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Abstract 14 

   The dynamics of transients of fluid-rock temperature, pore pressure, pollutants in porous rocks are 15 

of vivid interest for fundamental problems in hydrological, volcanic, hydrocarbon systems, deep oil 16 

drilling. This can concern rapid landslides or the fault weakening during coseismic slips and also a 17 

new field of research about stability of classical buildings. Here we analyze the transient evolution 18 

of temperature and pressure in a thin boundary layer between two adjacent homogeneous media for 19 

various types of rocks. In previous models, this boundary was often assumed to be a sharp 20 

mathematical plane. Here we consider a non-sharp, physical boundary between two adjacent 21 

rocks, where also local steady pore pressure and/or temperature fields are present.  To obtain a more 22 

reliable model we also investigate the role of nonlinear effects as convection and fluid-rock 23 

“frictions”, often disregarded in early models: these nonlinear effects in some cases can give 24 

remarkable quick and sharp transients.  All of this implies a novel model, whose solutions describe 25 

large, sharp and quick fronts. We also rapidly describe transients moving through a particularly 26 

irregular boundary layer. 27 
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1. Introduction 35 

   Modeling transient phenomena in fluid-saturated porous rocks is of fundamental importance for 36 

many practical applications. To analyze systems perturbed from a sudden arrival of pressure 37 

transients, Rice and Cleary (1976) envisaged a 1-D buildup of sources that trigger pressurized 38 

fronts. Since in these dynamics the system energy has a role, McTigue (1986) considered in this 39 

model also thermal processes. Indeed, in problems concerning a pore pressure evolution some fluid 40 

motions are naturally present, therefore the system energy must be considered (Rice 2006). 41 

Bonafede (1991) focused on the fluid-rock energy equation, namely on the heat equation for very 42 

small fluid velocities. Merlani et al. (2001) analyzed the nonlinear effect of the fluid convection and 43 

the presence of quick, sharp fronts (Whitham, 1974).  These nonlinear 1-D models had vivid 44 

applications as "La Fossa" crater in Vulcano in Aeolian Islands, in Italy (Natale, 1998), “The 45 

Geysers” in California (Moore and Gunderson, 1995; Natale et al., 1999), the Karymsky volcano in 46 

Kamchatka analyzed by Chirkov (1975), the submarine eruption off the Izu Peninsula in Japan 47 

(Notsu et al., 1991; Garcia et al.,2000).  48 

    In Fig.1 we show a sketch of the 1-D physical model under analysis: a deep hot reservoir (the 49 

“source”) characterized by overpressure IPP 0 and temperature ITT 0  
is covered by homogeneous 50 

isotropic upper horizon, with a lower temperature, represented by a fluid-saturated porous 51 

permeable medium (the “adjacent” rock).In the early analyses  the boundary between the "source" 52 

and an "adjacent" rock are often treated as a mathematical plane, characterized by rock parameter 53 

discontinuities. The purpose of this paper is to examine in more detail the evolution of fluid-rock 54 

temperature T and pore pressure P in a thin boundary layer of thickness ψ between the "source" and 55 

an “adjacent" homogeneous rocks, where also local T and P steady fields are present. Following the 56 

interest of Merlani et al (2001, 2006) for realistic nonlinear effects, here in particular we investigate 57 

the transient velocity and amplitude variations during such novel nonlinear transient propagation. 58 

We analyze in detail the drift velocity in different kind of rocks, showing that the higher value is 59 

obtained in the case of Berea Sandstones, while the lower value corresponds to Tennessee marble 60 

among the considered rock examples. 61 

  The paper is organized as follows: we synthesize the early models of thermo-poro-elastic 62 

transients in Section 2. The new results are discussed in Section 3. In the Discussion Section 4, 63 

characteristic values of velocity propagation for different rocks are analyzed. The conclusions are 64 

presented in Section 5. 65 
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 66 

2. The thermo-poro-elastic equations for P and T. 67 

  We here recall early models of a P-T front in 1-D, moving in a thin layer between two fluid 68 

saturated rocks, as a boundary layer of an aquifer that elastically reacts with transients in adjacent 69 

homogeneous rocks (Fig. 1).  This 1-D choice can hold for a two half-horizon schematization, for a 70 

radial transient propagation from a small spherical source or from cylindrical perforated segment of 71 

a borehole, thus forming a segment source. In this 1-D case, the stress σij is constant (McTigue, 72 

1986; Bonafede, 1991).  73 

   To describe such flows McTigue (1986), demonstrated a linear relation of pore pressure P and 74 

fluid-rock temperature T (Tables 1 and 2)  75 
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where fK  is the permeability, G is the rigidity, *B is the Skempton parameter,   is the reference 80 

effective porosity of the rock,  is the fluid viscosity, * (
*

u ) is the drained (undrained) Poisson 81 

ratio and f ( m ) is the expansivity of the fluid (solid) phase 82 

    Considering not only pressure but also the energy/temperature dynamics, this equation finally 83 

interconnects strictly the evolutions of T and P for any initial input. Equation (1) implies a classical 84 

diffusion equation for P in the isothermal problems: if temperature gradients are present, as often 85 

happens in real world, the pressure evolution is forced by the gradients of T. All of this holds also in 86 

hydrothermal or volcanic systems (Bonafede, 1991). The opposite also holds in a constant pressure 87 

rock when a quick thermal transient evolves as a mere diffusion. 88 

       This linear approximation is valid under the hypothesis that the convective term related to the 89 

mass flux can be neglected i.e. the limit of a small Peclet number is assumed (see Bonafede and 90 

