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 Abstract 

Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence
supporting the fact that astrocytes modulate local neural circuits, networks, and complex
behaviors. In this article, we sought to identify which types of studies are necessary to
establish whether astrocytes, beyond their well-documented homeostatic and metabolic
functions, perform computations implementing mathematical algorithms that sub-serve
coding and higher-brain functions. First, we reviewed Systems-like studies that include
astrocytes in order to identify computational operations that these cells may perform,
using Ca2+ transients as their encoding language. The analysis suggests that astrocytes
may carry out canonical computations in time scales of sub-seconds to seconds in sensory
processing,  neuromodulation,  brain  state,  memory  formation,  fear,  and  complex
homeostatic  reflexes.  Next,  we  propose  a  list  of  actions  to  gain  insight  into  the
outstanding  question  of  which  variables  are  encoded  by  such  computations.  The
application  of  statistical  analyses  based  on  machine  learning,  such as  dimensionality
reduction and decoding in the context of complex behaviors, combined with connectomics
of  astrocyte-neuronal  circuits,  are,  in  our  view,  fundamental  undertakings.  We  also
discuss technical and analytical approaches to study neuronal and astrocytic populations
simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits,
as well as in theories currently under exploration, such as predictive coding and energy-
efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may
represent a leap forward towards novel approaches in the study of astrocytes in health
and disease.

Key  words:  Astrocytes,  energy-efficient  coding,  decoding,  dimensionality  reduction,
predictive coding.
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1. Systems Neuroscience is primarily a neuronal field

The study of the central nervous system (CNS) encompasses different levels of analysis:
molecular, cellular, anatomical, behavioral, cognitive and systems. Systems Neuroscience
aims at  integrating these  former fields,  which have mostly  grown independently.  For
example,  Molecular  Neuroscience has traditionally  focused on the smallest  functional
level  without  a  connection  to  cognition,  whereas  Behavioral  Psychology  and
Psychophysics  have  typically  studied  cognition  separately  from  its  molecular  and
neuronal underpinnings. The overarching goal of Systems Neuroscience is to understand
how  neural  circuits  give  rise  to  cognitive  functions,  emotions  and  behavior  by
simultaneously recording neuronal activity and behavior at the highest spatiotemporal
resolution possible.

Systems Neuroscience is arguably a field of neurons. A proof of this can be found in the
last  four  editions  (2015-2018)  of  the  three  international  conferences  dedicated  to
Systems and Computational Neuroscience—here we will not dwell on what is ‘Systems’
and what ‘Computational’ since the two fields are highly overlapping and complementary.
The conferences are the ‘Conference and Workshop on Neural Information Processing
Systems’  (NIPS),  the  ‘Organization  for  Computational  Neurosciences’  (OCNS) and
‘Computational  and  Systems  Neuroscience  (COSYNE).  Of  approximately  3000
communications, fewer than 1% included non-neuronal cells. The pervasive use of the
phrase ‘neural circuit’ in the programs of these conferences most of the time refers to
computational integration of information embedded in neuronal biophysical substrates.
The scarce attention to non-neuronal cells is puzzling, at least from the perspective of the
astrocyte field, given the evidence that astrocytes contribute to circuit-based phenomena
at  the synaptic  (Araque et  al.,  2014) and network  (Poskanzer  & Yuste,  2016) levels.
Although efforts are being made in the  US Brain Initiative and the European Human
Brain Project to develop studies incorporating non-neuronal cells, it seems however that
progress  in  astrocyte  biology  has  advanced  in  parallel  to  systems  neuroscience,  and
astrocytes  have  been  excluded  from unified  theories  of  brain  function,  as  previously
noted  (Poskanzer  & Molofsky,  2018).  Although  extensive  modeling  of  astrocytic  Ca2+

signaling is available  (Manninen et al., 2018), and few studies have even explored the
benefit  of  astrocyte-based  computational  paradigm  in  the  framework  of  artificial
intelligence  (Alvarellos-Gonzalez et  al.,  2012; Porto-Pazos et al.,  2011), astrocytes are
traditionally left out from advanced in silico modeling of neural circuits  (Capone et al.,
2017; Deneve et al., 2017; Gjorgjieva et al., 2016; Markram et al., 2015). 

Is  this  exclusion  justified  because  the  mechanisms  underlying  the  well  documented
impact of astrocytes on neural circuits fall within the realm of intercellular signaling,
homeostasis and metabolism, which, although essential for the maintenance of neural
circuits, may not qualify as ‘computing’ processes? Or, are astrocytes fundamental to the
computational foundations of the brain? Later we will elaborate on what computation is
and what it is not, but rather than struggling to define ‘computation’ we ask instead,
whether  processes  that  take  place in  astrocytes  participate  in  the  implementation  of
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mathematical  algorithms by neural  circuits that sub-serve coding,  complex behaviors,
and higher-brain functions. In other words, if computation is an emerging property of a
given neural network  (Yuste, 2015), do astrocytes help to shape such property beyond
their  recognized  role  in  metabolic  and  homeostatic  support  of  neurons?  If  they  do,
specific questions are whether there are niche(s) in Systems Neurosciences that would
profit  from  astrocyte  idiosyncrasies,  and  whether  the  impressive  techniques  and
theoretical armamentarium deployed by Systems Neuroscience could be used to unravel
possible astrocyte-based computations. An early article on Computational Neuroscience
argued that anatomical features provide valuable insights about how the CNS operates
because ‘the nervous system is a product of evolution, not design.  The computational
solutions  evolved  by  nature  may  be  unlike  those  that  humans  would  invent,  if  only
because  evolutionary  changes  are  always  made  within  the  context  of  a  design  and
architecture that already is in place  (Sejnowski et al., 1988). It follows that the unique
anatomical arrangement between astrocytes and neurons might be part of computational
solutions refined by evolution that have made the brain a highly efficient task-performing
system.  In  this  article  we  will  explore  the  possible  computations  carried  out  by
astrocytes. First, we will succinctly describe the fundamentals (section 2) and current
challenges (sections 3 and 4) of Systems Neuroscience. We will continue by reviewing
Systems-like studies involving astrocytes (sections 5 and 6). We will then propose a to-do
list to further integrate astrocytes in Systems Neurosciences, thus helping to dissipate
the  historical  and  perhaps  no  longer  tenable  gap  between  astrocytes  and  neurons
(section 7). We do not touch upon other glial cells because, as discussed earlier (Masgrau
et al.,  2017), the cells grouped under this name are molecularly and morphologically
distinct; hence, their contribution to higher-brain functions deserves individual attention.

2. Computational foundations of the CNS 

What is computation? When we say that the brain computes we mean that it creates and
stores representations of physical and conceptual entities, and performs operations on
these representations in order to carry out discrete tasks underlying behavior. The goal
of Computational and Systems Neurosciences is to describe these processes in formal
terms. This is by the premises that mathematical treatment “representations” is possible
precisely  because  computation  implies  abstraction,  that  is  the  generation  of  internal
models of the world by biophysical substrates  (Marr, 1976).  The action of generating
representations is known as encoding because the brain converts physical and conceptual
entities into a code, that is, a combination of symbols representing variables. Symbols
can be discrete, continuous and distributed among numerous neurons and brain areas. A
prime example of what computation is vs. what it is not computation may be found in
action  potentials.  Their  generation  is  caused  by  fine  homeostatic  adjustments  of
membrane voltage that per se may not qualify as a computation (Stuart et al., 1997), but
complex combinations of action potentials constitute the ‘symbols’ of the ‘alphabet’ used
by the brain to compute. Examples of variables encoded by the brain are the position,
color  and shape  features  of  a  given  object  (Seymour  et  al.,  2010),  sound categories
(Tsunada & Cohen, 2014), the distance between the eyes in face recognition  (Chang &
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Tsao, 2017), or the reward value of a choice during decision making (Saez et al., 2018).
In  tunr,  information  embedded  in  neural  substrates  can  be  decoded and  transferred
(‘rerouted’),  possibly  transformed  into  different  formats  and other  neural  biophysical
substrates. Examples are the on-line holding of memory during decision making (Hasson
et al., 2015), and memory replay during memory consolidation (Foster, 2017). It is worth
stressing that the current computational view of the brain is not established truth, but
rather it ensues from a hypothetical framework that is influenced by multiple disciplines,
most  notable  by  information  theory,  computer  science  and  linguistics,  and  helps
usguiding experimental testing. 
 
Computation takes place at several hierarchically organized levels. Levels include brain
areas, nuclei, maps, columns, circuits, single neurons, and sub-neuronal compartments,
such as dendrites, spines, somas and axons (Mesulam, 1998). Moreover, levels interact in
specific  temporal  and  topological  patterns  (Betzel  &  Bassett,  2017) (Vidaurre  et  al.,
2017). A hierarchical organization is, in essence, a modular organization of computation
(D. Meunier et al., 2009), such that a successful general theory of the brain will have to
explain how tasks performed at one module(s) give rise to tasks performed by the larger
module(s).  Currently, a widely assumed premise is that most components of cognition
emerge from the level of transiently active circuits—some authors prefer to speak about
ensembles of neurons or cell assemblies (Buzsaki, 2010)—whose dynamics arises, in turn,
from complex interactions involving  three components:  neuronal intrinsic excitability,
synaptic  efficiency,  and  connectivity  (Gjorgjieva  et  al.,  2016).  Simply  put,  circuit
dynamics  within  the  range  of  millisecond  to  minutes  control  fast  behaviors  such  as
perception  and  decision  making  (Khani  &  Rainer,  2016),  whereas  synaptic  changes
lasting  hours  and  days  control  learning  and  memory  (Sweatt,  2016). Connectivity
includes two main patterns: feed-forward, supporting a unidirectional flow of information,
and recurrent, composed of  positive and negative feedbacks that lead to self-sustained
multiple activity patterns (Duarte et al., 2017). Connections are mostly selective but they
can  be  random  as  well,  giving  rise  to  complex,  slow  dynamics  that  include  chaotic
interactions (Mastrogiuseppe & Ostojic, 2018).  Another widely assumed premise is that
local circuits,although dynamic, are yet anatomically constrained to adapt their behavior
to contexts that need to be globally broadcast, for instance, sleep-wake cycles, mood,
reward,  and  attention  during  perception  and  decision  making.  To  circumvent  this
problem, neuromodulation has been suggested as a solution. Neuromodulation refers to
the  relatively  rapid  (in  the  range  of  seconds)  functional  reconfiguration  of  circuits
throughout the brain by acetylcholine, dopamine, noradrenaline and serotonin, which are
released by subcortical and brainstem nuclei: the nucleus basalis of Meynert (NBM), the
striatum,  the  locus  coeruleus,  and  the  Raphe  nucleus  (Avery  &  Krichmar,  2017).
Neuromodulation participates in working memory, attention, brain state and plasticity (C.
N. Meunier et al., 2017; Sara, 2009; Thiele & Bellgrove, 2018). 

