
Sentiment analysis with genetically evolved

Gaussian kernels

I. Roman1, A. Mendiburu1, R. Santana1, and J. A. Lozano1,2

1University of the Basque Country UPV/EHU
2Basque Center for Applied Mathematics BCAM

Abstract

Sentiment analysis consists of evaluating opinions or statements based
on text analysis. Among the methods used to estimate the degree to
which a text expresses a certain sentiment are those based on Gaussian
Processes. However, traditional Gaussian Processes methods use a prede-
fined kernels with hyperparameters that can be tuned but whose structure
can not be adapted. In this paper, we propose the application of Genetic
Programming for the evolution of Gaussian Process kernels that are more
precise for sentiment analysis. We use use a very flexible representation
of kernels combined with a multi-objective approach that considers si-
multaneously two quality metrics and the computational time required to
evaluate those kernels. Our results show that the algorithm can outper-
form Gaussian Processes with traditional kernels for some of the sentiment
analysis tasks considered.

1 Introduction

Among Natural Language Processing (NLP) problems, Sentiment Analysis (SA)
has attracted much attention from the literature [12, 45, 1]. SA consists of under-
standing in an automated manner the opinion from written or spoken language.
A common choice to solve these tasks is to compute a vector-based representa-
tion of the words, or embeddings, for all words in a sentence. Embeddings are
then used by supervised learning algorithms to predict the presence or absence
of an emotion in the text.

Kernel-based methods, due to their flexibility to capture different notions of
similarity, have shown promising results inferring the latent sentiments from the
embeddings [3, 2, 4]. Gaussian Process (GaussProc) models [41] are one exam-
ple of kernel-based methods which have been successfully applied to emotion or
sentiment classification [1]. GaussProcs rely on strong Bayesian inference foun-
dations that allow them to update the model when new evidence is revealed.
In comparison to other regression methods, they provide not only a prediction

1

of a given function, but also an estimate uncertainty of the predictions. Apart
from SA, GaussProcs also have been used in other NLP tasks, such as, text
classification [37], modeling periodic distributions of words over time [39], and
quality estimation [9, 44].

In all previous applications of GaussProc to NLP, the choice of the most
appropriate kernel was made a-priori, among some well-known kernel functions.
While there is a repertoire of kernels available in the literature [41, 15, 22], the
selection of the most suitable one for a given problem is not straightforward. For
example, for SA, the most commonly applied kernel is the Squared Exponential
(SE), also referred as the Radial Basis Function (RBF) kernel. However, Matern
kernels have shown better results in this particular task [1].

Moreover, kernels usually have some parameters that need to be adjusted,
which hardens the kernel selection problem. These parameters, often called
hyperparameters, are usually tuned by maximizing a given metric (e.g., the
marginal likelihood) [7].

Choosing the best metric to measure the quality of the kernels is not clear
neither. While in the SA literature the Pearson’s Correlation Coefficient (PCC)
[35] has been used, this metric does not provide insights about the uncertainty
that the GaussProc is able to model. As the GaussProcs offers a probabilistic
prediction about the emotions, metrics such as the Log Marginal Likelihood
(LML) [41], or the Negative Log Predictive Densities (NLPD) [40], seem better
suited to choose between GaussProc models.

In this paper we propose a method that does not rely on an a-priori specified
kernel. This means that finding the kernel expression is part of the model
selection process. The learning algorithm that we use, which is based on Genetic
Programming (GP) [26], is able to learn the kernel expression, together with an
assignment of the corresponding hyperparameters. The evolved kernels keep the
convenient property of being able to estimate the uncertainty of the predictions.

Furthermore, by using a multi-objective approach the GP algorithm eval-
uates kernels using three different criteria. PCC and NLPD measure kernel
accuracy, and the third criterion minimizes the computational time needed by
learning the kernel, therefore indirectly penalizing complexity.

The remainder of the paper is organized as follows: The next section presents
the addressed problem in the context of SA. Section 3 introduces the main
concepts related to GaussProc regression. The multi-objective GP approach to
evolve kernel functions is presented in Section 4. In Section 5, a review on related
work is provided. We describe the experimental framework used to validate our
algorithm, along with the numerical results in Section 6. The conclusions of the
paper and discussion of future work are presented in Section 7.

2 Sentiment Analysis

Sentiment Analysis (SA) is an automated process that infers the opinion or
feeling from a piece of text. It can be considered as particular type of semantic
annotation of the text. SA is a very complex problem due to several factors

2

including the ambiguity of human language, the large variability in the use of
terms across individual, and the complexity of grammatical rules. However, the
emergence of large text corpora and the usefulness of mining these corpora, e.g.,
for opinion mining related to products, services or politics [34], have contributed
to develop more advanced machine learning algorithms for this task.

One of the directions of extending SA methods is to go beyond text cate-
gorization in positive or negative classes, to a more fine-grained emotion anno-
tation [47]. This could be done by extending the number of classes in which
a text is classified, but also by allowing a continuous value of the strength in
which the sentiment is manifested in the text. A subject is requested to eval-
uate, in a range [0, 100] a given sentiment (e.g., joy, fear, etc.) in a text. In
the sentence ”Alonso would be happy to retire with three titles”, for example,
joy and sadness feelings are mixed. The problem we address in this paper is
to automatically estimate this continuous value from the analysis of the text.
This problem is posed as a supervised regression problem in which a number of
annotated examples are available with the sentiment value.