Mazzanti, 1997, for the full discussion about the basic equations). 91 

  We moreover remark how geophysical parameters depending from temperature and/or pressure 92 

are not considered in this analysis. Following the previous papers by Bonafede (1991) and Natale 93 
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and Salusti (1996), we focus on the role of convection and mechanical work on the evolution of the 94 

matrix temperature and/ or pressure. 95 

  We also observe that the term with 22 / zT  appearing in equation (1) was ignored in some 96 

previous investigations about these problems. But, according to McTigue (1986), the fluid volume 97 

flux in general would include a term proportional to the temperature gradient leading to this thermal 98 

diffusion effect. We considered it for the sake of completeness, since we are focusing our analysis 99 

on thermal effects, but we also observe that it has no influence in these analyses.  100 

   In problems concerning pore pressure gradients, Rice (2006) remarks how some fluid motions are 101 

naturally present and therefore the system energy must be considered, or just the temperature for 102 

very small fluid velocities.  As a second relation, following Bejan (1984) and Bonafede (1991), we 103 

therefore consider the energy-heat conservation equation (Tables 1 and 2)  104 
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 109 

The physical parameters (assumed to be constant) appearing in equation (2) are m ( f ) that is the 110 

medium (fluid) mass density, mc ( fc ) is the medium (fluid) specific heat, TK  is the thermal 111 

diffusivity,   is a dissipative coefficient.  112 

  In equation (2) the nonlinear convective term is related to the Darcy velocity 
z

PK
tzU

f







),( . 113 

In addition to usual linear terms, in equation (2) we consider the convection TPB zz   and the 114 

mechanical work rate 
2* P)(Y z as particularly important dynamical sources (Bejan, 1984; 115 

Bonafede and Mazzanti, 1997; Merlani et al., 2001). Therefore, nonlinear terms can have a relevant 116 

role in the evolution of the system, also for small B or Y*. In the case of media with high 117 

permeability this nonlinear convective term cannot be neglected introducing a coupling between the 118 

temperature and pressure field evolution. A balance of diffusion, convection and mechanical work 119 

rate therefore governs such evolution of the fluid-rock temperature. 120 
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    Rice and Cleary (1976), McTigue (1986), Bonafede (1991), Natale and Salusti (1996), among 121 

others, consider boundary-initial conditions for the "source" (T = T0 +TI  and P = P0 +PI  for z < 0 at 122 

t ≈ 0) and the adjacent matrix (T = T0, P = P0  for  z > 0  and  t ≈ 0) with  P0, PI,  T0,  TI  constants 123 

(see Fig.1 for the sketch of the physical model).  124 

  In the literature, these values are PI  ≈ 10
7 

Pa  and TI  ≈ 100 °C for earthquakes or geothermal 125 

systems (Bonafede ,1991); PI ≈ 10
7 

Pa and TI  ≈  60°C for induced micro earthquake clouds analyses 126 

(Fisher et. al., 2002; Shapiro and Dinske, 2009); PI ≈ 10
 4

Pa and TI ≈ 10°C (McTigue ,1986) and PI 127 

≈ 50 MPa and TI ≈ 200°C for earthquake slip analyses (Chester et al., 2005; Rice, 2006). 128 

    Since a “sharp" jump, as initial condition for such transients is not a realistic assumption, we 129 

analyze the P and T evolution in a rather thin layer of thickness ψ between the "source” and the 130 

adjacent rock. Indeed, in these boundary layers the trends of P and T have a dynamical effect on a 131 

transient evolution, which requires a more complex novel model. 132 

  133 

2.1 The equations complexities and uncertainties.  134 

  Some care should be given to the physical meaning, and practical estimates, of the coefficients in 135 

equations (1) and (2). In particular, Y * plays a crucial role: indeed, a work made by P increases the 136 

rock heat and therefore in (2) is a positiveY* (Bejan, 1984). Nevertheless, if the perturbation is so 137 

strong to give rock deformations, fracturing or some other kind of irreversible "change of state”, 138 

some energy, and heat, can be extracted from the matrix. Thus we can also have that Y*→Y* - Φ= 139 

Y < 0, for a suitable positive Φ due to these dissipative effects (Gross and Seelig, 2006). Classical 140 

cases are the energy dissipated in the rock new fractures (Philipp et al., 2013), frictional heat during 141 

an earthquake (Rice, 2006) or the energy dissipated by the viscous fluid motion inside some rock 142 

fractures (Detournay and Garagash, 2003). 143 

  All of this explains why a realistic determination of the rock parameters α, B, D, Y, Φ... for a deep 144 

rock is not a simple challenge. These parameters are indeed poorly known quantities, to be 145 

eventually checked with other information.   For example, intrusive dykes can have lengths as 1-10 146 

Km long and widths of 1-10 m (Zencher et al., 2006). Another case is the thermal diffusion in an 147 

earthquake slip zone, where a very small thickness between 1 m  and 1mm has been considered 148 

(Rice, 2006; Rempel and Rice, 2006).  Intrusions of viscous fluids in a matrix can give fractures 149 

with a length of 1-10 m with a width of 1- 10 cm (Detournay and Garagash, 2003). The 150 

corresponding real values of the boundary thickness ψ is therefore dependent by the geophysical 151 

problem under analysis. 152 

 153 
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2.2 General symmetry relations. 154 

  In previous analyses, the model solutions are often functions of z
2
/t (see e.g. Natale and Salusti 155 

(1996)).Following such observation Merlani et al. (2001) and D.Levi (personal communication, 156 

2018) studied the "symmetry" properties of (1) and (2) and obtained as explicit  solutions only 157 

"rigid wave translations" G(z-Vt)  or the “self-similar” solutions  ctzF /2
, with  V and c 158 

constants. The first case looks rather artificial since only rigid moving profiles can be obtained, thus 159 

the other self-similar case is here investigated.   160 

  We therefore assume as a particularly simple ansatz (Merlani et al., 2011), that P and T are just 161 

proportional to z
2
/t  + c .  Thus equation (1) gives 162 
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an ansatz that must be checked in the final solutions. 164 

