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Abstract

Conducting global sensitivity analysis using variance decomposition

methods in complex simulation models with many input factors is usu-

ally unaffordable. An alternative is to first apply a screening method to

reduce the number of input factors and then apply a variance decompo-

sition method to the reduced model. However, usually selection of input

factors is not done robustly and convergence of the screening method is

not ensured.

We propose two new criteria, a criterion that mimics the visual se-

lection of the input factors and a convergence criterion. In the applica-

tion of the criteria to a complex model, the Morris screening method has

needed 200 trajectories to converge and the visual criterion has outper-

formed other existing criteria. Our proposal ensures a robust combination

of the Morris and the Sobol methods that provides an objective and auto-

matic method to select the most important input factors with a feasible
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computing load to achieve convergence.

Keywords: convergence criterion, global sensitivity analysis, Morris

elementary effect method, selection criterion, Sobol variance

decomposition method

1. Introduction

1

Simulation models are useful tools to provide a better understanding

of the environmental systems. One of the big issues when using simula-

tion models is their validation, that is, to ensure the model is good enough

to meet its intended purpose (Rykiel, 1996; Schmolke et al., 2010). Balci

(1997) presented a long list of techniques for the validation of simulation

models divided in four groups: Informal techniques which rely on human

reasoning and lack mathematical formalism, Static techniques which are

concerned with accuracy assessment on the basis of characteristics of the

static model design and source code, Dynamic techniques which evaluate

the model based on its execution behavior and Formal techniques which

1List of abbreviations used throughout the manuscript:

• AEE: absolute elementary effect

• CV: coefficient of variation

• GSA: global sensitivity analysis

• SSB: spawning stock biomass

• TAC: total allowable catch

2



are based on the mathematical proof and correctness. Global sensitivity

analysis (GSA) which has been proposed by several authors as a key ingre-

dient in the validation process of simulation models (Saltelli et al., 2000;

Rabitz, 1989) is in the third group, the dynamic techniques.

Variance based GSA examines the relation between the variance of the

output of the simulation models and the variance of their input factors

(Saltelli et al., 2008). Several methods for performing GSA exist, from

simple scatterplots to the more complex Sobol variance decomposition

method (the Sobol method, Sobol (1993)) (see Pianosi et al. (2016), Bor-

gonovo and Plischke (2016) or Norton (2015) for recent reviews on exist-

ing methods and practices). The Sobol method is frequently considered

the reference method for variance based GSA (Yang, 2011; Confalonieri

et al., 2010; Sarrazin et al., 2016; Homma and Saltelli, 1996). The method

can be used to rank the input factors according to their effect on the results

and to estimate each input factor’s contribution to the output variance.

Two of the main drawbacks of this method are its high computational cost

and its inability to represent the outputs’ uncertainties correctly if the

model output is highly skewed (Borgonovo, 2011; Pianosi and Wagener,

2015).

The computational cost of applying the Sobol method on highly non-

linear simulation models with many input factors could be unaffordable.

In those cases, a frequently used alternative is to combine the Sobol method

with the Morris elementary effects method (the Morris method) (Morris,

1991; Campolongo et al., 2007). In this framework, the Morris method

is used to select the input factors to be considered later on in the Sobol
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method. The Morris method consists of calculating the elementary effect

for each input factor on each output variable. Afterwards, the most im-

portant input factors are selected visually by identifying the set of input

factors that are distinguished from the others because of their high mean

absolute elementary effect value. This selection is feasible when the num-

ber of output variables is small; however, when this number is high, it can

be inaccurate and biased. Furthermore, to assess the convergence or to

calculate the confidence intervals using bootstrapping, the selection pro-

cedure should be automated.