2.1 Sentence embeddings

Machine learning methods require a representation of text in order to do seman-
tic analysis. There are a number of NLP approaches to represent and extract
relevant information from text. In this domain, feature engineering to obtain
informative features can be very labor-intensive. One increasingly used repre-
sentation are word-vectors, or embeddings.

In a word embedding representation [31], each word is assigned a vector of
continuous values, which are commonly learned using neural network models.
Some of the first embedding methods, and still among the most used ones, are
the Continuous Bags of words (CBOW) and the Skip-gram models. The details
on how these algorithms work is beyond the scope of this paper.

Here, we focus on sentence embeddings, a common text representation for
NLP tasks. For each sentence, we compute the embedding representation of all
the words, while the words missing in the dictionary are assigned a zero-vector
representation. The average of the embedding representations of all the words is
computed to generate the sentence embedding. We will estimate the sentiment
value from this representation.

3 Gaussian Process Regression

A Gaussian Process (GaussProc) is a stochastic process, defined by a collection
of random variables, any finite number of which have a joint Gaussian distribu-
tion [41]. A GaussProc can be interpreted as a distribution over functions, and
each sample of a GaussProc as a function.

GaussProcs can be completely defined by a mean function m(x) and a co-
variance function, which depends on a kernel k(x,x′). Given that, a GaussProc

3

can be expressed as follows:

f(x) ∼ GaussProc(m(x), k(x,x′)) (1)

where we assume that x ∈ Rd. We also consider an a-priori equal-to-zero mean
function (m(x) = 0), to focus on the kernel search problem.

A GaussProc can be used for regression by getting its posterior distribution
given some (training) data. Thus, the GaussProc can provide a probabilistic
model to infer the sentiment of an sentence embedding. The joint distribution
between the training outputs f = (f1, f2, ..., fn) (where fi ∈ R, i ∈ {1, ..., n}
and n ∈ N) and the test outputs f∗ = (fn+1, fn+2, ..., fn+n∗) is given by:[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(2)

whereN(µ,Σ) is a multivariate Gaussian distribution. Moreover, X = (x1,x2, ...,xn)
(xi ∈ Rd, i ∈ {1, ..., n} and n ∈ N) corresponds to the training inputs and
X∗ = (xn+1, ...,xn+n∗) to the test inputs. K(X,X∗) denotes the n× n∗ matrix
of the covariances evaluated for all the (X,X∗) pairs.

The predictive Gaussian distribution can be found by obtaining the condi-
tional distribution given the training data and the test inputs:

f∗|X∗, X, f ∼ N (M̂(X∗), K̂(X∗, X∗))

M̂(X∗) = K(X∗, X)K(X,X)−1f

K̂(X∗, X∗) = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

(3)

3.1 Covariance functions

GaussProc models use a kernel to define the covariance between any two function
values [15]:

cov (f(x), f(x′)) = k(x,x′) (4)

The kernel functions used in GaussProcs are positive semi-definite (PSD)
kernels. According to the Mercer’s Theorem [30], any PSD kernel can be repre-
sented as an inner product in some Hilbert Space.

The best known kernels in GaussProc literature are translation invariant,
often referred to as stationary kernels. Among them, we focus on isotropic
kernels where the covariance function depends on the norm:

k(x,x′) = k̂(r) where r =
1

θl
‖x− x′‖ (5)

where θl is the lengthscale hyperparameter and k̂ a function that guarantees
that the kernel is PSD.

On the other hand, non-stationary kernels are the ones that may vary with
translation. Within this family, the most common kernels are those that depend

4

on the dot product of the input vectors. These kernels are usually referred to
as dot-product kernels:

k(x,x′) = k̂(s) where s =
1

θl
(x− θs1) (x′ − θs1)

T
(6)

where θl is again the lengthscale hyperparameter, θs is the shift hyperparameter
and 1 is a vector of ones.

Some of these kernels have already been used also in NLP applications [2, 1,

46]. The Squared Exponential (SE) kernel (k̂SE(r) = θ20 exp
(
− 1

2r
2
)
) is known

to capture the smoothness property of the objective functions. This kernel, was
compared to Matern class kernels (Matern 32 k̂M32(r) = θ20

(
1 +
√

3r
)
exp

(
−
√

3r
)

and Matern 52 k̂M52(r) = θ20
(
1 +
√

5r + 5
3r

2
)
exp

(
−
√

5r
)
) and the linear ker-

nel (k̂LIN (s) = s) in [1] for SA tasks. There is little knowledge of the behaviour
of other kernels when using GaussProcs in SA.

3.2 Model selection

The choice of the kernel and its hyperparameters has a critical influence on the
behavior of the model, and it is crucial to achieve good results in NLP applica-
tions of GaussProcs [1]. This selection has been usually made by choosing one
kernel a-priori, and then adjusting the hyperparameters of the kernel function
so to optimize a given metric for the data. The most common approach is to
find the hyperparameter set that maximizes the log marginal likelihood (LML):

log p (f |X,θ,K) = −1

2
fTK(X,X)−1f − 1

2
log |K(X,X)| − n

2
log 2π (7)

where θ is the set of hyperparameters of the kernel and n is the length of X.

4 Evolving kernel functions

In this work we automatically search for new kernel functions in order to better
predict sentiment expressed in a text. To guide this search, we propose to use
a multi-objective GP approach.

