
Annals of Physics 339 (2013) 0–20

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

‘Superluminal paradox’ in wave packet
propagation and its quantum
mechanical resolution
D. Sokolovski a,b,∗, E. Akhmatskaya c

a Department of Physical Chemistry, University of the Basque Country, Leioa, Bizkaia, Spain
b IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
c Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14 48009, Bilbao Bizkaia, Spain

h i g h l i g h t s

• Apparent superluminality is described in the language of quantum measurements.
• A barrier acts as a beamsplitter delaying copies of the initial pulse.
• In the coordinate space the effect is similar to what occurs in ‘weak measurements’.
• In the momentum space it relies on superoscillations in the transmission amplitude.
• It is an interference effect, unlikely to be explained in simpler physical terms.
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a b s t r a c t

We analyse in detail the reshaping mechanism leading to appar-
ently ‘superluminal’ advancement of a wave packet traversing a
classically forbidden region. In the coordinate representation, a
barrier is shown to act as an effective beamsplitter, recombin-
ing envelopes of the freely propagating pulse with various spacial
shifts. Causality ensures that none of the constituent envelopes are
advancedwith respect to free propagation, yet the resulting pulse is
advanced due to a peculiar interference effect, similar to the one re-
sponsible for ‘anomalous’ values which occur in Aharonov’s ‘weak
measurements’. In the momentum space, the effect is understood
as a bandwidth phenomenon, where the incident pulse probes lo-
cal, rather than global, analytical properties of the transmission
amplitude T (p). The advancement is achieved when T (p) mimics
locally an exponential behaviour, similar to the one occurring in
Berry’s ‘superoscillations’. Seen in a broader quantum mechanical
context, the ‘paradox’ is but a consequence of an attempt to obtain
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‘which way?’ information without destroying the interference be-
tween the pathways of interest. This explains, to a large extent, the
failure to adequately describe tunnelling in terms of a single ‘tun-
nelling time’.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the early 1930’s MacColl [1] noticed that quantum tunnelling appears to take no time or little
time, in the sense that a wave packet, transmitted across a classically forbidden region, may arrive at
a detector earlier than the one that moves in free space. If the advanced peak is used to predict the
time τ the particle has spent in the barrier region, the result is nearly zero. Dividing the barrier width
by τ yields a velocity exceeding the speed of light c , suggesting further that the transmission has a
‘superluminal’ aspect. The effect has beenpredicted andobserved for various systems such as potential
barriers, semi-transparentmirrors, refraction of light,microwaves in undersizedwave guides and fast-
light materials (for a review see Refs. [2–5]).

Superluminal velocities are strictly forbidden by Einstein’s causality, yet one might entertain
the suspicion that it might be violated for extremely rare classically forbidden events. Such radical
interpretations can be found, for example, in Ref. [6] which states that ‘the effect . . . violates relativistic
causality’, in [7] which suggests that ‘evanescent waves do exist in a space free of time’, and in
Refs. [8–10] which report ‘macroscopic violation of general relativity’.

There is, however, some consensus that there is no conflict with relativity, since the transmitted
wave packet undergoes in the barrier region a drastic reshaping, [11–15]. As a result, the transmitted
pulse is formed from the front part of the incident one.

An explanation incompatible with the views of Ref. [15], was proposed in Refs. [5,16–18]. There it
was argued that, as no propagation occurs in the classically forbidden region, the effect arises from
the energy storage in the barrier region. One consequence of this argument is that the transmitted
wave packet (pulse) should not be ‘frontloaded’, i.e., should not arise from the front of the incident
pulse. To our knowledge, the issue has not been fully resolved to date.

There have been also other approaches to understanding the ‘speed up effect’ observed in
tunnelling, of which we name here a few. A method for classifying various time parameters
constructed to describe the processes of transmission and reflection was proposed in [19]. In Ref. [20]
the authors used the influence functional technique to analyse the correlation between the initial and
final positions of the transmitted particles. In the Bohm’s formulation of quantum mechanics it was
demonstrated that the transmitted wave packet builds up from Bohm’s trajectories emanating from
the front tail of the incident one [21,22]. A review of an alternative approach based on the analysis
of the time at which a scattered particle arrives at a given spatial location can be found in Ref. [23].
Finally, a detailed analysis of the transient effects in propagation of matter waves was given in [24].

Themain purpose of this paper is to provide a detailed analysis of the reshapingmechanism leading
to the ‘superluminal paradox’ just described. Various aspects of the problem have been studied in
detail in Refs. [25–29], to which the reader is referred for mathematical justification. We will confirm
that the apparent ‘superluminality’ is an essentially interference effect, whose mechanism cannot be
reduced to a naive reshaping or the energy storage argument. Moreover, it occurs due to a particular
type of interference known in quantum mechanics, or more precisely, in the quantum measurement
theory. It was shown in Ref. [25] that the reshaping of the transmitted pulse occurs through an
interference effect very similar to the one which causes the appearance of ‘anomalous’ values in the
so-called ‘weak’ quantum measurement introduced by Aharonov and co-workers in [30–32]. Using
this analogy, we will demonstrate that the measured quantity is the spacial shift of the transmitted
particle, a variable ‘conjugate’ to the particle’s momentum, which bears no direct relation to the
duration of a tunnelling event [33]. We argue that our effort is justified by the benefit of bringing
the problem into the framework of conventional quantum theory, and explicitly avoiding the notion
of unduly short ‘tunnelling times’ and illegal ‘superluminal velocities’.
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Fig. 1. Primitive reshaping: the front part of the ‘signal’ moving with a velocity v0 is cut off and the rest (dashed) is discarded.
The new peak lies the distance d ahead of the original one and arrives the time d/v0 earlier at a fixed detector. It is wrong,
however, to conclude that its mean velocity in the boxed area is L/(L/v0 − d/v0).

The rest of the paper is organised as follows. In Section 2 we briefly discuss a naive view of
how reshaping may occur. Sections 3–10 contain our analysis of a quantum reshaping mechanism
in a model which, despite its simplicity, captures the main features of the ‘superluminal’ effect in
tunnelling. In Sections 11–16 we extend the analysis to the case of tunnelling across a classically
forbidden region, or awave propagation in an undersizedwaveguide. In Section 17webriefly compare
our approach to the one based on evaluating time variation of the signal at a fixed location [14]. In
Section 18 we discuss the role of other quantum time parameters such as the traversal (Larmor) time.
Section 19 is a brief review of the physical explanations of the effect proposed earlier in the literature.
Section 20 contains our concluding remarks.

2. A naive view of reshaping

As the name suggests, reshaping implies change of an object’s shape in a way that some reference
point, e.g., a peak, the centre of mass, or an edge is moved to a different location. In the literature
there are many similar examples of reshaping (see, e.g., [11,18]), and here we risk one of our own.
Suppose one sends ‘signals’ in the form of unilateral triangular shapes moving from left to right at a
constant velocity v0. A signal is ‘received’ when its peak passes through a certain remote point where
the detector is placed. Suppose that one of two identical ‘signals’ passes behind a screen of a width L.
There someone, unseen by the observer, uses scissors (the triangles aremade of paper) to cut a similar
yet much smaller triangle from the front part of the shape, and discards the rest (see Fig. 1). This
operation leaves the front end of the signal untouched, but its new peak now lies a distance d ahead of
where it used to be. Once the smaller triangle has emerged from behind the screen, the observer sees a
smaller signal advanced relative to the free (no scissors) propagation, andmoving at the original speed
v0. Trying to guesswhat happened behind the screen, the observermight suspect that the trianglewas
made to shrink (hence the reduction inmagnitude) and also to travel faster, spending there a duration
τ which is d/v0 shorter than the time L/v0 it takes the free signal to traverse the same distance. With
L ≈ d, τ can be very small, making the ‘mean velocity behind the screen’, L/(L/v0 − d/v0), exceed
the speed of light. Needless to say, our example poses no threat to special relativity. The fallacy is
in identifying the transmitted peak with the incident one, since the causal connection between the
two is broken the moment the scissors are brought in to reshape the ‘signal’. It is also clear that the
relevant quantity is the new position of the peak after the truncation, from which one can estimate
the time of peak’s arrival at the detector.

