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Abstract

We analyze the performance of direct solvers when applied to a system of lin-
ear equations arising from an h-adapted, C0 finite element space. Theoretical
estimates are derived for typical h-refinement patterns arising as a result of a
point, edge, or face singularity as well as boundary layers. They are based on
the elimination trees constructed specifically for the considered grids. The-
oretical estimates are compared with experiments performed with MUMPS
using the nested-dissection algorithm for construction of the elimination tree
from METIS library. The numerical experiments provide the same perfor-
mance for the cases where our trees are identical with those constructed by
the nested-dissection algorithm, and worse performance for some cases where
are trees are different. We also present numerical experiments for the cases
with mixed singularities, where how to construct optimal elimination trees
is unknown. In all analyzed cases, the use of h-adaptive grids significantly
reduces the cost of the direct solver algorithm per unknown as compared to
uniform grids. The theoretical estimates predict and the experimental data
confirm that the computational complexity is linear for various refinement
patterns. In most cases, the cost of the direct solver per unknown is lower
when employing anisotropic refinements as opposed to isotropic ones.

Keywords: direct solver, h-version refinement, finite element method,
singularities
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1. Introduction

When solving an engineering problem using the finite element method,
the following tasks need to be executed:

• Geometry definition.

• Problem formulation in terms of the weak variational form associated
to the Partial Differential Equation (PDE) and boundary conditions
governing the problem.

• Initial mesh generation and corresponding discretization leading to a
system of linear equations.

• Solution of the system of linear equations.

When the error delivered by a discretization exceeds a given tolerance, an
adaptation (or grid enrichment) step is performed in order to reduce the
error in the areas exhibiting large errors. As a result, several iterations of
the solution and adaptation steps may be needed to achieve the required
accuracy of the numerical solution.

The refinements occurring during the adaptation process are often in-
tended to minimize the error produced by numerical singularities or bound-
ary layers towards a number of points, edges, and/or faces. This generates a
sequence of meshes refined towards solution singularities.

Since the solution step is typically the most expensive one in terms of
both memory and CPU time, in this paper we focus our attention on the
performance of direct solvers of linear equations in the presence of adapted
grids. Although direct solvers are often slower than iterative ones, they ex-
hibit a number of advantages, and thus, their study is of great importance.
Among those advantages, we emphasize that they enable for local static con-
densation [9] or even reutilization of partial LU factorizations under local
refinements [25, 24]. Direct solvers are also convenient when solving prob-
lems with multiple right-hand-sides, since the LU factorization only needs
to be computed once. They are particularly important for ill-conditioned
or indefinite problems, where iterative solvers encounter serious problems
with convergence. Examples of these problems are multi-physics problems
or highly non-regular meshes with elements having large aspect ratios, which
often result from the execution of adaptive algorithms.

2



The multi-frontal solver is the state-of-the-art algorithm for solving linear
systems of equations [14, 17] using a direct solver. It is a generalization of the
frontal solver algorithm proposed by [13, 19]. The multi-frontal algorithm
constructs an assembly tree based on the analysis of the connectivity data
of the computational mesh. Finite elements are joined into pairs and fully
assembled unknowns are eliminated within the frontal matrices associated to
multiple branches of the tree. The process is repeated until the root of the
assembly tree is reached. Finally, the common interface problem is solved
and partial backward substitutions are recursively called on the assembly
tree.

When employing a direct (multi-frontal) solver of linear equations on a
regular FE grid with the same number of elements in each spatial direction,
the time complexity scales asymptotically as O(N) in 1D, O(N1.5) in 2D,
and O(N2) in 3D, where N is the number of unknowns [10]. When the
number of elements is increased only in one or two spatial directions, then
the corresponding time complexity scales as O(N) and O(N1.5), respectively.