We encode the kernel functions by means of mathematical expression trees.
Each expressions are defined in a strongly-typed grammar [33] that specifies
the possible combinations in which these kernels can be composed. We rely
on the basic operations present in the well-known kernels shown in Section 3.1
(multiplication, square root, ...) to define the grammar.

These expression trees are evolved according to the GP approach shown in
Algorithm 1. First, an initial population of N kernels is generated. In order to
do so, each individual is created at random. Each generation, the offspring is
evaluated. Next, the relative improvement of each objective O is measured.

If the relative improvement in the current population is greater than a thresh-
old β for any of the objectives, a new population is generated through selec-

5

tion and variation. To generate an offspring population of N new individu-
als, the algorithm randomly chooses the variation method between a muta-
tion or a crossover operator (with probability pm and pcx respectively, where
pcx = 1 − pm), after selecting the µ best individuals. The next population is
made up of the selected individuals and the offspring population.

When the relative improvement is lower or equal to the threshold β, the
current population is replaced by a randomly generated one.

This procedure is repeated for G generations.

Algorithm 1 MOECov algorithm

1: procedure MOECov(N , G, O, µ, pm, pcx, β)
2: offspring = GenRandPop(N)
3: bestfit−2 = (∞)Oj=0

4: bestfit−1 = (∞)Oj=0

5: pop = offspring
6: all = offspring
7: i = 0
8: while i < G− 1 do
9: Evaluate(offspring)

10: best = Select(pop, 1)
11: bestfiti = GetFitness(best)

12: relimprov =
(

1
2 (bestfiti−2,j+bestfiti−1,j)−bestfiti,j

|bestfiti,j |

)O
j=0

13: if β < MAX(relimprov) then
14: sel = Select(pop, µ)
15: offspring = Variate(sel, N , pm, pcx)
16: else . Restart procedure
17: sel = ∅
18: offspring = GenRandPop(N)
19: bestfiti = (∞)Oj=0

20: end if
21: pop = sel ∪ offspring
22: all = all ∪ offspring
23: i = i+ 1
24: end while
25: Evaluate(offspring)
26: best = SelectBest(all)
27: return best
28: end procedure

4.1 Random kernel creation

To randomly generate kernel expression trees that conform the initial popula-
tion, we propose a grow method based on the work done in [26]. The GEN-

6

RANDPOP function in Algorithm 1, generates random trees by a recursive pro-
cess where, at each step, a random terminal or operator is added in a type-safe
manner.

4.2 Variation operators

Our kernel search method is based on perturbation or variation methods that
modify previous solutions to obtain new ones. We use two variation operators,
which are randomly selected every VARIATE function call in Algorithm 1: A
crossover operator, which combines two kernel functions to generate a new one
that keeps some of the features of its parents, and a mutation operator, which
introduces slight modifications to the original kernel to obtain a new individual.

We propose a crossover operator that randomly selects a subtree from each
kernel and combines them with the sum or the product operator. This method
merges the properties of each kernel while avoiding an excessive growth of the
trees, known as bloating [26].

The mutation operator works by randomly selecting one of the following
methods in a type-safe manner:

• Insert: Inserts an elementary mathematical expression at a random po-
sition in the tree, as long as their output types agree. The subtree at the
chosen position is used as the input of the created expression. If more
inputs are required by the new primitive, new terminals are chosen at
random.

• Shrink: This operator shrinks the expression tree by randomly choosing
a branch and replacing it with one of the branch inputs (also randomly
chosen) of the same type. This helps to control the depth of the generated
trees.

• Uniform: Randomly selects a point in the expression tree and replaces a
subtree at that point by the subtree generated using our random genera-
tion method (Described in detail in Section 4.1).

• Node Replacement: Replaces a randomly chosen operator from the
kernel expression by an operator with the same number of inputs and
types, also randomly chosen.

4.3 Fitness evaluation

To estimate the quality of each kernel several metrics can be used. In SA tasks,
Pearson correlation coefficient (PCC) is one of the most used metrics. It divides
the covariance of two variables by the product of their standard deviations.

PCC(X, f) =

∑n
i=1(fi − f̂)(µi − µ̂)√∑n

i=1(fi − f̂)2
∑n

i=1(µi − µ̂)2
(8)

7

where f̂ is the mean of the vector f and µ̂ is the mean of the posterior mean µ.
However, PCC does not take into account the probabilistic information given

by the GaussProc.
On the other hand, the Negative Log Predictive Density (NLPD) [40], sums

the likelihood of each prediction, and is more informative about the GaussProc’s
performance.

NLPD(X, f) =
1

n

n∑
i=1

− (fi − µi)
2

2σ2
i

− 1

2
log σ2

i −
1

2
log 2π (9)

where µi and σi are the posterior mean and variance for xi.
Although both metrics are related, they evaluate the quality of the kernel

from different perspectives. Ideally, it is desirable to guarantee a high correlation
to the variable to be predicted along with a informative model of the uncertainty.
Thus, the EVALUATE function in Algorithm 1 measures both, PCC and NLPD
metrics, being the objectives of our search.

In addition, we also take the evaluation time as an third objective. We have
observed that the complexity of the kernels, in term of number of primitives
or depth, grows during the search, increasing the evaluation time. In order to
obtain kernels that are efficient to evaluate we will measure the evaluation time,
indirectly discouraging the development of large expressions.