The analogywith tunnelling of awave packet is useful, yet incomplete. Firstly, wave packets are not
made of paper, and one would like to know what, if anything, plays the role of the scissors. Secondly,
it is natural to assume that the ‘cut’ is made based on the information about the part of the signal
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which has already passed through the point where the scissors are applied. Thus, as was pointed out
in [17], if one modifies the part of the signal not yet arrived (dashed line in Fig. 1), but leaves the
front unchanged, the reshaped signal, unaffected by the modification, will stay the same. And this,
depending on the conditions, may [34] or may not [17] be observed in an experiment. We will return
to this issue in Section 19. In the next few sections we analyse a more subtle reshaping mechanism
based on quantum interference.

3. The model: transmission via entanglement

Following [26] we consider a simple model which, although formally different from tunnelling
through a potential barrier, produces a similar effect on the transmitted pulse. Themodel consists of a
semiclassical particle of amassµ, equippedwith amagneticmoment (spin) of 2K+1 components. The
particle crosses a region Ω of a width d, which contains a weak magnetic field. Each spin component
encounters in Ω an additional rectangular potential (h̄ = 1) −mωL,m = −K , . . . , 0, . . . , K , where
ωL is the Larmor frequency. The mean energy of the particle is much larger then KωL and the incident
wave packet is prepared in a product state, which before entering the field propagates with the
velocity p0/µ, �x|Ψ (t)� = exp(ip0x − ip20t/2)G

0(x − p0t)|a�. Here G0(x) is the coordinate envelope,
whose spreading we will neglect, the spin part has the form |a� ≡ �K

m=−K am|m�/√N(a), with am of
our choice, andN(a) ≡ �a|a� the normalisation constant.With some spin components experiencing in
Ω a small potential step, and some a small rectangular well, thewave packet is split into parts delayed
or advanced relative to field-free propagation. By choosing am ≡ 0 for m > 0, we can eliminate
all advanced components, thus obtaining after crossing the magnetic field, a final state in which the
translational and spin degrees of freedom are entangled [26] (�x ≡ ωLd/p20)

�x|Ψ (t)� = exp(ip0x − ip20t/2)
0�

m=−K

am exp(−imωLd/p0)G(x − p0t − m�x)|m�/
�
N(a). (1)

4. The model: post-selection and the convolution formula

We assume further that prior to the particle’s arrival at a remote detector we can ensure that its
spin is in a state of our choice, |b� ≡ �K

m=−K bm|m�/√N(b), e.g., bymaking it pass through a polariser.
Then, on exit from the polariser we have a transmitted pulse whose envelope GT can, after simple
algebra, be written as a convolution [26]

GT (X) =
� ∞

−∞
G0(X − x�)η(x�)dx�/

�
N(a)N(b) (2)

where X ≡ x − p0t/µ and [δ(z) is the Dirac delta]

η(x) ≡
K�

m=0

ηmδ(x + m�x), (3)

ηm ≡ exp(−imωLd/p0)amb∗
m.

Now the transmitted envelope is a superposition of a freely propagating envelope, plus several of its
copies, all delayed, i.e., shifted to the left by m�x,m = 0, 1, . . . , K (see Fig. 2). The final location of
the particle is determined by amplitudes ηm. These are complex quantities whose real and imaginary
parts can be of either sign. Thus, under certain conditions, the constituent envelopes may interfere
destructively, and produce an ‘anomalous’ small peak far away from their maxima [30].

5. The model: quantum reshaping mechanism

Free to choose the states |a� and |b� in Eqs. (3), we can design the shape of the transmitted pulse.
Suppose that we want it to lie a distance α > 0 ahead of the freely propagating one, and also to have
nearly the same shape as the original wave packet, i.e., GT (x, t) ≈ G0(X − α)/

√
N(a)N(b). For this

purpose, it would be helpful to have η(x) ∼ δ(x − α), which, clearly, is only possible provided α
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Fig. 2. (Colour online) Schematic diagram of the ‘beamsplitter’ realised in the model of Sections 3 and 4. Large spin of a fast
particle is pre-selected in a state |a� prior to entering amagnetic field inwhich all spin components are delayed. The spin state is
purified upon passing the polariser, after which the coordinate part of the wavefunction is given by a superposition of delayed
pulses weighed by complex quantities ηm .

coincides with one of the shifts−m�x,m = 0, 1, . . . , K . We can, however, try to ensure that the first
K + 1 moments of η(x) are equal to those of δ(x − α),

x̄n ≡
� ∞

−∞
xnη(x)dx = αn, n = 0, 1, . . . , K . (4)

For ηm which may have either sign, Eqs. (4) have a non-trivial solution [26] (
��K

j=0 indicates the
product over all j �= m)

ηm(α/�x) = (−1)m
��K

j=0(j + α/�x)
m!(K − m)! (5)

shown in Fig. 3 for different values of α. With this choice of the ηm we have a curious mathematical
object, a collection of δ-functions (3), all contained in the region [−K�x, 0], which owing to the
approximate identity

�
G0(x − x�)η(x�)dx� ≈

K�

n=0

∂n
x G

0(x)/n!
�

(x − x�)nη(x�)dx�

=
K�

n=0

∂n
x G

0(x)(x − α)n/n! ≈ G0(x − α), (6)

would act like a single Dirac δ(x−α) on any function adequately represented by the first K + 1 terms
of its Taylor series. In a similar way, by choosing α < 0 we can make the particle appear to be slowed
down. Finally, choosing α to be complex valued, α = α1 + iα2, we can effect the translation of a
suitably chosen initial pulse into the complex coordinate plane. Exotic as it may seem, this last case
will be needed while discussing the apparent ‘superluminality’ which arises in tunnelling.

To test the above we may choose the incident pulse to be a Gaussian of a width σ ,

G0(x) = (2/πσ 2)1/4 exp(−x2/σ 2). (7)
The transmitted pulses for real and complex shifts α are shown in Fig. 4(a) and (b), respectively.

In summary, the reshaping mechanism responsible for the advancement of the transmitted wave
packet consists in splitting the incident pulse into a number of delayed copies, weighting them with
the amplitudes ηm, and then recombining them to form the transmitted pulse. Note that in our model
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Fig. 3. (Colour online) The values of ηm as given by Eq. (5) with K = 30 [26] for: (a) α chosen to coincide with one of the
available delays, α = −15�x; (b) α chosen to lie between two of the available delays, α = −15.5�x; and (c) α chosen so that
the transmitted pulse is advanced by 4 K�x (note the vertical scale).