While direct solvers have been widely studied in context of regular FE
grids, their performance on h-adapted grids has been ignored. Local h-
refinements are essential to solve a variety of engineering problems [20, 22,
6, 26], and different h-adaptive versions have been designed for that pur-
pose [5, 7, 16, 8, 23]. These local h-refinements greatly reduce the number of
unknowns needed to solve a given problem with a prescribed error tolerance.
However, there is no previous study on how such adaptive strategies affect
to the cost of solving (using a direct solver) the resulting system of linear
equations. This is a critical issue since, for example, in the case of iterative
solvers, it is well known that local h-refinements may quickly increase the
condition number of the resulting matrix [1].

In this paper, we study the performance of direct solvers in h-adapted
grids. We consider six basic refinement patterns, namely, uniform refine-
ments, refinements towards a point, isotropic and anisotropic refinements
towards an edge, as well as isotropic and anisotropic refinements towards a
face. For all these cases we construct specific elimination trees that result in
linear computational cost O(N) of the direct solver algorithm, except for the
uniform case where we obtain quadratic cost O(N2) , and the isotropic face
case, where we obtain O(N3/2) cost. We compare these experimental results
with numerical experiments performed with MUMPS solver [2, 3, 4] using
the nested-dissection algorithm from METIS [21] library for construction of
the elimination tree. The numerical results confirm the costs obtained from
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theoretical analysis, except for some cases where they deliver worse perfor-
mance.

Our results indicates that there is a space for improvement in the design of
algorithms for construction of the elimination trees, often called the ordering
algorithms, for the h-refined grids, since a state-of-the-art algorithm like
nested-dissection, proven to be optimal for the uniform grid, does not provide
the optimal elimination trees for some h-refined grids.

We also present the numerical results for the cases with mixed singu-
larities, namely point and edge singularity, face and edge singularity, point
and face singularity, as well as point plus edge plus face singularity. For
these cases, we do not know how to construct theoretically optimal elimina-
tion trees, so we only provide the numerical experiments with MUMPS and
nested-dissection algorithm from METIS library.

Using numerical results supported and interpreted via theoretical esti-
mates for some selected cases, we prove that the use of h-adapted grids may
significantly reduce the cost per unknown of solving the resulting system of
linear equations. Moreover, we show that the use of anisotropic refinements
as opposed to isotropic refinements further reduces such a cost per unknown.

Thus, this paper advocates the use of adaptive techniques to reduce the
number of unknowns needed to solve a given problem as well as to signifi-
cantly reduce the computational cost per unknown of solving the resulting
system of equations when using a direct solver. This situation is the oppo-
site as the one that occurs with iterative solvers, where adaptive grids may
rapidly increase the condition number of the resulting system. This also
suggests that in certain situations, it may be convenient to use partial LU
factorization in certain parts of the domain before calling an iterative solver.

We only consider direct solvers in the sense that they provide the exact
solution up to round-off error in one step. In particular, we do not analyze
H-matrices based solvers such as [27, 28] or correction schemes such as [15].

The structure of the paper is the following. We start with Section Method
and Assumptions describing the numerical framework we used in the exper-
iments. In the next Section, entitled Theoretical Complexity Estimates, we
derive the computational cost estimates for different kinds of refined meshes,
and we verify the estimates in Section Numerical Results. We summarize the
main results of the paper in the Conclusions Section.
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2. Method and Assumptions

In this Section, we describe the method and assumptions made in this
study to estimate the computational complexity of a direct solver when ap-
plied to h-adapted grids.

These h-adaptive grids are typically intended to capture rapid variations
in the solution (or its derivatives) in certain areas of the domain. Often, this
results in refinements towards a certain entity of the domain, namely, a point,
an edge, a face, or a combination of them. For simplicity, and according to
the above classification, we study the following cases:

• Reference case: Uniform refinements with equal number of elements in
each direction.

• Refinement patterns towards one entity: a point, an edge, or a face.

• Refinement patterns towards multiple entities: (a) a point and an edge,
(b) a point and a face, (c) an edge and a face, and (d) a point, an edge,
and a face.

We consider both isotropic and fully anisotropic refinements. For simplicity,
the cases of partially anisotropic refinements or multiple singularities are
omitted in this study.