     From (3) and (1), we have that the relation between  P and T is given by 165 
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  Re-writing equation (2) and by using equation (4), we obtain a Burgers-like equation for  t > ε 170 
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 The time delay ε at the sudden arrival of the transient can be due to complex phenomena as 172 

perturbations due to chemical reaction, fine particle migration or small filter cake formation, etc. 173 

(Merlani et al., 2011). 174 

 Thus (6) is an evolution equation with a drift 
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that characterizes the solutions of (6),  to be shock waves or classical diffusion solutions. In 
179 

particular  for  R  > 8 - 10  the effect of the diffusive term can be disregarded. (Whitham, 1974).  It 
180 

is important to notice that, different from the classical diffusion equation,  R is proportional to the 
181 

initial temperature TI.  
182 

  The equation (6) can be applied to different cases, such as pure pressure change or pure heat 183 

change or a mixing of these two forcing. The source rock can have higher, or lower, temperature 184 

and pressure, with or without rock deformations, depending by the physical setting. In addition, the 185 

equation (6) is relevant because to the pervasive applicability in different contexts and its 186 

mathematical simplicity. 187 

 
188 

3. Results. 189 

  From equation (6) we see that the signs of T1, P1 and Δ characterize different physical settings. We 190 

are also aware that the solutions of equation (6) can reach a high level of complexity for irregular 191 

behaviors of P(z,0) and T(z,0) when the initial transition of pressure and temperature fields cannot 192 

be simply approximated by elementary smooth mathematical functions. 193 

  Therefore, we have many possible cases, but here we show a rather general treatment for simple 194 

models, in particular for positive or negative values of  Δ.  To give an intuitive example of the 195 

physical model under consideration, we first discuss the case of an initial linear trend with a 196 

negative gradient of P(z,0) and with T(z,0) constant in the above boundary layer. To solve the set of 197 

equations (1) and (2), or equivalently equation (6), we here consider the following initial conditions 198 

  199 

{
 

 
𝑃(𝑧 ≤ 0, 𝑡 = 0) = 𝑃0 + 𝑃𝐼
𝑃(𝑧 > 𝜓, 𝑡 = 0) = 𝑃0

𝑃(0 ≤ 𝑧 ≤ 𝜓, 𝑡 = 0+) = 𝑃0 + 𝑃𝐼 −
Γ

𝜓
𝑧

                    {
𝑇(𝑧 ≤ 0, 𝑡 = 0) = 𝑇0 + 𝑇𝐼
𝑇(𝑧 ≥ 0, 𝑡 = 0+) = 𝑇0 .

 

   200 

and the following boundary conditions 201 

 202 

{
𝑃(𝑧 = 0, 𝑡) = 𝑃0 + 𝑃𝐼
𝑃(𝑧 →  , 𝑡) = 𝑃0

                                                        {
𝑇(𝑧 = 0, 𝑡) = 𝑇0 + 𝑇𝐼
𝑇(𝑧 →  , 𝑡) = 𝑇0

 

 203 

  All of this describes the effect of a pressure jump in  isothermal rocks and we moreover have 204 

𝑔(𝑧) = 𝑃(𝑧, 0) − 𝛼𝑇(𝑧, 0) = {
𝑃0 + 𝑃𝐼 (1 −

𝑧

𝜓
) − 𝛼𝑇0              0 < 𝑧 < 𝜓

𝑃0 − 𝛼𝑇0                                              𝑧 ≥ 𝜓  
         (8) 205 
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and therefore 206 

 
𝑑𝑔(𝑧)

𝑑𝑧
= {

−
𝑃𝐼

𝜓
            0 < 𝑧 < 𝜓

0                          𝑧 ≥ 𝜓  
.  207 

The term (- PI/ψ) represents therefore the steady slope of the local pressure acting only in the  0 - ψ 208 

interval. This slope can be very large; however here we consider a rather small PI/ψ ≈ 10
-2

in SI, as 209 

the natural vertical gradients in the earth brittle. As temperature we consider only a constant TI.  210 

  The analysis of a cumbersome quadratic g(z), not shown here, demonstrates that the largest effects 211 

are in zones characterized by a large dg/dz. 212 

 213 

3.1. The case of a small initial transient with a positive Δ. 214 

  We here analyze the effect of the sudden arrival of a transient characterized by a rather small 215 

pressure and temperature jump, such that Y, Δ, Σ, Γ are positive (Table 2).  Thus the Burgers 216 

equation (6) for  0 < z< ψ  and t  >  ε becomes 217 

𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑧2
+ Δ(

𝜕𝑇

𝜕𝑧
)
2

− Σ
𝑃𝐼

𝜓

𝜕𝑇

𝜕𝑧
+ 𝑌 (

𝑃𝐼

𝜓
)
2

       (9a) 218 

while for z   ψ ,  t  >  ε 219 

𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑧2
+ Δ(

𝜕𝑇

𝜕𝑧
)
2

          (9b) 220 

     The equations (9a,b) have constraints (Appendix A) that define a T/P front at z = zB(t). In 221 

particular, we have to solve the equations (9a, b) firstly in the case in which the front zB(t)  is in the  222 

0 - ψ interval; secondly when the front overcome the layer of thickness ψ.  The temperature 223 

evolution for t > ε and  0 < zB(t) < ψ is   224 

𝑇(𝑧, 𝑡) = 𝑇0 + 𝑇𝐼 ,                                                              𝑧 < 0 

𝑇(𝑧, 𝑡) = 𝑇0 + 𝑇𝐼 −
(𝑧−𝑉𝑡)2

4Δ𝑡
+ 𝑌 (

𝑃𝐼

𝜓
)
2

𝑡 ,             0 < 𝑧 < 𝑧𝐵(𝑡)    (10a) 225 

𝑇(𝑧, 𝑡) = 𝑇0 ,                                                                      𝑧 > 𝑧𝐵(𝑡) . 226 