Fig. 4. (Colour online) (a) The advanced pulse for themodelwith K = 30 and σ̃ ≡ σ/(K�x) = 2 and α̃ ≡ α/(K�x) = 4 (solid)
and as given by Eq. (6) (dashed); (b) same as (a) but for a complex shift α̃ = 3.5 + 2i. Note that both pulses are amplified by a
very large factor Pbest defined in Eq. (8). (c) Real part of the transmission amplitude, Re T (p) for the case (a) (solid). Also shown is
sin(−αp) (dashed) and the momentum distribution A(p), normalised to unit height (thick solid). The arrows indicate the edges
of the superoscillatory band; (d) similar to (c) but for the case (b). The solid line shows modulus of the ratio T (p)/ exp(−iαp).

this last step occurs when the particle passes through the polariser [35] (see Fig. 2). This has several
simple consequences.

6. The model: causality, speed of information transfer and the success rate

Our setup acts like a beamsplitter in which the incident pulse, e.g., the Gaussian (7), is split into
components, none of which overtake the original wave packet. Thus, causality is obeyed explicitly.
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Fig. 5. (Colour online) Logarithm of the success probability Pbest as a function of α̃ ≡ α/(K�x). The comb-like structure in
the case Imα = 0 arises because the success rate is unity, whenever α coincides with one of the available shifts, −m�X,m =
0, 1, . . . , K . In this case Eq. (5) just selects the corresponding shape from those shown in Fig. 2.

The advanced pulse builds up from the front tails of these components, and this has well known
implications for the speed of information transfer [14,25]. In particular, truncating the incident pulse,
say, at the centre and discarding the front part would eliminate the speed up effect, as no amplitude
will propagate beyond x = p0t/µ (for an experimental verification see Ref. [34]). Conversely,
truncating the pulse so as to leave the front part intact, would not affect the front tails, and the
advanced part of the pulse will look as if its rear part had not been amputated. Accepting, as suggested
in [14], that the information is transferred by non-analytical features such as cut-offs, one sees that
the speed of information transfer never exceeds that of free propagation, p0/µ.

Since Gaussian front tails rapidly fall off with the distance, and both |a� and |b�must be normalised
to unity, one expects the advanced pulse to be also reduced in size. This means that the probability of
successful post-selection P = 1/N(a)N(b) is likely to be small, and only a small fraction of particles
would pass through the polariser, It can be shown [26] that the best success rate achieved with the
optimal choice of the initial and final states |a� and |b� is

Pbest(α) = 1
��

0�

m=−K

|ηm(a)|
�2

. (8)

For a significant advancement, α > K�x, the sum
�0

m=−K |ηm| is a very large number (cf. Fig. 3(c))
(unlike

�0
m=−K ηm which, according to Eq. (4) with n = 0 always equals unity). Dependence of the

success rate Pbest on α is illustrated in Fig. 5 for various real and complex valued spacial shifts.

7. The model: advancement as a bandwidth phenomenon. Berry’s superoscillations

Alternatively, setting G0(x) =
�
A(p) exp(ipx)dp, we can perform our analysis in the momentum

space, by rewriting the convolution (2) as

GT (X) =
�

T (p)A(p) exp(ipX)dp/
�
N(a)N(b), (9)

and introducing the transmission amplitude T (p) as the Fourier transform of η(x),

T (p) ≡
� 0

−∞
η(x) exp(−ipx)dx =

K�

m=0

ηm(α) exp(imp�x). (10)
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Aswas shown in Section 5, for a large K , η(x) becomes a good approximation to the δ-function centred
at α, δ(x − α). Had this equality been exact, T (p) would have been given by exp(−ipα). In reality, for
K � 1, the relation T (p) ≈ exp(−ipα) only holds in a finite region [26] (e is the base of natural
logarithm)

|p| < K/e|α| (11)
beyond which T (p) rapidly grows, as is illustrated in Fig. 4(c).

In the case the particle is advanced, α > 0, this behaviour is counterintuitive, since Eq. (10) shows
that T (p) builds up from exponentials with only non-negative frequencies m�x,m = 0, 1, . . . , K .
This is an example of the well known phenomenon of ‘superoscillations’, where a function locally
mimics the behaviour of an exponential with a frequency outside its Fourier spectrum [36–38]. Thus,
in our model, advancement of the transmitted pulse requires that the transmission coefficient have
a superoscillatory band (window), and the momentum width of the pulse be small enough for it to
fit into the window, as shown in Fig. 4(c). Whenever this condition is not fulfilled, the transmitted
pulse is distorted and the effect disappears. The same conclusion applies to the case of a complex shift
α = α1 + iα2, shown in Fig. 4(d).

The importance of superoscillations for the superluminal effect was first suggested in Ref. [39]. The
authors of [39] considered a transmission across a combmade of δ-potentials and concluded that the
observed advancement of the transmitted pulse does ‘. . . result from a superoscillatory superposition
at the tail’. We can clarify this statement by noting that an advanced peak results from interference
in the front tails, if the problem is studied in the coordinate space. Equivalently, it can be seen to
result from superoscillatory behaviour of the transmission amplitude, if the momentum space is used
instead.

8. The model: the ‘paradox’ and the phase time

There is, strictly speaking, nothing unusual in the above analysis. Yet, as in Section 2, we can talk
ourselves into a sort of a ‘paradox’ by the following (false) reasoning. The pulse in Fig. 4(a) lies a
distance α ahead of the freely propagating one. The only difference between the two pulses is that
one had to cross the magnetic field, and the other did not. Thus, the advanced pulse must have spent
in the field a duration shorter by

δτ = µα/p0 (12)
than its free counterpart. The free pulse crosses the same region in

τ0 = µd/p0, (13)
hence, the advanced pulse spends there a duration

τphase = τ0 − δτ = µ

p0
(d − α). (14)

This parameter is called the phase time since, combining Eqs. (4) and (10), we can relate it to the
momentum derivative of the phase of the transmission amplitude in Eq. (9),

τphase = µ

p0
[d + ∂pφ(0)], (15)

where T (p) = |T (p)| exp[iφ(p)]. Finally, dividing d by τphase we should obtain the effective average
velocity of the particle in the field,

veff = p0/[µ(1 − α/d)]. (16)
Choosing α = d gives veff = ∞, in apparent ‘violation’ of Einstein’s causality. Choosing α = 2d
yields an even more ‘paradoxical’ result: the duration allegedly spent in the field, τphase = −µd/p0, is
negative.

Given the simplicity of ourmodel, there is little doubt that the above reasoning is wrong. However,
to fully dismiss the paradox, one needs to describe the phenomenon in simple general terms. In the
next section we show that the language for such a description is readily provided by the quantum
measurement theory.
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9. The model: resolution of the ‘paradox’. Weak measurements

Returning to Eqs. (2)–(3), we note that they have the same form as thosewhich describe the state of
a vonNeumann pointer [40], employed tomeasure an operatorwith the eigenvalues−K�x, −(K−1)
�x, . . . ,−�x, 0 in a K + 1-dimensional Hilbert space. The pointer is prepared in a state G(x), and the
measured system is pre-selected (prepared) in the state |a� and post-selected (i.e., found after the
measurement) in the state |b� (see Ref. [30] and the Appendix). The analogy is useful.

Firstly, by locating the transmitted particle we conduct a measurement of x�, its position (delay or
advancement) relative to that of the freely propagating one. The K+1 ‘eigenvalues’ are just the spacial
delays experienced by the components of the initial pulse on their pathways across themagnetic field.

