always vector fields whose average is
null the Sobolev norm defined above in particular is equivalent to the following semi-norm∥∥∥(−∆)

s/2
f
∥∥∥
L2(T3)

∼ ‖f‖Hs(T3) , s ∈ R,

which appears naturally in parabolic problems.

Throughout the paper, we also use P to denote the three dimensional Leray operator which leaves untouched
the fourth component, i.e.

(1.4) P =

(
1−∆−1∂i∂j 0

0 1

)
i,j=1,2,3

=

(
P(3) 0

0 1

)
,

where P(3) is the usual Leray projection onto the subspace of divergence-free vector fields. The operator P is
then a pseudo-differential operator, in the Fourier space its symbol is

(1.5) P(n) =

 δi,j −
ňi ňj

|ň|2
0

0 1


i,j=1,2,3

,

where δi,j is Kronecker’s delta and ňi = ni/ai, |ň|2 =
∑
i ň

2
i .

1.2. Local existence result. Being the operator A skew-symmetric it is possible to apply energy methods
to the system (PBSε) in the same fashion as it is done in [4, Chapter 4] for quasilinear symmetric hyperbolic
systems. Being this the case we can deduce the following local existence result

Theorem 1.1. Let V0 ∈ Hs
(
T3
)
where s > 3/2, there exist a T ? > 0 such that for every T ∈ [0, T ?) the system

(PBSε) admits a unique solution in the energy space

C
(
[0, T ] ;Hs

(
T3
))
∩ C1

(
[0, T ] ;Hs−1

(
T3
))
.

Moreover there exist a positive constant c such that

T >
c

‖V0‖Hs(T3)

,

and the maximal time of existence T ? is independent of ε and s and, if T ? <∞, then

(1.6)
∫ T?

0

‖∇V ε (t)‖L∞(T3) dt <∞.

1.3. Global existence result and limit dynamics. As in other singular pertubation problems ( [22, 23, 27]
just to mention a handful), the difficulty to study the limit when ε→ 0 lies in the fact that ∂tV ε is not uniformly
bounded in ε, which is the result of the high oscillating free waves, described by the system{

∂τW + PAW = 0,

W |τ=0 = W0,

where the matrices P and A are defined respectively in (1.5) and (1.2). The standard procedure consists in
filtering these oscillations. Let L be the operator

(1.7) L (τ) = e−τPA,

which send each initial datumW0 to the solution of the above free wave systemW (t). Then, the filtered solution

Uε = L
(
− t
ε

)
V ε,

is in fact solution of the filtered system

(Sε)

{
∂tU

ε +Qε (Uε, Uε)−Aε2 (D)Uε = 0,

Uε
∣∣
t=0

= V0,
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where

Qε (V1, V2) =
1

2
L
(
t

ε

)
P
[
L
(
− t
ε

)
V1 · ∇L

(
− t
ε

)
V2 + L

(
− t
ε

)
V2 · ∇L

(
− t
ε

)
V1

]
,

Aε2(D)W =L
(
t

ε

)
A2(D)L

(
− t
ε

)
W.

The limit dynamics of (PBSε) will be described in Section 4, where we study in details the limit of Qε and
Aε2(D) as ε→ 0. For any vector field A, let A = A (x3) be the horizontal average of A, which is defined as

A (x3) =
1

4π2a1a2

∫
T2
h

A (yh, x3) dyh.

Then, the horizontal oscillating part Ã = Ã (xh, x3) of A (which is of zero horizontal average) will be

(1.8) Ã (xh, x3) = A (xh, x3)−A (x3) .

Now, as in [41], we will also decompose the horizontal oscillating part Ã = Ã (xh, x3) into two parts: A (x)
belongs to the kernel of PA (we remark that A also belongs to ker (PA)), and the other part is the 3D oscilating
part Aosc(xh, x3). To resume, we perform the following decomposition, for any vector field A,

A = A (x3) +A (x) +Aosc(xh, x3).

For any initial data V0 of the system (PBSε), we decompose the filtered counter part of V0 as follows

U0 = L(0)V0 = U0 (x3) + U0 (x) + U0,osc(xh, x3),

with

U0 = V0 =
1

2π2a1a2

∫
T2
h

V0 (yh, x3) dyh,

U0 =
(
uh0 , 0, 0

)ᵀ
,

U0,osc = V0 − U0 − U0,

and with

uh0 =

(
−∂2

∂1

)
(−∆h)

−1 (−∂2V
1
0 + ∂1V

2
0

)
.

Then, the main result of our paper is the following

Theorem 1.2. Let V0 be in Hs
(
T3
)
, s > 9/2

(
= d

2 + 3
)
, be the initial data of the system (PBSε). Then, there

exists a ε0 > 0 such that for any ε ∈ (0, ε0), the solution V ε of (PBSε) globally exists in time and we have the
following asymptotics

V ε = U + Ū + L
(
t

ε

)
Uosc + oε (1) in Cloc

(
R+;Hs−2

(
T3
))
,

where U =
(
uh, 0, U4

)
=
(
U1, U2, 0, U4

)
, Ū =

(
uh, 0, 0

)
=
(
ū1, ū2, 0, 0

)
and Uosc solve the systems

∂tu
h (x3, t)− ν∂2

3u
h (x3, t) = 0,

U4 (x3, t) = U4
0 ,

uh
∣∣
t=0

= Uh0 ,

U4
∣∣
t=0

= U4
0 ,

(1.9)


∂tu

h (t, xh, x3) + uh (t, xh, x3) · ∇huh (t, xh, x3) + uh (t, x3) · ∇huh (t, xh, x3)

− ν∆uh (t, xh, x3) = −∇hp̄ (t, xh, x3)

divh uh (xh, x3) = 0,

uh (t, xh, x3)
∣∣
t=0

= uh0 (xh, x3) .

(1.10)


∂tUosc + Q̃1

(
Uosc + 2Ū , Uosc

)
+ B (U,Uosc)− ν∆Uosc = 0,

div Uosc = 0,

Uosc|t=0 = U0,osc,

(1.11)

where the explicit expressions of B and Q are given by the equations (5.13) and (4.1) and are omitted here for
the sake of simplicity.
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Remark 1.3. It is interesting to remark that, despite V ε is the solution of the parabolic-hyperbolic system
(PBSε), it is well defined in the space C ([0, T ];Hs) for s > 9/2 and T > 0. This improvement of regularity
is known as propagation of parabolicity: such name is motivated by the fact that the limit equations (1.10)
and (1.11) are strictly parabolic and we can prove they are globally well posed in some suitable energy space
of subcritical regularity. A similar phenomenon takes place as well in the study of the incompressible limit for
weakly compressible fluids, we refer the reader to the works [17] and [24].

Remark 1.4. Equation (1.11) is a nonlinear three-dimensional parabolic equation. The nonlinearity Q̃1 is a
modified, symmetric transport form which assumes the following explicit form

Q̃1 (A,B) =
1

2
χ (D) (A · ∇B +B · ∇A) ,

where χ is a Fourier multiplier of order zero which localizes bilinear interactions on a very specific frequency
set. Following the theory of the three-dimensional Navier-Stokes equations we do not expect hence (1.11) to
be globally well-posed. Despite this, we shall see that the zero-order Fourier multiplier χ (D) has in fact a
nontrivial smoothing effect, which makes the bilinear interaction Q̃1 (Uosc, Uosc) smoother than Uosc · ∇Uosc.

1.4. Organization of the paper. The paper will be organized as follows. In the next section, we analyse the
spectral properties of the pertubation operator PA. Section 3 consists in the study of the filtered system (Sε).
Section 4 is devoted to the determination of the limit system and Section 5 to the detailed study of limits of
the bilinear term Qε and of the linear operator Aε2(D), as ε→ 0. In Section 6, we prove the global propagation
of smoothness for the limit system and finally, in the last section, we prove the main Theorem 1.2. At the end
of our paper, we give brief recall of some elements of Littlewood-Paley theory.

2. Analysis of the linear perturbation operator PA

We recall that thoughout this paper, we alway use upper-case letters to represent vector fields on T3, with
four components, the first three components of which form a divergence-free vector field (denoted by the same
lower-case letter). More precisely, for a generic vector field A, we have

A(x1, x2, x3) =
(
A1(x1, x2, x3), A2(x1, x2, x3), A3(x1, x2, x3), A4(x1, x2, x3)

)
=
(
a(x1, x2, x3), A4(x1, x2, x3)

)
,

where
a = (a1, a2, a3) ≡ (A1, A2, A3), and div a = 0.

As explained in the introduction, the time derivative ∂tV ε is not uniformly bounded. In order to take the
limit ε→ 0, we need to filter the high oscillating terms out of the system (PBSε). To this end, we consider the
following linear, homogeneous Cauchy problem, which describes the internal waves associated to (PBSε)

(2.1)

{
∂τW + PAW = 0,

W |τ=0 = W0 ∈ L2
σ(T3),

where

L2
σ
def
=

{
U =

(
u, U4

)
∈ L2, div u = 0 and

∫
T3

U(x) dx = 0

}
.

In [39], a detailed analysis of (2.1) was given in a particular case where the vector fields are supposed to have
zero horizontal average. In this section, we will provide a complete spectral analysis of the operator PA in the
general case where there is no such assumption, which allows to get a detailed description of the solution of
(2.1) in L2

σ(T3). Using the decomposition (1.8), we can write

L2
σ = L̃2

σ ⊕ L2
σ,

where

L̃2
σ =

{
U =

(
u, U4

)
∈ L2

σ

∣∣∣ ∫
T2
h

U (xh, x3) dxh = 0
}
,

L2
σ =

{
U =

(
u, U4

)
∈ L2

σ

∣∣∣ U = U (x3) and u3 ≡ 0
}
.

Let us remark that, since div a = 0 and a = a(x3), we deduce that ∂3a
3 = 0, which in turn implies that a3 = 0,

taking into account the zero average of a3 in T3.

Writing the first equation of (2.1) in the Fourier variables, we have

(2.2)

{
∂τŴ (τ, n) + P̂A (n) Ŵ (τ, n) = 0,

Ŵ (0, n) = Ŵ0(n),
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where

(2.3) P̂A (n) =


0 0 0 − ň1ň3

|ň|2

0 0 0 − ň2ň3

|ň|2

0 0 0 1− ň2
3

|ň|2

0 0 −1 0

 .

Standard calculations show that the matrix P̂A (n) possesses very different spectral properties in the case where
ňh = 0 and in the case where ňh 6= 0.

1. In the case where ňh 6= 0: The matrix P̂A (n) admits an eigenvalue ω0(n) ≡ 0 of multiplicity 2 and two
other conjugate complex eigenvalues

(2.4) iω±(n) = ±iω(n),

where ω(n) = |ňh|
|ň| . Associated to each eigenvalue, there is a unique unit eigenvector, orthogonal to the frequency

vector t(ň1, ň2, ň3, 0), which is explicitly given as follows

e0(n) =
1

|ňh|


−ň2

ň1

0
0

 , e±(n) =
1√
2


± i ň1ň3

|ňh| |ň|

± i ň2ň3

|ňh| |ň|

∓ i |ňh||ň|
1

 .(2.5)

Since {eα}α=0,± form an orthonormal basis of the subspace of C4 which is orthogonal to t(ň1, ň2, ň3, 0), the
classical theory of ordinary differential equations imply that the solution Ŵ (τ, n) of (2.2), with ňh 6= 0, writes

(2.6) Ŵ (τ, n) =
∑

α∈{0,±}

eiτω
α(n)

〈
Ŵ0(n), eα(n)

〉
C4
eα(n).