 227 

For zB(t) > ψ becomes 228 

𝑇(𝑧, 𝑡) = 𝑇0 + 𝑇𝐼 ,                                                                       𝑧 < 0 

𝑇(𝑧, 𝑡) = 𝑇0 + 𝑇𝐼 −
(𝑧−𝑉𝑡)2

4Δ𝑡
+ 𝑌 (

𝑃𝐼

𝜓
)
2

𝑡 ,                      0 < 𝑧 < 𝜓    (10b) 229 

𝑇(𝑧, 𝑡) = 𝑇0 + 𝑇𝐼 −
Σ𝑃𝐼
2Δ

−
𝑧2

4Δ𝑡
+ 𝑌̃ (

𝑃𝐼
𝜓
)
2

𝑡 ,              𝜓 < 𝑧 < 𝑧𝐵(𝑡) 

𝑇(𝑧, 𝑡) = 𝑇0 ,                                                                              𝑧 > 𝑧𝐵(𝑡) . 230 
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Where, 𝑌̃ = 𝑌 −
Σ2

4Δ
 and 𝑧𝐵(𝑡) = −𝑉𝑡 + √4|𝑇𝐼|Δt. 231 

About sandstones, for a small z in (6) the drift velocity V = Σ PI/ψ  ≈ 10
-13

 PI/ψ >0 in SI, and  T 
232 

decreases as V
2 

t/4Δ ≈10
8
V

2
t≈ 10

-18
(PI/ψ)

2
t  , while in turn  T is increased by the forcing Y (PI/ψ)

2 
t ≈ 

233 

10
-12

(PI/ψ)
2
t.  Thus equation (6) has analytic solutions with two rather small terms, a decreasing 

234 

velocityV and an increasing temperature term (Table 1 and 2). 
235 

   About granites,  V = Σ PI/ψ ≈ 10
-17

 PI/ψ > 0  which decreases the temperature as 10
13

V
2
t≈ 10

-
236 

21
(PI/ψ)

2
t , while in turn T is increased by the forcing Y (PI/ψ)

2 
t ≈ 10

-16
(PI/ψ)

2
t.Thusequation (6) has 

237 

analytic solutions with two small terms, one negative in V and the other larger in the still unknown 
238 

Y. For rather large distances, to avoid cumbersome relations in (10) and (11) we moreover disregard 
239 

such term Y (PI/ψ)
2 

t . 
240 

Using equation (4) is it possible to estimate the pressure evolution considering the same front zB(t) 241 

in equations (10a, b). 242 

The Darcy velocity in turn is 243 

𝑈(𝑧, 𝑡) = −
𝐾𝑓

𝜇

𝜕𝑃

𝜕𝑧
=

𝐾𝑓

𝜇
[
𝑃𝐼

𝜓
− 𝛼

(𝑧−𝑉𝑡)

2Δ𝑡
]        (11) 244 

    About the geophysical meaning of R, we remark how the linear diffusive velocity of  (9 ) is about245 

tD / while the nonlinear velocity is t|T| I /4  . Thus  we have RDTI  /4 > 3: the 246 

nonlinear velocities are therefore (slightly) larger than the classical diffusive velocity. 247 

 248 

4. Discussion  
249 

 
250 

4.1 Applications: the role of the steady pressure slope.
 251 

    The figure 2 shows the temperature and pressure behavior for sandstones and granites. We 252 

observe a temperature front zB(t) that increases until T = T0 +T1  ,with some time delay. We also 253 

remark how PI/ is in both P and T  and consequently this explains the reason why these terms can  254 

be both very small, or very large as well .
    

255 

 
256 

   In more details, from (10) one can see how PI/, the steady pressure slope in the boundary layer, 257 

is a basic quantity for the analysis of such transient dynamics. Indeed, it marks the difference with 258 

the early models, where this boundary is assumed to be just a mathematical plane.  About realistic 259 

values of such  PI/, in the following we mention a  "thermal pressurization" process for a very 260 
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small ψ, of  interest for earthquake analyses (Rice, 2006). But often we consider  smaller values of  261 

PI/,  as the natural T and/or P gradients in the earth crust, about 10
-2

 in SI. 262 

 263 

4.2.The case of a strong initial transient, and  negative   . 
264 

   For  large amplitude transients one can  have a similar equation but with negative Y, V, Σ (see 
265 

Table 2). This can  characterize the transient evolution for  large PI   and/or TI , also near the rock 
266 

fracture values. The solutions are a sharp signal with the same front  zB(t) in the equations (10).  
267 

For t > ε and  0 < zB(t) < ψ  we have (Fig. 3)  
268 

 
269 

𝑇(𝑧, 𝑡) = 𝑇0 + 𝑇𝐼 ,                                                              𝑧 < 0 

𝑇(𝑧, 𝑡) = 𝑇0 −
(𝑧−𝑉𝑡)2

4Δ𝑡
+ 𝑌 (

𝑃𝐼

𝜓
)
2

𝑡 ,                       0 < 𝑧 < 𝑧𝐵(𝑡)              (12a) 270 

𝑇(𝑧, 𝑡) = 𝑇0 ,                                                                      𝑧 > 𝑧𝐵(𝑡) . 271 

 272 

In addition, for zB(t) > ψ it becomes 273 

 274 

𝑇(𝑧, 𝑡) = 𝑇0 + 𝑇𝐼 ,                                                                       𝑧 < 0 