Secondly, the measurement is a quantum one, and its accuracy is determined by the coordinate
width of G0(x), e.g., by the σ in Eq. (7). An accurate (strong) measurement requires a σ as small as
possible. But if one chooses σ � �x, the outgoing pulses in Fig. 2 cease to overlap and the speed up
effect disappears. Rather, one finds the transmitted particle in one of the positions p0t/µ−m�x,m =
0, 1, . . . , K with the probability |amb∗

m|2/N(a)N(b). In this case, the K + 1 pathways lead to different
outcomes, with the interference between them completely destroyed.

To observe the advancement of the transmitted pulse we must, therefore, choose a broader initial
Gaussian, one that would satisfy the approximate equalities in Eq. (6), and fit into the superoscillatory
window in Fig. 4(c). This takes us into the limit of highly inaccurate, or ‘weak’measurements [30].With
σ > K�x the pathways remain interfering alternatives. According to the Uncertainty Principle [41]
such alternatives cannot be told apart, and our attempt to answer the ‘Which way?’ (‘Which delay?’)
question has no meaningful answer. The answer we do get is the ‘weak value’ of the spacial delay, α,
the first moment (4) of the highly oscillatory distribution shown in Fig. 4(c). The information about
the original K + 1 sub-luminal delays is hidden from the observer, since the mean of an alternating
distribution is not required to lie within its region of support [42,43]. Accordingly, it is our attempt to
use the observed shiftα in order to guess the particle’s behaviour in the past that leads to the ‘paradox’
of the previous section.

As was argued by Bohm [44], an attempt to determine the value of a quantity without destroying
interference between the alternatives is fraud with inconsistencies. Weak values, observed in
experiments designed to leave the interference intact, appear to have no broadermeaning, and should
not be used to make general assumptions about the observed system. It is worth noting that last view
is not shared by all authors [32].

10. The limited usefulness of the phase time

As was discussed in the previous section, the phase time is an eclectic construction, involving
quantum weak value of the spacial shift experienced by the particle, x̄, and the classical relation
between the shift and the duration spent in a potential. Treating it as the duration of a tunnelling
event leads to a contradiction. Rather, an anomalous weak value serves only to indicate that, with
the interference not properly destroyed, a measurement will give a result we would not normally
expect [42]. Thus, a short or a negative value of the τphase suggests that the peaks of the transmitted
wave packetmay endup ahead of the freely propagating one. This condition is, however, not sufficient.
To achieve the advancement one needs the superoscillatory behaviour of the transmission amplitude
to persist across certain range of incident momenta, and this depends also on the higher moments
of the amplitude distribution η(x). As an illustration, in Fig. 6 we show the transmission of the initial
pulse used in Fig. 4, in a setup tuned so that only the first moment of the η, x̄, equals 4d. Although
τphase is the same in both cases, no advancement is achieved in the case shown in Fig. 6, where no well
defined superoscillatory band is formed. With this simple observation made, we move on to analyse
‘superluminality’ in tunnelling.

11. Tunnelling: the convolution formula and causality

Our analysis of tunnelling across a classically forbidden region (e.g., a potential barrier or an
undersized waveguide) is based on its similarity to the model discussed in Sections 3–10. In the
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Fig. 6. (Colour online) (a) Modulus of the transmitted pulse for the model with K = 1, α/d = 4 and σ/d = 2 (solid). Also
shown is the pulse shifted by α = 4d (dashed). (b) Modulus of the transmission amplitude, Re T (p), (solid). Also shown are
sin(−4p) (dashed) and |A(p)| (thick solid).

momentum space the transmitted pulse is given by an integral similar to Eq. (9)

Ψ T (x, t) =
�

T (p)A(p − p0) exp(ipx − ip2t/2µ)dp (17)

where A(p − p0), peaked at p = p0, is the momentum distribution of the initial pulse, and T (p) is the
barrier’s transmission amplitude.

To confirm that the tunnelling mechanism is causal, we return to the coordinate space. There we
rewrite Eq. (17) in a form similar to the convolution (2) by introducing the free propagating pulse,
Ψ 0(x, t) =

�
A(p − p0) exp(ipx − ip2t/2µ)dp and two slowly varying ‘envelopes’, GZ (x, t, p0) =

exp(−ip0x + ip20t/2µ)Ψ Z (x, t), Z = T , 0. As a result, we have

GT (x, t, p0) = T (p0)
� ∞

−∞
G0(x − x�, t, p0)η(x�, p0)dx� (18)

where η(x, po) is, essentially, the Fourier transform of T (p)

η(x, p0) = [2πT (p0)]−1 exp(−ip0x)
� ∞

−∞
T (p) exp(ipx)dp. (19)

If the barrier potential does not support bound states, T (p) has no poles in the upper half of the
complex momentum plane, and we have [26]

η(x, p0) = δ(x) + η̃(x, p0), (20)

where the smooth function η̃(x, p0) vanishes for positive x’s (see Fig. 7),

η̃(x, p0) ≡ 0, for x > 0. (21)

It is easy to check that, just like the η(x) in Eq. (3),
�

η(x, p0)dx = 1. The δ-term in Eq. (20) occurs
because very fast particles are not affected by the barrier, so that T (p) → 1 as |p| → ∞.

Following the analogy with the model of the Sections 2–10, we note that the barrier acts like
a beamsplitter with an infinite (continuum) number of ‘arms’, where the transmitted pulse builds
from the free envelopes none of which is advanced relative to free propagation. As in Section 4
the transmission is explicitly causal, since none of the envelopes in Eq. (18) lie ahead of the freely
propagating one. The position of the peak is determined by the interference between all of G0(x −
x�, t, p0), and ultimately by the properties of delay amplitude distribution (DAD) η(x, p0) in Eq. (19).

As in Section 7, the causality argument can also bemade in themomentum space by demonstrating
that the Fourier spectrum of T (p) does not contain negative frequencies. Indeed, we can write T (p) as
a Fourier integral

T (p) =
� ∞

0
exp(ipx)ξ(−x)dx, (22)
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Fig. 7. (Colour online) The smooth part of the delay amplitude distribution in Eq. (20) for a rectangular barrier of width d
calculated numerically from Eq. (19) (Im η̃ = 0 since T (p,W ) = T (−p,W )). Note the sharp negative peak at x ≈ 0 which
serves to cancel the contribution from the δ-function in Eq. (20) provided the initial pulse is sufficiently broad.

where ξ(x) ≡ (2π)−1
� ∞
−∞ T (p) exp(ipx)dp, must vanish for x > 0 since T (p), as stated above, has no

poles in the upper half of the p-plane. Accordingly, an incident plane wavewith amomentum p0 upon
transmission is transformed into a weighted superposition of plane waves with all possible backward
shifts,

exp(ip0x) → T (p0) exp(ip0x) =
� 0

−∞
ξ(x�) exp[ip0(x − x�)]dx�. (23)

With Eq. (18) in place, we can consider wave packet propagation from the point of view of quantum
measurement theory.

12. Tunnelling: self-measurement of the delay

We start by noting first several differences between tunnelling and the entanglement-based
transmission of the Section 3. Tunnelling does not involve any external degree of freedom, such as
the spin variable used in Section 3. We do not have the flexibility in choosing the DAD (20) as we
wish, since its properties are now determined by the barrier potential. It tunnelling, there is post-
selection, albeit in a slightly different sense. In Eq. (17) we have already post-selected the particles
which are transmitted, and discarded those reflected by the barrier.