4.4 Multi-objective kernel selection

We use a multi-objective selection operator based on the NSGA2 algorithm [10]
to achieve good results in both metrics. As it can be seen in Algorithm 1,
the SELECT function chooses µ individuals each generation. The population is
divided into non-dominant groups, iteratively selecting the non-dominant group
and repeating the operation with the rest of the individuals. The individuals in
each group are sorted by crowding distance, and finally, the best µ individuals
are chosen. To select the final best individual in the SELECTBEST function,
the LML metric is used, in order balance the results of the objectives.

4.5 Hyperparameter Optimization

In contrast to other GP applications, the solutions in our approach do not
encode all the necessary information to be evaluated. The optimal values of
the hyperparameters, according to the LML, have to be determined. Thus,
the performance of the solutions depends on the results of the hyperparameter
optimization.

In this paper, the hyperparameters are optimized by means of Powell ’s local
search algorithm [38]. As this algorithm is not bounded, the search space has
to be constrained by penalizing non-feasible hyperparameter sets. On the other
hand, as the function to optimize might be multi-modal, a multi-start approach
was used, performing a random restart every time the stopping criteria of the
Powell ’s algorithm are met, and getting the best overall result. During this

8

hyperparameter search, a maximum number of 150 evaluations of the LML
were allowed.

Once the hyperparameters were optimized, in order to obtain the fitness of
each kernel, PCC and the NLPD were evaluated by dividing the training set
into 3 cross-validation folds. The results in each fold were averaged to obtain
the actual fitness of each kernel. Finally, the time spent measuring both metrics
in each fold was summed as a third objective.

Note that, as a result of the inclusion of the randomized restarts, the hyper-
parameters found for a certain kernel in two independent evaluations may not
be the same. In fact, this implies that the fitness function optimized by the GP
algorithm is stochastic.

5 Related work

Word embeddings [32] are extensively applied to NLP tasks [28]. The usual
approach when combining embeddings from words in a sentence is to compute
the average. This is the procedure used in [1], where 100-dimensional Glove
embeddings [36] are the representation of choice for mapping texts to emotion
scores using GaussProc regression.

GaussProcs are particularly suited to model uncertainty in the predictions
and allow to accurately predict under noisy conditions. As such, there are
diverse scenarios in which GaussProc can be applied to NLP tasks [8]. In all
these problems the kernel function was selected beforehand, although its choice
varies depending on the problem. The most frequently used kernel is the RBF
kernel. However, this kernel is not suitable for all the problems. In [39], text
periodicities of tweets are modeled using GaussProc with kernels specifically
suited to capture the periodicities of the tweets. In the same paper, the periodic
kernel (PER) and the periodic spike (PS) are shown to outperform non-periodic
kernels and capture different periodic patterns. In [1], where GaussProcs are
applied to SA, four different kernels are compared: SE, Linear, two Matern
kernels. The Matern kernels are reported to produce better results than SE. In
addition to numerical kernels, structural-kernels (e.g., tree-kernels) have been
also combined with GaussProc.

Research on the evolution of kernel functions using evolutionary algorithms
have shown that it is also possible to explore the space of kernel functions beyond
the hyperparameter optimization. In the GaussProc literature this has been
done by combining known kernels [27, 16, 29]. Kernels have also been evolved
for Support Vector Machines (SVMs) [23, 20, 13, 48, 14, 25] and Relevance
Vector Machines (RVMs) [5]. Some of the SVM approaches are also based in
combining the well-known kernels [48, 14], although in some other works the
kernels are learned from simple mathematical expressions [23, 20, 13, 25].

The particular characteristics determined by the GaussProcs make the evo-
lution of kernels in this domain different to those algorithms used for SVMs
and RVMs. Our method considers different ways to evaluate the kernels based
on a multi-objective approach. It also brings to the GaussProc field the cre-

9

ation of kernels from scratch, without seeding components of human-designed
kernels. This characteristic allows us to derive kernels that are not constrained
by the prior knowledge while at the same time being optimized for the desired
objectives.

6 Experiments

The goal of our experiments is to evaluate the performance of the proposed
algorithm for the task of sentiment prediction from text. First we introduce the
problem benchmark and word embeddings to evaluate the algorithm. Then, we
describe the parameters used by the algorithms and explain the characteristics
of the experimental framework, including the metrics used to compare the algo-
rithms. Finally, we present the numerical results obtained from the experiments
and discuss these results.

6.1 Problem benchmark and word-embeddings

We use the SemEval2007 Affective Text shared task dataset [47]1, following the
work done in [1]. In this dataset, news headlines were manually annotated by
experts, assigning to each text a degree of presence for each six Eckman [17]
emotions: anger, disgust, fear, joy, sadness and surprise. In the original work,
where this dataset was introduced, texts were divided into ”dev” and ”test”
datasets. For the experiments presented in [1], the two sets were combined
and further divided into 10 folds used for cross-validation. We use this 10-fold
partition to evaluate our algorithms.

In order to compute a representation for each text, punctuations in each
headline were removed, tokenized [6], and case ignored. From the resulted
text, the word-vector representation of each word were obtained using the 100-
dimensional GloVe embeddings [36]2. After deleting the words that were not
found in the embedding, the representation of each headline was computed as
the average of the words.

6.2 Experimental setup

Our experiments consists of learning a kernel for a GP regressor that predicts
a particular emotion based on sentence embeddings. We evaluate the quality of
the final kernels in terms of the PCC and NLPD metrics.

We compare MOECov algorithm with different variants of a-priori defined
kernel methods, which were shown in [1] to produce good prediction results for
the six emotions previously described. The kernels are presented in Section 3.1.