2. In the case where ňh = 0: The matrix P̂A(n) becomes

P̂A (0, 0, n3) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 ,

and admits only one eigenvalue ω(0, 0, n3) = 0 of multiplicity 4, and three associate unit eigenvectors, orthogonal
to the frequency vector t(0, 0, ň3, 0)

f1 =


1
0
0
0

 , f2 =


0
1
0
0

 , f3 =


0
0
0
1

 .(2.7)

The solution Ŵ (τ, n3) ≡ Ŵ (τ, 0, 0, n3) of (2.2) writes

(2.8) Ŵ (τ, n3) =
∑

j∈{1,2,3}

〈
Ŵ0(0, 0, n3), fj

〉
C4
fj .

The expressions of the Fourier modes Ŵ (n) given in (2.6) and (2.8) imply the following result

Lemma 2.1. Let W0 ∈ L2
σ(T3). The unique solution W of the system (2.1) accepts the following decomposition

(2.9) W (τ, x) = W (x3) +W (x) +Wosc (τ, x) ,

where
W (x3) =

∑
n3∈Z

∑
j∈{1,2,3}

〈
Ŵ0(0, 0, n3), fj

〉
C4
eiň3x3fj

W (x) =
∑
n∈Z3

nh 6=0

〈
Ŵ0(n), e0(n)

〉
C4
eiň·xe0(n)

Wosc (τ, x) =
∑
n∈Z3

nh 6=0

∑
α∈{±}

〈
Ŵ0(n), eα(n)

〉
C4
eiτω

α(n)eiň·xeα(n).
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Now, we set

Eα(n, x) = eiň·xeα(n), ∀n ∈ Z3, nh 6= 0,∀α ∈ {0,±}
Fj(n3, x3) = eiň3x3fj , ∀n3 ∈ Z,∀ j ∈ {1, 2, 3} ,

then, {Eα(n, ·), Fj(n3, ·)} forms an orthonormal basis of L2
σ(T3), and we have the following decomposition

Definition 2.2. For any vector field V ∈ L2
σ(T3), we have

(2.10) V (x) = V (x3) + V (x) + Vosc (x) ,

where
V (x3) =

∑
n3∈Z

∑
j∈{1,2,3}

〈
V̂ (0, 0, n3), fj

〉
C4
Fj(n3, x3)

V (x) =
∑
n∈Z3

nh 6=0

〈
V̂ (n), e0(n)

〉
C4
E0(n, x)

Vosc (τ, x) =
∑
n∈Z3

nh 6=0

∑
α∈{±}

〈
V̂ (n), eα(n)

〉
C4
Eα(n, x).

We also have the following result

Proposition 2.3. Let ΠX be the projection onto the subspace X of L2
σ(T3). For any vector field V ∈ L2

σ(T3),
we have

(1) ΠL2
σ
V = V (x3).

(2) Π
L̃2
σ
V = Ṽ (x) = V (x)− V (x3) = V (x) + Vosc (x).

(3) V (x3) + V (x) = Πker(PA)V = Πker(L−Id)V .

Thus, the operator L(τ) only acts on the oscillating part Vosc of V .

Proof. The points (1) and (2) are immediate consequences of the identity (1.8) and of Definition (2.2). The only
non evident point is (3), the proof of which simply follows the lines of the proof of [27, Proposition 4.1]. �

3. Analysis of the filtered equation

In this section, we will use the method of [22,27,37] or [34] to filter out the high oscillation term in the system
(PBSε). In order to do so, we first decompose the initial data in the same way as in (2.10), i.e., we write

V0 = V0 + Ṽ0 = V0 + V 0 + Vosc,0.

We recall that in the introduction, we defined L as the operator which maps W0 ∈ L2
σ(T3) to the solution W

of the linear system (2.1). Using this operator, we now defined the following auxiliary vector field

Uε = L
(
− t
ε

)
V ε.

Replacing V ε = L
(
t
ε

)
Uε into the initial system (PBSε), straightforward computations show that Uε satisfies

the following “filtered” system

(Sε)

{
∂tU

ε +Qε (Uε, Uε)−Aε2 (D)Uε = 0,

Uε
∣∣
t=0

= V0,

where

Qε (V1, V2) =
1

2
L
(
t

ε

)
P
[
L
(
− t
ε

)
V1 · ∇L

(
− t
ε

)
V2 + L

(
− t
ε

)
V2 · ∇L

(
− t
ε

)
V1

]
,(3.1)

Aε2(D)W =L
(
t

ε

)
A2(D)L

(
− t
ε

)
W.(3.2)

In this section, we will consider the evolution of (Sε) as the superposition of its projections onto the subspace
of horizontal independent (or average) vector fields L2

σ and the subspace of horizontal oscillating vector fields
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L̃2
σ. Always denoting V and Ṽ the projection of V ∈ L2

σ onto L2
σ and L̃2

σ, we formally decompose (Sε) as sum
of two following systems {

∂tU
ε +Qε (Uε, Uε)−Aε2(D)Uε = 0,

Uε
∣∣
t=0

= V0,

and {
∂tŨε + Q̃ε (Uε, Uε)− Ãε2(D)Uε = 0,

Ũε
∣∣
t=0

= Ṽ0,

where, for the sake of the simplicity, we identify

Qε (Uε, Uε) ≡ Qε (Uε, Uε) Aε2(D)Uε ≡ Aε2 (D)Uε,

Q̃ε (Uε, Uε) ≡ ˜Qε (Uε, Uε) Ãε2(D)Uε ≡ ˜Aε2 (D)Uε.

In what follows, we provide explicit formulas of Qε (Uε, Uε), Aε2(D)Uε, Q̃ε (Uε, Uε) and Ãε2(D)Uε, and we will
decompose the vectors Qε (Uε, Uε) and Aε2 (D)Uε in the L2

σ basis

{Eα(n, x), Fj(n3, x3)} n∈Z3

n3∈Z
α=0,±
j=1,2,3

,

given in the previous section. To this end, in what follows, we introduce some additional notations. For any
vector field V ∈ L2

σ, we set

V a(n) =
(
V̂ (n)

∣∣∣ ea(n)
)
C4

ea(n), ∀ a = 0,±, ∀n = (nh, n3) ∈ Z3, nh 6= 0,

and
V j(0, n3) =

(
V̂ (0, n3)

∣∣∣ fj)
C4

fj , ∀ j = 1, 2, 3, ∀n3 ∈ Z.

We also define the following quantities in order to shorten as much as possible the forthcoming expressions

ωa,b,ck,m,n = ωa(k) + ωb(m)− ωc(n), a, b, c = 0,±,

ωa,bn = ωa(n) + ωb(n), a, b = 0,±,

ω̃b,cm,n = ωb (m)− ωc(n), b, c = 0,±,

ωa,bk,m = ωa(k) + ωb(m), a, b = 0,±,

where the eigenvalues ω0(·) and ω±(·) are defined in the previous section.

Following the lines of [22] or [34], we deduce that, for c = 0,±, the projection of Qε (V1, V2) onto the subspace
generated by Ec(n, ·), for any n ∈ Z3 such that nh 6= 0, is〈

Qε (V1, V2)
∣∣∣Ec(n, x)

〉
L̃2
σ

Ec(n, x) =
〈
F (Qε (V1, V2)) (n)

∣∣∣ ec(n)
〉
C4
eiň·x ec(n),

=

2∑
k=1

〈
F
(
Q̃εk (V1, V2)

)
(n)
∣∣∣ ec(n)

〉
C4
eiň·x ec(n),

where using the divergence-free property, we can write the Fourier coefficients of the bilinear forms Q̃εk, k = 1, 2,
as follows

F
(
Q̃ε1 (V1, V2)

)
(n) =

∑
k+m=n
kh,mh 6=0
a,b,c=0,±

ei
t
εω

a,b,c
k,m,n

〈
P̂(n)

(
ň
0

)
· S
(
V a1 (k)⊗ V b2 (m)

) ∣∣∣ ec(n)

〉
C4

ec(n)

and

F
(
Q̃ε2 (V1, V2)

)
(n) =

∑
(0,k3)+m=n

mh 6=0
b,c=0,±
j=1,2,3

ei
t
ε ω̃

b,c
m,n

〈
P̂(n)

(
ň
0

)
· S
(
V j1 (0, k3)⊗ V b2 (m)

) ∣∣ec(n)

〉
C4

ec(n)

+
∑

(0,k3)+m=n
mh 6=0
b,c=0,±
j=1,2,3

ei
t
ε ω̃

b,c
m,n

〈
P̂(n)

(
ň
0

)
· S
(
V b1 (m)⊗ V j2 (0, k3)

) ∣∣ ec(n)

〉
C4

ec(n).
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Here,
(
ň
0

)
stands for the four-component vector t(ň1, ň2, ň3, 0) and P is the Leray projection, defined in (1.4).

In order to shorten the notations, we use S for the following symmetry operator

S (V1 ⊗ V2) = V1 ⊗ V2 + V2 ⊗ V1,

for any V1 = (v1, V
4
1 ) and V2 = (v2, V

4
2 ). We remark that in the above summation formula there is no bilinear

interaction which involves elements of the form V j1 (0, k3) ⊗ V j2 (0,m3) since, a priori, these represent vector
fields the horizontal average of which is not zero and hence they do not belong to L̃2

σ.

The projection of Qε (V1, V2) onto the subspace generated by Fj(n3, ·), for any j = 1, 2, 3, for any n3 ∈ Z,
can be computed in a similar way and we get〈
Qε (V1, V2)

∣∣Fj(n3, x3)
〉
L2
σ
Fj(n3, x3)

=
〈
F (Qε (V1, V2)) (0, n3)

∣∣ fj〉C4 e
iň3x3fj ,

=
∑

k+m=(0,n3)
kh,mh 6=0
a,b∈{0,±}

ei
t
εω

a,b
k,m

〈
P̂(0, n3)


0
0
ň3

0

 · S (V a1 (k)⊗ V b2 (m)
) ∣∣∣ fj〉

C4

eiň3x3fj ,

=
〈
F (Qε (V1, V2)) (0, n3)

∣∣ fj〉 eiň3x3fj .

Hence,

Qε (V1, V2) (x) =
∑
n∈Z3

nh 6=0

F
(
Q̃ε1 (V1, V2) + Q̃ε2 (V1, V2)

)
(n)eiň·x +

∑
n3∈Z

F (Qε (V1, V2)) (0, n3) eiň3x3 .

The decomposition of Aε2 (D)W can also be calculated as in [22]. We have〈
Aε2 (D)W

∣∣Eb(n, x)
〉
L̃2
σ
Eb(n, x) =

∑
a=0,±

ei
t
εω

a,b
n
〈
FA2(n)W a(n)

∣∣ eb(n)
〉
C4 eiň·xeb(n),

〈
Aε2 (D)W

∣∣Fj(n3, x3)
〉
L2
σ
Fj(n3, x3) =

〈
FA2(0, n3)W j(0, n3)

∣∣ fj〉C4 eiň3·x3fj .

Thus,

Ãε2 (D)W = Ãε2 (D) W̃ =
∑
n∈Z3

nh 6=0

∑
a,b=0,±

ei
t
εω

a,b
n

〈
FA2(n)W a(n)

∣∣∣ eb(n)
〉
C4

eiň·x eb(n),

and

Aε2 (D)W = A0
2 (D3)W =

∑
n3∈Z

∑
j=1,2,3

〈
FA2(0, n3)W j(0, n3)

∣∣ fj〉C4 eiň3x3 fj =
(
ν∂2

3W
1, ν∂2

3W
2, 0, 0

)
.

We remark that the operator Aε2 does not present oscillations, i.e. it is independent of ε.

Combining all the above calculations, we get the following decomposition of the system (Sε)

Lemma 3.1. Let V0 ∈ Hs
(
T3
)
, s > 5/2. We set

V0 (x3) =
1

4π2a1a2

∫
T2
h

V0 (yh, x3) dyh,

and
Ṽ0 = V0 − V0.