The study combines theoretical estimates with numerical results. For the
numerical results, we employ the MUMPS solver [2, 3, 4] with the ordering
of unknowns provided by METIS [21], which is considered among the best
existing direct solvers for finite element method (FEM).

For some cases of refinements towards a single entity, even when theoret-
ical results are available, we provide numerical results to study the existing
agreement between theory and practice. Many factors, including possible
imperfections in the solver, late asymptotics, and so on may distort the
matching between the theoretical estimates and the actual results.

To facilitate the discussion, we consider a three-dimensional Laplace prob-
lem with Dirichlet and Neumann boundary conditions, namely:

Find u = u(x, y, z) ∈ H1 (Ω) such that ∆u = 0, (1)

where Ω = (0, 1)3, with boundary conditions

u (:, :, 0) = 0, (2)
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u (:, :, 1) = 1, (3)

∂u

∂x
(0, :, :) =

∂u

∂x
(1, :, :) =

∂u

∂y
(:, 0, :) =

∂u

∂y
(:, 1, :) = 0. (4)

The weak variational formulation is obtained by taking the L2 inner product
with functions v ∈ H1 (Ω), integrating by parts, and performing the shift
u ∈ ũ+H1 (Ω) where ũ (x, y, z) = z.

Find u ∈ V = {u ∈ H1 (Ω) : u (:, :, 0) = u (:, :, 1) = 0} such that (5)

b (u, v) = l (v) ,∀v ∈ V, (6)

b (u, v) =

∫
Ω

∇u · ∇vdV, (7)

l (v) = −
∫

Ω

∂v

∂z
dV. (8)

The numerical experiments presented in this paper were obtained us-
ing a DELL T7500 Workstation with 96 GB RAM, equipped with Intel(R)
Xeon(R) CPU E5620 operating at 2.40GHz. All results were executed se-
quentially in a single core.

3. Theoretical Complexity Estimates

In this Section, we derive theoretical complexity estimates for various re-
finement patterns: (a) uniform, (b) towards a point, (c) towards an edge, and
(d) towards a face. We consider the cases of isotropic and fully anisotropic
refinements.

To obtain these estimates, we first recall the complexity of a Schur com-
plement operation. Then, we provide a general and simple framework for
calculating the complexity of multi-frontal solvers given a refinement pattern
and the corresponding elimination order. Finally, we derive precise estimates
for each of the considered cases by selecting a particular elimination order-
ing. These orderings are known to be asymptotically optimal for the case of
uniform refinements. Additionally, when refinements occur towards a point,
or an edge, the selected orderings are also asymptotically optimal, since the
resulting cost scales linearly with respect to the number of unknowns. For
the case of isotropic refinements towards a face, we cannot prove theoreti-
cally that the selected ordering is asymptotically optimal, although numerical
results exhibit a good matching with the theoretical estimates.

6



3.1. Schur complement

First, we analyze the time and memory complexity of performing the
Schur complement, which is the main building block for construction of a
multi-frontal solver.

Let matrix A be decomposed as:

A =

[
B C
D E

]
. (9)

The Schur complement method consists of performing partial LU factoriza-
tion of the square submatrix B to obtain:

A =

[
I 0

DB−1 I

] [
B 0
0 E-DB−1C

]
.

[
I B−1C
0 I

]
. (10)

The term E-DB−1C denoted the Schur complement.
In order to estimate the number of floating point operations (FLOPS)

required to perform the above partial LU factorization, we denote by q to
the dimension of squared matrix B and by r to the number of nonzero entries
in each row of C and column of D. We assume that r is a constant. Then,
we have:

FLOPS = O(q3 + q2r + qr2) = O(q3 + qr2). (11)

3.2. Multi-frontal solvers

We divide our computational domain in Np = Np(0) patches, where each
patch is composed of one or several elements. The idea of the multi-frontal
solver is to join at each step i, the existing Np(i) patches into Np(i+ 1) new
patches. The number of FLOPS needed to perform the Schur complement
at the i-th step for each patch is denoted by S(i). The total number of steps
is denoted by s. Thus, Np(s) = 1, S(s) = 0. Then, the total FLOPS is given
by:

s−1∑
i=0

Np(i) · S(i), (12)