𝑇(𝑧, 𝑡) = 𝑇0 −
(𝑧−𝑉𝑡)2

4Δ𝑡
+ 𝑌 (

𝑃𝐼

𝜓
)
2

𝑡 ,                                0 < 𝑧 < 𝜓              (12b) 275 

𝑇(𝑧, 𝑡) = 𝑇0 −
Σ𝑃𝐼
2Δ

−
𝑧2

4Δ𝑡
+ 𝑌̃ (

𝑃𝐼
𝜓
)
2

𝑡 ,                        𝜓 < 𝑧 < 𝑧𝐵(𝑡) 

𝑇(𝑧, 𝑡) = 𝑇0 ,                                                                              𝑧 > 𝑧𝐵(𝑡) , 276 

where 𝑌̃ = 𝑌 −
Σ2

4Δ
 and 𝑧𝐵(𝑡) ≈ −𝑉𝑡 + √4|𝑇𝐼Δ|t. 277 

In the same manner as positive  case, using equation (4)  is it possible to estimate the pressure 278 

evolution considering the same front zB(t) in equations (12a,b) as shown in Fig. 3. 279 

The Darcy velocity is  280 

𝑈(𝑧, 𝑡) = −
𝐾𝑓

𝜇

𝜕𝑃

𝜕𝑧
=

𝐾𝑓

𝜇
[
𝑃𝐼

𝜓
+ 𝛼

(𝑧+𝑉𝑡)

2Δ𝑡
]        (13) 281 

 282 

  We remark that negative values of  Δ and V can increase the front velocity. In addition,                
283 

the  transient temperature at the front arrival is T0+TI  and then decreases, till reaching T=T0.      
284 

 
This temperature increase can originate rapid landslides or lead to hydraulic fracturing phenomena. 285 

It can also be important  for the extraction of heavy oils, in radioactive waste disposal or to analyze 286 

the fault weakening during coseismic slips.
 

287 
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   We note again how for small ψ the velocities V can be very large: for ψ ≈ 50 μm (Chester et al., 288 

2005) V  can also reach about 10
6 

times the velocityV for intrusive dykes characterized as  ψ ≈ 10 m 289 

(Zencher et al., 2006). Another case is the thermal diffusion in an earthquake slip zone, where a 290 

very small thickness, between 1 m  and 1mm has been considered (Rice, 2006; Rempel and Rice, 291 

2006). In such a context it is interesting  that Rice (2006) discusses thermal pressurization processes 292 

and states that "the earthquake data set for fracture energies can be fit to predictions of a model 293 

involving slip on a much thinner zone, even slip on a mathematical plane. It is, nevertheless, 294 

presently uncertain whether broad zones of ultracataclastic gouge, up to several tens of millimeters 295 

width, participate in seismic shear, or whether extreme localization is the rule even if such localized 296 

zones may have in some cases evaded detection”.                                                                                   
   

297 

We moreover remark how these solutions of T and P satisfy the assumption (6) - (7). 
298 

 299 

4.3 Quickly varying local conditions at the two-rock boundary. 300 

    A different case is for a steady initial pressure  301 

          P0 (z) = P0 + h(z)          (14) 302 

with a very irregular trend h(z), as that due to a long time sealing from different heterogeneous 303 

rocks. We moreover assume that h(z) is derivable, is constant around  z = 0 and z = ψ  and therefore 304 

decreases from h(0) = P1 to h(ψ) = 0 . This trend can give some intuitive insight about a realistic 305 

model for the two-rock border, where complex phenomena can happen as fine particles migrations 306 

or local rock fractures (Merlani et al, 2011). With such h(z) from equation (6) we have 307 

0

22

2

2






































zd

hd
Y

z

T

zd

hd

z

T

z

T
k

t

T

                                     

(15) 308 

Mathematically this is a Burgers equation with a complex forcing

2










dz

hd
Y and a drift 

z

T

dz

hd




 , 309 

to be treated numerically.  A simpler case is however if

2










zd

hd
Y is very large, thus  disregarding 310 

the other smaller terms one can approximate equation (15) obtaining 311 

0

2















dz

hd
Y

t

T
.                                                                                                              (16) 312 

Under these assumptions, we have as a rather realistic approximation that  313 

http://onlinelibrary.wiley.com/doi/10.1029/2006JB004314/full#jgrb14873-bib-0027
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t
zd

hd
YTTT I

























2

0
                                                                                          (17)    314 

Thus such  difficult  case can have an approximate elementary solution, a mild linear decrease of T.

 

315 

 316 

4.4 Rocks description and properties. 
317 

 318 

   To discuss typical parameters of some rocks, our main focus is on clay, sandstones or granites. 319 

Other rocks such as marble are quickly sketched. It also should be stated the difference in properties 320 

determined in laboratory and in the field measured at some depth. For example,  321 

the permeability of a rock in a laboratory is certainly reliable, while a measurement of the same 322 

parameter at depth must be considered with caution. About the measurement for such field 323 

parameter at depth we therefore provide only the range of values.  324 

 325 

Abyssal Red Clay. 326 

 327 

   Abyssal Pacific Red Clays are mainly allogenic in origin. This allogenic component is principally 328 

from Aeolian dust from central Asia, but also from Australia and Central America. Its 329 

sedimentation rates are therefore higher in the North Pacific.  330 

Sedimentation of Red Clays is variable through time, the highest rates of such sedimentation were 331 

during glacial periods when dust transport was a maximum. Accumulation rates of authigenic 332 

elements (Mn, Co, Cu, and Ni) are inversely related to sedimentation rate and this explains the high 333 

contents of these elements in South Pacific Red Clays. The authigenic origin is about  the 90% Mn, 334 

80% Co and Ni, and 50% Cu. The diffusive flux of Mn in Red Clays is small, about 7% of the total 335 

sedimentation rate of Mn, but  96% of Cu is regenerated in these sediments (Glasby, 2010). 336 

     Characteristic parameters in SI for Abyssal Red Clay, saturated with water are 337 