Then, the local solution Uε of (Sε) can be written as the superposition

Uε = Ũε + Uε,

where Ũε and Uε are local solutions of the equations

(3.3)


∂tŨ

ε + Q̃ε1
(
Ũε, Ũε

)
+ Q̃ε2 (Uε, Uε)− Ãε2 (D) Ũε = 0,

div Ũε = 0,

Ũε
∣∣∣
t=0

= Ṽ0,
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and

(3.4)

∂tUε +Qε
(
Ũε, Ũε

)
−A0

2 (D3)Uε = 0,

Uε|t=0 = V0.

4. The limit system

In this short section, the convergence of suitable subsequences of local strong solutions (Uε)ε>0 of the system
(Sε) will be put in evidence. Moreover, using the similar methods as in [22] or [39], we can determine the
systems which describe the evolution of such limits. The explicit formulation of these limiting systems will be
given in the next section. We first introduce the limit forms Q̃1, Q̃2, Q, Ã0

2 and A0
2 such that

(4.1) Q̃1(V1, V2) =
∑
n∈Z3

nh 6=0

∑
ωa,b,ck,m,n=0

k+m=n
kh,mh,nh 6=0
a,b,c∈{0,±}

〈
P̂(n)

(
n
0

)
· S
(
V a1 (k)⊗ V b2 (m)

) ∣∣∣ ec(n)

〉
C4

eiň·x ec(n),

Q̃2 (V1, V2) =
∑
n∈Z3

nh 6=0

∑
(0,k3)+m=n
mh,nh 6=0

ω̃b,cm,n=0

b,c∈{0,±}
j=1,2,3

〈
P̂(n)

(
n
0

)
· S
(
V j1 (0, k3)⊗ V b2 (m)

) ∣∣∣ec(n)

〉
C4

eiň·x ec(n)(4.2)

+
∑
n∈Z3

nh 6=0

∑
(0,k3)+m=n
mh,nh 6=0

ω̃b,cm,n=0

b,c∈{0,±}
j=1,2,3

〈
P̂(n)

(
n
0

)
· S
(
V b1 (m)⊗ V j2 (0, k3)

) ∣∣∣ ec(n)

〉
C4

eiň·x ec(n),

(4.3) Q (V1, V2) =
∑
n3∈Z

∑
k+m=(0,n3)
kh,mh 6=0

ωa(k)+ωb(m)=0
a,b∈{0,±}
j=1,2,3

〈
P̂(0, n3)


0
0
ň3

0

 · S (V a1 (k)⊗ V b2 (m)
) ∣∣∣ fj〉

C4

eiň3x3 fj ,

(4.4) Ã0
2(D)W =

∑
n∈Z3

nh 6=0

∑
ωa,bn =0

a,b∈{0,±}

〈
FA2(n)W̃ a(n)

∣∣ eb(n)
〉
C4
eiň·x eb(n),

and

(4.5) A0
2(D)W =

∑
n3∈Z

∑
j=1,2,3

〈
FA(0, n3)W j(0, n3)

∣∣ fj〉C4 e
iň3x3 fj .

Using the same standard method of the non-stationary phases as in [22,27,34] or [41], we can prove the following
convergence result

Lemma 4.1. Let V1, V2 and W be zero-average smooth vector fields. Then, we have the following convergence
in the sense of distributions

Q̃εk (V1, V2)
ε→0−−−→ Q̃k (V1, V2) , k = 1, 2

Qε (V1, V2)
ε→0−−−→ Q (V1, V2) ,

Ãε2(D)W
ε→0−−−→ Ã0

2(D)W,

Aε2 (D3)W
ε→0−−−→ A0

2 (D3)W.

Let us now define the (limit) bilinear forms

(4.6)
Q (V1, V2) = Q̃1 (V1, V2) + Q̃2 (V1, V2) +Q (V1, V2) ,

A0
2(D)W = Ã0

2(D)W +A0
2(D)W.

Then, the limit dynamics of (PBSε) as ε→ 0 can be described as follows
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Proposition 4.2. Let V0 ∈ Hs
(
T3
)
, s > 5/2 and T ∈ [0, T ?[, where T ? > 0 is defined in Theorem 1.1. The

sequence (Uε)ε>0 of local strong solutions of (Sε), which is uniformly bounded in C
(
[0, T ] ;Hs

(
T3
))
, is compact

in the space C
(
[0, T ] ;Hσ

(
T3
))

where σ ∈ (s− 2, s). Moreover each limit point U of (Uε)ε>0 solves the following
limit equation

(S0)

{
∂tU +Q (U,U)−A0

2(D)U = 0,

U |t=0 = V0,

a.e. in T3 × [0, T ], where Q and A0
2(D) are given in (4.6).

Proof. The proof of the compactness of the sequence (Uε)ε>0 is a standard argument. Thanks to Theorem 1.1
we know that (Uε)ε>0 is uniformly bounded in C

(
[0, T ] ;Hs

(
T3
))
. Since

‖Qε (Uε, Uε)‖Hs−1 6 C ‖Uε‖2Hs ,

and

‖Aε2(D)Uε‖Hs−2 6 C ‖Uε‖Hs ,

we deduce that (∂tU
ε)ε>0 is uniformly bounded in C

(
[0, T ] ;Hs−2

)
. Remarking that

C
(
[0, T ] ;Hs−2

)
↪→ L1

(
[0, T ] ;Hs−2

)
,

we can hence apply Aubin-Lions lemma [1] to deduce the compactness of the sequence.

Finally, we need to prove that a limit point U (weakly) solves the limit system (S0). We remark that Lemma
4.1 cannot be directly applied since the sequence (Uε)ε>0 is not sufficiently regular. However, by mollifying the
data as in [27,37] or [41], we can deduce that U solves (S0) in D′

(
T3 × [0, T ]

)
. We choose now σ ∈

(
5
2 , s
)
. Since

U ∈ C
(
[0, T ];Hσ

)
, Sobolev embeddings imply that U ∈ C

(
[0, T ]; C1,1

)
, and so it solves the system (S0) a.e. in

T3 × [0, T ]. �

Remark 4.3. A similar result to Proposition 4.2 was proved in [39, Lemma 3.3]. We underline though that the
proof of [39, Lemma 3.3] cannot be adapted to the present setting since it strongly used the regularity induced
by the uniform parabolic smoothing effects.

5. Explicit formulations of the limit system

In this section, we determine the explicit formulation of the limit system (S0). More precisely, for each limit
point U of the sequence of solutions (Uε)ε>0 of (Sε), we decompose the bilinear term Q(U,U) and the linear term
A0

2(D)U by mean of the projections onto kerPA defined in Proposition 2.3 and onto its orthogonal (kerPA)
⊥.

Such approach is generally used for hyperbolic symmetric systems with skew-symmetric perturbation in periodic
domains, and we refer the reader to [22–24, 34, 39] or [41], for instance, for some other related systems. Since
the spectral properties of the operator PA are rather different in the Fourier frequency subspaces {nh = 0} and
{nh 6= 0}, as in Section 3, we write the limit system (S0) as the superposition of the following systems

(5.1)


∂tU +Q

(
Ũ , Ũ

)
−A0

2 (D3)U = 0,

U3 ≡ 0,

U |t=0 = V0,

and

(5.2)


∂tŨ + Q̃1

(
Ũ , Ũ

)
+ Q̃2 (U,U)− Ã0

2(D)Ũ = 0,

div Ũ = 0,

Ũ
∣∣∣
t=0

= Ṽ0,

where the limit terms Q
(
Ũ , Ũ

)
, A0

2 (D3)U , Q̃1(Ũ , Ũ), Q̃2(Ũ , Ũ) and Ã0
2(D)Ũ are defined as in Lemma 4.1. In

what follows, we will separately study the systems (5.1) and (5.2).



12 V.-S. NGO & S. SCROBOGNA

5.1. The dynamics of U . We will prove the following result, which allows to simplify the system (5.1).

Proposition 5.1. Let V0 ∈ Hs
(
T3
)
, s > 5/2, and V0 = V0 + Ṽ0 as in Lemma 3.1. Then, the horizontal average

U =
(
uh, 0, U4

)
of the solution U of the limit system (S0) solves the homogeneous diffusion system (1.9) a.e.

in [0, T ]× T1
v for each T ∈ [0, T ?[.

In order to prove Proposition 5.1, we only need to prove the following lemma

Lemma 5.2. The following identity holds true

Q
(
Ũ , Ũ

)
= 0.

We recall that in Section 3, we already introduce, for any vector field V ∈ L2
σ,

V a(n) =
(
V̂ (n)

∣∣∣ ea(n)
)
C4

ea(n), ∀ a = 0,±, ∀n = (nh, n3) ∈ Z3, nh 6= 0.

Here, we also denote
V̂ a(n) =

(
V̂ (n)

∣∣∣ ea(n)
)
C4
,

and V a,l, l = 1, 2, 3, 4 the l-th component and respectively V a,h the first two components of the vector V a.
Using the definition of Q and the particular form of the vector t(0, 0, ň3, 0) given in (4.3), we have

F (Q (U,U)) (0, n3) =
∑

k+m=(0,n3)
kh,mh 6=0

ωa(k)+ωb(m)=0
a,b=0,±
j=1,2,3

〈
P̂(0, n3)n3 U

a,3(k)U b(m)
∣∣∣ fj〉

C4
fj ,

=
∑

a,b=0,±

3∑
j=1

∑
Ia,b(n3)

〈
P̂(0, n3)n3 U

a,3(k)U b(m)
∣∣∣ fj〉

C4
fj ,

where the set Ia,b(n3) contains the following resonance frequencies

(5.3) Ia,b(n3) =
{

(k,m) ∈ Z6, kh,mh 6= 0
∣∣∣ k +m = (0, n3) , ωa(k) + ωb(m) = 0

}
.

In order to prove Lemma 5.2, we will show that, for each couple (a, b) ∈ {0,±}2, the contribution

(5.4) Ja,b(n3) =
∑
Ia,b(n3)

P̂(0, n3)n3 U
a,3(k)U b(m),

is null, which implies that

(5.5) F (Q (U,U)) (0, n3) =
∑

a,b=0,±

3∑
j=1

〈
Ja,b(n3)

∣∣∣ fj〉
C4
fj = 0.

Case 1: (a, b) = (0, 0). We have

J0,0(n3) =
∑

k+m=(0,n3)

P̂(0, n3)n3 U
0,3(k)U0(m) = 0,

since U0,3 ≡ 0 (see (2.5) and (2.7)).

Case 2: (a, b) = (±, 0) or (a, b) = (0,±). If (a, b) = (±, 0), then,

J±,0(n3) =
∑

k+m=(0,n3)

ω±(k)=0

P̂(0, n3)n3 U
±,3(k)U0(m).

The condition ω±(k) = 0 implies that kh ≡ 0, while the condition k + m = (0, n3) implies that mh ≡ 0. Then
from (2.7), we have Ua,3(0, k3) ≡ 0, which shows that J±,0(n3) gives a null contribution in (5.5). The same
approach can be applied to the case (a, b) = (0,±).

Case 3: (a, b) = (+,+) or (a, b) = (−,−). In this case, Ja,b(n3) writes

J±,±(n3) =
∑

k+m=(0,n3)

ω±(k)+ω±(m)=0

P̂(0, n3)n3 U
±,3(k)U±(m).
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Since k+m = (0, n3), we can set
∣∣ǩh∣∣ = |m̌h| = λ. We deduce from the constraint ω±(k) + ω±(m) = 0 and the

explicit formulation of the eigenvalues (2.4) that
λ√

λ2 + ǩ2
3

+
λ√

λ2 + m̌2
3

= 0,

which implies that λ ≡ 0. Then the similar argument as in Cases 1 and 2 shows that J±,±(n3) = 0.

Case 4: (a, b) = (+,−) or (a, b) = (−,+). This is the most delicate case to treat. We write

(5.6) J±,∓(n3) =
∑

k+m=(0,n3)

ω±(k)=ω±(m)

P̂(0, n3)n3 U
±,3(k)U∓(m).