The rest of analysis is remarkably similar. We have an amplitude distribution η(x�, p0) of spatial
delays (x�) for a particle whose momentum is precisely p0 [cf. Eq. (23)]. For such a particle all delays
interfere and, finding it at a location x, one learns nothing about which delay, x�, it has actually
experienced, except that causality ensures x� ≤ 0 for all the pathways involved.

For a particle whose initial envelope G0(x) is sharply peaked around x = 0 with a width δx, the
situation is different. If the spreading of the free wave packet can be neglected, finding the particle in
x suggests that the shift almost certainly lies in the region [x − p0t/µ − δx, x − p0t/µ + δx]. Thus,
by localising the transmitted particle, we perform a quantum measurement of the spacial delay at
p0, to the accuracy δx. Note that in the wave packet scattering the particle itself plays the role of a
von Neumann pointer. As in Section 9, the measurement is accurate, or ‘strong’, for a wave packet
narrow in the coordinate (broad in the momentum) space, and inaccurate, or ‘weak’, if it is broad in
the coordinate (narrow in the momentum) space.

Finally, the presence of the singular term, δ(x), in Eq. (20) indicates that in an ideal highly accurate
measurement, δx → 0, one would always find a zero delay, x� = 0. Indeed, a wave packet narrow in
the coordinate space contains high momenta, most of which are not affected by the presence of the
barrier, andwe correctly recover the freemotion result. Note that a similar behaviour of an amplitude
distribution accounts for Zeno effect in quantum measurement theory [45].
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13. Tunnelling: ‘superluminal’ advancement. Superoscillatory behaviour

Likemost authors [2–5], we consider transmission of a Gaussianwave packet of a coordinatewidth
σ , located at t = 0 a distance x0 to the left of a rectangular barrier,

V (x) = W for 0 ≤ x ≤ d and 0 otherwise. (24)

The freely propagating envelope of such a pulse, required in Eq. (18), has the form (see, e.g., [27])

G0(x, t, p0) = [2σ 2/πσ 4
t ]1/4 exp[−(x − p0t + x0)2/σ 2

t ], (25)

which differs from Eq. (7) in that now we include the spreading of the wave packet, whose complex
valued ‘width’,σ 2

t ≡ σ 2+2it/µ depends on time. It is convenient towrite the transmission coefficient
T (p) as a geometric progression [27]

T (p,W ) = 4pk exp[−i(p − k)d]
(p + k)2

∞�

n=0

(p − k)2n

(p + k)2n
exp(−i2nkd), (26)

where k ≡ (p2 − 2µW )1/2. Then only the first term needs to be retained if the barrier is sufficiently
broad. We note that the factor exp[−ipd] in Eq. (26) has a ‘superoscillatory’ aspect since, as was
shown in Section 11, for a barrier the Fourier transformof T (p,W ) contains only exponentials exp(ipx)
with positive frequencies, x > 0. It is easy to guess that it is this factor which is responsible for the
advancement of the tunnelled pulse by the barrier width d, as will be shown below.

Well above a broad barrier Eq. (18) yields the classical result [46]. For p20/2µ � W , (p0 −
2/σ )2/2 � W , the highly oscillatory η(x, p0) in Eq. (18) develops a stationary region near x� = x�

s ≡
µd(p−1

0 − k−1
0 ) < 0, which selects a single delayed shape G0(x − xs, t, p0) from the collection of

retarded envelopes in Eq. (18). This recovers the classical result: a particle passes over a potential hill
with a reduced velocity and, therefore, lags behind the free one.

Well below the barrier, p20/2 < W , (p0+2/σ )2/2 < W , (p0−2/σ )2/2 > 0 a simulation shown in
Fig. 8 finds that the tunnelling pulse is reduced by the factor |T (p0)|, and the peak of the transmitted
probability lies approximately the barrier width d ahead of the freely propagating one. As in Section 9,
we do not take this as a proof that the particle has traversed the barrier infinitely fast. Rather, we
concentrate on the weak ‘measurement’ responsible for this counterintuitive result.

14. Tunnelling: complex spacial ‘delays’

As in Section 5, the transmitted pulse builds up from the front tails of the retarded envelopes in the
region where the DAD η has no support. This suggests inspecting the moments of η(x, p0), in order to
see whether their behaviour is similar to that seen in Eq. (4). We have

x̄n ≡
� ∞

−∞
xnη(x, p0)dx = in∂n

p T (p)/T (p)|p=p0 , (27)

where the second equality follows from the Fourier relation (19). For a broad barrier, p0d � 1
(tunnelling across a high barrier,W/p20 � 1 can be treated in a similar way [27]) we find

x̄n = αn + O(dn−1), α ≡ d



1 + ip0�
2W − p20



 . (28)

Increasing the width of the barrier, d → ∞, and ignoring for the moment in Eqs. (28) the corrections
of order O(dn−1), we conclude that tunnelling tends to shift the original pulse into the complex
coordinate plane by α, and at the same time reduce its magnitude by the factor of T (p0) (cf. Eq. (18)),

GT (x, t, p0) ≈ T (p0)G0(x − α, t, p0). (29)
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Fig. 8. (Colour online) The same initial wave packet (left) propagates, for the same time: (a) passing above a rectangular
barrier. In the barrier region the peak moves slower, and the particle is delayed. (b) By tunnelling: the transmitted pulse is
greatly reduced and its peak lies ahead of the free one. The solid curves are obtained by numerical evaluation of the integral
(17), the dashed lines correspond to free propagation, and Z = exp[(2µW − p0)1/2d] is a large parameter.

From this we can obtain the time at which the peak of the transmitted probability density,
PT (x, t, p0) ≡ |GT (x, t, p0)|2, arrives at a given location. Neglecting also the effects of spreading, i.e.,
assuming σt ≈ σ , for the Gaussian pulse (25) we have

PT (x, t, p0) ≈ [2/πσ 2]1/2|T (p0)|2 exp(2Imα2/σ 2) exp[−2(x − p0t + x0 − Reα)2/σ 2]. (30)

Thus, the peak of the tunnelled probability density lies a distance ≈Reα ahead of the freely
propagating one, and would arrive at a fixed detector a time δτ earlier

δτ ≈ µReα/p0 = µd/p0 (31)

than it would do by free propagation.
Finally, taking into account the spreading, i.e., the time dependence of σt in Eq. (25) and

recalculating PT in Eq. (30) adds another speed up effect, also contained in a compact form in Eq. (29).
The effect, known as ‘momentum filtering’ [2], consists of increase of the initial mean momentum p0
by the amount

�p0 = 2Imα/σ 2, (32)

which gives the transmitted pulse also a boost in velocity responsible for the additional advancement
of the pulse in Fig. 8(b) (for details see Ref. [27]). We note also that a relation similar to Eq. (32) exists
in the quantum measurement theory between the imaginary part of a weak value and the change in
the momentum of the von Neumann pointer (see Ref. [32, p. 412]).