Kf  ≈ 3x10
-16

, Δ ≈ 8 x10
-12

 for Y* positive, Σ ≈ 2 x10
-14 

,D ≈ 7x 10
-7

 , a particularly small  α ≈  700 338 

are from McTigue (1986).  We therefore have in SI 339 

 the  front velocity 
6

1 10/||/||2  xtTtT I  340 

 drift velocity  V ≈ Σ PI/≈ 3x10
-14

 PI/. 341 

 342 

Berea Sandstone . 343 

 344 
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  Berea Sandstone is present in eastern Ohio, western Pennsylvania, western West Virginia, eastern 345 

Kentucky and Michigan. It  is 99% quartz, contains no macroscopic fractures and exhibits thin , 346 

distinct, bedding laminae parallel to the X Y surface. This rock is a grey, fine grained sandstone 347 

(median grain size about 0.2 mm), with porosity about 0.18. Its framework grains consist of quartz 348 

(70 per cent), polycrystalline quartzose rock fragments (25 per cent), and feldspar (5 per cent). 349 

Interstitial areas contain clay and some calcite cement in a ratio of 7: 1, respectively. Bedding is 350 

manifest by dimensional alignment of detrital grains, concentrations of fine detritus, and of heavy 351 

minerals. This rock is indurated primarily by pressure and overgrowth of quartz-quartz grain 352 

contacts. These vary from points to sutured, most are tangential. The detrital quartz grains contain 353 

some deformation lamellae and healed microfractures, but very few fresh unhealed micro fractures 354 

are observed in thin section as described in a classical study of Friedman and Bur (1974). Berea 355 

Sandstone was formed in the Late Devonian period, the majority of its sand came from the north, 356 

flowing in a river from the highlands of eastern Canada. 357 

  Characteristic parameters in SI for Berea Sandstone   358 

  Kf  ≈ 2 x10
-13

, Δ≈ 5 x10
-5 

 for Y* positive, D≈ 7 x10
-11

 ,Σ ≈ 7 x10
-11 

and α ≈ 10 
6
 . 359 

  The corresponding fluid velocities in SI are: 360 

the front velocity ≈
2

1 10/||/||2  xtTtT I ;
 

361 

drift velocity
  

V = Σ PI/ ≈ 10
-10

 PI/. 362 

 363 

Ruhr Sandstone 364 

 365 

   The Ruhr Basin, Germany, is a well  investigated Carboniferous coal-bearing basin. It is part of 366 

the Variscan fold belt and represents the late stages of Variscan orogenesis. Sedimentary rock 367 

sequences of this Basin were  deposited on a tropical, humid climate coastal plain in an equatorial 368 

region. It is comparable with time-equivalent paralic basins in Europe and North America. 369 

Periodical sea level fluctuations after the glaciations on the southern hemisphere, during 370 

Duckmantian and Bolsovian periodsbecame rare. In addition subsidence and autocyclic changes 371 

infacies finally influenced such sedimentation and thiscan explain the presence of alternating 372 

mudstones, siltstones, sandstones and coal seams.  373 

    During the late Westphalian/early Stephanian, climate turnedinto more dry conditions, which 374 

resulted in thinner and more mineral-rich coal seams in the Ruhr Basin,where coal formation started 375 

from the Namurian C till the Westphalian C. About 150 coal seams were  generated there  during 376 

https://en.wikipedia.org/wiki/Late_Devonian
https://en.wikipedia.org/wiki/Period_(geology)
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the Pennsylvanian, 43 of these during the Duckmantian (Jasper et al, 2010). Characteristics 377 

parameters in SI for Ruhr Sandstone 378 

  Kf  ≈  2x10
-16

,D ≈10
-6

, Δ ≈ 10
-9 

 for Y* positive, Σ ≈ 10
-14 

 , α ≈ 6 x10 
4
. The corresponding fluid 379 

velocities in SI are  380 

 front velocity ≈
4

1 10/||/||2  xtTtT I ; 381 

drift velocity
  

V = Σ PI/ ≈ 10
-14

 PI/. 382 

 383 

Weber Sandstone 384 

   The Weber Sandstone is in two major depositional environments: fluvial and eolian. The fluvial 385 

deposits, derived from an ancestral Uplift, are dominantly arkosic sandstones, siltstones, and shales. 386 

The arkosic lithofacies are not productive and act as permeability barriers. The eolian sediments 387 

were deposited in dune, interdune, and extradune environments. They are either cross laminated 388 

(mostly windripple laminae) or massively bedded (bioturbated).  389 

  Of interest is how the rock permeability is  directional on a small scale, because of differential 390 

cementation related to grain sizes within inverse graded laminae.  391 

Characteristic parameters in SI for Weber Sandstone are: Kf  ≈ 10
-15

, D ≈10
-6

,  Δ≈ 6 x10
-8 

 for Y* 392 

positive, Σ ≈ 2 x10
-13 

,  α ≈ 5 x10 
5
 . The corresponding fluid velocities in SI are 393 

the front velocity ≈
3

1 10/||3/||2  xtTtT I  394 

drift velocity
  

V = Σ PI/ ≈ 10
-13

 PI/. 395 

 396 

  The Charcoal Granite is in St. Cloud, Minnesota (also known as the St. Cloud Gray Granodiorite). 
397 

 It is a massive, dark brown to dark gray , consisting of 38% plagioclase feldspar, 26% orthoclase, 21% 
398 

quartz, 12% hornblende, and 3% biotite. These feldspars are somewhat altered and contain 
399 

abundant exsolution lamellae. Healed micro fractures are conspicuous in the quartz and feldspar. 
400 

Grain size range is about 1-0.1 mm. No conspicuous macro fractures occur at the surfaces of the 
401 

blocks,  as remarked by Friedman and Bur (1974).  In addition the modulus G and the Poisson ratio 
402 

ν  are greatly influenced by the granite cracks density.                                                                                          
403 

Recently were investigated cases of most ancient rocks and found that magma structures, formed 404 

through in-situ melting, are the protruding parts of a paleo structure and reflect the geometric 405 

relationship between the PMI and the present-day denudation surface. 406 

Characteristic parameters in SI for Charcoal granite are: 407 
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Kf  is about 10
-19

 in SI, again D ≈ 10
-6

 and α ≈ 10
5
 in SI,  while                                                                        

408 

Δ is about 10
-12

for Y* positive and Σ ≈ 10
-17

.  The corresponding fluid velocities in SI are  409 

the front velocity ≈
6

1 10/||/||2  xtTtT I  410 

drift velocity
  

V = Σ PI/ ≈ 10
-17

 PI/.
 