The conditions k +m = (0, n3) and ω±(k) = ω±(m) imply now that kh = −mh,
∣∣ǩh∣∣ = |m̌h| = λ and

λ√
λ2 + ǩ2

3

=
λ√

λ2 + m̌2
3

.

Then, it is obvious that m3 = ±k3.

If m3 = −k3 then the convolution constraint k3 + m3 = n3 in (5.6) implies that n3 ≡ 0, and hence there is
no contributions of J±,∓(n3) in (5.5). So, we concentrate on the case where kh = −mh and k3 = m3 = n3

2 and
we will deal with the interaction will be of the form, for any n3 ∈ 2Z,

J±,∓(n3) =
∑

mh∈Z2

P̂(0, n3)n3 U
±,3
(
−mh,

n3

2

)
U∓

(
mh,

n3

2

)
.

For any n3 ∈ 2Z, we set

B±,∓n3
=

∑
mh∈Z2

n3 U
±,3
(
−mh,

n3

2

)
U∓,h

(
mh,

n3

2

)
,

C±,∓n3
=

∑
mh∈Z2

n3 U
±,3
(
−mh,

n3

2

)
U∓,4

(
mh,

n3

2

)
.

Taking into account the form of the vectors fj in (2.7), we deduce that

3∑
j=1

〈J+,−(n3) + J−,+(n3) | fj〉C4 fj = P̂(0, n3)

B+,−
n3

+B−,+n3

0
C+,−
n3

+ C−,+n3

 .

Then, we can prove that the sum J+,−(n3) +J−,+(n3) have no contribution in (5.5) and conclude Case 4 if we
prove the following lemma

Lemma 5.3. For any n3 ∈ 2Z, we have the following identities

(5.7) B+,−
n3

= −B−,+n3
,

and

(5.8) C+,−
n3

= −C−,+n3
.

Proof. Identity (5.8) is quite easy to prove. Indeed, we have

C±,∓n3
=

∑
mh∈Z2

n3 e
3
±

(
−mh,

n3

2

)
Û±

(
−mh,

n3

2

)
Û∓

(
−mh,

n3

2

)
.

Then,

(5.9) C+,−
n3

+ C−,+n3
=

∑
mh∈Z2

n3

2

[
e3
±

(
−mh,

n3

2

)
Û±

(
−mh,

n3

2

)
Û∓

(
−mh,

n3

2

)
+ e3

∓

(
mh,

n3

2

)
Û∓

(
mh,

n3

2

)
Û±

(
−mh,

n3

2

)]
.

The explicit expression of e∓(n) in (2.5) yields

(5.10) e3
±

(
−mh,

n3

2

)
= −e3

∓

(
mh,

n3

2

)
,

which, combined with (5.9), implies (5.8).
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To prove Identity (5.7), we consider the quantities

(5.11) β (mh, n3) =
n3

2

[
U+,3

(
−mh,

n3

2

)
U−,h

(
mh,

n3

2

)
+ U−,3

(
−mh,

n3

2

)
U+,h

(
mh,

n3

2

)
+ U+,3

(
mh,

n3

2

)
U−,h

(
−mh,

n3

2

)
+ U−,3

(
mh,

n3

2

)
U+,h

(
−mh,

n3

2

)]
,

which allows to write

(5.12) B+,−
n3

+B−,+n3
=

∑
mh∈Z2

β (mh, n3) .

Now, we decompose
β (mh, n3) = β+ (mh, n3) + β− (mh, n3) ,

where

β+ (mh, n3) =
n3

2

[
U+,3

(
−mh,

n3

2

)
U−,h

(
mh,

n3

2

)
+ U−,3

(
mh,

n3

2

)
U+,h

(
−mh,

n3

2

)]
,

β− (mh, n3) =
n3

2

[
U−,3

(
−mh,

n3

2

)
U+,h

(
mh,

n3

2

)
+ U+,3

(
mh,

n3

2

)
U−,h

(
−mh,

n3

2

)]
.

By definition, we have

U+,3
(
−mh,

n3

2

)
U−,h

(
mh,

n3

2

)
=
〈
Û
(
−mh,

n3

2

) ∣∣∣ e+

(
−mh,

n3

2

)〉
C4
e3

+

(
−mh,

n3

2

)
×
〈
Û
(
mh,

n3

2

) ∣∣∣ e− (mh,
n3

2

)〉
C4
eh−

(
mh,

n3

2

)
,

and

U−,3
(
mh,

n3

2

)
U+,h

(
−mh,

n3

2

)
=
〈
Û
(
mh,

n3

2

) ∣∣∣ e− (mh,
n3

2

)〉
C4
e3
−

(
mh,

n3

2

)
×
〈
Û
(
−mh,

n3

2

) ∣∣∣ e+

(
−mh,

n3

2

)〉
C4
eh+

(
−mh,

n3

2

)
.

The explicit formula (2.5) implies

eh−

(
mh,

n3

2

)
= eh+

(
−mh,

n3

2

)
= Ahmh,n3

,

e3
+

(
−mh,

n3

2

)
= − e3

−

(
mh,

n3

2

)
= A3

mh,n3
.

Setting

Cmh,n3
=
〈
Û
(
−mh,

n3

2

) ∣∣∣ e+

(
−mh,

n3

2

)〉
C4

〈
Û
(
mh,

n3

2

) ∣∣∣ e− (mh,
n3

2

)〉
C4
,

we obtain

U+,3
(
−mh,

n3

2

)
Û−,h

(
mh,

n3

2

)
= − Cmh,n3

Ahmh,n3
A3
mh,n3

,

U−,3
(
mh,

n3

2

)
Û+,h

(
−mh,

n3

2

)
= Cmh,n3A

h
mh,n3

A3
mh,n3

,

which imply
β+ (mh, n3) ≡ 0.

By the similar argument, we also get
β− (mh, n3) ≡ 0,

which yields
β (mh, n3) ≡ 0.

Thus, Identity (5.12) implies (5.7)

�

5.2. The dynamics of Ũ . In the previous paragraph, the dynamics of U is well understood and turns out to
follow quite a simple heat equation. To complete the study of the limit system (S0), we now give an explicit
expression of the system (5.2). As in Lemma 2.1 and Proposition 2.3 (2), we will study the evolution of Ũ as
the superposition of

Ũ = U + Uosc.

The main technical difficulty of the study consists in giving a close formulation of the projection of the bilinear
interactions, which was considered in [39]. In what follows, we only mention the main steps of the study, without
going into technical calculations.
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5.2.1. Derivation of the evolution of U . We recall that U is the projection of Ũ onto the nonoscillating subspace
generated by {E0(n, ·)}n. The derivation of the evolution of U can be done in three steps.

Step 1 : We explicitly compute the projections of Q̃1

(
Ũ , Ũ

)
and Q̃2 (U,U) onto Span {E0(n, ·)}, i.e., for any

n ∈ Z3, nh 6= 0, we compute the following quantities

Q̃1

(
Ũ , Ũ

)
=
∑
n∈Z3

nh 6=0

〈
FQ̃1

(
Ũ , Ũ

)
(n)

∣∣∣ e0(n)
〉
C4
eiň·x e0(n)

Q̃2 (U,U) =
∑
n∈Z3

nh 6=0

〈
FQ̃2 (U,U) (n)

∣∣∣ e0(n)
〉
C4
eiň·x e0(n).

The projection of Q̃1

(
Ũ , Ũ

)
is a mere horizontal transport interaction of elements in the kernel of PA as it

is showed in the following lemma, the proof of which can be found in [39, Lemma 4.2].

Lemma 5.4. The following identity holds true

Q̃1

(
Ũ , Ũ

)
=

uh · ∇huh0
0

+

∇hp1

0
0

 ,

where

uh = ∇⊥h (−∆h)
−1 (−∂2U

1 + ∂1U
2
)
,

p1 = (−∆h)
−1 divh divh

(
uh ⊗ uh

)
.

For the projection of Q̃2 (U,U), we remark that the matrix P̂(n) real and symmetric, so we can write

FQ̃2 (U,U) (n) = FQ̃2

(
U, Ũ

)
(n) = 2

∑
(0,k3)+m=n
mh,nh 6=0

ω̃b,cm,n=0

b,c=0,±
j=1,2,3

〈
P̂(n)

(
ň
0

)
· S
(
U j(0, k3)⊗ U b(m)

) ∣∣∣ ec(n)

〉
C4

ec(n),

whence Q̃2 in (5.2) acts as a non-local transport between the vectors U and Ũ . We have

Lemma 5.5. Let U be as in Proposition 4.2, and let Q̃2 be defined as in (4.2). Then,

∑
n∈Z3

nh 6=0

〈
FQ̃2

(
U, Ũ

)
(n)

∣∣∣ e0(n)
〉
C4

e0(n) =

uh · ∇huh0
0

+

∇hp2

0
0

 ,

where
p2 = (−∆h)

−1 div h

(
uh · ∇huh

)
.

Proof. For c = ±, from (2.5), we have ec ⊥ e0, which implies that〈
FQ̃2

(
U, Ũ

)
(n)

∣∣∣ e0(n)
〉
C4

= 2
∑

(0,k3)+m=n
mh,nh 6=0

ω̃b,0m,n=0

b=0,±
j=1,2,3

〈
P̂(n)

(
ň
0

)
· S
(
U j(0, k3)⊗ U b(m)

) ∣∣∣ e0(n)

〉
C4

.

The condition ω̃b,0m,n = 0 implies that

ω̃b,0m,n = ωb (m)− ω0(n) = ±i |mh|
|m|

= 0,

hence mh = 0. This consideration combined with the convolution constraint (0, k3) + m = n implies nh = 0,
which contradicts the definition of the form Q̃2. Then, in the expression of FQ̃2

(
U, Ũ

)
, we should only take

c = 0 and Lemma 5.5 follows standard explicit computations.

�
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Now, setting
p = p1 + p2,

Lemma 5.4 and 5.5 imply the following

Corollary 5.6. Let U be as in Proposition 4.2, and let Q̃1 and Q̃2 be defined as in (4.1) and (4.2) respectively.
Then ∑

n∈Z3

nh 6=0

〈
FQ̃1

(
Ũ , Ũ

)
+ FQ̃2 (U,U)

∣∣∣ e0(n)
〉
C4

e0(n) =

uh · ∇huh + uh · ∇huh
0
0

+

∇hp0
0

 .

Step 2 : The computation of the projection of Ã0
2 (D) Ũ onto Span {E0(n, ·)} is given in the following lemma,

the proof of which can be found in [39, Lemma 4.4].

Lemma 5.7. Let U be as in Proposition (4.2) and Ã0
2 (D) be defined as in (4.4). Then

Ã0
2 (D) Ũ =

∑
n∈Z3

nh 6=0

〈
F
(
Ã0

2 (D) Ũ
) ∣∣∣ e0(n)

〉
C4

e0(n) =

ν∆uh

0
0

 .

Step 3 : Projecting the system (5.2) onto Span {E0(n, ·)} yields the following equation which describes the
evolution of U

∂tU + Q̃1

(
Ũ , Ũ

)
+ Q̃2 (U,U)− Ã0

2 (D) Ũ = 0.

Then, Corollary 5.6 and Lemma 5.7 imply

Proposition 5.8. Let U be as in Proposition 4.2 and let

V 0 =
∑
n∈Z3

nh 6=0

〈FV0 | e0(n)〉C4 e0(n) ∈ Hs
(
T3
)
,

for s > 5/2. Then, the projection U of U onto Span {E0(n, ·)} belongs to the energy space

C
(
[0, T ] ;Hσ

(
T3
))
, σ ∈ (s− 2, s) ,

for each T ∈ [0, T ?[, and U solves the Cauchy problem (1.10) almost everywhere in T3 × [0, T ].