Neural  substrates  of  brain  computations.  The  ultimate  goal  of  Systems  and
Computational Neurosciences is to explain how electrical and chemical signals are used
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in the brain to represent and process information  (Sejnowski et al., 1988). Currently, a
widely accepted assumption is, as noted, that external variables are encoded into action
potentials.  Theories  and  empirical  evidence  point  to  firing  rates  (average  number  of
action potentials per unit of time)(Gerstner et al., 1997), action-potential timing (length
of time between action potentials) (Panzeri et al., 2001), population coding (joint activity
of  several  neurons)  (Panzeri  et  al.,  2015),  and  neural  dynamics  (the  way  electrical
activities evolve with time and space) (Shenoy et al., 2013), as potential features of action
potentials that, in infinite amount of combinations, have enough breadth to constitute the
basis of the brain code(s). A key implication of the multi-level organization of the brain is
that  coding is  multi-level  too.  This  means that external  variables are encoded by the
collective  activity  of  numerous  simpler  elements,  which  carry  either  synergistic  or
complementary information (Panzeri et al., 2015). This principle is the driving premise in
population  and  dynamic  coding,  and  has  informed  the  development  of  methods  for
recording from large populations of neurons, including multi-electrode arrays, which can
record up to 103 neurons (Einevoll et al., 2012), Ca2+ imaging, which can simultaneously
record over 104 neurons (Sofroniew et al., 2016)(Pachitariu et al., 2016), and functional
resonance  magnetic  imaging  (fRMI),  which  makes  use  of  BOLD  (blood-oxygen-level
contrast imaging) to unravel functional connectivity among regions encompassing over
105 neurons (Fox & Raichle, 2007). It is worth stressing that the measurable signals in
the latter two approaches are not action potentials, but single-cell Ca2+ rises and regional
oxygen  consumption,  respectively.  Although  the  premise  for  using  large-scale  Ca2+

imaging  in  neurons  is  that  single-neuron  Ca2+ signals  represent  slower  non-linear
encoding  of  the  underlying  action  potentials  (Vogelstein  et  al.,  2010) (Lutcke  et  al.,
2013),  non-electrical signals, as well as global voltage oscillations measured with field
potentials  and  electroencephalograms,  plausibly  carry  additional  information  that  is
computationally relevant.  For example,  it  has been proposed that synaptic  facilitation
mediated by neuronal Ca2+ signals  sustains working memory  (Mongillo  et al.,  2008).
Additionally, other biophysical substrates of brain computation will plausibily arise in the
future that are either directly or not related to neuronal activity,  inclduing, we posit,
astrocyte-based computationa.

Contemporary brain theories. According to the number of publications, one of the most
influential  brain  frameworks  is  predictive  coding,  which  aim  to  account  for  core
principles underlying adaptive circuit remodeling. The key tenets of predictive coding are
the following.  First, representationalism, the brain operates by building models of the
outer world, conceptual categories and expected outcomes of actions. Second, evaluation
of new information against embedded models is at the core of many brain operations
besides  decision  making,  including  perceptual  discrimination,  voluntary  selective
attention and learning.  Third, the nature of such evaluations is probabilistic, since the
underlying algorithms weigh in pros and cons and similarity of the novel information with
respect  to  internal  models.  A  central  notion  is  that ‘organisms  care  less  about
representing what is actually out there in the world than about how this reality conflicts
with their predictions about what should be there’ (Fitch, 2014). An apparent virtue of
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this strategy is minimization of data storage since it takes fewer bits to represent the
mean  and  deviations  from it  than  to  attempt  de  novo representations  (Fitch,  2014).
Fourth, the brain tries to minimize its prediction errors such that internally-generated
predictions  are  constantly  optimized  with  external  inputs  in  an  iterative  process.  In
predictive coding,  neuromodulation is proposed as computing part of  the statistics  of
errors made by predictions (Lau et al., 2017; Stephan et al., 2015). The bulk of empirical
support for predictive coding lies in the domains of perception,  reward learning, and
decision making, as documented in humans, monkeys, and rodents  (Summerfield et al.,
2008; Wacongne et al., 2011) (Kok & de Lange, 2014; Markov et al., 2014) (Diederen et
al., 2017; Nasser et al., 2017) (Leinweber et al., 2017), whereas the framework appears
to  be  under  exploration  in  memory  consolidation  (Cross  et  al.,  2018) and  emotion
(Barrett, 2017). Other general CNS frameworks worth mentioning are global workspace
theory,  which  describes  the  basic  circuit  from which  consciousness  emerges  (Baars,
2005), and liquid computing, which states that neural circuits have the capacity to store
information  of  previous  perturbation(s),  analogous  to  the  ripples  generated  on  the
surface of a pond when stones are thrown into it (Maass et al., 2002). Finally, influential
theoretical constructions about basic operative principles of the brain—compatible with
global  frameworks—include  brain  oscillations  (Buzsaki  &  Draguhn,  2004),  efficient
coding (Chalk et al., 2018), energy-efficient coding  (Laughlin, 2001), neural integrators
(Mazurek  et  al.,  2003),  inhibitory/excitatory  balance  (Brunel,  2000;  Litwin-Kumar  &
Doiron, 2012), noise (Arieli et al., 1996), and circuit degeneracy (Sporns, 2013).

3. Challenges, obstacles, and growth areas in Systems Neuroscience.

Despite the progress in the last decade, understanding brain computations remains a
central challenge of modern Neuroscience. The readily observable behavioral variables
that are used experimentally to study brain encoding, for instance, rewards, choices and
stimulus features, represent the tip of the iceberg, perhaps because the vast majority of
variables used by the brain in complex behaviors and higher-brain functions, are often
latent [Schwab et al., 2014]. However, this should not distract us from the impressive
predictive power that analytical tools bear to Systems Neuroscience. Succesful examples
are in neuroprosthetics,  where the electrical activity of the brain of a human user is
decoded into motor commands  (Cangelosi  & Invitto, 2017); decision-making, in which
decision outputs can be predicted from action potentials with 80% accuracy in monkeys
before a response is observed (Kiani et al., 2014), and with 70% accuracy in rats, even
before stimulus onset (Nogueira et al., 2017), and face recognition. Here, the face seen
by a Rhesus monkey can be reproduced with 90% accuracy by tracking neuronal activity
in the inferior temporal cortex  (Chang & Tsao, 2017). Although the achievements are
remarkable, there is still room to improve these numbers. In the workflow of Systems
Neuroscience from signal capture to deciphering the brain code, topics of improvement
include signal recording, signal processing, data analyses, and astrocyte-focused studies
(Fig. 1). Key issues are briefly described next.
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Data load in large-scale recordings. The trend of improving predictions by simultaneously
recording more neurons has created a serious challenge: the ever-increasing size of the
data seriously hampers storage, processing and analysis. In order to simplify and reduce
data size of recordings, several methods exist to extract low-dimensional mathematical
representations  from  multi-neuronal  electrical  recordings  (Aljadeff  et  al.,  2016;
Cunningham & Yu, 2014). The obstacle is, all the more complex in Ca2+ imaging, which
has become a dominant method for recording from large populations of neurons, because
special methods are necessary to extract the coarse-grained and noisy Ca2+ data prior
data analysis.  Algorithms such as Suite2p  (Pachitariu, 2016), and CNMF (Constrained
and/or  nonnegative  matrix  factorization,  (Pnevmatikakis  et  al.,  2016)),  represent
advances in the simplification of imaging data processing prior to analysis. Caveats of
current calcium imaging data processing are discussed in (Stringer & Pachitariu, 2018).
Alternatively,  shot-gun  statistics  unravels  network  connectivity  information  from
recording at only 10% of the neurons at a given time, thus simplifying the experimental
load  of  large-scale  recordings  (Soudry  et  al.,  2015).  Data-sharing  and  collaborative
solutions  have  been  proposed  as  well  to  manage  the  surge  of  data  (Paninski  &
Cunningham, 2018).

Statistical tools for understanding data. The challenge is to determine how behavioral
variables  are  encoded  by  neurons,  and  how  this  information  is  decoded,  either  by
downstream  neurons,  or  by  an  external  observer.  Different  statistical  tools  address
encoding  and  decoding.  For  encoding,  generalized  linear  models  (GLMs),  a
generalization of multiple linear regression, regress neuronal activity against behavioral
variables to determine the set of variables that explain more neuronal activity (Aljadeff et
al.,  2016) (Nogueira  et  al.,  2017).  Decoding  techniques,  typically  linear  classifiers
(Arandia-Romero et al., 2017; Quian Quiroga & Panzeri, 2009), as well as more recent
artificial neural networks (ANNs)  (Paninski & Cunningham, 2018) are used to predict,
trial-by-trial,  values of  behavioral  variables from neuronal activity,  either using single
neuronal activity, or the individual activity of large neuronal populations recorded from
multi-electrode-arrays or Ca2+ imaging. These methods are supervised machine learning
tools because both behavioral and neuronal variables are preselected and labelled. On
the  other  hand,  unsupervised  tools  such  as  dimensionality  reduction  have  also  been
developed.  In  particular,  this  latter  is  used in  parallel  to  reduce data  complexity  by
identifying low-dimensional latent factors, where relevant behavioral variables could be
represented  (Cunningham  & Ghahramani,  2015).  Of  note, detection  of  relevant  sub-
spaces  of  neuronal  activity,  and  optimal  selection  of  behavioral  features  to  regress
against neuronal data, will facilitate the discovery of computational principles. An elegant
example is the aforementioned study by (Chang & Tsao, 2017), in which successful face
identification  in  non-human  primates  was  possible  with  50-dimensional  data,  and
recordings of 200 neurons. Likewise, feature selection can be adaptively improved with
artificial intelligence (Yamins & DiCarlo, 2016). As with signal processing, data load is a
challenge  in  signal  analysis,  for  the  number  of  observations  per  condition  does  not
necessarily grow in parallel with the growth of complexity and number of dimensions of
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the data. For example, recording 20 neurons for 30 min produces the same number of
observations per neuron than recording 1000 neurons during the same amount of time,
but the number of dimensions increases 50-fold with the larger neuronal population. This
means  that  techniques  of  encoding,  decoding  and  dimensionality  reduction
techniquesmust  be constrained by specific structural and anatomical knowledge of the
neural substrates to be operationally useful

Optogenetics and chemogenetics. These anatomically precise and reversible tools allow
establishing cause-effect relationships between the electrical activity of single neurons,
or  neuronal  populations,  and  behavioral  parameters.  Optogenetics  is  based  on  the
expression of light-sensitive regulators of transmembrane conductance (ion channels and
chloride pumps) coupled with fiber optic- and laser diode-based light delivery (Boyden et
al.,  2005; Li et  al.,  2005).  Cell  type specificity is accomplished by targeting the light
sensitive  channels  with  cell-type  specific  promoters.  Light-activation  of  neurons
expressing  channels  like  channelrhodopsins  (ChR1,  ChR2)  result  in  neuronal
depolarizations due to import of cations such as Na+, K+, and Ca2+—the latter at trace
levels.  By contrast,  optical stimulations of archaerhodopsin (Arch) and  halorhodopsins
(NpHR)  pumps  cause  hyperpolarization  of  neurons  by  exporting  H+,  or  by importing
chloride ions, respectively. An alternative approach to classic opsins is the light-sensitive
G-coupled  receptor,  also  called  OptoGq/Gs,  which  modulates  receptor-initiated
biochemical signaling pathways (Airan et al., 2009). Chemogenetics is based on the use
of Designer Receptors Exclusively Activated by Designer drugs (DREADDs), a family of G
protein-coupled receptors (GPCRs) that are solely activated by a pharmacologically inert
drug, clozapine N-oxide (CNO) (Alexander et al., 2009). DREADDs can also be targeted to
neurons  with  viral  or  transgenic  delivery  systems  using  neuron-specific  promoters.
Relevant insights into behavior, cognition and basic brain homeostasis have been gained
with  neuron-targeted  optogenetic  and  chemogenetic  approaches  (Deisseroth,  2015)
(Roth, 2016).