411 

 412 

   The  Tennessee marble, found in the Appalachian Ridge and Valley Province (Tennessee),  is 
413 

sedimentary and therefore is classified as limestone. The Tennessee marble was formed from the 414 

accumulation of “bryozoan” and other primordial marine life forms  about 460 million years ago, 415 

during the Ordovician period.  Fragments of massive “bryozoans” are common in the Tennessee 416 

Marble. Bryozoans are tiny aquatic organisms,  rarely larger than a millimeter,  living in 417 

interconnetted colonies.  In turn  Archimedes is another form of bryozoan, consisting of a central 418 

axis around which delicate colonies were attached. This axis is usually the only part of the skeletan 419 

preserved in the Tennesee Marbles, since the central axis is its most robust part.  420 

    A noticeable feature of this marble is the presence of jagged horizontal gray or black lines, or 421 

"stylolite’s." The most known shades of  the Tennessee marble are pink, gray, and cedar, but it also 422 

is found in blue, yellow, and cream shades (Safford , 2012). 423 

Characteristic parameters in SI for  Tennessee marble are: 424 

the permeability Kf  is of the order of 10
-19

 in SI, D ≈ 10
-9 

while again one hasY* 
425 

positive, Σ ≈ 10
-20 

 ,Δ≈ 10
-14 

 for Y*α ≈ 6x10 
4
 .  The corresponding fluid velocities in SI are  426 

the front velocity  is  
7

1 10/||/||2  xtTtT I  427 

drift velocity
  

V = Σ PI/ ≈ 10
-20

 PI/. 428 

 429 

5. Conclusions 430 

  A realistic analysis of the effect of a boundary layer between two fluid saturated rocks on the 431 

propagation of transients of P and T is an important but rather complex problem. It is evident that it 432 

can have many different physical applications, and the transient dynamics may evolve in numerous 433 

different ways. Also nonlinear terms as convection , fluid-rock “frictions”  can give strong effect 434 

that must be considered. In addition, this boundary layer can be thin, and schematize the real 435 

boundary layer between two homogeneous rocks, or very large to simulate an adjacent rock with 436 

some P and/orT local trends: these are very different problems, which however are formally similar, 437 

and must be considered at the moment of practical applications. 438 

https://en.wikipedia.org/wiki/Sedimentary
https://en.wikipedia.org/wiki/Bryozoan
http://www.sms.si.edu/irlspec/IntroBryozoa.htm
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    We here consider in detail the case in which a homogeneous "source" matrix is more pressurized 439 

than another adjacent matrix, thus focusing on a P and T dynamics at the arrival of  T/P transients in 440 

a thin boundary layer of thickness ψ between these two rocks. Such barrier is here treated as a 441 

region with continuous trends of pressure between the two matrices: its thickness ψcan be 10 m or 1 442 

μm depending on  the particular problem considered. The effect of a sudden jump ofT/P in the 443 

source rock on the evolution of a continuous pressure field in such boundary layer is here analysed 444 

in detail: we indeed focus on the effect of the boundary ψ on such nonlinear dynamics. 445 

Actually, we analyse in detail a two-equations model, where we focus on the  solutions in relation 446 

to some crucial parameters as R (the Reynolds number ruling the effect of convection versus 447 

diffusion), Δ (that characterizes the velocity of a nonlinear front), α (relating strictly P and T), V (a 448 

drift velocity due to eventual steady T/P trends), and in particular on the effect of  Γ/ψ, the slope of 449 

the steady pressure in the thin boundary layer between the source and the adjacent rocks. In 450 

particular, we show that among the model solutions are also quick and sharp P/T transients 451 

(Merlani,2011).  452 

  The solutions of these two equations can be very complex for realistic P and/or T trends , thus we 453 

here analyse a case characterized by simple analytical solution, i.e. the arrival of a sharp 454 

temperature jump in presence of a steady linear pressure trend. The main result is that all of this 455 

gives a rather small drift velocity between the two rocks. We study also the effects of convection for 456 

the case in which a strong impact gives some rock perturbation or deformation, which corresponds 457 

to a transient with Δ < 0 . 458 

     From these analyses however one can find that for volcanicor hydrothermal problems, the drift 459 

velocity V is rather small, only for an earthquake slip it can be really important (Rice, 2006). All of 460 

this, however, is only a sketch that gives just an idea about the numerous different solutions 461 

occurring in other realistic applications. 462 
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Appendix A . The structure of the fronts. 473 

We here analyze some properties of the Burgers-like equation: this is not a formal mathematical 474 

demonstration but just an intuitive but exact sketch. Consider in general the equation 475 
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with D, M and N constants. We call Q = ∂ T /∂ z and by z-deriving (A1) we have 477 

.0
)()(

2
)()( 2

2

2

=
z

TQ

z

TQ
M

z

TQ
D

t

TQ


















        (A2) 478 

Assuming that T= T0 is constant in a small region around z ≈ a and T =T0+ TI  is again constant 479 

around z ≈ b  we thus have that Q(a) = Q(b) = 0 in the above two small peripheral regions. In turn 480 

another z-derivative of   (A2) gives that in small regions around  z = a and  z = b one has 481 
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.  Once integrated between a and b the relation (A1) thus gives 482 
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  (A3) 483 

that impliesthat T(b) - T(a)=T0+ TI- T0= TI= const . This implies T (b)=T(a) + TI . If the solution of 484 