The parameters used by the evolutionary algorithm were chosen after some
preliminary experimentation:

• Population size: N = 38.

1Available at https://web.eecs.umich.edu/\~mihalcea/downloads.html\#affective
2Available from https://nlp.stanford.edu/projects/glove/

10

• Number of generations: G = 65.

• Number of objectives: O = 3.

• Mutation (pm = 0.4) and crossover (pcx = 0.6) probabilities.

• Selection size: µ = 9.

• Restart threshold: β = 1e−5.

All algorithms were coded in Python. The implementation of MOECov is
based on the EA software DEAP3 [18].

Due to the stochastic nature of the algorithm, for all algorithms and in
every dataset, the kernel search process was repeated 30 times along 10 random
cross-validation folds.

6.3 Results of the comparison between the algorithms

Table 1 shows the average PCC metric of the best solution obtained by the
algorithms in the 30 experiments. We remark that, these values have been com-
puted on the test data, which we have not used for learning the GP programs.
The results, for the NLPD metrics are shown in Table 2. In the tables, the best
average value obtained for each of the sentiments are highlighted.

The analysis of the tables reveals that, in terms of the average fitness, MOE-
Cov improves all other kernels for both metrics in most of the cases. For the
PCC metric, only in the disgust dataset, MOECov was not able to outperform
the M52 kernel. For the NLPD metric, MOECov outperforms all the algorithms
for all the sentiments.

Among the well-known kernels, M52 seems a better choice than the others,
as it gets the second best result in average in the rest of the problems according
to the PCC metric. M52 is also the second best choice in NLPD, only surpassed
by SE kernel in the fear dataset, while the results of M32 and SE kernels are
similar. As it can be appreciated in the tables, the LIN kernel is the worst
performing kernel according to the average results.

LIN M32 M52 SE MOECov

anger 0.58592 0.63556 0.6401 0.62629 0.64690
disgust 0.44828 0.52492 0.52782 0.50111 0.52456
fear 0.68056 0.728096 0.73059 0.72737 0.73555
joy 0.53832 0.55775 0.57459 0.56341 0.59158
sadness 0.63625 0.67148 0.68205 0.67876 0.69710
surprise 0.40311 0.45416 0.45647 0.43758 0.46751

Table 1: Mean results for PCC metric. Best results are shown in bold. More is
better.

3https://deap.readthedocs.io

11

LIN M32 M52 SE MOECov

anger 3.94141 3.92037 3.91162 3.93041 3.91084
disgust 3.81476 3.78148 3.77491 3.80068 3.77419
fear 4.16636 4.10615 4.1006 4.0986 4.07623
joy 4.34633 4.32588 4.30362 4.32737 4.29549
sadness 4.31082 4.28845 4.27618 4.28176 4.24454
surprise 4.06292 4.04524 4.04519 4.0511 4.02712

Table 2: Mean results for NLPD metric. Best results are shown in bold. Less
is better.

We conducted a statistical test to assess the existence of significant differ-
ences among the algorithms. For each metric and emotion, we applied the
Friedman’s test [19] and we found significant differences in every comparison
(p-values can be seen in Figure 1 and Figure 2). Then, for each configuration,
we applied a post-hoc test based on Friedman’s test as in [11], and adjusted its
results with the Shaffer’s correction [43].

The results are shown in Figure 1 and Figure 2. The results confirm a
coherent pattern where MOECov is the best performing algorithm for most of
the datasets. However, it is also appreciated that according to this test, for most
of the datasets, the differences between MOECov and M52 are not significant.

In evaluating these results it is important to take into account that the
kernels produced by MOECov have been generated completely from scratch,
with no prior knowledge of the existing kernels. The algorithm is able evolve a
well performing kernel starting from elementary mathematical components.

On the other hand, the computational overhead introduced by MOECov
should be considered. Most of the effort is spent evaluating kernels. The rest
of the calculations required by the algorithm are negligible. Therefore, in this
experiment, MOECov has required approximately 2500 times more computa-
tional time than fixed kernels. On the other hand, in evaluation time, once the
kernel is learned, the effort required by the kernels generated by MOECov is
similar to well known kernels.

6.4 Analysis of the MOECov evolution

One characteristic feature of our approach is that we simultaneously optimize
different characteristics of the kernels. In order to determine whether the multi-
objective approach effectively leads to the creation of more efficient kernels, both
in terms of the accuracy for the prediction task, and in terms of efficiency, we
analyze the fitness distribution of the solutions in the first and last population
of MOECov for the anger dataset. These results are shown in Figure 3 where,
in order to ease the visualization, results are shown for only one execution of
the algorithm.