In the literature a pre-specified number of input factors, the same for

all the output variables, is often used to select the most important input

factors in each output variable (Hussein et al., 2011; Morris et al., 2014;

DeJonge et al., 2012). Campolongo et al. (2007) proposed using Savage

scores (Savage, 1956) in the ranking of each output variable and ordering

the input factors according to the sum of their scores. However, we have

not found any other example using this method in the literature. Both cri-

teria would lead to the selection of unimportant input factors if, for exam-

ple, for an output variable the variance is explained by only a few number

of input factors. The fixed number of factors criterion would select the

agreed number of input factors even if some of them are unimportant and

the Savage criterion would assign a high score to all the input factors in

the top of the ranking even if they have low relevance. Furthermore, the

criterion based on Savage scores penalizes the input factors that are im-

portant in only one output variable in favor of those that are important in

several output variables, even if they are correlated.

4



Sarrazin et al. (2016) proposed three criteria to assess the convergence

of the Morris and Sobol methods. Nevertheless, none of these criteria was

designed to ensure the convergence of the Morris method when the ob-

jective is to select the most important input factors, being the number of

selected input factors equal to a pre-specified number. But this objective

arises naturally when the goal is to combine the Morris and Sobol methods

to reduce the computational cost of the analysis. In this case, the criteria

defined by Sarrazin et al. (2016) could lead to a computational surcharge .

To overcome these problems, new selection and convergence criteria

are defined here for the Morris method. The selection criterion, referred

here as the calibrated visual criterion, provides a systematic basis for the

screening process. In turn, the convergence criterion ensures that the pro-

cedure has converged to the group of the most important input factors,

which are those that will be proposed to enter into the Sobol method.

The objective of this study is to define a procedure for robustly select-

ing the input factors that will be considered in the Sobol method after the

Morris method is applied. We illustrate the approach using a complex

implementation of the FLBEIA bio-economic fisheries simulation model

(Garcia et al., 2017b), where the number of input factors is 133. The per-

formance of the calibrated visual criterion is compared with the perfor-

mance of the criterion that selects a fixed number of factors and the crite-

rion based on Savage scores (from now on the Savage criterion). The refer-

ence for the evaluation are the rankings obtained for each output variable

using the Sobol method and the ranking for multivariate output models

obtained with the method by Lamboni et al. (2011). The convergence of
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the Sobol method is assessed using the criterion defined by Sarrazin et al.

(2016).

2. Material and Methods

Several methods to perform sensitivity analysis (Saltelli et al., 2008;

Norton, 2015) are available. For highly nonlinear and computationally

costly models the combination of the Morris and the Sobol methods is

recommended (Campolongo et al., 2007); the first to identify the most im-

portant input factors at low computational cost and the second to obtain

a detailed decomposition of the output variance as a function of the input

factors identified by the Morris method.

2.1. The Morris elementary effects method

Morris introduced the elementary effects method in 1991 (Morris, 1991)

and other authors developed it further (Campolongo et al., 2007, 2011;

Ruano et al., 2012). It is an effective mean of identifying important in-

put factors at a lower computational cost than the Sobol method (Saltelli

et al., 2008). Campolongo et al. (2007) improved the method’s conver-

gence through more efficient sampling of the input space. Furthermore,

they developed an expression that allows grouping of input factors and

their treatment as if they were a single input factor, with the subsequent

reduction in computational cost. Extension of the methods of Campo-

longo et al. (2007) and criticism of their examples appeared in Norton

(2009).

The method consists of evaluating the simulation model, ϕ, along a

set of trajectories, P, defined in the unit hypercube, ω = [0,1]K , where K
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corresponds with the number of input factors. When the existence do-

main of the model is different to the unit hypercube, the trajectories are

transformed into the model’s original domain, Ω, using a transformation

function. The absolute elementary effect (AEE) is calculated for each in-

put factor Xk, for k ∈ {1, ...,K} and for each trajectory in P. For simplicity

of notation, we will omit the k subscript for the input factor whenever it

is not necessary in the context. Therefore, the AEE for input factor Xk and

trajectory p is defined as:

AEEp,Xk (X) =
|ϕ(X)−ϕ(X ′)|

∆
(1)

where ϕ denotes the simulation model, ϕ(X) = Y where Y = (Y1, . . . ,YJ )

represents the output of the model, J denotes the number of output vari-

ables, X and X ′ are two consecutive points in the trajectory p that differ

only in the value of Xk and ∆ is the width of the subintervals in the Morris

method. Finally, the AEE of the input factor Xk, AEEXk , is equal to the

mean of the AEEs along all the trajectories:

AEEXk =

∑
p∈P

AEEp,Xk

R
: k ∈ {1, . . . ,K} (2)

where R denotes the cardinality of P. The AEE-s are calculated for each

output variable. Hence, for each input factor Xk there is a set of absolute

elementary effects {AEEXk ,Yj }
j=J
j=1, where j is the subscript for the output

variable. For simplicity of notation, we will omit the j subscript for the

output variable whenever it is not necessary in the context.