5.2.2. Derivation of the evolution of Uosc. As for U , the study of Uosc also consists in three steps.

Step 1 : Computation of(
Q̃1

(
Ũ , Ũ

))
osc

=
∑
n∈Z3

nh 6=0

∑
c=±

〈
FQ̃1

(
Ũ , Ũ

)
(n)

∣∣∣ ec(n)
〉
C4
eiň·x ec(n)

(
Q̃2

(
U, Ũ

))
osc

=
∑
n∈Z3

nh 6=0

∑
c=±

〈
FQ̃2 (U,U) (n)

∣∣∣ ec(n)
〉
C4
eiň·x ec(n).

Since Ũ = U + Uosc, we can decompose(
Q̃1

(
Ũ , Ũ

))
osc

=
(
Q̃1

(
U,U

))
osc

+ 2
(
Q̃1

(
U,Uosc

))
osc

+
(
Q̃1 (Uosc, Uosc)

)
osc
.

The first term was already calculated in [39, Lemma 4.6], and we have

Lemma 5.9. The following identity holds true(
Q̃1

(
U,U

))
osc

= 0.

To obtain the bilinear term of the equation (1.11), it remains to find the explicit expression of
(
Q̃2

(
U, Ũ

))
osc

,
which is in fact the bilinear term B (U,Uosc) of the equation (1.11).
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Lemma 5.10. We have the following explicit expression

F B (U,Uosc) = F
(
Q̃2

(
U, Ũ

))
osc

(5.13)

=
∑
b,c=±
j=1,2,3

〈
P̂(n)

(
ň
0

)
· S
(
U j (0, 2n3)⊗ U b (nh,−n3)

) ∣∣∣ ec(n)

〉
C4

ec(n).

Proof. Since Ũ = U + Uosc, we have(
Q̃2

(
U, Ũ

))
osc

=
(
Q̃2

(
U,U

))
osc

+
(
Q̃2 (U,Uosc)

)
osc
.

According to the definition (4.2), we can write(
Q̃2

(
U,U

))
osc

=
∑

(0,k3)+m=n
mh,nh 6=0
ω̃0,c
m,n=0
c=±

j=1,2,3

〈
P̂(n)

(
ň
0

)
· S
(
U j(0, k3)⊗ U0(m)

) ∣∣∣ ec(n)

〉
C4

ec(n).

Let us remark that the above formulation differs to the one given in (4.2) since the projection onto the oscillating
subspace forces the parameter c to be equal to ± only, and the fact that U is the second argument of the bilinear
form forces the parameter b in (4.2) to be zero. Hence the bilinear interaction constraint ω̃0,c

m,n = c |nh||n| = 0

combined with the convolution constraint (0, k3) + m = n implies that nh = 0, that contradicts the definition
of Q̃2. We deduce that (

Q̃2

(
U,U

))
osc

= 0.

It now remains to prove (5.13). According to the above argument we can argue that(
Q̃2

(
U, Ũ

))
osc

=
(
Q̃2 (U,Uosc)

)
osc

=
∑

(0,k3)+m=n

ω̃b,cm,n=0

b,c=±
j=1,2,3

(
P̂(n)

(
ň
0

)
· S
(
U j(0, k3)⊗ U b(m)

)∣∣∣∣ ec(n)

)
C4

ec(n).

In this case, nh = mh and using (2.4), the equality ω̃b,cm,n = ω± (nh, n3)− ω± (nh,m3) = 0 becomes

|ňh|√
ň2

1 + ň2
2 + m̌2

3

=
|ňh|√

ň2
1 + ň2

2 + ň2
3

.

The above equality is satisfied ifm3 = ±n3. Let us supposem3 = n3, if this is the case the convolution condition
k3 + m3 = n3 implies that k3 = 0, in this case the term Û (0, 0) denotes the average of the element uh, which
is identically zero by hypothesis since (PBSε) propagates the global average which is supposed to be zero since
the beginning. Thus, we get m3 = −n3 and k3 = 2n3 and we recover the expression in (5.13).

�

Step 2 : Computation of
(
Ã0

2 (D) Ũ
)

osc
.

Lemma 5.11. We have (
Ã0

2 (D) Ũ
)

osc
= ν∆Uosc.

Proof. We will calculate

F
(
Ã0

2 (D)Uosc

)
osc

(n) =
∑
a,b=±
ωa,bn =0

Ûa(n) 〈A2(n)ea(n) | eb(n)〉C4 eb(n),

where the matrix A2 is defined in (1.2).

If a = −b, the condition ωa,bn = 0 becomes

ωa,−an = 2ωa(n) = 2a i
|nh|
|n|

= 0,
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which implies nh = 0, contradicting the definition of Ã0
2. Thus, we deduce that a = b. The expression of the

eigenvalues given in (2.4) implies
〈A2 (D) ea | ea〉C4 = −ν |n|2 .

Lemma 5.11 is then proved.

�

Remark 5.12. We want to emphasize that Lemma 5.7 and 5.11 imply the strict (total) parabolicity of the
operator Ã0

2 (D) for vector fields with zero horizontal average. This is remarkable since the operator A2 (D)
appearing in (PBSε) is not strictly parabolic.

Step 3 : Projecting the system (5.2) onto Span {E±(n, ·)} and using Lemma 5.9 and 5.11, we deduce that the
evolution of Uosc is given by

∂tUosc + Q̃1

(
Uosc, Uosc + 2U

)
+ B (U,Uosc)− ν∆Uosc = 0,

and we hence prove the following result

Proposition 5.13. Let Uosc,0 ∈ Hs
(
T3
)
, s > 5/2, the projection of U onto the oscillating subspace Span {E±(n, ·)}

belongs to the energy space
C
(
[0, T ];Hσ

(
T3
))
, σ ∈ (s− 2, s) ,

for each T ∈ [0, T ?[, and Uosc solves the Cauchy problem (1.11) a.e. in T3 × [0, T ].

6. Global propagation of smooth data for the limit system

We already proved in Proposition 5.1, 5.8 and 5.13, if the initial data U0 ∈ Hs, s > 5/2, then the decom-
position U = U + U + Uosc holds in C ([0, T ], Hσ), s − 2 < σ < s and 0 6 T < T ?, and where U , U and
Uosc are respectively solutions of the systems (1.9), (1.10) and (1.11). The aim of this section is to prove the
global propagation of the Hs

(
T3
)
-regularity, s > 5/2, by the limit system (S0), more precisely by the systems

(1.9)–(1.11). This propagation can be resumed in the following propositions. We remark that for U and U , we
need much less regularity, and the Hs

(
T3
)
-regularity, s > 5/2, is especially needed for Uosc.

Proposition 6.1. Let U0 ∈ Hs
(
T3
)
, s > 0, then the solution U =

(
uh, 0, U4

)
of the equation (1.9) globally and

uniquely exists in time variable

uh ∈ C
(
R+;Hs

(
T1

v
))
∩ L2

(
R+;Hs+1

(
T1

v
))
,

and
U4 ∈ C

(
R+;Hs

(
T1

v
))
.

Proposition 6.2. Let U0 ∈ Hs
(
T3
)
∩ L∞

(
Tv;Hσ

(
T2
h

))
, and ∇hU0 ∈ L∞

(
Tv;Hσ

(
T2
h

))
for s > 1/2, σ > 0,

then the system (1.10) possesses a unique solution in

uh ∈ C
(
R+;Hs

(
T3
))
∩ L2

(
R+;Hs+1

(
T3
))
.

Moreover for each t > 0 the following estimate holds true

(6.1)
∥∥uh (t)

∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥uh (τ)
∥∥2

Hs+1(T3)
dτ 6 E1 (U0) ,

where

(6.2) E1 (U0) = C
∥∥uh0∥∥2

Hs(T3)
exp

{
CK Φ (U0)

cν

∥∥∇huh0∥∥Lpv(Hσh) +
C

ν

∥∥uh0∥∥2

Hs(T1
v)

}
and

Φ (U0) = exp

CK
2
∥∥∇huh0∥∥2

L∞v (L2
h)

cν
exp

{
K

cν

(
1 +

∥∥uh0∥∥2

L∞v (L2
h)

)∥∥∇huh0∥∥2

L∞v (L2
h)

} .

Proposition 6.3. Let s > 5/2 and U0 ∈ Hs
(
T3
)
. For each T > 0, we have

Uosc ∈ C
(
[0, T ];Hs

(
T3
))
∩ L2

(
[0, T ];Hs+1

(
T3
))
,

and the following bound holds true for each 0 6 t 6 T

‖Uosc (t)‖2Hs(T3) + ν

∫ t

0

‖∇Uosc (τ)‖2Hs(T3) dτ 6 E3,ν,T (U0) ,
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where

E3,ν,T (U0) = ‖Uosc,0‖2Hs(T3) exp

{
1

ν
E1 (U0) + T ‖U0‖

2
L2(T1

v) +
1

ν
(E2,U0 (T ))

2

}
,(6.3)

E2,U0
(T ) = C ‖Uosc,0‖2L2(T3) exp

{
E1 (U0)

ν
+ T ‖U0‖

2
Hs(T1

v)

}
(6.4)

and E1 (U0) is defined as in Proposition 6.2.

6.1. Proof of Proposition 6.1. The system (1.10) is a classical heat equation, the solution of which is well
known in the literature. Here, we only remark that classical energy estimates imply∥∥uh (t)

∥∥2

Hs(T1
v)

+ 2ν

∫ t

0

∥∥∂3u
h (τ)

∥∥2

Hs(T1
v)

=
∥∥uh0∥∥2

Hs(T1
v)
.

Since uh has zero vertical average, uh ∈ L2
(
R+;Hs+1

(
T1

v
))

as well. �

Remark 6.4. We would like to mention that

(6.5)
∥∥uh∥∥

Hs(T1
v)

=
∥∥uh∥∥

Hs(T3)
,

hence even if uh depends on the vertical variable only it still inherits the same isotropic regularity.

6.2. Proof of Proposition 6.2. We start by recalling a result proved in [39, Proposition 5]

Proposition 6.5. Let uh be a solution of (1.10) with initial data uh0 and ∇huh0 belonging to L∞v (Hσ
h ), for some

σ > 1. Then, we have
uh ∈ L2

(
R+;L∞

(
T3
))
,

and in particular ∥∥uh∥∥
L2(R+;L∞(T3))

6
CK

cν
Φ (U0)

∥∥∇huh0∥∥Lpv(Hσh) ,

where Φ (U0) is defined as in Proposition 6.2 and c, C,K are positive constants.

Remark 6.6. The reader may notice that [39, Proposition 5] is applied on a limit system which is slightly
different than (1.10), i.e. on the system

(6.6)

{
∂tu

h + uh · ∇huh − ν∆uh = −∇p̄,

div uh = 0.

The only difference between (6.6) and (1.10) is the presence in (1.10) of the term uh · ∇huh. Such term though
does not pose an obstruction to the application of [39, Proposition 5] to the limit system (1.10); the proof of
such result is in fact based on the fact that the following nonlinear cancellation∫

R2
h

(
uh · ∇huh

)
· uhdyh = 0,

holds true for (6.6) (and hence as well for (1.10)) since div uh = 0. Indeed though the term uh · ∇huh enjoys as
well a nonlinear cancellation, since∫

R2
h

(
uh · ∇huh

)
· uhdyh =

1

2
uh
∫
R2
h

∇
∣∣uh∣∣2 dyh = 0,

being the vector field periodic. Whence [39, Proposition 5] can be applied to the limit system (1.10).

Next, we need the following estimate

Lemma 6.7. Let uh be the solution of (1.10) and uh the solution of (1.9), then, for s > 1/2, we have

(6.7)
∣∣∣〈uh · ∇huh ∣∣uh〉Hs(T3)

∣∣∣ 6 C (∥∥uh∥∥
Hs(T1

v)
+
∥∥uh∥∥

Hs+1(T1
v)

)∥∥uh∥∥
Hs(T3)

∥∥∇huh∥∥Hs(T3)
.