Subcellular computations. Increasing the number of recorded neurons may not be the
only solution for obtaining better data. Insofar each and every neuron must integrate and
convert thousands of  synaptic  inputs into a single output  (London & Hausser,  2005),
concerns have been raised about the oversimplification of neurons as ‘integrate-and-fire’
nodes in large-scale recordings and in silico simulations, and a plea exists to pay renewed
attention  to  the  great  computational  potency  of  single  neurons  (Fitch,  2014).  Spine
computations  and biophysical  substrates  are reviewed in  (Yuste,  2013),  and a recent
finding on the computational relevance of dendritic shafts is that non-linear dynamics
based on dendritic conductance can promote sharpening of time and rate codes in grid
cells, thereby improving accuracy of space representation (Schmidt-Hieber et al., 2017).
In the context of imaging, voltage dyes represent a growth area allowing for recording at
subcellular resolution at multiple points along dendrites and axons (Xu et al., 2017). The
data, combined with whole-cell reconstructions with electron microscopy (Vishwanathan
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et  al.,  2017),  will  arguably  improve the understanding of  dendritic  computations  and
network connectivity.

A need for theoretical frameworks and modeling. The wealth of descriptive data will not
advance knowledge unless analyses are guided by hypotheses and complemented with
modeling.  Computational  and Systems Neurosciences  are thus  engaged in  a  virtuous
cycle whereby data generate models, and models make predictions that can be tested ad
infinitum against new proposed experiments. The trade-offs of increasing the realism of
models  by  incorporating  more  biophysical  variables  versus developing  simplifying
models,  as  discussed  in  (Sejnowski  et  al.,  1988),  are  still  debated  (Marder,  2015).
Whatever  the  approach,  in  vivo models,  and  their  in  silico counterparts,  need  to  be
informed by large-scale hypotheses combined with simpler questions, in order to advance
on the outstanding question of how the brain processes information with such energetic
efficiency.  We discussed the remarkable production of  studies informed by predictive
coding and  other  theoretical  constructions.  Other  theories  will  plausibly  arise  in  the
future.

4. Astrocyte-based computations as a growth area in Systems Neuroscience.

We posit  that variables used in brain coding may be partially embedded in astrocyte
biophysical  substrates,  such  that  the  incorporation  of  astrocytes  as  computational
building blocks in neural circuits may help advance Systems Neurosciences. Significant
gaps  of  knowledge,  however,  exist. First,  there  is  no  evidence  that  astrocytes  gate,
transform,  store  and  reroute  information  in  the  brain  by  implementing  abstract
mathematical algorithms.  Astrocytes do participate in brain state  (Poskanzer & Yuste,
2016), neuromodulation (Magistretti & Morrison, 1988) (Paukert et al., 2014) (Srinivasan
et al., 2015), and in a wide variety of naturally-occurring recurrent circuits, where they
have been proposed as carrying out spatiotemporal integration of multicellular inputs
(Araque et al., 2014). Examples indeed exist of discrimination and integration of synaptic
information by astrocytes  (Perea & Araque, 2005), but the underlying algorithms and
their behavioral correlates remain undetermined. Second, if astrocytes compute, are Ca2+

transients a biophysical  substrate of  astrocyte-based computations?  The intuition that
they are already exists in the field, resting on a wealth of studies that, since the 1990s,
have  used  Ca2+ imaging  to  assess  astrocyte  activation  at  increasing  spatiotemporal
resolution,  thanks to the unremitting refinement of  fluorescent  indicators and optical
imaging (reviewed in Kastanenka et al.(K. V. Kastanenka, Arbel-Ornath, M., Hudry, E.,
Galea,  E.,  Xie,  H.,  Backskai,  B.J.,  2016) and  (Bazargani  & Attwell,  2016)).  However,
although in silico modeling documents that astrocytes can encode extracellular cues into
variables by Ca2+ transients (De Pitta et al., 2008), the statistical methods currently used
to encode and decode neuronal action potentials (Section 3) have not been applied to
astrocyte data  in vivo. Third, it is not known whether subcellular Ca2+ microdomains in
astrocytes  would  carry out  different  functions  within  distinct  circuits  associated with
different  complex  behaviors,  whether  astrocytes  would  perform similar  computations
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throughout the brain, nor whether they are as functionally heterogeneous as neurons. It
is worth mentioning that in the last  decade controversies have arisen concerning the
regulation and consequences of Ca2+ signaling in astrocytes. Specifically, whether Ca2+

comes from endoplasmic reticulum and mitochondria, or from the extracellular milieu,
the very notion of Ca2+-dependent gliotransmission, the role of astrocytes in long-term
potentiation  (LTP),  and  whether  D-serine  is  a  gliotransmitter  have  been  debated—
reviewed in  (Bazargani & Attwell,  2016;  Savtchouk & Volterra,  2018).  Currently,  the
prevailing  notion  reconciling  these  discrepancies  is  that  Ca2+ responses  are  highly
complex and context-dependent, such that the signaling leading to Ca2+ rises, the sub-
cellular source of such Ca2+, the speed of transients, as well as the downstream effects,
are  dependent  on  the  subcellular  astrocyte  compartment(s),  and  the  neural  circuit
(Savtchouk & Volterra, 2018). In this piece we do not focus on mechanistic issues, but
rather on whether and how astrocytes may perform computations using Ca2+ transients.

5. Systems-like studies in astrocytes

A prototypical study in Systems Neuroscience includes three components: (i) recording of
electrical activity in multiple neurons, (ii) computerized analysis to decode information
embedded in action-potential firings, and (iii) simultaneous measurement of a cognitive
or  behavioral  function.  The  statistical  analyses  reveal  correlations  and,  increasingly
often, causal relationships between changes in patterns of neuronal-population firing and
specific behavioral or cognitive responses (Sections 2 and 3). There are no studies, to our
knowledge, recording Ca2+ activity of multiple astrocytes, followed by analysis by GLM or
decoders in the context of a behavioral paradigm defined by distinct features that can be
correlated with patterns of astrocytic Ca2+ activity. Among studies linking astrocytes and
behavior (for recent reviews see (Oliveira et al., 2015; Santello et al., 2019)), in section
5.1 we discuss the ones closer to the neuron-focused experimental design in Systems
Neuroscience, for they include recordings of Ca2+-based astrocyte excitability, as well as
electrical or optical recordings of neuronal activity, in the context of complex behaviors
or neuromodulation. Conversely, in Section 5.2 we focus on studies showing modulation
of local  brain circuits associated with complex behaviors,  or brain state,  by transient
optogenetic or chemogenetic astrocyte activation. In section 6, we extract computational
lessons from these studies, and identify gaps of knowledge, taking into account, when
appropriate,  previous  and  recent  studies  that,  although  lacking  any  of  the
aforementioned components,  support  our  computational  insights.  Table 1  summarizes
the analysis.  In Fig.1 we highlight  in red approaches within the general  workflow of
Systems Neuroscience including signal capture, processing and analysis, that could be
used with astrocytic data.

5.1.  Activation  of  Ca2+ transients  in  astrocytes  by  sensory  stimulation  and
neuromodulation

Studies in the mouse barrel cortex have shown activation of Ca2+ in astrocyte somata
after whisker stimulation using fluorescent Ca2+ dyes (X. Wang et al., 2006) (Takata et al.,
2011) and  genetically-encoded  Ca2+ indicators  (Stobart  et  al.,  2018).  Astrocytic  Ca2+
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increases are delayed with respect to Ca2+ rises in neurons (Stobart et al., 2018). Also,
astrocytic  Ca2+ rises  are  dependent  on  whisker  stimulation  frequency,  and  they  are
blocked  by  inhibitors  of  metabotropic  glutamate  receptors,  indicating  that  they  are
caused by glutamate released from neurons (X. Wang et al., 2006). Whisker stimulation-
dependent Ca2+ rises in astrocytes are detected as early as at 2 s when dyes are used,
and  at  120  ms  in  the  case  of  faster,  genetically  encoded  indicators,  although  peak
responses  range  between  3-12  s  regardless  of  the  Ca2+ indicator.  Likewise,  visual
stimulation triggers neuron-dependent somatic Ca2+ transients in astrocytes in the visual
cortex  of  ferret,  with  a  delay  of  1-3  s  and a  peak  at  6  s  (Schummers et  al.,  2008).
Importantly,  the latter study demonstrates that astrocyte activation is highly tuned to
orientation  maps  at  a  single-cell  resolution,  and  documents  that  astrocytes  mediate
hemodynamic signals in the visual cortex, which was confirmed in another study in the
barrel cortex  (Stobart et al., 2018).  The study by  (Takata et al., 2011) is also relevant
because it demonstrates the following. First, cholinergic neuromodulation originating in
the  NBM  potentiates  the  activation  of  local  field  potentials  elicited  by  whisker
stimulation. Second, neuromodulation is strictly dependent on Ca2+ rises in astrocytes, as
shown by  the  disappearance  of  neuronal-activity  potentiation  in  mice  lacking  IP3R2-
dependent  signaling.  Crucially,  deletion  of  Ca2+ signaling in  astrocytes  in  these mice
shifts  brain  state  to  a  desynchronized  mode,  as  assessed  by  local  field  potentials  in
cortex. The impact of cholinergic neuromodulation on astrocyte Ca2+ responses is also
documented in  the hippocampus.  Specifically,  the increase in Ca2+ rises triggered by
somatosensory  stimulation  in  rat  hippocampal  astrocytes  is  mediated  by  cholinergic
neurotransmission, since it is blocked by the cholinergic inhibitor atropine (Navarrete et
al., 2012). Astrocyte activation, in turn, induces LTP of field EPSPs in CA3-CA1 synapses
(Navarrete et al., 2012). These data support the notion that, in addition to setting circuit
dynamics for attention in sensory processing, cholinergic neuromodulation participates in
the  encoding  of  new information  during  memory  formation  (Hasselmo  & McGaughy,
2004).  The  importance  of  neuromodulation  via astrocytic  Ca2+ in  sensory  cortical
processing has also been reported for the locus coeruleus (Ding et al., 2013) (Paukert et
al., 2014) (Srinivasan et al., 2015).  This brain-stem nucleus also amplifies the effect of
locomotion  on  Ca2+ rises  in  Bergman  glia  in  the  cerebellum  (Paukert  et  al.,  2014).
Timewise,  neuromodulation-elicited Ca2+ rises in astrocytes occur in the range of a few
seconds, with regards to both onset and peak after sensory stimulation (Ding et al., 2013)
(Srinivasan et al., 2015). 