The following subsections present the calibrated visual criterion to se-

lect the most important input factors and the convergence criterion for the
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Morris method.

2.1.1. The calibrated visual criterion

First, we define three selection criteria that jointly provide mathemat-

ical sense to the criterion used in the visual selection. To give a closed

expression for the three criteria, for each output variable Y , we order the

input factors according to their AEE value, i.e., AEEX1,Y ≤ AEEX2,Y ≤ . . . ≤

AEEXK ,Y and define F as the set of all the input factors.

1. Fixed number of factors: The selected input factors are those that ver-

ify that their AEE are among the δF input factors with the highest

AEE for at least one output variable Yj0 . The set of selected input

factors is denoted as FF and it is defined as,

FF =
{
X ∈ F : ∃j0 ∈ {1, . . . , J} s.t. AEEX,Yj0 > AEEXK−δF ,Yj0

}
(3)

2. Factors with high AEE value: The selected input factors are those that

verify that their AEE is higher than a proportion, δH, of the maxi-

mum value of all the AEE-s for at least one output variable Yj0 . The

set of selected input factors is denoted as FH and it is defined as,

FH =
{
X ∈ F : ∃j0 ∈ {1, . . . , J} s.t. AEEX,Yj0 ≥ δH ·max{AEEXk ,Yj0 }

K
k=1

}
(4)

3. Factors distinguished from the others: The selected input factors are

those that verify that the difference between all the consecutive AEE-

s is higher than a proportion δD, for all the AEE-s with a higher AEE
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than the input factor itself, for at least one output variable Yj0 . The

set of selected input factors is denoted by FD and it is defined as:

FD =

X ∈ F : ∃j0 ∈ {1, . . . , J} s.t.

AEEXk ,Yj0 −AEEXk−1,Yj0

AEEXK ,Yj0
≥ δD, ∀Xk : AEEXk ,Yj0 > AEEX,Yj0

 (5)

Then, given P a set of trajectories along ω and KEE < K the number

of input factors we intend to enter into the Sobol method, the calibrated

visual criterion is defined as the weighting of the three criteria defined

above and it is applied as follows.

1. Evaluate the model at the points that form the trajectories in P and

calculate the {AEEXk ,Yj }
K
k=1 for all j ∈ {1, . . . , J} using equation 2.

2. Find the parameters δF, δH, and δD that result in the selection of

KEE input factors. With the fixed-number of factors criterion, it may

be impossible to select exactly KEE input factors, in which case δF

is selected as the minimum number of input factors that results in

selecting a total number of input factors equal or bigger than KEE .

3. To support calibration of the selection criterion, conduct a visual se-

lection of the input factors. A set of input factors is selected for each

output variable and the resulting sets are then merged in a single set

FV. The selection is done in such a way that the cardinality of FV is

equal to KEE .

4. Apply the weighted criterion for the 3 previously defined criteria

using different combination of weights. Firstly, define a three di-
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mensional set of values that provide a good coverage of the unit hy-

percube. Secondly, for each triplet in the set of weights and each

output variable, the number of input factors selected is equal to the

weighted mean of those selected with each of the three criteria. Fi-

nally, once the number of input factors to be selected for each triplet

is decided, the ones with the highest AEE are selected. Then, the

set of input factors that corresponds to each triplet of weights, FW,

is formed by the union of the sets of input factors selected for each

output variable.

5. For each triplet compare the corresponding set of input factors cal-

culated in the previous step , FW, with FV. Then, identify the weights,

wF,wH and wD that produce the largest intersection between both

sets and among those select the triplet that produces the smallest

cardinal of FW .