(A1) is growing like a polynomialz, z
2
,….in the a - b interval andwe fix that a = 0 and b = zB , to 485 

satisfy the equation (A3) we must assume a front T(zB ,t) = T0+ TI , in particular  for t → 0 and z → 486 

0. 487 

 488 
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Figures. 588 
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 593 

 594 

 595 

Fig 1. An intuitive view of the rock system: a deep hot reservoir (e.g. the magmatic “source”) 596 

characterized by overpressure IPP 0 and temperature ITT 0 is covered by homogeneous isotropic 597 
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upper horizon, with a lower temperature, represented by a fluid-saturated porous permeable medium 598 

(the “adjacent” rock). 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

Fig. 2. Temperature and Pressure solutions for a positive value of ∆ and  =100 m, from equations 608 

(10) and (11). The panel shows the temporal evolution of the two fronts for two kinds of rocks, 609 

(Berea Sandstone to the left and Charcoal Granite to the right) in order to show the different front 610 

velocity. 611 

 612 
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 615 

 616 

 617 
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 618 

 619 

 620 

Fig. 3.Temperature and Pressure solutions for a negative value of ∆ and  =100 m, from equations 621 

(14) and (15). The panel shows the temporal evolution of the two fronts for two kinds of rocks, 622 

(Berea Sandstone to the left and Charcoal Granite to the right) in order to show the different front 623 

velocity. 624 
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 626 

 627 

TABLE 1 

  
     

Material 

property 

Abyssal 

Red Clay 

 

Berea 

Sandstone 

Ruhr 

Sandstone 

Weber 

Sandstone 

Charcoal 

granite 

Tennessee 

Marble 

G 7,0x10
4
 6,0x10

9
 1,2x10

10
 1,2x10

10
 1,8x10

10
 2,4x10

10
 

B* 9,6x10
-1

 6,2x10
-1

 3,9x10
-1

 4,0x10
-1

 2,3x10
-1

 1,7x10
-1

 

ν* 4,8x10
-1

 2,0x10
-1

 1,5x10
-1

 1,5x10
-1

 2,7x10
-1

 2,5x10
-1

 

νu* 5,0x10
-1

 3,3x10
-1

 2,9x10
-1

 2,2x10
-1

 3,0x10
-1

 2,7x10
-1

 

αf 3,0x10
-4

 1,1x10
-3

 9,8x10
-4

 1,0x10
-3

 1,0x10
-3

 1,0x10
-3

 

αm 3,0x10
-5

 3,0x10
-5

 3,0x10
-5

 3,0x10
-5

 2,4x10
-5

 1,0x10
-5

 

Kf 3x10
-16

 2x10
-13

 2x10
-16

 10
-15

 10
-19

 10
-19

 

KT 1,0 3,3 2,9 3,0 3,0 2,9 

φ 7x10
-1

 2x10
-1

 6x10
-2

 6x10
-2

 2x10
-2

 2x10
-2

 

ρmcm 4,0x10
6
 3,0x10

6
 3,0x10

6
 2,7x10

6
 2,6x10

6
 1,0x10

9
 

 628 

   Here KT is the average thermal conductivity,  Kf  is the permeability, ρmis the matrix density, cf  is 629 

the fluid heat capacity and cm is that of the rock,B*  is the Skempton  parameter, G is the shear 630 
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modulus, ν the drained Poisson ratio and uν   the undrained Poisson ratio, mα  (αf ) the volumetric 631 

thermal expansion coefficient for the solid (fluid), fK is the medium permeability,φ the porosity,cf   632 

ρf ≈  7x10
5
, μ  ≈ 4 x10

-3
 in SI is the fluid viscosity. 633 

   Characteristic parameters in SI for Abyssal Red Clay saturated with liquid water are estimated in 634 

(McTigue, 1986),  the Berea sandstone and Rhur sandstone for supercritical water  in  Bonafede 635 

(1991) . The values of the other rocks are from  Merlani et al. (2001).Considering the difficulty of 636 

estimating these rock properties in loco,we give only the orders of magnitude of the above 637 

quantities since the uncertainties canbe very large. 638 

 639 

 640 

 641 

TABLE 2 
      

Material 

property 

Abyssal 

Red Clay 

Berea 

Sandstone 

Ruhr 

Sandstone 

Weber 

Sandstone 

Charcoal 

granite 

Tennessee 

marble 

k* 1,2x 

10
-7

 

4,1x10
-1

 2,8x10
-4

 2,4x10
-3

 3,1x10
-7

 3,1x10
-7

 

α* 3,3x10
-7

 5,0x10
4
 6,5 535 1,0x10

-1
 5,6x10

-2
 

α 7,0x10
2
 1,3x10

6
 2,4x10

5
 4,9x10

5
 2,2x10

5
 2,4x10

5
 

B 3,1x10
-14

 1,3x10
-11

 1,2x10
-14

 6,7x10
-14

 6,8x10
-18

 1,7x10
-20

 

D 6x10
-7

 1,3x10
-6

 1,0x10
-6

 1,1x10
-6

 1,1x10
-6

 2,9x10
-9

 

|Δ|  9,3x10
-12

 5,4x10
-5

 4,0x10
-9

 5,7x10
-8

 2,0x10
-12

 5,8x10
-15

 

forY* 

positive 
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 642 

|Σ| 3,1x10
-14

 6,8x10
-11

 2,0x10
-14

 1,6x10
-13

 1,1x10
-17

 3,0x10
-20

 

forY* 

positive 

 