In Figure 3 we represent the scatter plots for each possible pair of objectives.
As it can be appreciated in the figures, from the first to the last population there

12

2 3 4 5

MOECov

M32

M52

SE

LIN

p
−

va
lu

e
:
4
.7

9
e
−

1
0

(a) Anger

2 3 4 5

MOECov

M32

M52

SE

LIN

p
−

va
lu

e
:
4
.7

1
e
−

0
6

(b) Disgust

2 3 4 5

MOECov

M32

M52

SE

LIN

p
−

va
lu

e
:
5
.3

2
e
−

1
2

(c) Fear

2 3 4 5

MOECov

M32

M52

SE

LIN

p
−

va
lu

e
:
5
.1

1
e
−

0
8

(d) Joy

2 3 4 5

MOECov

M32

M52

SE

LIN

p
−

va
lu

e
:
1
.1

3
e
−

0
6

(e) Sadness

1 2 3 4 5

MOECov

M32

M52

SE

LIN
p
−

va
lu

e
:
5
.2

1
e
−

1
4

(f) Surprise

Figure 1: Critical difference diagrams for the PCC metric. The kernels are
ordered following the results in their ranking. The metrics with no significant
differences between them are matched with a straight line.

is an improvement in the values of the objective values for the PCC and NLPD
metrics. However, the computational time actually increases from the first to
the last population. This result is not surprising since it is expected that the
increase in accuracy of the trees is achieved by also augmenting their complexity.
In this scenario we expect that using the time as a third objective can serve to
counteract useless complexity gain of the programs, but the average time for
learning the kernels will necessarily increase.

6.5 Transferability of the evolved kernels

An important question to analyze is whether the kernels evolved by MOECov
are only valid for the sentiment datasets in which they have been learned or
they can also be used to predict sentiment in the other datasets. This ques-
tion can be frame on the general research that investigate the transferability
of solutions found by evolutionary algorithms [24, 21, 42]. In order to answer
this question, we have used the best programs learned for the anger dataset to

13

2 3 4 5

MOECov

M52

M32

SE

LIN

p
−

va
lu

e
:
2
.2

4
e
−

0
5

(a) Anger

2 3 4 5

M52

MOECov

M32

SE

LIN

p
−

va
lu

e
:
2
.2

1
e
−

0
4

(b) Disgust

1 2 3 4 5

MOECov

M32

M52

SE

LIN

p
−

va
lu

e
:
1
.0

1
e
−

1
1

(c) Fear

2 3 4 5

MOECov

M52

M32

SE

LIN

p
−

va
lu

e
:
2
.4

3
e
−

0
6

(d) Joy

2 3 4

MOECov

M32

M52

SE

LIN

p
−

va
lu

e
:
1
.0

6
e
−

0
4

(e) Sadness

1 2 3 4 5

MOECov

M32

M52

SE

LIN
p
−

va
lu

e
:
1
.2

9
e
−

0
7

(f) Surprise

Figure 2: Critical difference diagrams for the NLPD metric. The kernel are
ordered following the results in their ranking. The metrics with no significant
differences between them are matched with a straight line.

make predictions in the other datasets. This can be considered as a transfer
learning scenario in which the anger dataset is the source domain and all the
other datasets serve as target domains. Notice, that in this particular example
we do not recompute the hyperparameter values for the kernels. We simply
apply the kernels as they are to the target datasets.

Figure 4 and Figure 5 respectively show the distributions of the objectives
values obtained of this experiment for the PCC and NLPD metrics. In the
figures, MOECov anger indicates the kernels learned using the anger dataset.
Notice that all the other algorithms have been learned using (training) data for
each target dataset. The analysis of the figures indicate that the transferability
of the kernels depends on the type of metric used. Results for PCC are at least
as good as those obtained with the other kernels. However, for the NLPD metric
results are slightly worse.

The main conclusion from this experiments is that the kernels evolved for
predicting some sentiment can be also useful to predict other sentiments. This
means that the embeddings contain the relevant information for the prediction

14

0

50

100

150
T
im

e

-0.50

-0.25

0.00

0.25

0.50

0.75

P
C
C

0 100 200

Time

4

5

6

7

8

N
L
P
D

-1 0 1

PCC

5 10

NLPD

Generation

0

64

Figure 3: Distribution of the objective values in the first and last population of
MOECov for one execution of the algorithm in the anger dataset.

and that the type of transformations that make a kernel a good predictor are
similar across sentiment domains.

7 Conclusions

Sentiment analysis is a relevant problem in NLP. Particularly, when considering
predicting the sentiment with a finer level of detail, beyond binary classification.
Although, in previous work it has been shown that GaussProc regression is an
efficient approach to solve this regression problem, our hypothesis was that the
fixed structure used by classical kernels lacks the flexibility to capture more sub-
tle differences in datasets. Therefore, in this paper we have proposed MOECov
as way to evolve the structure of the kernels. By addressing the creation of
kernels as a multi-objective problem we have been able to generate kernels that
simultaneously optimize two of the accuracy metrics proposed, along with the

15

anger disgust fear joy sadness surprise

0.0

0.2

0.4

0.6

0.8

P
C

C

MOECov anger

LIN

M32

M52

SE

Figure 4: Results of the transferability experiments for the PCC metric. Each
coloured shape shows a kernel density estimation of the distribution. A boxplot
of the results is shown inside. More is better.

anger disgust fear joy sadness surprise

3.0

3.5

4.0

4.5

5.0

5.5

6.0

N
L
P
D

MOECov anger

LIN

M32

M52

SE

Figure 5: Results of the transferability experiments for the NLPD metric. Sim-
ilar to the previous figure, a boxplot is shown inside each coloured shape that
shows the estimation of the distribution. Less is better.

16

computational complexity.
As far as the authors are concerned this is the first work that uses evolved

GaussProcs for multi-objective problems. We had not found either previous
studies that tries to optimize the hyper-parameters of fixed kernels simultane-
ously considering two or more metrics.

There are a number of ways in which our studied could be extended. Other
sentiment datasets, possibly in other languages, could be considered. Further-
more, other semantic analysis tasks, such as, the post-editing effort prediction
could be addressed using our approach. We also noticed that at the time of
stopping the MOECov algorithm the quality of the solutions was still improv-
ing. Therefore, more fitness evaluations are likely to produce better results of
the algorithm.