Proof. Applying the dyadic cut-off operator4q to uh ·∇huh, taking the L2-scalar product of the obtain quantity
with 4quh and applying the Bony decomposition, we get∣∣∣〈4q (uh · ∇huh) ∣∣4quh〉L2(T3)

∣∣∣ 6 B1
q +B2

q ,
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where

B1
q =

∑
|q−q′|64

∣∣〈4q (Sq′−1u
h4q′∇huh

) ∣∣4quh〉L2

∣∣
B2
q =

∑
q′>q−4

∣∣〈4q (4q′uhSq′+2∇huh
) ∣∣4quh〉L2

∣∣ .
Applying Hölder inequality and using (A.3) on the term B1

q , we deduce

B1
q 6 Cbq2

−2qs
∥∥Sq′−1u

h
∥∥
L∞

∥∥∇huh∥∥Hs(T3)

∥∥uh∥∥
Hs(T3)

.

Since uh only depends on the vertical variable, thanks to the embedding Hs
(
T1

v
)
↪→ L∞

(
T1

v
)
, s > 1/2, we

deduce ∥∥Sq′−1u
h
∥∥
L∞
6
∥∥uh∥∥

L∞(T1
v)
6
∥∥uh∥∥

Hs(T1
v)
,

and whence,

(6.8) B1
q 6 Cbq2

−2qs
∥∥uh∥∥

Hs(T1
v)

∥∥∇huh∥∥Hs(T3)

∥∥uh∥∥
Hs(T3)

.

Next, we apply Hölder inequality to the term B2
q and get

B2
q 6

∑
q′>q−4

∥∥4quh∥∥L2(T3)

∥∥4q′uh∥∥L2
v(L∞h )

∥∥∇huh∥∥L∞v (L2
h) .

Bernstein inequality and Estimates (A.3) and (6.5) yield∥∥4q′uh∥∥L2
v(L∞h ) 6 Ccq2

q′−(q′+1)s ∥∥uh∥∥
Hs+1(T3)

= Ccq2
−q′s ∥∥uh∥∥

Hs+1(T1
v)
.

Since Hs
(
T3
)
↪→ H0,s ↪→ L∞v

(
L2
v

)
, s > 1/2, we have∥∥∇huh∥∥L∞v (L2

h) 6 C
∥∥∇huh∥∥Hs(T3)

.

Applying once again Estimate (A.3), we deduce

(6.9) B2
q 6 Cbq2

−2qs
∥∥uh∥∥

Hs+1(T1
v)

∥∥∇huh∥∥Hs(T3)

∥∥uh∥∥
Hs(T3)

.

Now, combining (6.8) and (6.9) finaly implies∣∣∣〈4q (uh · ∇huh) ∣∣4quh〉L2(T3)

∣∣∣ 6 Cbq2−2qs
(∥∥uh∥∥

Hs(T1
v)

+
∥∥uh∥∥

Hs+1(T1
v)

)∥∥uh∥∥
Hs(T3)

∥∥∇huh∥∥Hs(T3)
.

�

Proof of Proposition 6.2. We multiply (1.10) by (−∆)
s
uh, integrate the obtained quantity over T3. Using

Inequality (6.7) and the following inequality∣∣∣〈uh · ∇huh ∣∣ uh〉Hs(T3)

∣∣∣ 6 C ∥∥uh∥∥
L∞

∥∥uh∥∥
Hs(T3)

∥∥∇uh∥∥
Hs(T3)

,

we deduce that

(6.10)
1

2

d

dt

∥∥uh∥∥2

Hs(T3)
+ ν

∥∥uh∥∥2

Hs+1(R3)

6 C
(∥∥uh∥∥

L∞(T3)
+
∥∥uh∥∥

Hs(T1
v)

+
∥∥uh∥∥

Hs+1(T1
v)

)∥∥uh∥∥
Hs(T3)

∥∥uh∥∥
Hs+1(R3)

.

Then, Young inequality implies∥∥uh∥∥
L∞(T3)

∥∥uh∥∥
Hs(T3)

∥∥uh∥∥
Hs+1(R3)

6
ν

2

∥∥uh∥∥2

Hs+1(R3)

+ C
(∥∥uh∥∥2

L∞(T3)
+
∥∥uh∥∥2

Hs(T1
v)

+
∥∥uh∥∥2

Hs+1(T1
v)

)∥∥uh∥∥2

Hs(T3)
,

which, together with (6.10) and Gronwall lemma, leads to

∥∥uh (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥uh (τ)
∥∥2

Hs+1(T3)
dτ

6 C
∥∥uh0∥∥2

Hs(T3)
exp

{∫ t

0

∥∥uh (τ)
∥∥2

L∞(T3)
+
∥∥uh (τ)

∥∥2

Hs(T1
v)

+
∥∥uh (τ)

∥∥2

Hs+1(T1
v)
dτ

}
.
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Using Proposition 6.5 and Proposition 6.1, we finaly obtain∥∥uh (t)
∥∥2

Hs(T3)
+ ν

∫ t

0

∥∥uh (τ)
∥∥2

Hs+1(T3)
dτ

6 C
∥∥uh0∥∥2

Hs(T3)
exp

{
CK

cν
Φ (U0)

∥∥∇huh0∥∥Lpv(Hσh) +
C

ν

∥∥uh0∥∥Hs(T1
v)

}
,

where Φ is defined as in Proposition 6.2. �

6.3. Proof of Proposition 6.3. We first remark that, if Ũ and U are smooth enough, the system (1.11) admits
global weak solutions à la Leray in the same fashion as for the incompressible Navier-Stokes equations (see [15]
for instance).

Lemma 6.8. Let s > 1/2, U ∈ L2
(
R+;Hs+1

(
T3
))

and U ∈ L∞
(
R+;Hs

(
T1

v
))
. Then, for any initial data

Uosc,0 ∈ L2
(
T3
)
, there exists a global weak solution of the system (1.11) such that

Uosc ∈ Cloc
(
R+;L2

(
T3
))
∩ L2

loc
(
R+;H1

(
T3
))
.

Moreover for any t? ∈ R+ and for any 0 6 t 6 t? <∞, the following estimate holds true

(6.11) ‖Uosc (t)‖2L2(T3) + ν

∫ t

0

‖∇Uosc (τ)‖2L2(T3) dτ 6 E2,U0 (t?) .

where

E2,U0
(t?) = C ‖Uosc,0‖2L2(T3) exp

{
E1 (U0)

ν
+ t? ‖U0‖

2
Hs(T1

v)

}
.

Proof. We define the frequency cut-off operator

JnW =
∑
|k|6n

Ŵ (n)eiň·x,

and consider the approximate system

(6.12)


∂tUosc,n + JnQ̃1

(
Uosc,n + 2U,Uosc,n

)
+ JnB (U,Uosc,n)− ν∆Uosc,n = 0,

div Uosc,n = 0,

Uosc,n|t=0 = JnUosc,0.

The Cauchy-Lipschitz theorem implies the existence of a local solution for (6.12) in the space

Uosc,n ∈ C
(
[0, Tn] ;L2

n

)
,

where
L2
n =

{
f ∈ L2(T3), supp f̂ ⊂ B(0, n)

}
.

Since Uosc,n is of divergence-free we deduce that〈
JnQ̃1 (Uosc,n, Uosc,n)

∣∣∣ Uosc,n

〉
L2(T3)

= 0.

Moreover, the following inequalities hold true thanks to the embedding Hs ↪→ L∞, s > d
2 ;〈

Q̃1

(
U,Uosc,n

) ∣∣∣ Uosc,n

〉
6 C

∥∥∇U∥∥
Hs(T3)

‖Uosc,n‖L2(T3) ‖∇Uosc,n‖L2(T3) ,

〈B (U,Uosc,n) | Uosc,n〉 6 C ‖U‖Hs(T1
v) ‖Uosc,n‖L2(T3) ‖∇Uosc,n‖L2(T3) ,

which yield, for any t? ∈ R+ and t ∈ [0, t?[,

‖Uosc,n (t)‖2L2(T3) + ν

∫ t

0

‖∇Uosc,n (τ)‖2L2(T3) dτ

6 C ‖Uosc,0‖2L2(T3) exp

{∫ t

0

∥∥∇U (τ)
∥∥2

Hs(T3)
+ ‖U (τ)‖2Hs(T1

v) dτ

}
,

6 C ‖Uosc,0‖2L2(T3) exp

{
E1 (U0)

ν
+ t? ‖U0‖

2
Hs(T1

v)

}
,

where E1 is defined in (6.2). Hence, by a continuation argument, we deduce that Tn = ∞ and for each T > 0,
the sequence (Uosc,n)n is uniformly bounded in the space

C
(
[0, T ];L2

(
T3
))
∩ L2

(
[0, T ];H1

(
T3
))
.

Standard product rules in Sobolev spaces show that the sequence (∂tUosc,n)n is uniformly bounded in the space
L2
(
[0, T ];H−N

)
for N ∈ N large enough. Finaly, applying Aubin-Lions lemma (see [1]), we deduce that the

sequence (Uosc,n)n is compact in L2
(
[0, T ];L2

)
, and each limit point of (Uosc,n)n weakly solves (1.11).
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�

Remark 6.9. We point out that the above construction of global weak solutions is possible thanks to the
presence of the uniformly parabolic smoothing effect on the limit system (1.11), hence the importance of the
propagation of parabolicity mentioned in Remark 1.3.

Next, we study the “purely bilinear” interactions of highly oscillating perturbations in (5.2) given by the term(
Q̃1 (Uosc, Uosc)

)
osc
.

Bilinear interactions of the above form, in general, prevent us from obtaining global-in-time energy subcritical
and critical estimates. However, as pointed out in Remark 1.4, we can actually prove that the bilinear interaction
Q̃1 (Uosc, Uosc) is in fact smoother than the vector Uosc · ∇Uosc. To do so, we introduce the following resonant
set.

Definition 6.10. (1) The resonant set K? is the set of frequencies such that

K? =
{

(k,m, n) ∈ Z9, kh,mh, nh 6= 0
∣∣ ωa(k) + ωb(m) = ωc(n), k +m = n, (a, b, c) ∈ {−,+}

}
,

=
{

(k, n) ∈ Z6, kh, nh 6= 0
∣∣ ωa(k) + ωb(n− k) = ωc(n), (a, b, c) ∈ {−,+}

}
,

where ωj , j = ± are the eigenvalues given in (2.4).
(2) The resonant set of the frequency n : nh 6= 0, is defined as

K?n =
{

(k,m) ∈ Z6
∣∣ ωa(k) + ωb(m) = ωc(n) with k +m = n, (a, b, c) ∈ {−,+}

}
.

The resonant set is introduced in order to express the term
(
Q̃1 (Uosc, Uosc)

)
osc

in a more concise way. Indeed,

considering the explicit definition of the bilinear form Q̃1 given in (4.1) we can immediately deduce that(
Q̃1 (Uosc, Uosc)

)
osc

= F−1 (1K?F (Uosc · ∇Uosc)) .

In other words, the resonant set K? is the set of frequencies on which the bilinear interaction
(
Q̃1 (Uosc, Uosc)

)
osc

is localized.

We now define the following Fourier multiplier of order zero

χK? (D) (a b) = F−1 (1K?F (a b)) .

We can hence rewrite (
Q̃1 (Uosc, Uosc)

)
osc

= div [χK? (D) (Uosc ⊗ Uosc)] .

We state the following technical lemma which is a simple variation of [15, Lemma 6.6, p.150], [34, Lemma 6.4,
p.222] or [41, Lemma 8.4]. The proof is based on the fact that, for fixed (kh, n), the fiber

J (kh, n) = {k3 ∈ Z , (k, n) ∈ K?}
is a finite set.