5.2. Modulation of behavior and brain state by optogenetic and chemogenetic stimulation
of astrocytes

As  in  neurons,  important  insights  into causal relationships  between  astrocytic  Ca2+

signals and behavioral  outcomes are emerging from optogenetics  and chemogenetics
studies.  These  technologies  allow  temporally-precise  and  reversible  modulation  of
astrocyte  activity, in  contrast  to  permanent  loss-  or  gain-of-function  genetic
manipulations. In mice,  optogenetic  stimulation of astrocytes using ChR1/2,  Arch and
OptoGq is reported to  modulate breathing according to pH changes in the respiratory
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system  (Gourine et al., 2010), induce long-term depression in Purkinje cells and motor
behavior (Sasaki et al., 2012), modulate response selectivity of the visual cortex (Perea et
al., 2016), inhibit food intake (Sweeney et al., 2016), induce sleep (Pelluru et al., 2016),
promote a switch to the slow-oscillation state by triggering the UP state of slow waves
(Poskanzer & Yuste, 2016), and enhance memory acquisition (Adamsky et al., 2018).

A key issue is that the downstream consequences of optogenetic activation of astrocytes
are not well understood.  In the case of neurons, since they are excitable cells that can
operate  via all-or-nothing changes in membrane voltage driven by fast-acting voltage-
gated  channels  (although  they  also  have  subthreshold  voltage  fluctuations),  the
probability of neuronal firing is decreased by activation of NpHR and Arch, and increased
by activation of ChR2  (Yizhar et al., 2011). However, astrocytes are not as electrically
excitable as neurons. In the first report of successful modulation of neuronal activation
(with  no  behavioral  consequences)  upon  optogenetic  manipulation  of  nearby  ChR2-
expressing astrocytes, it was assumed, but not shown, that the response was mediated by
Ca2+ fluxes  through ChR2  (Gradinaru et al.,  2009). Two subsequent studies confirmed
Ca2+ rises using Ca2+ indicator dyes  (Perea et al., 2014) (Pelluru et al., 2016), yet it is
unclear  how these  rises  can  occur,  considering  that  ChR2 has  a  relatively  low Ca2+

permeability, is only open during a few milliseconds —decay constant is  ~10 ms—, and
presents depolarization-dependent slowing of deactivation (Nagel et al., 2003; Yizhar et
al., 2011). One possibility is that it is the entry of Na+ through ChR2 that causes Ca2+

uptake by reverse activity of the Na+/Ca+ exchanger (J. Yang et al., 2015). Furthermore,
there is the possibility that the effects of ChR2 activation are due to undetected Ca2+ rises
in astrocyte processes, of which somatic Ca2+ might be a consequence (Bernardinelli et
al.,  2011).  In  this  regard,  the  use  of  Arch  combined  with  genetically-encoded  Ca2+

indicators represents  a  technical  refinement  because  this  opsin  induces,  after  5  s  of
photo-stimulation  in  the  mouse  cortex,  fast  Ca2+ transients  in  astrocyte  arbors
reminiscent of spontaneous activity  (Poskanzer & Yuste, 2016). Still,  how such a brief
photo-stimulation of Arch, whose decay constant is ~9 ms (Yizhar et al., 2011), translates
into  ~20-s-long Ca2+ rises after a delay of  ~10 s is unclear  (Poskanzer & Yuste, 2016).
Plausibly, Arch-elicited hyperpolarization engages voltage-sensitive elements in astrocyte
processes. All in all, optogenetics clearly activates astrocytes, although clarification of
underlying  mechanisms  will  help  optimize  this  approach  for  Systems-level  basic  and
clinical studies.

A DREADD  receptor that successfully triggers  Ca2+ transients in astrocytes is hM3Dq
(Bonder & McCarthy, 2014; Chen et al., 2016). Studies using hM3Dq in astrocytes have
shown: (i) changes in neuronal activity, either reduced or increased firing, in the mouse
arcuate nucleus with opposing effects on feeding behavior, perhaps stemming from CNO
dose  differences,  which,  in  turn,  might  launch  complex  feedback  loops  leading  to
paradoxical data (Chen et al., 2016; L. Yang et al., 2015), (ii) regulation of excitatory and
inhibitory  neurotransmission  in  the  amygdala,  with  a  net  effect  of  reduced  fear
expression  in  a  fear-conditioning  paradigm  (Martin-Fernandez  et  al.,  2017);  and (iii)
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potentiation  of  the  amplitude  of  evoked  EPSC and,  when  chemogenetic  activation  is
carried out at specific stages during learning paradigms, improvement of contextual and
spatial memory acquisition (Adamsky et al., 2018). As with optogenetics, caution has to
be exerted about the resemblance of  the  Ca2+ signaling elicited by chemogenetics  to
physiological signaling. Also, the CNO metabolite clozapine, and not CNO, might be the
real activator of DREADD, as shown with radioligand receptor occupancy measurement,
and  in  vivo positron  emission  tomography  (Gomez  et  al.,  2017).  Since  clozapine  has
multiple  targets,  this recent evidence raises doubts about the specificity  of  DREADD-
based  approaches  (Gomez  et  al.,  2017).  That  said,  these  studies  offer  several
computational insights, to be discussed below.

6. Computational lessons learned from Systems-like studies in astrocytes

First,  time  scales  of  Ca2+ responses  and  filtering  effect.  According  to  Ca2+-based
dynamics, the time scale of astrocyte activation after a physiological input ranges from
hundreds of milliseconds to tens of seconds, while the earliest reported effect on nearby
neurons after optogenetic stimulation of astrocytes is at 500 ms  (Gourine et al., 2010).
The onset of hemodynamic response is within 1-3 s from the onset of Ca2+ responses
(Otsu et al., 2015). Upon sensory stimulation, astrocytes are activated  after  neurons in
the cortex, suggesting that neurons  reroute information to astrocytes.  The observation
that Ca2+ response curves in astrocytes are qualitatively similar but narrower than those
in neurons, as shown by local field potentials  (Schummers et al., 2008; X. Wang et al.,
2006), suggests that astrocytes filter neuronal activity. Filtering can be either in terms of
rectification (high pass filtering), cut-off (low pass filtering) or both (band pass filtering).
The latter appears to be the case since astrocytes are not responsive to the highest and
lowest frequencies of neuronal input. Interestingly, adaptive modulation of breathing by
pH  is  the  only  context  in  which  astrocytes  directly  compute  external  stimuli,  for
astrocytes sense changes in pH, even if local neurons are inactivated with tetrodotoxin
(Gourine et al.,  2010). In other paradigms, astrocyte activation is either secondary to
neuronal activation (section 5.1), or the result of gain-of-function induced by optogenetics
and chemogenetics in the context of already active circuits (section 5.2).

Second,  existence  of  short-  and  long-term  modalities  in  Ca2+ responses. The
computational and homeostatic functions of astrocytes manifest themselves in at least
two broad modalities, depending on time range, nature of inputs, and the intracellular
location of Ca2+ rises. One modality is the fast rising Ca2+ signals that originate within
0.2–5 s from stimulus onset, which are short-lived (up from 0.3–10 s) and usually reported
in peripheral processes and end-feet (e.g., (Stobart et al., 2018), and are sufficiently fast
to  locally mediate task-relevant regulation of blood flow  (Otsu et al., 2015), metabolic
coupling, and neurotransmitter supply (Agarwal et al., 2017; Otsu et al., 2015; Tani et al.,
2014), as well  as short-term modulation of synaptic  efficacy  (Perea et al.,  2016). The
second modality  corresponds  to  robust  somatic  Ca2+ transients  that  can  last  tens  of
seconds,  have a slow rise time, and have been reported in the context of cholinergic
(Navarrete  et  al.,  2012;  Takata  et  al.,  2011) and  noradrenergic  (Ding  et  al.,  2013)
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(Paukert et al., 2014) (Srinivasan et al., 2015) neuromodulation, as well as upon ChR2-
based optogenetics and by chemogenetics  (Adamsky et al., 2018). In hippocampus, the
functional consequences of this modality are long-lasting effects on synaptic connections
(Adamsky  et  al.,  2018;  Navarrete  et  al.,  2012),  plausibly  associated  with  memory
formation. In the cortex, we reason that astrocytic Ca2+ rises, as reported by (Takata et
al., 2011), participate in a well-accepted role of neuromodulation: control of arousal and
attention, which involves recruitment of large, spatially-distributed neuronal populations
(Thiele  &  Bellgrove,  2018).  Importantly,  the  two  modalities  reveal  the  existence  of
threshold heterogeneity in Ca2+ responses in astrocytes, which might be of computational
importance. Consider, for example, the relative ease with which minimal synaptic stimuli
trigger  Ca2+ transients  in astrocytic  processes  (Haustein et  al.,  2014; Panatier  et  al.,
2011), which is consistent with a relatively low threshold for activation. This suggests
that, in microdomains, the number of synaptic inputs may be of little importance, so that
a microdomain could invariantly get activated, either by individual synapses or by an
ensemble  thereof,  akin  to  the  logical  OR  function.  Conversely,  the  phenomenon  of
coincidence detection  in  which activation  of  cortical  sensory neurons  (Paukert  et  al.,
2014;  Takata  et  al.,  2011) and  postsynaptic  hippocampal  neurons  (Navarrete  et  al.,
2012), needs to coincide with neuromodulation to trigger somatic Ca2+ transients, and,
similarly,  the requirement for  high inter-neuronal activity  to  promote  astrocytic  Ca2+-
dependent facilitation of excitatory synaptic transmission in the hippocampus  (Perea et
al., 2016), may be regarded as examples in which the threshold for astrocytic activation
is high, and astrocytes will become activated only if multiple inputs impinge together on
them, akin to  the logical  AND function.  Density  of  IP3R2 (De Pitta et  al.,  2018)  and
baseline Ca2+ levels (Zheng et al., 2015) may be among the factors setting thresholds of
stimulation.  Plausibly,  the  described  modalities  of  astrocytic  Ca2+ responses  are  the
extremes of  a  context-dependent  spectrum, encompassing  mixed regimes in  terms of
number of astrocytic domains involved, and short versus long-term effects. Key questions
emerge: how are different astrocytic microdomains recruited, which neural circuits are
activated  as  a  consequence  of  different  response  modalities,  and,  finally,  do  specific
computations, other than thresholding, operate in different modalities? In section 7, we
propose gaining insight into these questions by treating single astrocytes as mini-circuits,
and by identifying relevant patterns of Ca2+ responses with dynamical-systems statistics
approaches such as dimensionality reduction.