15. Tunnelling: the Hartman effect and ‘sharp’ weak measurements

Eq. (31) of the previous sectionmay suggest that bymaking a barrier broader, onewould be able to
advance the transmitted pulse by an ever larger distance ∼d. This so-called Hartman effect is usually
formulated by constructing from Eq. (31) a phase time similar to (15),

τphase = µ

p0
[d + ∂pφ(p0)], (33)

where, as before, T (p) = |T (p)| exp[iφ(p)]. It is then argued that this time (which, as we have shown
above, is not really a time) does not increase with the barrier width, τphase ∼ O(1) for d → ∞. As
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discussed in Section 10, this alone does not guarantee apparently ‘superluminal’ advancement. Indeed,
Hartman [47] has found that a givenwave packet does exhibit ‘superluminal’ advancement for certain
barrier widths d, but for broader barriers the effect disappears, as tunnelling becomes negligible, and
the transmission becomes dominated by themomentawhich pass over the barrier top. The discussion
about whether the Harman effect and its variants do exist in the limit d → ∞ continues in the
literature to date [48–51].

The tunnelling regime can be preserved by increasing, as the barrier become broader, also the
coordinate width of the wave packet, σ . Indeed, in the plane wave limit, σ → ∞, the pulse always
probes the superoscillatory transmission amplitude, since from Eq. (26) we have (cf. also Eq. (23))

exp(ip0x) →∼ |T (p0)| exp[ip0(x − d)]. (34)

One question is whether the width σ must remain larger than the advancement d, in which case one
has to collect statistics of many delayed and advanced arrivals in order to observe the forward shift of
the transmitted peak. If, on the other hand, it is possible to also ensure σ � d, then already the first
early arrival at the detector would confirm the ‘superluminal’ effect. Since the tunnelling probability
of a broad barrier is small, the second case is clearly more favourable.

A similar situation occurs in the ‘weak’ quantummeasurements [30–32], if one’s aim is tomeasure
an ‘anomalous’ weak value (see Appendix). There an anomalous mean value outside the spectrum
of the measured operator Â occurs due to interference in the tails of the Gaussians centred at
the eigenvalues of Â. This requires broad Gaussians, which leads to the problem just discussed. In
some cases it is possible to construct a measurement where already the first successful trial would
confirm the ‘anomalous’ result with certainty. The authors of Refs. [31] and [32] called such sharp
weak measurements ‘not really weak’ and gave some recipes for their preparation. A more detailed
discussion of the analogy between weak measurements and wave packet transmission can be found
in Ref. [28].

In the next section we show that for d → ∞ the Hartman effect exists in the sense of such ‘sharp’
weak measurement, allowing a patient observer confirm the effect already with the first arriving
particle.

16. Tunnelling: Hartman effect for infinitely wide barriers

We recall first that our derivation of Eq. (29) in Section 14 is incomplete, since in Eqs. (28) we have
omitted corrections to x̄n which are of order of dn−1 and, strictly speaking, not negligible. Because
of these corrections, the barrier transmission amplitude T (p) does not have a well defined super-
oscillatory window similar to the one shown in Fig. 4(d).

The proof of the last statement of the previous section, given in [28], is based on a simple estimate.
An exponential exp[d�∞

n=0 f
(n)σ n], with d → ∞, σ → 0 and f (n) ∼ 1 can be approximated by

exp(f (0)d) exp(σ f (1)d) provided d � 1, dσ ∼ 1 and σ nd � 1 for n > 1.
For a broad barrier the transmission amplitude (26) is proportional to exp[−id(p − k)], and we

may expand the exponent, f ≡ p − ik, in a Taylor series around p = p0. For a Gaussian wave packet
A(p) in Eq. (17) is proportional to exp(−p2σ 2/4). Expecting the typical value of (p− p0) to be ∼ 1/σ ,
we estimate the terms in the exponent of T (p) as

d
�

n=0

f n(p0)(p − p0)n ∼ f (p0)d + d
σ
f �(p0) +

�

n=2

d
σ n f

n(p0)/n!. (35)

Thus, provided

σ = const × d
1+�
2 , 0 < � ≤ 1, (36)

the last sum in Eq. (35) can be neglected, and the incident pulse would ‘see’, as d → ∞, the
approximate transmission amplitude

Tapp(p) = T (p0) exp[−iα(p − p0)]. (37)
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Fig. 9. (Colour online) (a) Tunnelling of a Gaussian wave packet across a broad rectangular barrier, p0d = 105, p20/2µW =
0.25, � = 1, σ/d = 0.15, p0t = 1.5d, and x0 = −3σ . Transmitted probability is multiplied by a large factor Z =
exp(k0d)/(4 × 1012). (b) The ratio between Tapp(p) in Eq. (37) and the exact transmission amplitude T (p) for different values
of β = p0d, while p20/2µW and σ/d are kept constant. As the barrier becomes wider, the ratio tends to unity for all initial
momenta, and the transmitted envelope becomes a reduced copy of the original one shifted by α in Eq. (28) into the complex
x-plane. The momentum distribution A(p) (thick solid) is normalised to unit height.

Inserting Eq. (37) into Eq. (17), for such wave packets we recover Eq. (29) and (30), so that the
peak of the transmitted density lies approximately the distance d ahead of a freely propagating one,
with the spread of the tunnelled particle’s position, σ being much smaller, σ/d ≈ const/d

1−�
2 than

the ‘superluminal’ shift d. This is illustrated in Fig. 9 for various barrier widths. Further numerical
examples can be found in Ref. [28], together with a similar recipe for constructingweak von Neumann
measurements designed to give,with near certainty, an unusualweak value of themeasured quantity.

17. Temporal delays

Ultimately, one is interested in how soon the transmitted particles will arrive at a fixed detector or,
more generally, in the time variation if the transmitted amplitude at the point of detection, xdet. Once
the shape of the pulse is known, this information is easily recovered by treating in Eq. (18) x = xdet as
a parameter and t as a variable. This shows that

GT (xdet, t) = T (p0)
�
G0(xdet, t, p0) +

� 0

−∞
G0(xdet − x�, t, p0)η̃(x�, p0)dx�

�
(38)

builds up as the sequence of spatially retarded pulses passes through xdet.
Alternatively, we can follow Ref. [14], in trying to obtain a decomposition of the amplitude at xdet

into retarded components by changing in Eq. (17) from the momentum to the energy representation,
and writing the result as a different convolution,

GT (xdet, t) = T (E0)
� ∞

−∞
G0(xdet, t − t �, E0)ζ (t �, E0)dt �, (39)

where

ζ (x, E0) = [2πT (E0)]−1 exp(iE0t)
� ∞

−∞
T (E) exp(−iEt)dE. (40)

Eqs. (39)–(40) are identical to Eqs. (38) and (19) for a dispersion-less medium, E(p) = cp, where a
wave packet retains its original shape, and the signal from a pulse delayed by x� in space, is just the
one delayed in time by x�/c. For a non-relativistic quantumparticle or a photon in a narrowwaveguide
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one has E(p) = p2/2µ, and the transmission amplitude T (E)may have poles on both sheets of its two-
sheet Riemann surface. This makes both evaluation of ζ (t, E0) and presenting the causality argument
less straightforward. A detailed analysis will be given elsewhere. For the present purpose it suffices to
note that the analysis in terms of the space shifts, adopted in this paper, appears to be a simpler tool
for investigating the ‘superluminal’ paradox.

18. Relation to other quantum times

In Sections 8 and 10 we have argued that apparent ‘superluminality’ has to do with spatial
reshaping of the incident pulse, and should not be used to infer the duration a tunnelling particle
spends in the barrier. There is, however, a time variable, called the traversal (or Larmor) time [52–57],
which is constructed to yield precisely this duration. Next we briefly compare these two variables.