Following the notation of the previous subsection on the Schur complement,
we define q = q(i) as the number of interior unknowns of each path at the
i-th step, and r = r(i) as the number of interacting unknowns at the i-th
step.
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3.3. Uniform refinements

This case is illustrated in Figure 1. Each patch consists of a single el-
ement. We assume for simplicity that the number of elements Ne of our
computational domain is (2s)d, where s is an integer, and d is the prob-
lem dimension. Even if this assumption is not verified, the final result still
holds true. At every step, we join 2d patches (elements) into one to produce
(2s−1)d new patches, eliminate interior (fully assembled) unknowns of each
new patch, and continue with the recursive procedure by joining again 2d

patches into one. Thus, Np(i) = (2s−i)d. We have q(i) = r(i) = O(2(d−1)i).
Thus, S(i) = O(23(d−1)i). We obtain:

FLOPS (1D)=
s−1∑
i=0

O(2s−i) = O(2s) = O(Ne) = O(Np),

FLOPS (2D)=
s−1∑
i=0

O(22(s−i)23i) = O(23s) = O(N1.5
e ) = O(N1.5p3),

FLOPS (3D)=
s−1∑
i=0

O(23(s−i)26i) = O(26s) = O(N2
e ) = O(N2p6).

(13)
In the above formulae we included the polynomial order of approximation
p assumed to be uniform over the entire grid. Following the definition of
hierarchical basis functions [11] we have Ne = Np in 1D, Ne = Np2 in 2D
and Ne = Np3 in 3D. The derivation for the uniform meshes is similar to
those presented in our previous papers [10].

3.4. Refinements towards a point

This case is illustrated in Figure 2. We assume that at the beginning we
perform the static condensation (elimination of interior degrees of freedom
inside each element). The number of interior degrees of freedom inside each
element is of the order of O(p3). Thus, the computational complexity of the
static condensation over a single element is of the order of O((p3)2p3)) =
O(p9), and the total computational complexity of static condensation for all
elements is of the order of O(p9Ne) = O(p6N) since the number of elements
O(Ne) = O(N/p3). Each patch consists of a layer of elements. At each step
i, we consider one patch composed of the smallest, un-eliminated elements,
which are equally sized, i.e., Np(i) = 1 ∀i . The remaining elements are
untouched at this step. The number of degrees of freedom in each patch is
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(a) Step (level) 1 (b) Step (level) 2

Figure 1: Uniform Refinements. Patches to be eliminated at each step (level) are marked
in dark black.

of order O(p3). The number of interface degrees of freedom in each patch
is of the order of O(p2). Thus, the computational complexity of the Schur
complement within each patch is of the order of O((p2)2p2) = O(p6). The
number of patches is of the order of O(s) = O(Ne) = O(N/p3). Thus, the
total computational complexity is of the order of

FLOPS (3D)= O(p6s) = O(p6N/p3) = O(Np3). (14)

This means that the LU factorization O (Np3) is actually less expensive than
static condensation of the interior degree of freedom O (Np6).

3.5. Refinements towards an edge

Isotropic refinements. This case is illustrated in Figure 3. We assume that
at the beginning we perform the static condensation of all interior-to-the-
element degrees of freedom with a computational complexity of O(N/p6).
In this case we need to apply the multi-frontal elimination pattern, which
constructs larger and larger patches of elements, with some edges and faces
already eliminated in the previous patch. The multi-frontal solver perform
k = 1, ..., s steps, where s = number of layers in the mesh. The number of
degrees of freedom in a patch is O(kp2), where k is the step number. The
number of patches in a single layer is O(2s−k). The number of interface
degrees of freedom is O(kp2). The computational complexity of the Schur
complement of a single layer is of the order of O(2s−kk3p6). For s=number
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(a) Step (level) 1 (b) Step (level) 2

Figure 2: Refinements towards a point. Patches to be eliminated at each step (level) are
marked in dark black.

of layers, we have N = O
(∑s

k=1 3 ∗ 2kp3
)

= O
(∑s

k=1 2k ∗ p3
)

= O (p32s).
Thus, the computational complexity of LU factorization is

FLOPS (3D)= O
(∑s

k=1 2s−kk3p6
)

= O (p62s) =O (Np3). (15)

Again, the LU factorization O (Np3) is actually less expensive than static
condensation O (Np6).