Lemma 6.11. Let a, b ∈ H1/2
(
T3
)
and c ∈ L2

(
T3
)
be vector fields of zero horizontal average on T2

h. Then
there exists a constant C which only depends on a1/a2 such that

(6.13)

∣∣∣∣∣∣
∑

(k,n)∈K?
â(k)̂b (n− k) ĉ(n)

∣∣∣∣∣∣ 6 C

a3
‖a‖H1/2(T3) ‖b‖H1/2(T3) ‖c‖L2(T3) .

Proof. We first prove Lemma 6.11 when T3 = [0, 2π)
3. We write

IK? =

∣∣∣∣∣∣
∑

(k,n)∈K?
âk b̂n−k ĉn

∣∣∣∣∣∣ 6
∑

(kh,n)∈Z2×Z3

∑
{k3:(k,n)∈K?}

∣∣∣âk b̂n−k ĉn∣∣∣ ,(6.14)

6
∑

(kh,n)∈Z2×Z3

|ĉn|
∑

{k3:(k,n)∈K?}

|âk|
∣∣∣̂bn−k∣∣∣ .

By Cauchy-Schwarz inequality, we have

∑
{k3:(k,n)∈K?}

|âk|
∣∣∣̂bn−k∣∣∣ 6

 ∑
{k3:(k,n)∈K?}

|âk|2
∣∣∣̂bn−k∣∣∣2

1/2 ∑
{k3:(k,n)∈K?}

1

1/2

.

Now, fixing (kh, n) ∈ Z2 × Z3 there exists only a finite number of resonant modes k3, more precisely,

(6.15) # ({k3 : (k, n) ∈ K?}) 6 8.
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Indeed, we can write explicitly the resonant condition ω+,+,+
k,n−k,n = 0 (the same procedure holds for the generic

case ωa,b,ck,n−k,n = 0, a, b, c 6= 0) as follows(
|kh|2

|k3|2 + |kh|2

)1/2

+

(
|nh − kh|2

|n3 − k3|2 + |nh − kh|2

)1/2

=

(
|nh|2

|n3|2 + |nh|2

)1/2

.

After some algebraic calculations, the above equation of k3 (kh and n being fixed) becomes an polynomial
equation of the form

R (k3) = 0,

where R is a real polynomial of degree eight, hence (6.15) follows the fundamental theorem of algebra. Thus,

∑
{k3:(k,n)∈K?}

|âk|
∣∣∣̂bn−k∣∣∣ 6 √8

 ∑
{k3:(k,n)∈K?}

|âk|2
∣∣∣̂bn−k∣∣∣2

1/2

,

which, combined with Inequality (6.14), gives

IK? 6
√

8
∑
kh,nh

∑
n3

|ĉn|

(∑
k3

|âk|2
∣∣∣̂bn−k∣∣∣2)1/2

.

Moreover ∑
n3

|ĉn|

(∑
k3

|âk|2
∣∣∣̂bn−k∣∣∣2)1/2

6

(∑
n3

|ĉn|2
)1/2

∑
n3,k3

|âk|2
∣∣∣̂bn−k∣∣∣2

1/2

,

and hence

(6.16) IK? 6
√

8
∑

(kh,n)∈Z2×Z3

(∑
n3

|ĉn|2
)1/2(∑

p3

∣∣∣̂bnh−kh,p3∣∣∣2
)1/2(∑

k3

|âk|2
)1/2

.

Let us denote at this point

ãnh =

(∑
n3

|ân|2
)1/2

, b̃nh =

(∑
n3

∣∣∣̂bn∣∣∣2)1/2

, c̃nh =

(∑
n3

|ĉn|2
)1/2

,

and the following distributions

ã (xh) = F−1
h (ãnh) b̃ (xh) = F−1

h

(
b̃nh

)
c̃ (xh) = F−1

h (c̃nh) .

The inequality (6.16) can be read, applying Plancherel theorem and the product rules for Sobolev spaces, as

IK? 6
〈
ãb̃
∣∣ c̃〉

L2(T2
h)
6
∥∥∥ãb̃∥∥∥

L2(T2
h)
‖c̃‖L2(T2

h)

6 ‖ã‖H1/2(T2
h)

∥∥∥b̃∥∥∥
H1/2(T2

h)
‖c̃‖L2(T2

h)

= ‖a‖H1/2,0(T3) ‖b‖H1/2,0(T3) ‖c‖L2(T3) ,

6 ‖a‖H1/2(T3) ‖b‖H1/2(T3) ‖c‖L2(T3) .

Finaly, to lift this argument to a generic torus
∏3
i=1 [0, 2πai), it suffices to use the transform

ṽ (x1, x2, x3) = v (a1x1, a2x2, a3x3) ,

and the identity
‖ṽ‖L2([0,2π)3) = (a1a2a3)

−1/2 ‖v‖L2(
∏3
i=1[0,2πai)) .

�

Remark 6.12. Lemma (6.11) can be applied on Uosc, by taking a = b = c = Uosc, since the projection on the
oscillating subspace defined in (2.9) has zero horizontal average.

Now, we can prove the energy bound required on the problematic trilinear term

Lemma 6.13. Let s > 0, then

(6.17)
〈(
Q̃1 (Uosc, Uosc)

)
osc

∣∣∣ Uosc

〉
Hs(T3)

6 C ‖Uosc‖1/2L2(T3) ‖∇Uosc‖1/2L2(T3) ‖Uosc‖1/2Hs(T3) ‖∇Uosc‖3/2Hs(T3) .
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Proof. We remark that〈(
Q̃1 (Uosc, Uosc)

)
osc

∣∣∣ Uosc

〉
Hs(T3)

=
〈
Q̃1 (Uosc, Uosc)

∣∣∣ Uosc

〉
Hs(T3)

,

= −〈χK? (D) (Uosc ⊗ Uosc) | ∇Uosc〉Hs(T3) ,

= −
〈

(−∆)
s/2

(Uosc ⊗ Uosc)
∣∣∣ (−∆)

s/2∇Uosc

〉
χK?

,

where
〈a b | c〉χK? =

∑
(k,n)∈K?

â(k)̂b (n− k) ĉ(n).

By a dyadic decomposition, we also have∣∣∣∣〈 (−∆)
s/2

(Uosc ⊗ Uosc)
∣∣∣ (−∆)

s/2∇Uosc

〉
χK?

∣∣∣∣ ∼∑
q

22qs
∣∣∣〈4q (Uosc ⊗ Uosc) | 4q∇Uosc〉χK?

∣∣∣ .
For each dyadic bloc in the above estimate, using a Bony decomposition, we have

Iq =
∣∣∣〈4q (Uosc ⊗ Uosc) | 4q∇Uosc〉χK?

∣∣∣ 6 I1
q + I2

q ,

where

I1
q =

∑
|q−q′|64

∣∣∣〈4q (Sq′Uosc ⊗4q′Uosc) | 4q∇Uosc〉χK?
∣∣∣

I2
q =

∑
q′>q−4

∣∣∣〈4q (4q′Uosc ⊗ Sq′+2Uosc) | 4q∇Uosc〉χK?
∣∣∣ .

Combining (6.13) with some classical computations with the dyadic blocs finaly leads to, for any k = 1, 2,

Ikq 6 C 2−2qsbq ‖Uosc‖1/2L2(T3) ‖∇Uosc‖1/2L2(T3) ‖Uosc‖1/2Hs(T3) ‖∇Uosc‖3/2Hs(T3) ,

where the sequence (bq)q ∈ `
2 depends on Uosc, concluding the proof.

�

Lemma 6.14. Let s > 1/2, then〈
Q̃1

(
U,Uosc

) ∣∣∣ Uosc

〉
Hs(T3)

6 C
∥∥∇U∥∥

Hs(T3)
‖∇Uosc‖Hs(T3) ‖Uosc‖Hs(T3) ,(6.18)

〈B (U,Uosc) | Uosc〉Hs(T3) 6 C ‖U‖L2(T1
v) ‖∇Uosc‖Hs(T3) ‖Uosc‖Hs(T3) .(6.19)

Proof. The proof of Lemma 6.14 relies on direct estimates performed on both bilinear terms. For the first one,
we have ∣∣∣∣〈Q̃1

(
U,Uosc

) ∣∣∣ Uosc

〉
Hs(T3)

∣∣∣∣ 6 ∣∣∣〈div (U ⊗ Uosc
) ∣∣ Uosc

〉
Hs(T3)

∣∣∣ ,
6
∥∥U ⊗ Uosc

∥∥
Hs+1(T3)

‖Uosc‖Hs(T3) ,

6 C
∥∥∇U∥∥

Hs(T3)
‖∇Uosc‖Hs(T3) ‖Uosc‖Hs(T3) ,

where in the last inequality, we used the fact that Hs+1
(
T3
)
, s > 1/2 is a Banach algebra.

For the second one we use the explicit definition of the limit bilinear form B given in (5.13) in order to deduce
the identity

〈B (U,Uosc) | Uosc〉Hs(T3) =
〈

(−∆)
s/2 B (U,Uosc)

∣∣∣ (−∆)
s/2

Uosc

〉
L2(T3)

,

=
〈
B
(
U, (−∆)

s/2
Uosc

) ∣∣∣ (−∆)
s/2

Uosc

〉
L2(T3)

,

which implies inequality (6.19).

�

Proof of Proposition 6.3. We have now all the ingredients to prove Proposition 6.3. Performing rather standard
Hs
(
T3
)
-energy estimates on the equation (1.11) with the energy bounds (6.17), (6.18) and (6.19), we obtain

1

2

d

dt
‖Uosc (t)‖2Hs(T3) + ν

∫ t

0

‖∇Uosc (τ)‖2Hs(T3) dτ

6 C
(∥∥∇U∥∥

Hs(T3)
+ ‖U‖L2(T1

v)

)
‖∇Uosc‖Hs(T3) ‖Uosc‖Hs(T3)

+ ‖Uosc‖1/2L2(T3) ‖∇Uosc‖1/2L2(T3) ‖Uosc‖1/2Hs(T3) ‖∇Uosc‖3/2Hs(T3)
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Then, Young inequality and Gronwall lemma imply

‖Uosc (τ)‖2Hs(T3) + ν

∫ t

0

‖∇Uosc (τ)‖2Hs(T3) dτ

6 ‖Uosc,0‖2Hs(T3) exp

{∫ t

0

∥∥∇uh (τ)
∥∥2

Hs(T3)
dτ +

∫ t

0

‖U (τ)‖2L2(T1
v) dτ

+

∫ t

0

‖Uosc (τ)‖2L2(T3) ‖∇Uosc (τ)‖2L2(T3) dτ

}
.

Thus, using Estimates (6.1), (6.11) and the result in Proposition 6.1, we deduce that, for each T > 0, the
following bound holds true

‖Uosc (τ)‖2Hs(T3) + ν

∫ t

0

‖∇Uosc (τ)‖2Hs(T3) dτ

6 ‖Uosc,0‖2Hs(T3) exp

{
1

ν
E1 (U0) + T ‖U0‖

2
L2(T1

v) +
1

ν
(E2,U0 (T ))

2

}
,

6 Cν exp {Cν exp {CνT}} ,

where E1 and E2 are respectively defined in (6.2) and (6.4). �

7. Convergence as ε→ 0 and proof of the main result

As in the work [24], the lack of a complete parabolic smoothing effect on the system (PBSε) will prevent us
to obtain a uniform global-in-time control for Uε. Nonetheless we will be able to prove that, for each T > 0
arbitrary and ε > 0, the solutions of (Sε) belong to the space Cloc

(
R+;Hs−2

(
T3
))

for s > 9/2 and converge
in the same topology to the global solution of (S0). The idea to prove this convergence result is to use the
method of Schochet (see [37]), which consists in a smart change of variable, which cancels some perturbations
that we cannot control. We will use results and terminology introduced by I. Gallagher in [23] in the context
of quasilinear hyperbolic symmetric systems with skew-symmetric singular perturbation.