The traversal time can be defined as a functional on virtual Feynman paths, which yields the
duration τ a path spends in a given region of spaceΩ [55]. Summing Feynman amplitudes exp(iS) [41]
over the paths with a given value of τ yields the transition amplitude, ϕ(τ ), with additional condition
that the particle spends τ seconds in the Ω , e.g., in the barrier region. It can be shown (see, for
example, [55]) that for a non-relativistic particle with a momentum p0, incident on a rectangular
barrier of a heightW this amplitude is given by

ϕ(p0, τ ) = (2π)−1
� ∞

−∞
dVT (p0,W + V ) exp(iVτ ). (41)

The Fourier transform (41) suggests an uncertainty relation (we restore h̄ temporarily)

�τ�V � h̄/2 (42)

which implies that in order to know the duration spent in the barrier, we must somehow introduce
an uncertainty in the barrier height. This is precisely what is achieved by coupling the particle to a
Larmor clock [52–55], where each spin component encounters a different barrier or well. For large
spins and not-too-small fields �V can be made large. Then τ is determined accurately, yet tunnelling
is seriously perturbed, or even destroyed by the measurement [55]. With small spins and vanishing
fields one avoids the perturbation, but evaluates the weak value of the traversal time functional. Such
are the Larmor times obtained in Refs. [53,54].

As far as we know, there is no functional representing the spacial delay in Eq. (18), yet the rest of
the analysis can be conducted in a similar manner. From Eq. (19) we have

η(x, p0) ∼ (2π)−1
� ∞

−∞
T (p + p0) exp(ipx)dp, (43)

and a position–momentum uncertainty relation

�x�p0 � h̄/2. (44)

Eq. (44) demonstrates that to know the spacial delay or advancement of the transmitted pulse we
must introduce an uncertainty in the pulse’s momentum. This is achieved by sending in a peaked
wave packet, rather than a plane wave with no obvious reference point. With a pulse narrow in space,
the delay is determined accurately, but tunnelling is seriously perturbed asmost of themomenta now
pass above the barrier. With a broad pulse one avoids the perturbation, but evaluates the weak value
of the shift and from it derives the phase time (33).

We have, therefore, two quantities, one is a duration ‘conjugate’ to the barrier height, the other is a
distance, ‘conjugate’ to the particle’s momentum. One is relevant for problems where a static barrier
is modified, e.g., by adding a small external field, the other relates to wave packet propagation. There
has been some confusion as to what represents the ‘true’ tunnelling time, since both approaches give
the same result in the (semi)classical limit but differ in the full quantum case. For example, Baz’ [57],
having evaluated the weak Larmor time, criticised the phase time obtained by Smith [58] for being
incorrect. In fact, the two are complimentary quantities which should not be in competitionwith each
other.
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19. Is there a simpler physical explanation?

One outstanding question concerns the physical origin of the superluminal effect. Several authors
have made efforts towards answering it.

Nimtz and co-workers suggested that ‘superluminality’ in propagation of electromagnetic pulses
could be explained in terms of virtual photons capable of violating Einstein relativity on amicroscopic
scale [8]- [10]. Their explanation appears to rely on the fact that relativistic one-particle propagators
decay, yet do not vanish identically, outside the light cone.

Winful, [5,16–18] rejected the suggestion that causality could be violated, since evanescent waves
are described by classical Lorentz-invariant Maxwell equations. Instead, he argued, the effect could
be explained in terms of the energy (or probability) stored with exponentially decaying density in the
classically forbidden region, where no actual propagation of the pulse occurs. Rather, the energy spills
out at the right end of the barrier shortly after being pushed by more incoming energy at its left end.

Buettiker andWashburn [15] also dismissed speculation about superluminal velocities by pointing
out, following Refs. [12,14], that the transmitted pulse is shaped out of the front end of the incident
one, in amanner similar towhat is shown in Fig. 1. Their argumentwas rejected byWinful [17], on the
ground that by carving the front part of a two-humpedpulse one should get a single-humped transmit-
ted pulse, whereas in an experiment the transmitted signal repeats the original two-humped shape.

It is easy to show that the objection in Ref. [17] is not valid, since the reshaping mechanism relies
on the superposition principle [29]. Indeed, one can construct an initial envelope G(x) with two (or
many) humps by adding J Gaussians of the type (7), all shifted in space, (see Fig. 10)

G0(x) =
J�

j=1

(2/πσ 2
j )1/4 exp[−(x − aj)2/σ 2

j ]

≡
J�

j=1

Gj(x − aj). (45)

Consider again the model of Section 4. If all σj in Eq. (45) are chosen sufficiently large for each
of the Gaussian pulses to experience an accurate ‘superluminal’ advancement by, say, α, the same
advancement will be experienced by their multi-hump sum, whose envelope will evolve into (as
before, we put X ≡ x − p0t)

J�

j=1

Gj(X − aj − α) = G0(X − α). (46)

This is an important addition to the argument of Ref. [15]. The transmitted pulse is carved not from
front part of thewhole pulse, but from the front parts of each of its constituents Gaussians. This clearly
distinguishes the quantum reshaping mechanism from the scissors-based reshaping of Section 2.

To avoid answering the question ‘How does the system know the pulse is built from many
Gaussians?’ one may revert to the momentum space. A sufficient condition for an advancement by
α is that the momentum distribution A(p) of the incident pulse should fit into the superoscillatory
band shown in Fig. 4. A spacial shift by aj does not broaden A(p), but multiples it by exp(−iajp). Thus,
for any choice of aj, the composite pulse will fit into the band and will be advanced as a whole. Given
the similarities in the analysis, the same argument will apply to tunnelling across a potential barrier,
including the Hartman case discussed in Section 16.

This should not be confused with the possibility of transferring information at superluminal
speeds. It is true that one can distinguish between one-hump and two-hump signals before the
freely propagation humps arrive at the detector. It is also true that the front tails of all the Gaussians
involved are already at the detector, and one only needs a cleverway to detect them. A device effecting
‘superluminal’ advancement acts as a ‘filter’, making the detection easier, but that is all.

Thus, a barrier ‘processes’ each component of a double humped pulse separately, this produces a
double humped output, and a naive reshaping argument of Section 2 is clearly wrong. Yet it is also
easy to demonstrate that Winful’s own explanation of the effect [5,16–18] is insufficient. The author
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Fig. 10. (Colour online) Envelope of a two-hump initial pulse (solid) is a sum of two Gaussians (dashed). If upon transmission
each Gaussian is advanced by a distance α, so will also be the entire two-hump envelope.

argued that ‘energy is stored in the barrier and then released’ [16] in such a way that ‘the output
adiabatically follows the inputwith a delay proportional to the stored energy’ [17]. Consider, however,
an experiment, similar to the one discussed in Section 15, where the transmitted Gaussian pulse lies
several widths in front of the freely propagating one. Nowmodify the initial pulse by chopping off its
rear half, but leaving its front half intact. Let us forget for a moment about wave packet spreading. The
convolution formula (18) ensures that the effects of choppingwill not be felt to the right of x = p0t/µ,
where all constituent envelopes are, as we said, unchanged. Thus, the transmitted wave packet will
be a full Gaussian rather than just its front half. The spreading is not a problem for our argument.
One only requires (cf. Eq. (18)) that a freely propagating chopped pulse would not alter significantly
its front part by the time we take a snapshot of what is transmitted. This can be ensured by either
making the cut smooth, considering a heavy particle with a large µ, or choosing a high barrier and a
large p0/µ, so the pulse will not have enough time to spread. We see then that the effect cannot be
explained by the output ‘adiabatically following the input’ as suggested in [18]. There is no input and
no energy storage corresponding to the missing rear part of the Gaussian, and yet the output has it. A
detailed calculation for our model, which shares the same mechanism with tunnelling, can be found
in [29]. An experimental observation of a similar effect was reported in [34], where it was shown that
the advanced part of a pulse propagating in a fast-light medium does not carry information about any
modificationsmade to the rear part of initial signal. Had this not been the case, a reliable superluminal
communication would have been possible, and Einstein’s causality would have been in trouble. Along
with other authors we stress that this is not the case. On the other hand, the mechanism proposed
in [5,16–18] fails to address one of the most intriguing features of the effect and, therefore cannot be
a viable candidate for a general explanation of apparent ‘superluminality’ inwave packet propagation.