Anisotropic refinements. This case is illustrated in Figure 4. The mesh is
constructed as follows. We start from a single element and break it into four
elements. In the next step, we select one element adjacent to the edge, and
break it again into four elements. The situation is analogous to the refinement
towards a vertex in two spatial dimensions. As usual we assume that we
perform static condensation with a computational complexity of O(N/p6).
We have a sequence of layers, each one with three elongated elements (except
the first layer where we have only one elongated element) The number of
degrees of freedom in each layer is of order O(p2). The number of degrees
of freedom located on the interface between layers is of order O(p2). Thus,
the computational complexity of the construction of the Schur complement
within each layer is of orderO((p2)2p2) = O(p6). Since the number of layers is
s = O(Ne) = O(N/p3), the computational complexity of the LU factorization
is

FLOPS (3D)= O(p6s) = O(p6N/p3) = O(Np3). (16)
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(a) Step (level) 1 (b) Step (level) 2

Figure 3: Isotropic refinements towards an edge. Patches to be eliminated at each step
(level) are marked in dark black.

This time LU factorizationO (Np3) is less expensive than static condensation
O (Np6).

(a) Step (level) 1 (b) Step (level) 2

Figure 4: Anisotropic refinements towards an edge. Patches to be eliminated at each step
(level) are marked in dark black.
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3.6. Refinements towards a face

Isotropic refinements. This case is illustrated in Figure 5. In this case we ap-
ply the multi-frontal elimination pattern again. The multi-frontal solver per-
form k = 1, ..., s steps, where s = number of layers in the mesh. The number
of degrees of freedom in a patch is O

(
2kp2

)
. The number of patches in a sin-

gle layer is O(22(s−k)). The number of interface degrees of freedom is O(2kp2).
The computational complexity of Schur complement of a single layer is then
O(22(s−k)23kp6). For s=number of layers, we have N = O

(∑s
k=1 22k ∗ p3

)
=

O (p322s). Thus, the computational complexity of LU factorization is

FLOPS (3D)= O
(∑s

k=1 22(s−k)23kp6
)

= O (p623s) =O (N1.5p1.5). (17)

(a) Step (level) 1 (b) Step (level) 2

Figure 5: Isotropic refinements towards a face. Patches to be eliminated at each step
(level) are marked in dark black.

Anisotropic refinements. This case is illustrated in Figure 6. The mesh is
constructed as follows. We start from a single element and break it into
two elements. In the next step, we select one element adjacent to the face
and break it again into two elements. The situation is analogous to the
case of performing refinements towards a point in 1D spatial dimensions.
We first perform the static condensation with a computational complexity
O(N/p6). spatial dimensions. We have a sequence of layers, each one with
one flat 2D element. The number of degrees of freedom over each layer is
of the order of O(p2). The number of degrees of freedom located on the
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interface between layers is of the order of O(p2). Thus, the computational
complexity of the Schur-complement construction within each layer is of order
O((p2)2p2) = O(p6). Since the number of layers is s = O(Ne) = O(N/p3),
the computational complexity of the LU factorization is

FLOPS (3D)= O(p6s) = O(p6N/p3) = O(Np3). (18)

Thus, the LU factorizationO (Np3) is less expensive than static condensation
O (Np6) in this case.

(a) Step (level) 1 (b) Step (level) 2

Figure 6: Anisotropic refinements towards a face. Patches to be eliminated at each step
(level) are marked in dark black.