Third,  regulation  of  neuronal  gain.  This  appears  to  be  a  computation  carried out  by
astrocytes throughout a variegated collection of circuits and behavioral contexts. Signal
coincidence detection of sensory stimulation and neuromodulation by cortical astrocytes
is one example that may have implications in attention (Paukert et al., 2014; Takata et al.,
2011). Computationally, attention consists of a gain change (in amplitude of response or
contrast)  that results in the  prioritization of relevant inputs over irrelevant information
(Thiele & Bellgrove, 2018). Input prioritization is called top-down (or inside-out) because
the process is shaped by internal models and goals conveyed to the sensory areas by
neuromodulators  (Thiele & Bellgrove, 2018)—note the influence of predictive coding in
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this  assumption.  The  modulation  of  gain  is  facilitated  by  a  normalization  mechanism
whereby neurons’  responses  are reduced in  proportion to the activity  of  neighboring
neurons by the joint activation of inhibitory and excitatory neurons (Reynolds & Heeger,
2009). Instructed  by  signal  coincidence  detection,  astrocytes  might  help  prioritize
information by  regulation of gain  via  modulation of excitatory synaptic drive by Ca2+-
dependent glutamate uptake  (Schummers et al., 2008), gliotransmission  (Takata et al.,
2011), intrinsic neuronal excitability (Sasaki et al., 2012), and co-modulation of excitatory
and inhibitory neurotransmission (Perea et al., 2014).

In  the  case  of  brain  state,  a  gain  change  might  account  for  the  transition  from an
asynchronous  to  a  synchronous  mode  through  a  change  in  the  network’s  ratio  of
excitation versus inhibition, according to the general theory of neural networks (Brunel,
2000).  Hence, a possible mechanism whereby astrocytes might synchronize brain state
through  gain  control  is  regulation  of  excitatory-synaptic  strength,  either  by  reducing
glutamate uptake (Poskanzer & Yuste, 2016), releasing ATP/adenosine and glutamate in a
Ca2+ dependent manner (Halassa et al., 2009) (Fellin et al., 2009), or taking up GABA via
GAT-3 transporters (Shigetomi et al., 2011). 

Memory-related tasks in hippocampus can also be interpreted as a phenomenon of gain
control.  Thus,  chemogenetic  and  optogenetic  stimulations  of  hippocampal  astrocytes
result in increased frequency and potency of mEPSCs in local neurons, leading to long-
term potentiation of excitatory synaptic connections (Adamsky et al., 2018). Significantly,
astrocyte-mediated  NMDA-dependent  long-term  potentiation  appears  to  be:  (i)  task-
specific  insofar  as  fear-conditioned  mice,  but  not  home-caged  ones,  show  synaptic
potentiation, and (ii) stage-selective, for it very precisely affects distinct phases along the
memory-formation  continuum,  such  as  memory  allocation.  Likewise, the  interneuron-
induced potentiation of  excitatory neurotransmission  mediated by astrocytes might  be
one example of neuronal gain (Perea et al., 2016).  Intriguingly, a dual mechanism where
astrocyte-mediated  depression  of  excitatory  synapses  combines  with  potentiation  of
inhibitory ones seems at play at afferents to neurons in the medial central region of the
amygdala (Martin-Fernandez et al., 2017). The ensuing net increase of inhibitory drive to

these neurons (i.e., a case of negative gain) was then shown to correlate with transient
reduction of fear conditioning and anxiety 

Finally,  the role of astrocytes in reflex homeostatic behaviors modulating feeding and
breathing can be explained in  terms of  use  of  gain modulation  to adapt  behavior  to
stimuli intensity. Thus, the presence of food modulates the synaptic efficacy of neurons in
the hypothalamus  (Chen et al.,  2016; L.  Yang et al.,  2015),  whereas pH acidification
induces adaptive neuronal firing in the brain stem which, in turn, activates breathing
(Gourine et al., 2010). 

Fourth, decoding and rerouting of information. Coincidence detection of sensory cortical
and neuromodulatory subcortical neuronal inputs  (Takata et al.,  2011) (Paukert et al.,
2014), transformation  of  inhibitory  neurotransmission  into  synaptic  facilitation  in
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hippocampus  (Perea  et  al.,  2016),  and  the  transformation  of  neuronal  inputs  into
potentiation or inhibition, depending on the duration and frequency of the inputs (Covelo
& Araque, 2018), might be three examples of decoding of neuronal signals by astrocytes,
and  rerouting of  decoded  information  to  other  neurons.  Plausibly,  the  information
rerouted  by  astrocytes  is  gliotransmitter-dependent  (Covelo  &  Araque,  2018).  Since
neuronal action potentials and astrocytic Ca2+ transients have utterly different temporal
resolutions, it is improbable that variables represented in trains of action potentials are
represented in astrocytic Ca2+ without significant loss of information. Rather, we posit
that what astrocytes ‘hear’ from neurons are instructions to ‘tell’ other neurons to modify
their  activity via canonical  computations.  In  computational  science,  canonical
computations are fundamental operations carried out in circuits in a variety of contexts.
We have hitherto identified a few: signal  filtration,  thresholding (implicating AND/OR
functions and coincidence detection), gain, and control of the balance between excitation
and inhibition.  It  is not clear whether synaptic scaling should be added, because this
function might be performed by microglia rather than astrocytes (Stellwagen & Malenka,
2006). In the roadmap we propose to use decoding approaches from machine learning to
identify possible variables encoded by astrocyte computations.

Fifth, astrocytes could act as switches in brain state transitions. The causal implication of
astrocytes in cortical slow oscillations (<1 Hz) (Takata et al., 2011) (Poskanzer & Yuste,
2016) supports the relevance of astrocytes in network activity beyond tripartite synapses.
Slow waves have been hypothesized to represent the default mode of cortical network
activity  (Sanchez-Vives  et  al.,  2017). During  UP states,  there  is  also  synchronization
in beta  and  gamma  frequencies,  synaptic  gain  modulation,  modulation  of  replay  and
memory formation, and some cortical features might inform about transitions between
unconsciousness  and  consciousness  (reviewed  in  (Sanchez-Vives  et  al.,  2017)).  An
intriguing paradox exists in that astrocytes induce a synchronized state, but also mediate
cholinergic and noradrenergic neuromodulations, which are characteristically associated
with  asynchronous,  high-rate  activity  that  facilitates  sensory  processing  (Lee  & Dan,
2012). We posit that astrocytes might act as switches whose default action is to sustain
UP states, whereas neuromodulation-driven attention renders astrocytes independent of
the cortical  oscillator,  and shifts  their  action  towards  short-term plasticity  related to
sensory  processing.  Indeed,  network  theory  predicts  that  a  key  parameter  in  setting
asynchronous versus synchronous network activity, as well as the frequency of eventual
oscillations,  is  afferent  synaptic  activity  (Brunel,  2000;  Ledoux  &  Brunel,  2011).
Coincidence  detection  can  be  thus  regarded  as  a  scenario  of  afferent  stimulation—
specifically  mediated  by  neuromodulation—whereby  astrocytes  induce  the  network’s
transition to the asynchronous state. Finally, although astrocytes are particularly attuned
to slow oscillations because their internal dynamics, as judged by Ca2+ transients,  fall
within a time scale of seconds, they are also involved in the generation of faster waves
such as theta (4–12 Hz) and slow gamma (30-50 Hz) (Perea et al., 2016; Sardinha et al.,
2017). The effect of astrocytes on fast waves may be due to cross-frequency coupling, a
mechanism whereby global slow oscillations modulate local fast oscillations, usually their
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amplitude  (Canolty  & Knight,  2010),  which  happens  to  be  the  predominant  effect  of
astrocytes on fast waves  (Perea et al., 2016; Sardinha et al., 2017). By regulating fast
waves,  astrocytes  will  have  an  impact  on  neuronal  encoding,  because  fast  rhythms
provide temporal reference frames for local and large-scale computations  (Hawellek et
al., 2016).  Dimensionality reduction (below) may reveal specific astrocytic Ca2+ regimes
associated with coincidence detection, oscillations, and brain state transitions.

7. A roadmap to advance the integration of astrocytes into Systems Neuroscience

7.1. Theoretical and conceptual improvements

Is  there  a  minimal  astrocyte-neuronal  circuit? Anatomical,  molecular  and  functional
factors matter when considering astrocytes from a computational point of view. From an
anatomical perspective, a single astrocyte can be regarded by itself as a ‘mini-circuit’, in
light of the subcellular compartmentalization of calcium signals  (Bazargani & Attwell,
2016), along with the consideration that one astrocytic anatomical domain may comprise
numerous neurons, dendrites and synapses. Estimations in the mouse hippocampus are:
1-20 neurons  (Halassa  et  al.,  2007),  300-600  dendrites  (Halassa  et  al.,  2007),  and
140,000 synapses  in  (Bushong et al.,  2002) and 50,700-75,200 in  (Chai et  al.,  2017).
Recently, a FRET-based study reports dynamic interactions of astrocytic distal processes
with  different  types  of  synaptic  inputs  (Octeau  et  al.,  2018).  Moreover,  because
astrocytes are characteristically territorial, they give rise to a tiled arrangement of the
brain space, which can be then seen as a patchwork of mini-circuits. The function of tiling
is an outstanding question.  From a molecular perspective, according to single-cell gene
profiling, and unbiased hierarchical clustering in mouse brains, astrocyte populations are
not as functionally heterogeneous as neuronal populations (Zeisel et al., 2015). Thus, in
the mouse somatosensory  cortex and hippocampal CA1 region,  there are 29 types of
neurons including pyramidal cells, glutamatergic neurons, and interneurons, as opposed
to just two types of astrocytes  (Zeisel et al.,  2015). This suggests that, although both
neurons and astrocytes are molecularly specialized cells, additional and extensive sub-
specialization exists among neurons but not astrocytes. On the other hand, the lack of
molecular definition may provide astrocytes with greater adaptive capacity to operate in
a  variety  of  circuits  (Poskanzer  & Molofsky,  2018),  which  may  explain  phenotypical
differences of astrocytes from region to region (Martin et al., 2015) (Chai et al., 2017).
We thus argue that neurons imprint functional signatures on networks by, for example,
encoding odors,  position,  images,  words,  abstract  categories  and executive  functions,
whereas the size, anatomical arrangement and molecular makeup of astrocytes suggest
that they might be designed to operate canonical computations (Section 6, Table 1) in
local  mini-circuits within larger-scale networks—as well  as homeostatic  and metabolic
support. Support for this hypothesis comes from recent theoretical studies in computer
science, and formal language theory, which showed that canonical filtering of synaptic
transmission  by  astrocytes  (described  as  ‘astrocyte-like  control’)  facilitates  the
generation of the so-called logic gates, which are basic building blocks in neural circuits
performing logic Boolean operations such as AND, OR, NOT, XOR and NAND (Binder et
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al., 2007, Song et al., 2017). According to these studies, simple ensembles of astrocytes
and synapses reminiscent of our mini-circuits might account for all elementary logical
functions  and,  properly  combined,  allow,  in  principle,  computation  of  any  real-world
function in a scalable manner (Song et al., 2017).  It should be kept in mind that multiple
strategies are likely at play across species in shaping astrocytic mini-circuits, and their
possible computational functions. For example, although single-cell genomics is not yet
available in humans, the fact that human astrocytes are larger, more complex (including
270,000-2  million  synapses),  and  present  more  morphological  variants  than  mouse
astrocytes  (Oberheim  et  al.,  2009),  together  with  the  striking  observation  that
engraftment  of  human astrocytes  into  mouse  brains  enhances  synaptic  plasticity  and
learning  (Han  et  al.,  2013),  suggests  that  more  complex  astrocytic  mini-circuits  are
present in humans, possibly underpinning a larger variety of canonical computations. All
in  all,  it  appears  that  in  order  to  reinforce  the  presence  of  astrocytes  in  Systems
Neuroscience, we must zoom out at astrocyte populations as well as zoom into single-
astrocyte mini-circuits. This is akin to neuron-focused studies that, as noted, should cover
both large-scale and sub-cellular computations. Indeed, the latter should be considered
as part of the computations within astrocyte mini-circuits, for spines and dendrites are
inextricably embedded in an astrocyte ‘matrix’.