Finally, to achieve ‘superluminal’ transmission, one only requires certain behaviour of the
transmission amplitude, and a suitable choice of the incidentwave packet. The former can be achieved
in various ways, e.g., through entanglement with a subsequent post-selection, as in the model of
Sections 3–10, or by passing across the classically forbidden region, or by other means [59,60]. In
all cases this appears to be a specific effect, unlikely to be reduced to simpler physical explanations.
All one can say is that it is an interference phenomenon, similar to the one causing the appearance of
‘anomalous’ values in the ‘weak’ measurement theory, in which none of the interfering components
‘move faster’ than in free motion.

20. Conclusions and discussion

In summary, the phenomenon of apparent ‘superluminality’ can be analysed in the coordinate
or in the momentum space. Each approach has its advantages. In the coordinate representation, a
potential barrier (or, indeed, any system with a linear relation between the incident and transmitted
amplitudes) acts as an effective beamsplitter, recombining weighted copies of the incident pulse with



18 D. Sokolovski, E. Akhmatskaya / Annals of Physics 339 (2013) 0–20

all spacial shifts x�, into the transmitted one. For a potential supporting no bound states, there are
no positive shifts, i.e., none of the pulses leaving the beamsplitter are advanced, x� ≤ 0. (Note the
classical analogy: a particle cannot be sped up unless it passes over a potential well where its velocity
increases). The causal nature of the propagation is, therefore, stated explicitly.

Preparing a particle as a wave packet around ameanmomentum p0 and determining the particle’s
position once it has been transmitted, amounts to conducting a quantum measurement of this shift.
This is hardly surprising, since comparing the positions of a classical particle passing through a
potential, and of the one moving in the free space, does just that. Classically, one can also go a step
further, and relate this spacial advancement, or delay, to the duration the particle’s trajectory spend
in the potential. Quantally, such a relation does not exist, and the speculation about a tunnelling time
representing ‘actual duration spent in the barrier’ [2] is fruitless.

Quantum measurements obey known quantum rules. The uncertainty principle effectively states
that two or more interfering (virtual) pathways are but a single pathway connecting initial and final
states of the system. Real pathways are produced, and the ‘which way?’ question can be answered,
only if an interference is destroyed, e.g., by a measurement. In tunnelling, the situation is similar
to the one which arises in Aharonov’s weak measurements. The accuracy to which the shift x� is
measured by detecting the transmitted particle in x depends on the wave packet width σ , with the
shifts x − σ � x� � x + σ still allowed to interfere. An accurate measurement with a small σ always
finds x� ≤ 0. For an inaccurate ‘weak’measurementwith a large σ the question ‘which shift?’ becomes
meaningless due to the interference. A question for which there should be no answer provokes a ‘silly’
answer [42,43]: a forward shift by the barrier width d, even though the ‘beamsplitter’ shifts all the
components of the transmitted pulse backwards. This result translated into the language of tunnelling
times and taken at the face value, constitutes the ‘superluminal paradox’.

While the coordinate representation is best suited to expose the causal nature of transmission
by comparing it to a failed measurement, the momentum space offers a description in terms of
‘superoscillations’. Causality, formulated above as the absence of negative shifts, also requires that the
Fourier integral of T (p) contains only exponentials with positive frequencies. In themomentum space
the ‘paradox’ consists in that to advance a pulse by α one needs T (p) to behave as exp(−iαp), while
such exponentials are absent from its Fourier integral. There its resolution is the ‘superoscillations’
phenomenon studied by Berry and others [39]: the ability of exponentials with non-negative
frequencies to mimic, locally, the behaviour of a plane wave with a negative frequency. If so, a
pulse narrow in the momentum space probes this local superoscillatory behaviour of the transmitted
amplitude and is advanced, unconcerned about the global analytical properties of T (p).

In conclusion, apparent ‘superluminality’ is, in essence, an interference effect. It cannot be ade-
quately described by a classical analogy such as the naive reshaping of Section 2, or the energy storage
mechanism. We have argued that the most detailed description of the effect can be achieved in terms
of quantummeasurement theory,where there exists a language designed to dealwith a similar type of
interference phenomena. Finally, the question of whichmicroscopic properties make a particular ma-
terial behave as barrier for particles or waves is beyond the scope of this paper. Its analysis can, how-
ever, be applied to transmission of wave packets of various nature in different types of physicalmedia.
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Appendix. Von Neumann measurements with post-selection

To emphasise the analogy with Eqs. (2) and (18), we briefly discuss a von Neumann quantum
measurement [40] of an operator Â with a continuum spectrum of negative eigenvalues, performed
by means of metre with position x, coupled linearly in the pointer’s momentum. At t = 0 the system
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is prepared in an initial state

|a� =
� 0

−∞
a(A)|A�dA, Â|A� = A|A� (47)

and the pointer in the state

|ΨI� =
� ∞

−∞
G0(x)|x�dx, (48)

e.g., a Gaussian (7), of a width σ . A coupling

Ĥint = −iT−1∂xÂ (49)

is switched on briefly for 0 ≤ t ≤ T , after which one finds the pointer and the system in an entangled
final state

�x|ΨT � =
� 0

−∞
G0(x − A)a(A)|A�dA. (50)

Suppose we also check the state of the system at t = T , and collect the statistics of the pointer’s final
position only if the system is found in a state |b� =

� ∞
−∞ b(A)|A�dA. In this post-selected ensemble,

the probability to find the pointer at x, is Pb←a(x) = |Ψ b←a(x)|2/
�

|Ψ b←a(x)|2dx, where Ψ b←a(x) is
given by a convolution formula similar to Eqs. (2) and (18),

Ψ b←a(x) =
� 0

−∞
G0(x − A)η(A)dA, (51)

η(A) ≡ b∗(A)a(A).

In the limit σ → 0 one has a strong measurement, with the expectation value, [�x� ≡
�
xPb←a(x)dx]

�x� =
� 0

−∞
A|η(A)|2dA

�� 0

−∞
|η(A)|2dA ≤ 0. (52)

In the opposite limit, σ → ∞, one obtains a weak measurement [30–32,42], with the expectation
value

�x� = Re Ā, (53)

Ā ≡
� 0

−∞
Aη(A)dA

�� 0

−∞
η(A)dA

and a variance of order of σ . Unlike the r.h.s of Eq. (52), Re Ā is not restricted to the negative semi-axis,
and for certain choices of |a� and |b�may be large positive. Such an Ā is called an anomalousweak value.
Finally, if Ā > σ , so that all the pointer’s readings occur outside the spectrum of A, an anomalousweak
value is sharp.
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