Let us recall the following definition [23, Definition 1.2]

Definition 7.1. Let T, ε0 > 0, p > 1 and σ > d/2. Let
−→
kq = (k1, . . . , kq) where ki ∈ Zd and let∣∣∣−→kq∣∣∣ = max

16i6q
|ki| .

Then a function Rεosc (t) is said to be (p, σ)– oscillating function if it can be written as

Rεosc =

p∑
q=1

Rεq,osc (t) ,

where

Rεq,osc (t) = F−1

 ∑
−→
kq∈Kn

q

e
i tεβq

(
n,
−→
kq
)
r0

(
n,
−→
kq

)
fε1 (t, k1) . . . fεq (t, kq)

 ,

with

Kn
q =

{
−→
kq ∈ Zdq

∣∣∣∣∣
q∑
i=1

ki = n and βq
(
n,
−→
kq

)
6= 0

}
,

and where r0 and fεi satisfy

• there exist (αi)i∈{1,...,q} , αi > 0 such that

r0

(
n,
−→
kq

)
6 C

q∏
i=1

(1 + |ki|)αi ,

•
(
F−1fεi

)
0<ε<ε0

is uniformly bounded in C
(
[0, T ];Hσ+αi

(
Td
))
, for any i ∈ {1, . . . , q},

• there exists a σi > −σ for which,
(
F−1∂tf

ε
i

)
0<ε<ε0

is uniformly bounded in C
(
[0, T ];Hσi

(
Td
))
.

The abstract concept in Definition 7.1 is required in order to introduce the following result, see [23, Lemma 2.1]
or [24, Lemma 2.1] for more details.
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Lemma 7.2. Let T > 0 and σ >
d

2
+ 2, let (bε)ε be a family of functions, bounded in C

(
[0, T ];Hσ

(
Td
))

and

let aε0 → 0 as ε→ 0 in Hσ−1
(
Td
)
. Let Qε, Aε2 be as in (3.1), (3.2), let Rεosc be a (p, σ − 1)–oscillating function

and finaly let F ε → 0 as ε→ 0 in C
(
[0, T ];Hσ−1

(
Td
))
. Then the function aε, solution of{

∂ta
ε +Qε (aε, bε)−Aε2 (D) aε = Rεosc + F ε,

aε|t=0 = aε0,

is an oε (1) in the C
(
[0, T ];Hσ−1

(
Td
))

topology.

Now, to prove our main result, we subtract (S0) from (Sε), and we denote the difference unknown by
W ε = Uε − U . Some basic algebra calculations lead to the following difference system

(7.1)


∂tW

ε +Qε (W ε,W ε + 2U)−Aε2 (D)W ε = − (Rεosc + Sεosc) ,
divW ε = 0,

W ε|t=0 = 0,

where

Rεosc = Qε (U,U)−Q (U,U) ,

Sεosc = −
(
Aε2 (D)−A0

2 (D)
)
U.

We remark that Rεosc and Sεosc are highly oscillating functions which converge to zero in D′
(
T3 × R+

)
only.

Thanks to the results proved in Section 4, namely Lemma 4.1 and equation (4.6), we can compute the explicit
value of Rεosc and Sεosc which is given by

Rεosc = Rεosc,I +Rεosc,II +Rεosc,III,

and

FRεosc,I =
∑

ωa,b,ck,m,n 6=0

k+m=n
kh,mh,nh 6=0
a,b,c∈{0,±}

ei
t
εω

a,b,c
k,m,n

(
Pn (n, 0) · S

(
Ua(k)⊗ U b(m)

)∣∣ ec(n)
)
C4 ec(n),

FRεosc,II = 2
∑

(0,k3)+m=n
mh,nh 6=0

ω̃b,cm,n 6=0

b,c=0,±
j=1,2,3

ei
t
ε ω̃

b,c
m,n
(
Pn (n, 0) · S

(
U j(0, k3)⊗ U b(m)

)∣∣ ec(n)
)
C4 ec(n),

FRεosc,III =
∑

k+m=(0,n3)
kh,mh 6=0

ωa,bk,m 6=0

a,b∈{0,±}
j=1,2,3

ei
t
εω

a,b
k,m

(
P(0,n3) (0, 0, n3, 0) · S

(
Ṽ a1 (k)⊗ Ṽ b2 (m)

)∣∣∣ fj)
C4

fj ,

FSεosc = 1nh 6=0

∑
ωa,bn 6=0
a,b=0,±

ei
t
εω

a,b
n (FA2(n)Ua(n)| eb(n))C4 eb(n).

The following result is immediate.

Proposition 7.3. Under the assumption of Theorem 1.2 the function Rεosc is a (2, s− 1)–oscillating function,
Sεosc is a (1, s− 2)–oscillating function and hence Rεosc + Sεosc is a (2, s− 2)–oscillating function.

We can now conclude by applying Lemma 7.2, with σ = s− 2 and with the substitutions

aε = W ε, bε = W ε + 2U,

Rεosc = − (Rεosc + Sεosc) , F ε = 0.

We deduce that for each T ∈ [0, T ?), the function W ε is an oε (1) function in C
(
[0, T ];Hs−2

)
. Setting hence

T̃ ? = sup
{
t ∈ [0, T ?)

∣∣∣ ‖Uε (t′)‖Hs−2 < K
(
E1 (V0) + E3,ν,T (V0)

)
, ∀ t′ ∈ [0, t]

}
,
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where E1 and E3,ν,T are defined in Proposition 6.2 and 6.3, and K is a positive (possibly large) fixed, finite
constant. Since W ε = Uε − U we deduce that for any t ∈

[
0, T̃ ?

]
‖Uε (t)‖Hs−2 6 ‖U (t)‖Hs−2 + ‖W ε (t)‖Hs−2 ,

6
K

2

(
E1 (V0) + E3,ν,T (V0)

)
+

1

2
,

since

‖U (t)‖Hs−2 6
∥∥U (t)

∥∥
Hs−2 + ‖Uosc (t)‖Hs−2 + ‖U (t)‖Hs−2 ,

6 E1 (V0) + E3,ν,T (V0) + ‖U0‖Hs−2 ,

6
K

2

(
E1 (V0) + E3,ν,T (V0)

)
,

for K > 4 and ‖W ε (t)‖Hs−2 6 1/2 thanks to the result of Lemma 7.2. Thus, T̃ ? = T ?, and supposing T ? <∞,
we deduce

lim
t↗T?

∫ t

0

‖∇Uε (t′)‖L∞ dt
′ 6 lim

t↗T?

∫ t

0

‖Uε (t′)‖Hs−2 dt
′

6 K
(
E1 (V0) + E3,ν,T (V0)

)
T ? <∞,

which indeed contradicts (1.6). We conclude that T ? =∞.

Appendix A. Elements of Littlewood-Paley theory.

A.1. Dyadic decomposition. A tool that will be widely used all along the paper is the theory of Littlewood–
Paley, which consists in doing a dyadic cut-off of the frequencies.
Let us define the (non-homogeneous) truncation operators as follows:

4qu =
∑
n∈Z3

ûnϕ

(
|ň|
2q

)
eiň·x, for q > 0,

4−1u =
∑
n∈Z3

ûnχ (|ň|) eiň·x,

4qu =0, for q 6 −2,

where u ∈ D′
(
T3
)
and ûn are the Fourier coefficients of u. The functions ϕ and χ represent a partition of the

unity in R, which means that are smooth functions with compact support such that

supp χ ⊂ B
(

0,
4

3

)
, supp ϕ ⊂ C

(
3

4
,

8

3

)
,

and such that for all t ∈ R,
χ (t) +

∑
q>0

ϕ
(
2−qt

)
= 1.

Let us define further the low frequencies cut-off operator

Squ =
∑

q′6q−1

4q′u.

A.2. Paradifferential calculus. The dyadic decomposition turns out to be very useful also when it comes to
study the product betwee two distributions. We can in fact, at least formally, write for two distributions u and
v

u =
∑
q∈Z
4qu; v =

∑
q′∈Z
4q′v; u · v =

∑
q∈Z
q′∈Z

4qu · 4q′v.(A.1)

We are going to perform a Bony decomposition (see [4, 5, 13] for the isotropic case and [14, 29] for the
anisotropic one).
Paradifferential calculus is a mathematical tool for splitting the above sum in three parts

• The first part concerns the indices (q, q′) for which the size of supp F (4qu) is small compared to
supp F (4q′v).

• The second part contains the indices corresponding to those frequencies of u which are large compared
to those of v.

• In the last part supp F (4q′v) and supp F (4qu) have comparable sizes.
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In particular we obtain

u · v = Tuv + Tvu+R (u, v) ,

where

Tuv =
∑
q

Sq−1u 4qv, Tvu =
∑
q′

Sq′−1v 4q′u, R (u, v) =
∑
k

∑
|ν|61

4ku 4k+νv.

The following almost orthogonality properties hold

4q (Sqa4q′b) =0, if |q − q′| > 5,

4q (4q′a4q′+νb) =0, if q′ > q − 4, |ν| 6 1,

and hence we will often use the following relation

4q (u · v) =
∑

|q−q′|64

4q (Sq′−1v 4q′u) +
∑

|q−q′|64

4q (Sq′−1u 4q′v) +
∑

q′>q−4

∑
|ν|61

4q (4q′a4q′+νb) ,

=
∑

|q−q′|64

4q (Sq′−1v 4q′u) +
∑

q′>q−4

4q (Sq′+2u4q′v) .(A.2)

There is an interesting relatoin of regularity between dyadic blocks and full function in the Sobolev spaces,
i.e.

(A.3) ‖4qf‖L2(T3) 6 Ccq(f)2−qs ‖f‖Hs(T3) ,

with
∥∥∥{cq}q∈Z∥∥∥

`2(Z)
≡ 1. In the same way we denote as bq a sequence in `1 (Z) such that

∑
q |bq| 6 1.

The interest in the use of the dyadic decomposition is that the derivative of a function localized in frequencies
of size 2q acts like the multiplication with the factor 2q (up to a constant independent of q). In our setting
(periodic case) a Bernstein type inequality holds. For a proof of the following lemma in the anisotropic (hence
as well isotropic) setting we refer to the work [29]. For the sake of self-completeness we state the result in both
isotropic and anisotropic setting.

Lemma A.1. Let u be a function such that Fu is supported in 2qC, where F denotes the Fourier transform.
For all integers k the following relation holds

2qkC−k ‖u‖Lp(T3) 6
∥∥∥(−∆)

k/2
u
∥∥∥
Lp(T3)

6 2qkCk ‖u‖Lp(T3) .

Let now r > r′ > 1 be real numbers. Let suppFu ⊂ 2qB, then

‖u‖Lr 6C · 2
3q( 1

r′−
1
r ) ‖u‖Lr′ .

Let us consider now a function u such that Fu is supported in 2qCh×2q
′Cv. Let us define Dh = (−∆h)

1/2
, D3 =

|∂3|, then

C−q−q
′
2qs+q

′s′ ‖u‖Lp(T3) 6
∥∥∥Ds

hD
s′

3 u
∥∥∥
Lp(T3)

6 Cq+q
′
2qs+q

′s′ ‖u‖Lp(T3) ,

and given 1 6 p′ 6 p 6∞, 1 6 r′ 6 r 6∞, then

‖u‖LphLrv 6C
q+q′2

2q
(

1
p′−

1
p

)
+q′( 1

r′−
1
r ) ‖u‖

Lp
′
h L

r′
v
,

‖u‖LrvLph 6C
q+q′2

2q
(

1
p′−

1
p

)
+q′( 1

r′−
1
r ) ‖u‖

Lr′v L
p′
h

.
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