4. Numerical Results

In the first part of this section, we report numerical experiments for six
basic kinds of refinement patterns: uniform refinements, refinements towards
a point, an edge (isotropic and anisotropic cases), and a face (isotropic and
anisotropic cases). For all these cases, numerical results are compared with
the theoretical estimates provided in the previous section. In the second
part of this section, we consider the following mixed refinement patterns: (a)
towards both a point and an edge, (b) towards a point and a face, (c) towards
an edge and a face, and (d) towards a point, an edge, and a face.

All numerical results reported in this section has been performed with
MUMPS solver using the nested-dissection algorithm from METIS library.
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4.1. Refinements towards a single entity: a point, an edge, or a face

Following the theoretical estimates described in the previous section, we
assume that the FLOPS required to solve the linear systems of equations
scales as Nα, where α is an unknown coefficient. Thus, when displaying
numerical results in the FLOPS vs logN scale, we expect to observe straight
lines. This is confirmed by the numerical results.

Table 1 displays the exponents α computed using linear regression on the
data collected experimentally. We consider various orders of approximation,
namely, p = 2, 4, 6. We now examine each case in more detail.

Uniform Point Edge Edge Face Face
Isotropic Anisotropic Isotropic Anisotropic

p = 2 1.86 1.09 1.10 1.07 1.47 1.01
p = 4 1.86 1.17 1.18 1.07 1.47 1.12
p = 6 1.83 1.08 1.21 1.09 1.54 1.08
Theoretical 2 1 1 1 1.5 1

Table 1: Comparison of numerical vs. theoretical scalability exponent factors α for
refinements towards a single entity.

4.1.1. Uniform Refinements

Numerical experiments (see Table 1) exhibit a slightly better performance
than the theoretical asymptotic scalability estimate O(N2). For high p, the
computational complexity in terms of FLOPS scales as O(Np6) + O(N2)
(see [10]). Thus, for a relatively low number of degrees of freedom and
high polynomial order of approximation, the first term diminishes the expo-
nent factor. In other words, the O(N2) scalability is only obtained in the
asymptotic regime, i.e., for very large problems. When performing the lin-
ear regression with only the data corresponding to the three largest grids of
Figure 7b, we obtain an exponent factor for p = 2 and p = 4 equal to 1.92
rather than 1.86.

4.1.2. Refinements Towards a Point

Figure 8b displays the number of FLOPS required to solve the problem
as a function of N . The resulting scalability is slightly worse than that
provided by the theoretical estimates. The ordering provided by METIS
used in the numerical experiments is known to be asymptotically optimal
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Figure 7: Uniform refinements.

(up to a constant) for uniform grids [12], but not for highly non-uniform
grids, as the ones appearing as a result of performing refinement towards a
point. In any case, results are quite close to those predicted by the theory.

4.1.3. Refinements Towards an Edge

Isotropic Refinements. Numerical results displayed in Figure 9b and the third
column of Table 1 show that the scalability in terms of FLOPS is worse than
that predicted by the theory. However, by performing the linear regression
with only the points corresponding to the three largest grids, the exponent
factor is reduced to 1.01, 1.05, and 1.10 for p = 2, p = 4, and p = 6,
respectively. This indicates that nested-dissection does not provide optimal
ordering for this case.

Anisotropic Refinements. This case is similar to that consisting of performing
refinements towards a point over a 2D mesh, and the corresponding computa-
tional complexity is linear O(N). Numerical results displayed in Figure 10b
and the fourth column of Table 1 confirm the theoretical estimates.

4.1.4. Refinements Towards a Face

Isotropic Refinements. For this case, we could not prove that our theoretical
scalability estimates are optimal, since there is always a possibility of find-
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Figure 8: Refinements towards a point.
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Figure 9: Isotropic refinements towards an edge.
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Figure 10: Anisotropic refinements towards an edge.

ing a better elimination ordering. However, numerical results displayed in
Figure 11b and the fifth column of Table 1 agree well with the theoretical
estimates.
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Figure 11: Isotropic refinements towards a face.
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Anisotropic Refinements. This case is equivalent to that consisting of per-
forming refinements over a 1D mesh, where we can easily construct an elim-
ination tree with linear computational complexity. Numerical results dis-
played in Figure 12b and the sixth column of Table 1 confirm the theoretical
estimates, especially, for low p where the asymptotic regime is attained at an
earlier stage.
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Figure 12: Anisotropic refinements towards a face.