Where  might  the  ‘slow’  spatiotemporal  dynamics  of  astrocytic  Ca2+ enter  Systems
Neuroscience? The question of which time scales are relevant for neuronal computations
has long been debated. Action potentials of individual neurons are characteristically fast
and short-lived voltage depolarizations  in the range of  1-2 ms.  The speed and all-or-
nothing nature of  these responses,  as well  as their lack of attenuation due to axonal
myelination, make them well suited to transmitting information throughout the brain in
milliseconds. Currently, the minimal temporal resolution of the neuronal code appears to
be on a millisecond time scale, as shown in sensory processing in the auditory system of
mammals  (Butts  et  al.,  2007) (Kayser  et  al.,  2010),  and  in  basic  human  cognitive
capabilities,  including semantic  abstract categorization of  images (e.g.,  identifying an
image  as  a  ‘dog’)(Vanmarcke  et  al.,  2016).  This  means  that  stimuli  arriving  within
intervals of a few milliseconds are distinguished as individual entities by neurons that fire
individual, millisecond-long spikes in response to each stimulus. Clearly, if astrocyte Ca2+

transients  are  the  astrocytic  substrate  of  neural  computing—and  they  are  the  best
candidate thus far—they are too slow to encode ultrafast representations. However, the
brain characteristically operates in parallel on a gradient of time scales that are nested
and hierarchically organized (Murray et al., 2014). Thus, attention and decision making
can last seconds, emotions can arise within seconds, and mood changes in minutes. In
prediction coding, the slow contextual changes in the prefrontal brain under which fast
sensory representations are interpreted require seconds (Kiebel et al., 2008). Also, there
are circadian time scales  affecting sleep and global  homeostasis,  and very long time
scales in the range of hours, weeks, or years affecting learning and memory  (Hari &
Parkkonen, 2015). This means that,  complex operations ought to exist prolonging the
effect of ultrafast (up to 10 ms) and fast (<100 ms) neuronal time scales up to minutes,
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which precludes structural changes caused by gene expression. Working memory during
decision making is a prototypical example of the need for sustained activity in the short-
term scale.  The question  is  how several  discrete,  millisecond-long events related are
engaged in a continuum of network activities that last up to hundreds of seconds (Hasson
et al.,  2015). Since there is no external input during delays (time between input and
action),  working  memory  must  arise  from  the  intrinsic  dynamics  of  neural  circuits.
Computational neuroscience identified this problem over 20 years ago (Seung, 1996), and
has since struggled to provide answers using realistic neuronal parameters (Chaudhury
and Fiete, 2016). Answers include: (i) biophysical properties of neurons such as the slow
‘membrane-time  constant’,  which  reflects  the  time  during  which  information  can  be
maintained by neuronal voltage without a substantial leak, estimated to last between 5-
20 ms, (ii) intervention of NMDA receptors, which are ideally suited to enlarge ‘memory’
capabilities of neurons beyond their membrane time constants because they are active
around 100 ms  after  the  synaptic  input  (X.  J.  Wang,  1999),  (iii)  short-term synaptic
plasticity  (Abbott & Regehr, 2004), (iv) an effective computational solution called long
short-term memory  (Hochreiter & Schmidhuber, 1997), and (v) sustained firing rate of
neurons, or ‘persistent activity’, achieved upon the exquisite tuning of recurrent circuits
such  that  an  input  re-entering  a  synapse  exactly  matches  the  decay  of  the  neuron,
keeping its firing rate for a prolonged time (Goldman-Rakic, 1995) (Renart et al., 2007).
These solutions present limitations. Slow time constants need to be reset, and, at present,
slow time constants in neurons do not seem to have that capability. The time constant of
the NMDA receptor is appropriate to maintain memories up to 1-5 s, but not longer. Long
short-term memory works very well  in  current  machine learning applications,  but  its
application to natural circuits is unclear. Finally, it is also unclear how the exact timing of
feedback  loops  in  persistent  activity  is  achieved.  Clearly,  additional  solutions  are  in
order, perhaps including astrocytes.

Inclusion  of  astrocytes  in  current  theoretical  frameworks  and  circuit-operating
principles. The temporal dynamics of Ca2+-based excitability make astrocytes suitable to
operate  in  circuit  computations  running  in  the  sub-second  to  a  supra-second  scale,
including the ones already mentioned such as short-term plasticity, neuromodulation, and
slow  rhythms.  Interestingly,  computations  such  as  signal-coincidence  detection  and
oscillation control imply detection of the order of the interval of arrival of time-varying
signals, suggesting that astrocytes might encode time. Theoretical models of timing in
the  brain  such  as  oscillators  (Goel  &  Buonomano,  2014) and  liquid  state  (or  liquid
computing) (Maass et al., 2002) may be useful to explore this idea. Astrocytes might also
have a role in predictive coding. As shown  in silico renditions thereof  (Deneve et al.,
2017), the core idea of the framework is that neural circuits are error-driven, such that
differences between predictions and internal models with new inputs are computed as
prediction errors, which might be transformed (i.e., ‘rerouted’) into changes in synaptic
strength by short-term plasticity. The greater the error, the more synaptic changes would
be needed in order to ‘update’ circuit information. The quality of prediction errors is
computed by the variable ‘precision’, which is akin to the standard error in a t-test, and it
is hypothesized to occur in a scale of seconds, and to be encoded by neuromodulators
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(Friston, 2009; Stephan et al.,  2015). Since astrocytes participate in neuromodulation
(Navarrete et al., 2012; Takata et al., 2011) (Ding et al., 2013) (Paukert et al., 2014), the
possibility  emerges  that  astrocytes  might  encode  precision,  perhaps  by  temporally
decoding prediction errors from multiple synapses in the astrocyte mini-circuit, in order
to  ensure  sufficient  statistics.  It  is  tempting  to  speculate  that  the  aforementioned
canonical computations carried out by astrocytes are manifestations of computation of
error-related statistics and/or time in different contexts. These computations would be
canonical, for they would occur throughout the brain. Decoding analyses (below) may
provide information about the specific computations carried out by astrocytes in complex
behaviors where issues like timing, temporal holding of information, and error between
predictions and real outcomes, are particularly prominent.

Astrocytes  and  energy-efficient  coding. Circuit  modeling  and  biophysical  analyses
support the idea that neuronal circuits are designed to produce energy-efficient codes
because action potentials are energetically demanding; hence, energy supply becomes a
relevant constraint in information processing  (Laughlin, 2001). Three reasons justify a
revision  of  the  adjustment  of  coding  to  energy  constraints  from  the  perspective  of
astrocytes. First, astrocytes may lessen the metabolic constraint by facilitating lactate to
neurons  during  task-elicited  glutamatergic  neurotransmission  (Magistretti  & Allaman,
2015). Of note,  lactate qualifies as a gliotransmitter, and hence may be harvested for
computational  signaling tasks,  because it  instructs memory acquisition  (Suzuki et  al.,
2011),  and stimulates  neurons by a mechanism independent  of  its  uptake that  could
rather  be  receptor-mediated  (Tang et  al.,  2014). Second,  as  noted  in  (Magistretti  &
Allaman,  2015),  the  anatomical  arrangement  of  local  neurons,  projections  from
neuromodulatory nuclei and astrocytes within cortical columns, point to optimized circuit
design to facilitate energetic coupling between neurons and astrocytes. Here we extend
this  notion  to  astrocyte  mini-circuits,  and  argue  that  they  might  represent  a  coding
strategy to optimize energy utilization, for example, by integrating sparse coding, which
is coding distributed among many synapses to reduce individual computational load, and
has been described as a solution to energy limitations  (Laughlin, 2001).  Third, whether
energy is also a constraint in Ca2+based computations in astrocytes is an outstanding
question.  There  is  currently  no  estimation  of  the  energy  demand of  Ca2+signaling  in
astrocytes. ATP-consuming steps are: (i) in the context of IP3R2-mediated Ca2+-release,
re-uptake of cytosolic Ca2+ back into the endoplasmic reticulum via Ca2+/ATPase pumps,
which are crucial in dictating the period of Ca2+ fluctuations/oscillations, as well as their
shape and duration; (ii) the plasmalemma Ca2+/ATPase pump involved in capacitive Ca2+

entry/flux;  (iii)  Na+/K+-ATPase  activity  dependent  on  glutamate  uptake  (Pellerin  &
Magistretti, 1997), which appears to critically influence Ca2+ rises in sensory processing
(Schummer et al., 2018); (iv) V-ATPase dependent uptake of Ca2+  into acidic stores; and
(v) neuronal-activity dependent Ca2+ rises in astrocytic microdomains in distal processes,
as shown in mice with  membrane-anchored GCaMP3 (Agarwal et al., 2017). This study
documents  a  critical  link  between  energy  metabolism  and  Ca2+-based  excitability,
because  it  shows  that  Ca2+ rises  in  microdomains  are  the  result  of  Ca2+ efflux  from
mitochondria, which, in turn, is triggered by short events (‘mitoflashes’) of  superoxide
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production during oxidative phosphorylation. Still, the need for ATP for several critical
processes is an open question, a prime example of which is gliotransmission: the exact
source  of  gliotransmitters  such  as  ATP,  glutamate,  and  D-serine,  and  the  energy
expenditure involved in their production, is unknown. All in all, it is worth stressing that
fatty acids are a fuel for oxidative metabolism in astrocytes  (Eraso-Pichot et al., 2018).
Since  fatty-acid  oxidation  yields  over  50  times  more  ATP  molecules  than  glycolysis,
astrocyte  metabolism might  be  optimized  to  undertake  costly  computations  from the
point of view of energy requirements. 

Ca2+-independent computations. Although productive, the adoption of Ca2+ signaling as a
readout of astrocyte excitability should not blind us to the possibility that, similar to Ca2+

transients in neurons following action potentials, the astrocytic Ca2+ response might be a
late  manifestation  of  yet  undiscovered  signals.  If  we  recover  classic  perspectives  of
biophysics (Barlow, 1996; Destexhe, 1999), many components of the astrocytic response
could  potentially  encode  stimulations  and  perform computations.  This  is  the  case  of
second messenger molecules such as IP3 or cAMP that are conventionally associated with
GPCR-mediated astrocytic Ca2+ signaling (DePittà, 2019) but also other ion-based signals.
Among the latter, Na+ is an emerging candidate because it presents activity-dependent
fluctuations, although advanced fluorescent probes are necessary to fully establish this
ion as a novel readout of astrocyte excitability (Rose & Verkhratsky, 2016). 