ACKNOWLEDGEMENTS

The research presented in this paper is conducted as part of the project EM-
PATHIC that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 769872. It
has also been partially supported by the Basque Government (ELKARTEK
programs), and Spanish Ministry of Economy and Competitiveness MINECO
(project TIN2016-78365-R). Jose A. Lozano is also supported by BERC 2018-
2021 (Basque Government), and Severo Ochoa Program SEV-2017-0718 (Span-
ish Ministry of Economy, Industry and Competitiveness).

References

[1] Beck, D. Modelling Representation Noise in Emotion Analysis using
Gaussian Processes. In Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2: Short Papers) (Taipei,
Taiwan, Nov. 2017), Asian Federation of Natural Language Processing,
pp. 140–145.

[2] Beck, D., and Cohn, T. Learning Kernels over Strings using Gaussian
Processes. In Proceedings of the Eighth International Joint Conference on
Natural Language Processing (Volume 2: Short Papers) (Taipei, Taiwan,
Nov. 2017), Asian Federation of Natural Language Processing, pp. 67–73.

[3] Beck, D., Cohn, T., Hardmeier, C., and Specia, L. Learning Struc-
tural Kernels for Natural Language Processing. Transactions of the Asso-
ciation for Computational Linguistics 3 (Dec. 2015), 461–473.

[4] Beck, D. E. Gaussian Processes for Text Regression. phd, University of
Sheffield, June 2017.

[5] Bing, W., Wen-qiong, Z., Ling, C., and Jia-hong, L. A GP-based
kernel construction and optimization method for RVM. In 2010 The 2nd

17

International Conference on Computer and Automation Engineering (IC-
CAE) (Feb. 2010), vol. 4, pp. 419–423.

[6] Bird, S., Klein, E., and Loper, E. Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly Media,
Inc.”, 2009.

[7] Blum, M., and Riedmiller, M. Optimization of Gaussian Process Hy-
perparameters using Rprop. In European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (2013).

[8] Cohn, T., Preotiuc-Pietro, D., and Lawrence, N. Gaussian pro-
cesses for natural language processing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics: Tutorials
(2014), pp. 1–3.

[9] Cohn, T., and Specia, L. Modelling annotator bias with multi-task gaus-
sian processes: An application to machine translation quality estimation.
In Proceedings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers) (2013), vol. 1, pp. 32–42.

[10] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. A Fast Elitist
Non-dominated Sorting Genetic Algorithm for Multi-objective Optimiza-
tion: NSGA-II. In Parallel Problem Solving from Nature PPSN VI (2000),
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and
H.-P. Schwefel, Eds., Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 849–858.

[11] Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets.
J. Mach. Learn. Res. 7 (2006), 1–30.

[12] Deriu, J., Lucchi, A., De Luca, V., Severyn, A., Müller, S.,
Cieliebak, M., Hofmann, T., and Jaggi, M. Leveraging Large
Amounts of Weakly Supervised Data for Multi-Language Sentiment Clas-
sification. In Proceedings of the 26th International Conference on World
Wide Web (Republic and Canton of Geneva, Switzerland, 2017), WWW
’17, International World Wide Web Conferences Steering Committee,
pp. 1045–1052. event-place: Perth, Australia.

[13] Diosan, L., Rogozan, A., and Pecuchet, J. P. Evolving kernel func-
tions for SVMs by genetic programming. In Sixth International Conference
on Machine Learning and Applications (ICMLA 2007) (2007), pp. 19–24.

[14] Dioşan, L., Rogozan, A., and Pecuchet, J.-P. Improving classifi-
cation performance of Support Vector Machine by genetically optimising
kernel shape and hyper-parameters. Applied Intelligence 36, 2 (Mar. 2012),
280–294.

[15] Duvenaud, D. Automatic model construction with Gaussian processes.
Thesis, University of Cambridge, 2014.

18

[16] Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin,
G. Structure Discovery in Nonparametric Regression through Composi-
tional Kernel Search. In Proceedings of The 30th International Conference
on Machine Learning (2013), pp. 1166–1174.

[17] Ekman, P. Facial expression and emotion. American psychologist 48, 4
(1993), 384.

[18] Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M.,
and Gagné, C. DEAP: Evolutionary Algorithms Made Easy. Journal of
Machine Learning Research 13, Jul (2012), 2171–2175.

[19] Friedman, M. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the american statistical
association 32, 200 (1937), 675–701.

[20] Gagné, C., Schoenauer, M., Sebag, M., and Tomassini, M. Genetic
Programming for Kernel-Based Learning with Co-evolving Subsets Selec-
tion. In Parallel Problem Solving from Nature - PPSN IX, Lecture Notes
in Computer Science. Springer, Berlin, Heidelberg, 2006, pp. 1008–1017.

[21] Garciarena, U., Santana, R., and Mendiburu, A. Evolved GANs
for Generating Pareto Set Approximations. In Proceedings of the Genetic
and Evolutionary Computation Conference (New York, NY, USA, 2018),
GECCO ’18, ACM, pp. 434–441. event-place: Kyoto, Japan.

[22] Genton, M. G. Classes of Kernels for Machine Learning: A Statistics
Perspective. J. Mach. Learn. Res. 2 (Mar. 2002), 299–312.