4.2. Refinements towards several singularity

Assuming again a FLOPS scalability of the form Nα, where α is an un-
known coefficient, Table 2 displays the exponents α computed by linear re-
gression over the numerical results for several mixed refinement patterns.
Again, we consider the following orders of approximation: p = 2, 4, 6.

Point + Edge Point + Face Edge + Face Point + Edge + Face
p = 2 1.33 1.46 1.24 1.57
p = 4 1.45 1.60 1.35 1.75
p = 6 1.39 1.56 1.23 1.65

Table 2: Numerical scalability exponent factors α for refinements towards multiple enti-
ties.
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Theoretical estimates for these mixed refinement patterns are unavailable.
Moreover, one cannot estimate the FLOPS for mixed refinement patterns
based on the FLOPS corresponding to refinements towards single entities.
Thus, even when refinements towards a point or an edge scale both linearly,
the combination of both types of refinements results in a significantly worse
scaling. This can be seen theoretically, since the elimination trees used when
refining towards single entities cannot be employed when refining towards
multiple entities. Numerical results confirm that refinements towards mul-
tiple entities scale very differently than those towards single entities. For
example, for the case of refinements towards a point and an edge, the result-
ing scalability exponent factor α (see Figure 13b and first column of Table 2)
is close to 1.4. These results are worse for the cases of: (a) refinements to-
wards a point and a face (see Figure 14b and second column of Table 2),
where we obtain α ≈ 1.5, and (b) refinements towards a point, an edge,
and a face (see Figure 16b and fourth column of Table 2), where we obtain
α ≈ 1.6. The best results are observed for the case of refinements towards
an edge and a face (see Figure 15b and third column of Table 2), where we
obtain α ≈ 1.25. The main observation to be made from these numerical
experiments is that the scalability of the solver with respect to the total
number of degrees for anisotropic refinements is better than that for uniform
refinements in all cases.

5. Conclusions

We considered six basic refinement patters for a hexahedral element,
namely, uniform refinements, refinements towards a point, isotropic and
anisotropic refinements towards an edge, and isotropic and anisotropic refine-
ments towards a face. We showed theoretically that in all cases except the
ones corresponding to uniform refinements and face anisotropic refinements,
the FLOPS required to solve the corresponding system of linear equations
grows linearly with respect to the mesh size. For the theoretical estimates
we constructed elimination trees specific to particular h-refined grids. Theo-
retical results have been compared to numerical experiments performed with
MUMPS and the nested-dissection algorithm for construction of the elimi-
nation tree provided by METIS library. For all cases our theoretical analysis
provides computational costs that are identical or slightly better than the
numerical experiments. The first conclusion is that there is a space for de-
sign of better algorithms for construction of elimination trees and orderings
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Figure 13: Anisotropic refinements towards a point and an edge.
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Figure 14: Anisotropic refinements towards a point and a face.
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Figure 15: Anisotropic refinements towards an edge and a face.
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Figure 16: Anisotropic refinements towards a point, an edge, and a face.
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for h-refined grids.
We considered mixed refinement patterns, namely, refinements towards:

(a) a point and an edge, (b) a point and a face, (c) an edge and a face, and
(d) a point, an edge, and a face. In all cases, we observe a much better
scalability than that obtained for uniform refinements.

The main conclusion of this work is that the use of h-adapted grids not
only decreases the total number of unknowns required, but it also signifi-
cantly reduces the cost of solving the algebraic system of linear equations
per unknown. Moreover, the use of anisotropic refinements further reduces
this cost per unknown (with few exceptions). This work suggests that direct
solvers may be the fastest option for solving problems with highly h-adapted
grids, or at least, for solving those parts of the computational mesh where
heavy refinements towards a point, an edge, or a face occur.

Future work will involve the development of the reutilization solver for
all kind of refinements, based on the ideas already developed for point sin-
gularities [24].
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