7.2. Technical and analytical improvements

7.2.1 Zooming into astrocyte mini-circuits

Dimensionality  reduction  of  Ca2+ data. We  posit  that  single-astrocytes  and  astrocyte
populations are dynamical systems governed by function-specific regimes resulting from
coordinated changes in Ca2+ signaling. At the single-astrocyte level, the local and global
activation modalities described earlier might be the extremes of a spectrum of possible
regimes. Dimensionality reduction is a statistical method developed in machine learning
to  facilitate  analysis  of  the  characteristically  multidimensional  (i.e.,  multivariate)
dynamical  systems.  What  dimensionality  reduction  does  is  to  identify  key  variables
determining  relationships  within  the  data  (the  so-called  latent  variables),  thereby
reducing input data to low-dimensional representations defined by such latent variables.
In Systems, dimensionality reduction has been applied to neuron-population recordings in
decision making, movement, odor perception, working memory, visual attention, audition,
rule  learning,  and  speech  (reviewed  in  (Cunningham  &  Yu,  2014).  The  complex
spatiotemporal patterns of spontaneous and evoked Ca2+ transients in single astrocytes,
which now can be measured with 3-dimensional  Ca2+-imaging  (Bindocci  et  al.,  2017),
represent  a multidimensional  data set  that  will  benefit  from dimensionality  reduction
techniques. Thus far, Ca2+ transients in astrocytes have been simplified for quantification
purposes mainly by: (i) using a single Ca2+ readout (Perea et al., 2014); (ii) the average of
calcium  signals  detected  in  multiple  ROIs  pooled  from  a  population  of  astrocytes
(Poskanzer & Yuste, 2016); (iii) the categorization of these signals by spatial location and
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averaging within subcellular compartments (Chai et al., 2017); and (iv) machine-learning
based identification of true signals  (Agarwal et al.,  2017). Although these approaches
have already yielded useful insights into correlations between astrocytic and neuronal
activities  and  behaviors—as  described  in  Section  6—they  have  not  revealed  possible
canonical  spatiotemporal  computations  within  and  between  astrocytes,  in  distinct
experimental paradigms. Dimensionality reduction will thus facilitate detection of noise
(stochastic  Ca2+ transients),  indicating  whether  some  of  the  manually  selected  ROIs
based on visual inspection are or not independent, and can accordingly be considered the
same, while revealing correlations (or lack thereof) between ROIs of regions far apart.
The  latter  can  occur  when  distant  regions  are  synchronized  due  to  oscillations  or
synchronous inputs that regularly occur in those regions. In this fashion, dimensionality
reduction  of  calcium  signals  in  single  astrocytes  may  help  to  reveal  and  select
dimensions,  that is,  the minimum number of ROIs (e.g.,  5-10 from up to 200 original
ones), in which fluctuations are more pronounced and meaningful, thus paving the way
for population analyses, which will require the simplification of Ca2+ signals per astrocyte
with the minimal loss of relevant information. Linear methods of dimensionality reduction
that can be used in astrocytes include simple principal component analysis (PCA), the
prime linear method (Cunningham & Yu, 2014), as well as factor analysis, as used with
neuronal Ca2+ (Paninski & Cunningham, 2018).

Machine learning. ANN-based methods are increasingly being used to replace stages in
signal  processing  and  analysis  in  neuronal  populations,  as  well  as  a  method  for
dimensionality  reduction  (Paninski  & Cunningham,  2018).  Thus,  ANNs  could  a priori
uncover latent variables that best account for Ca2+ data from astrocyte mini-circuits, and
are non-linearly related. Current ANNs appear well-suited to extract latent variables from
Ca2+  imaging of large populations of neurons (Paninski & Cunningham, 2018), and their
application  to  multidimensional  astrocytic  Ca2+ data  should  be  explored.  Conversely,
ANNs can be also used as generative models, that is, models that infer classes of inputs
from a low number of  latent  variables  (Dosovitskiy,  2015).  Another  statistical  tool  of
machine learning that holds promise is Bayesian hierarchical modeling  (Bishop, 2006).
The  general  idea  is  to  build  a  graph  that  hierarchically  and  probabilistically  relates
relevant variables related to Ca2+ and to other data from connectomics. Indeed, if the
graphs are well-informed about the connectome within mini-circuits, they can be used as
an inverted model to infer the values of the latent variables accounting for Ca2+ signals.
One advantage of these methods is that the number of free parameters is typically lower
than in standard ANNs, which might require massive amounts of data for training. 

Connectomics.  Providing an accurate picture of the synaptic contacts within astrocyte
mini-circuits, in rodents and humans, and in different brain regions, is necessary to help
interpret and model in silico Ca2+-based regimes defined by dimensionality reduction, and
to  identify  constraints  that  could  be  incorporated  into  machine-learning  algorithms.
Specific questions are the density of excitatory and inhibitory synapses (and subtypes of
the latter), their functional interplay in distinct astrocyte regimes defined by Ca2+. For
example, astrocyte mini-circuits might adopt feed-forward, recurrent or mixed patterns,

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960



depending  on  the  behavioral  task,  and  present  hierarchical  organizations  between
astrocytic and neuronal elements, as well  as topological/functional ‘motifs’  and wiring
rules—as shown in the analysis of small neuronal networks (Schroter et al., 2017). Tools
for connectomics include graph theory  (Fornito, 2016), Bayesian hierarchical modeling
(Bishop, 2006), and topological tools  (Kanari et al., 2018; Reimann et al., 2017). In all
these approaches, both morphological and functional readouts could serve as input data.
Morphological readouts of the synaptic architecture of astrocyte mini-circuits at meso-
and micro-scales can be obtained with array tomography,  a form of  light  microscopy
based on the serial sectioning of ultrathin (hundreds of microns) sections, which permits
3D reconstructions at a micrometer/nanometer resolution (Micheva et al., 2010). Array
tomography can be complemented with automated 3D electron microscopy techniques,
such  as  serial  block-face  ANNs  electron  microscopy  (SBFSEM). Crucially,  fixation
methods must not distort contacts within mini-circuits (Korogod et al., 2015). Functional
analyses are more challenging,  for  they will  require development of improved optical
tools  and probes  to simultaneously  monitor  the  activities  of  excitatory and inhibitory
neuronal  populations,  as  well  as  those  of  astrocytes. The emerging combination  of 2-
photon calcium imaging with SBFSEM for examining neural circuits at cellular resolution
may pave the way for subcellular analyses  (Vishwanathan et al., 2017).  Finally, recent
multiplex  Ca2+ imaging  at  a  single  synapse-astrocyte  interface (J.  P.  Reynolds  et  al.,
2018),  application  of  nanotechnology  to  voltage  recording  in  neurons (Jayant  et  al.,
2017), and FRET-based analysis of contacts between synapses and astrocytes (Octeau et
al.,  2018), are advances towards integrating structure and function in astrocyte mini-
circuits. 

7.2.2. Zooming out to astrocyte populations

Decoding astrocytes in complex behavioral tasks. The identification of a astrocytic Ca2+-
based code is a prime objective that, importantly, can be started with current statistical
tools developed to study neuron-based encoding and decoding. Moreover, we argue that
the increased interest in neuronal Ca2+ as a tool to decipher the brain code  benefits the
analysis  of  Ca2+-based  astrocyte  computations  (the  reason  being  that  the  number  of
neurons recorded with optical tools is one order of magnitude higher than with multi-
electrode arrays, see Section 2). For simplicity, here we focus on decoding approaches,
which specifically seek to predict external variables from signal patterns, although tools
to study encoding can also be considered (Section 3). Decoding astrocyte signals entails
measuring Ca2+ activity populations in behavioral paradigms in which several time scales,
including  those  in  the  range  of  action  defined for  Ca2+-based  signaling  in  astrocytes
(hundreds of milliseconds to tens of seconds), are relevant for the task at hand. One such
paradigm is reward-associated decision making over variable contexts in which an animal
must  associate  stimuli  with  choices  (responses)  to  obtain  an  immediate  reward.  The
association can abruptly be reversed, as in the case of reversal learning, where in a given
“context 1,” stimulus A leads to reward whereas stimulus B does not , but in another
“context  2,”  stimulus  B  predicts  reward  instead  (Schoenbaum  et  al.,  2002).  The
performance in such varying contexts involves tracking variables at both fast and slow
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time  scales.  Variables  such  as  ‘immediate  reward’,  ‘confidence’,  ‘option  values’  and
‘choice’  are fast,  represented in  the millisecond time scale,  whereas the deliberation
occurring before a decision is taken lasts hundreds of milliseconds to seconds, and even
up to minutes if this deliberation involves inference about the current context. During
this  time,  the  brain  computes  correlations  between  fast  variables,  and  represents
differences between the prediction based on previous experience and the real outcome as
‘error’.  We  argue  that  the  precise  computation  of  prediction  error  is  key  in  the
identification  of  a  true  association  between  stimulus  and  reward,  such  that  varying
contexts  plausibly  require more complex computations.  Frontal  areas are expected to
track  the  mixture  of  relevant  variables  in  the  form  of  ‘cognitive  maps’.  In  rat,  the
orbitofrontal  cortex  encodes  the  millisecond-long  fast  variables  (Rolls  et  al.,  1996)
(Nogueira et al.,  2017). It  is  unclear, however, how transitions between contexts and
associated deliberations are represented at the much slower time scale of seconds. We
posit that the network may use astrocytes as a buffer to help represent prior history of
rewards and choices, which is necessary to infer the true nature of the current context.
Specifically,  astrocytes  may temporally  integrate error  signals,  or  somehow influence
behavior based on accumulated information through canonical computations such as gain
modulation.  Along  these  lines,  dopaminergic  neuromodulation,  which  signals  reward
prediction error (O'Doherty et al., 2017), might serve to gate information from neurons to
astrocytes, and vice versa. 