[23] Howley, T., and Madden, M. G. An Evolutionary Approach to Auto-
matic Kernel Construction. In Artificial Neural Networks – ICANN 2006
(Sept. 2006), Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg, pp. 417–426.

[24] Iqbal, M., Zhang, M., and Xue, B. Improving classification on im-
ages by extracting and transferring knowledge in genetic programming. In
2016 IEEE Congress on Evolutionary Computation (CEC) (July 2016),
pp. 3582–3589.

[25] Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs,
C., and Konen, W. Tuning and evolution of support vector kernels.
Evolutionary Intelligence 5, 3 (Sept. 2012), 153–170.

[26] Koza, J. R. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[27] Kronberger, G., and Kommenda, M. Evolution of Covariance Func-
tions for Gaussian Process Regression Using Genetic Programming. In
Computer Aided Systems Theory - EUROCAST 2013 (Feb. 2013), Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 308–315.

19

[28] Lampos, V., Zou, B., and Cox, I. J. Enhancing Feature Selection Us-
ing Word Embeddings: The Case of Flu Surveillance. In Proceedings of the
26th International Conference on World Wide Web (Republic and Can-
ton of Geneva, Switzerland, 2017), WWW ’17, International World Wide
Web Conferences Steering Committee, pp. 695–704. event-place: Perth,
Australia.

[29] Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J., and
Ghahramani, Z. Automatic Construction and Natural-Language De-
scription of Nonparametric Regression Models. In Twenty-Eighth AAAI
Conference on Artificial Intelligence (June 2014).

[30] Mercer, J., and A, B. XVI. Functions of positive and negative type,
and their connection the theory of integral equations. Phil. Trans. R. Soc.
Lond. A 209, 441-458 (Jan. 1909), 415–446.

[31] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient Es-
timation of Word Representations in Vector Space. arXiv:1301.3781 [cs]
(Jan. 2013). arXiv: 1301.3781.

[32] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean,
J. Distributed Representations of Words and Phrases and their Com-
positionality. In Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, Eds. Curran Associates, Inc., 2013, pp. 3111–3119.

[33] Montana, D. J. Strongly Typed Genetic Programming. Evolutionary
Computation 3, 2 (June 1995), 199–230.

[34] Pang, B., and Lee, L. Opinion Mining and Sentiment Analysis. Foun-
dations and Trends R© in Information Retrieval 2, 1–2 (July 2008), 1–135.

[35] Pearson, K. Note on regression and inheritance in the case of two parents.
Proceedings of the Royal Society of London 58 (1895), 240–242.

[36] Pennington, J., Socher, R., and Manning, C. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP) (2014), pp. 1532–1543.

[37] Polajnar, T., Rogers, S., and Girolami, M. Protein interaction
detection in sentences via Gaussian Processes: a preliminary evaluation.
International journal of data mining and bioinformatics 5, 1 (2011), 52–
72.

[38] Powell, M. J. D. An efficient method for finding the minimum of a
function of several variables without calculating derivatives. The Computer
Journal 7, 2 (Jan. 1964), 155–162.

20

[39] Preoţiuc-Pietro, D., and Cohn, T. A temporal model of text period-
icities using Gaussian Processes. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing (2013), pp. 977–988.

[40] Quiñonero-Candela, J., Rasmussen, C. E., Sinz, F., Bousquet,
O., and Schölkopf, B. Evaluating Predictive Uncertainty Challenge.
In Machine Learning Challenges. Evaluating Predictive Uncertainty, Vi-
sual Object Classification, and Recognising Tectual Entailment (2006),
J. Quiñonero-Candela, I. Dagan, B. Magnini, and F. d’Alché Buc, Eds.,
Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 1–27.

[41] Rasmussen, C. E., and Williams, C. K. Gaussian processes for ma-
chine learning. MIT Press, 2006.

[42] Santana, R., Mendiburu, A., and Lozano, J. A. Structural transfer
using EDAs: An application to multi-marker tagging SNP selection. In
2012 IEEE Congress on Evolutionary Computation (June 2012), pp. 1–8.

[43] Shaffer, J. P. Modified Sequentially Rejective Multiple Test Procedures.
Journal of the American Statistical Association (Mar. 2012).

[44] Shah, K., Cohn, T., and Specia, L. An investigation on the effective-
ness of features for translation quality estimation. In Proceedings of the
Machine Translation Summit (2013), vol. 14, Citeseer, pp. 167–174.

[45] Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Man-
ning, C. D. Semi-supervised Recursive Autoencoders for Predicting Senti-
ment Distributions. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (Stroudsburg, PA, USA, 2011), EMNLP
’11, Association for Computational Linguistics, pp. 151–161. event-place:
Edinburgh, United Kingdom.

[46] Specia, L. Exploiting objective annotations for measuring translation
post-editing effort. In Proceedings of the 15th Conference of the European
Association for Machine Translation (2011), pp. 73–80.

[47] Strapparava, C., and Mihalcea, R. SemEval-2007 Task 14: Affec-
tive Text. In Proceedings of the 4th International Workshop on Semantic
Evaluations (Stroudsburg, PA, USA, 2007), SemEval ’07, Association for
Computational Linguistics, pp. 70–74.

[48] Sullivan, K. M., and Luke, S. Evolving Kernels for Support Vec-
tor Machine Classification. In Proceedings of the 9th Annual Conference
on Genetic and Evolutionary Computation (New York, NY, USA, 2007),
GECCO ’07, ACM, pp. 1702–1707.

21