Technical and analytical challenges associated with large-scale recordings of Ca2+ rises in
astrocytes  and  neurons. The  specific  experimental  design  we  propose  involves  the
simultaneous recording of Ca2+ activity in astrocytes with 2-photon microscopy in awake
animals (Srinivasan et al., 2015), and Ca2+ or electrophysiological responses in neurons
(Poskanzer & Yuste, 2016). From previous work indicating that with tens of neurons it is
possible to predict animal choices with high accuracy (Kiani et al., 2014; Nogueira et al.,
2017), we reason that tens of astrocytes will suffice to observe statistically significant
trends  that  can  be  used  to  guide  subsequent  recordings  and  analyses.  At  this  time,
optimal  selection of  paradigms and analytical  methods may be more helpful  to  make
significant  leaps  towards  understanding  astrocyte-based  computations  than  massively
increasing the number of astrocytes recorded. Data acquisition, signal processing and
increased dimensionality of the data present additional challenges when there is a need
to  perform  recordings  of  two  cell  types  with  different  Ca2+ dynamics.  As  to  data
acquisition,  although  recent  advances  have  pushed  the  boundaries  of  multi-photon
imaging,  with  significant  improvements  that  enable  imaging  in  multiple  brain  areas,
across  laminae, and in non-head-fixed configurations  (Yang & Yuste, 2017), since these
imaging  methodologies  have  been  developed  specifically  to  record  the  activity  of
neuronal populations, they may not always be translatable to astrocyte populations. For
example,  many of  the technologies  used to carry out  3D two-photon imaging rely on
source  separation  algorithms  that  assume  the  Ca2+ signals  are  non-propagative  and
spatially static. While this is true for Ca2+ imaging of neuronal somata, astrocyte Ca2+

imaging  data  obviously  do  not  obey  these  rules.  Thus,  new  2-photon  imaging
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methodologies born from an astrocytic perspective, particularly those that allow imaging
multiple  laminae simultaneously, are necessary to advance our understanding of these
cells within larger, meso-scale circuits. Another area of improvement for large-scale Ca2+

recording  in  astrocytes  and  spike-recording  in  neurons  is  the  development  of  new
electrophysiological approaches, including flexible polymer probes (Chung et al., 2018)
and clear electrode arrays (Thunemann et al., 2018), to solve the current problem posed
by the large equipment necessary to carry out single-neuron recordings, which precludes
astrocyte  imaging.  Despite  the  advances  in  Ca2+ imaging,  single-neuron
electrophysiological  measurements  are  preferable,  for  Ca2+ transients  lack  temporal
resolution  to  reveal  single-action  potentials.  With  regards  to  signal  processing,  we
described earlier  the state-of  the-art  in  signal  processing in large-scale  recordings  in
neurons, including methods to denoise, demix and simplify Ca2+ data. As for astrocytes,
their readouts to be assessed are Ca2+ signals in microdomains measured in dynamic
ROIs  (Wang et  al.,  2016)  (Agarwal  et  al.,  2017),  and/or  processed  by  dimensionality
reduction techniques as explained above. A priori, dimensionality reduction and decoding
techniques  can  be  used with  data  from astrocyte  and neuronal  populations.  Possible
experimental  scenarios  are  paired  Ca2+ imaging  from  both  cell  types  (e.g.,  low-
dimensional data  per astrocyte could be paired with one optical or electrophysiological
signal  per neuron).  Dimensionality  reduction may reveal  pools  of  neurons interacting
with specific astrocytes. Similarly, both linear and non-linear decoders could be trained
to predict relevant behavioral variables from neuron-astrocyte networks, and to study
which  sets  of  neurons  and  astrocytes  are  more  relevant  for  that  decoding.  Linear
decoding techniques could be used even if the amount of behavioral data is not massive;
so  that  around  ten  trials  per  stimulus-choice  condition  might  suffice  to  obtain  a
description of astrocyte-neuronal interactions at behaviorally relevant time scales.

7.3. Translation: Clinical Systems Neuroscience

When it comes to treatments for CNS diseases, molecular and cellular approaches should
not be abandoned, because they have successfully led to current therapeutic venues. For
example, in multiple sclerosis, relapses are mitigated by immunotherapy against specific
populations  of  immune  cells  (Torkildsen  et  al.,  2016),  and  in  Alzheimer’s  disease,
promising anti-amyloid treatments are being tested in clinical trials (K. V. Kastanenka
et al., 2016; Sevigny et al., 2016). However, there are no effective preventive or disease-
modifying treatments for neurodegenerative and psychiatric disorders, suggesting that
reductionist  approaches aimed at fighting disease one molecule or one cell  at a time
might be insufficient.  Moreover, degeneration of neuromodulatory nuclei  (Kelly et  al.,
2017; Liu et al.,  2015), as well  as large-scale network disruptions  (Westerberg et al.,
2012),  are  hallmarks  of  psychiatric  and  neurodegenerative  diseases.  Clearly,  brain
diseases are associated with dysfunction of neural  systems.  Although the outstanding
question persists of whether such dysfunction is cause, consequence, or epiphenomenon,
the  notion  that  Systems-oriented  research  will  prove  more  fruitful  than  traditional
approaches  to  discovering,  and  thus  manipulating,  the  biological  underpinnings  of
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diseases,  has already been voiced for autism  (Rosenberg et al.,  2015),  and motivates
therapeutic approaches such as deep brain stimulation in Parkinson’s disease (Ashkan et
al., 2017). We anticipate that optogenetic and chemogenetic stimulations will be the most
productive  avenues  in  the  emerging  field  of  Clinical  Systems  Neuroscience  (K.  V.
Kastanenka, Herlitze, S., Boyden, E.S., Tsai, L-H and Bacskai, B.J.,  2017).  First, these
approaches offer the advantage of selective actions at the network and cellular levels—
critically  allowing  the  assessment  of  neuronal  versus astrocytic  effects—since  viral
vectors may be targeted at specific regions through stereotaxic surgery.  Second, they
enable preclinical research in rodents and primates to demonstrate  causality between
network  dysfunction  and  disease  hallmarks  (K.  V.  Kastanenka  et  al.,  2017).  Third,
advances  in  viral  vector  technology  for  gene  transfer  significantly  reduce  vector-
associated  cytotoxicity  and  immune  responses  (Lundstrom,  2018),  rendering
chemogenetics and optogenetics amenable for clinical use in human patients.

8. Concluding remarks

We started this perspective article by posing several questions to guide the analysis of
the role of astrocytes within Systems Neurosciences. We looked for initial  answers in
available studies including measurements of astrocyte Ca2+ activity, targeted optogenetic
and chemogenetic manipulations, and complex behaviors or neural networks. We asked
whether astrocytes are as functionally heterogeneous as neurons. We contend that they
are not. We put forth anatomical, molecular, and computational arguments in support
that  astrocytes  may  operate  modules  akin  to  mini-circuits  in  large  scale  networks,
performing canonical computations throughout the brain. Mathematical analyses of  in
vivo data in parallel with in silico modeling will be necessary to firmly establish existence
and  nature  of  astrocytic  computations,  as  well  as  to  ascertain  whether  they  encode
specific  variables.  We  may  get  closer  to  the  answer  using  decoding  approaches  in
reward-associated  decision  making  over  variable  contexts,  a  complex  behavioral
paradigm in which the brain needs to perform difficult computations within the slow time
scale of astrocytic Ca2+ signals.  Another question was whether astrocytes use Ca2+ to
carry out spatiotemporal integration of multicellular signals. A first insight is that there is
behavior-dependent integration in a time scale of sub-seconds to supra-seconds, perhaps
driven  by  signal  thresholding  and  timing  control.  We  propose  to  use  dimensionality
reduction, a tool developed in the context of machine learning, to identify the minimum
amount  of  ROIs  that  carry  independent  information  in  Ca2+ transients  in  different
contexts. This is a mandatory step towards finding structure in these transients, with the
assumption that astrocytic Ca2+ responses behave like a dynamical system that can adopt
multiple regimes. Thus, the question of whether subcellular compartments in astrocytes
perform different  functions  ought  to  be  reformulated  to  whether  there  are  function-
specific Ca2+ regimes.  Further,  we identify  technical  and analytical  shortages in joint
astrocyte-  and  neuron-population  imaging,  and  ensuing  data  processing  algorithms.
Finally, we point to theoretical frameworks used by Systems Neurosciences that might
benefit from the inclusion of astrocytes. Many avenues of exploration remain. To mention
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just  two  of  them,  we  have  the  role  of  astrocyte-based  computations  in  long-term
processes underlying memory, perhaps by intervening in memory replay in the so-called
resting brain, and the failure of neural circuits including astrocytes in neurodegenerative
and psychiatric  diseases.  Decoding  astrocytes  may represent  a  leap forward towards
novel approaches in the study of astrocytes in health and disease.
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   TOCI

Main points:

         Astrocytes may use Ca2+ signals to perform canonical computations in 
complex behaviors on a time scale of sub-seconds to seconds.
 
         Statistical tools from Systems Neuroscience can be adapted to unravel 
variables and algorithms encoded by astrocytic Ca2+.
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Figure 1. Workflow in Systems Neuroscience.  A central problem in Neuroscience is
to explain how electrical and chemical signals are used in the brain to represent and
process information.  The workflow depicts  the stages and the tools  currently used to
decipher neuronal codes. In red squares we highlight the elements that are relevant to
the study the role of astrocytic Ca2+ in neuronal coding.
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Table 1. System-like studies in astrocytes
Direction of

experimental
manipulation

Stimulation Neural
circuits

Readouts References
Predicted
canonical

computations

BEHAVIOR
↓

ASTROCYTES

Sensory
stimulation

Barrel cortex
Astrocytic Ca2+; LFP; local postsynaptic

activity (X. Wang et al., 2006)
  Filtering
  Thresholding
   State 
switching

Astrocytic Ca2+; LFP; brain state (Takata et al., 2011)*

Visual cortex

Astrocytic Ca2+; neuronal Ca2+;
hemodynamic responses

(Schummers et al.,

2008)

(Stobart et al., 2018)
Astrocytic Ca2+; EPSP; IPSP; SIC; patch-

clamp recordings; visual response selectivity (Perea et al., 2016)*  Gain control

Hippocampus Astrocytic Ca2+; LTP; CA1 post-synaptic
depolarization (Navarrete et al., 2012)

  Thresholding
  Coincidence 
detection
  Gain control

Neuromodulati
on

Cholinergic
Astrocytic Ca2+; LFP; brain state (Takata et al., 2011)*   Thresholding

  Coincidence 
detection
  Gain control
  E/I balance

Noradrenergi
c

Astrocytic Ca2+; EcoG (Ding et al., 2013)

Astrocytic Ca2+; locomotion;
electromiography (Paukert et al., 2014)

ASTROCYTES
↓

BEHAVIOR

Optogenetics

Cerebellum
Glutamate release; EPSP; LTD; motor

behavior (Sasaki et al., 2012)  Gain control

Somatosensor
y cortex

Astrocytic Ca2+; neuronal Ca2+; LFP;
glutamate release; brain state

(Poskanzer & Yuste,
2016)

 Gain control
 E/I balance
 State 
switching

Visual cortex
Astrocytic Ca2+; EPSP; IPSP; SIC; patch-

clamp recordings; visual response selectivity (Perea et al., 2016)*  Gain control

Brain stem
Astrocytic Ca2+; ATP release; neuronal
membrane potentials; EPSC; breathing (Gourine et al., 2010)

 Gain control
 Gain control
 E/I balance

Hypothalamus

Sleep (Pelluru et al., 2016)
Adenosine release; open-field behavior; food

intake (Sweeney et al., 2016)

Astrocytic Ca2+; patch clamp recordings;
IPSC; food intake

(Chen et al., 2016; L.

Yang et al., 2015)

Hippocampus
Astrocytic Ca2+; LTP; EPSC; memory

acquisition; contextual and spatial memory (Adamsky et al., 2018)

Chemogenetics
Amygdala Astrocytic Ca2+; IPSC; EPSC; fear-expression

(Martin-Fernandez et
al., 2017)

 Gain control
 E/I balance
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LFP, Local field potentials, LTD, long-term depression, LTP, long-term potentiation, EPSP, excitatory postsynaptic potential, IPSP, inhibitory
postsynaptic potential, ECoG, electrocorticogram recordings, SIC, slow inward currents, *Belonging to more than one category
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