Thus, we obtain a procedure that uses the same criterion for the se-

lection of input factors in all the output variables. Furthermore, the input

factors selected with this procedure highly agree with the visually selected

ones.

2.1.2. Convergence criterion

We consider that the Morris method has converged when the input fac-

tors identified as the most important do not change when the cardinal of P

is increased. We assess convergence using bootstrapping and the selection

criterion defined previously.

First, we generate randomly a sufficiently large set of trajectories, P,
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with cardinal R. Then, using the method in Campolongo et al. (2007) we

find the set of trajectories Pr for different values of r such that r < R. In

particular, for each i and l such that ri < rl , once AEE-s are calculated for

Pri , we need only to evaluate the model in the trajectories that are not

included in Pri in order to calculate AEE-s for Prl .

For each r, we perform the bootstrapping in three steps using Nboot

iterations:

1. Apply the calibrated visual criterion to Pr to obtain the weights, wF,

wH, wD as proposed for the calibrated visual criterion.

2. Sample with replacement r trajectories from the original set Pr .

3. Find the value of the parameters δF, δH, and δD as proposed for the

calibrated visual criterion.

4. Apply the calibrated visual criterion to that sample using the set of

parameters {wF,wH,wD,δF,δH,δD} obtained in previous steps.

5. Repeat the process Nboot times.

To assess convergence, we define the indicator mrX for each r and each

input factor X:

mrX =
Nboot∑
i=1

πrX(i) (6)

where πrX is equal to 1 if input factor X has been selected in iteration

i, and 0 otherwise. If an input factor is selected in all the bootstrap itera-

tions, i.e., if mrX = Nboot, the input factor is among the most relevant ones.

Therefore, to identify the KEE most important input factors, it would be
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sufficient to increase the number of trajectories r until KEE input factors

are selected in all the bootstrap iterations.

However, this condition could be very demanding, and therefore, the

criterion can be relaxed using a proportion α of Nboot. We define Fr as the

set of input factors selected in, at least, α ·Nboot bootstrap iterations when

r trajectories are used:

Fr =
{
X ∈ F :mrX ≥ α ·Nboot

}
(7)

If Kr is the cardinality of Fr , Kr increases with r and we consider that

the process has converged when ∃r0 ≤ R such that:

Kr0 = Kr0+1 = . . . = Krmax
(8)

In general Krmax
is lower than KEE because the number of input factors

selected in each bootstrap iteration are constrained to result in the selec-

tion of KEE input factors. Hence, in general, those selected in α · Nboot
bootstrap iterations will be equal or lower than KEE .

When convergence has been achieved for the number of input factors

to be selected, we define three criteria to select the input factors to be

considered when applying the Sobol method, FM.

The set of input factors selected with the maximum r, rmax, used in the

application of the Morris method:

FM = Frmax
(9)
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The union:

FM =
rmax⋃
r=r0

Fr (10)

The intersection:

FM =
rmax⋂
r=r0

Fr (11)

The three criteria yield a different number of selected input factors,

because in the distribution tail of the AEEs some input factors go in and

out of Fr . In terms of selecting a smaller number of input factors, the most

restrictive option is the third, whereas the second is the most conservative,

and the first is intermediate. As a general procedure, we can examine

the degree of difference between the three options in terms of the set of

selected input factors.

Figure 1 shows the application of the whole proposal including the two

criteria, the calibrated visual criterion for selection and the bootstrap for

convergence.

2.2. Sobol variance decomposition method

The Sobol method consists of the decomposition of the output variance

as a function of the variance of the conditional expectations of the output

on any combination of input factors (Sobol, 1993). Homma and Saltelli

(1996) proposed summarizing the contribution of the input factors to the

output variance using two sensitivity indices: first-order and total-effects.

The first is equal to the ratio between the variance of the conditional ex-

pectation of the model output on k-th input factor and the total variance
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Figure 1: Steps for the application of the selection and the convergence criteria

given P a set of trajectories and r the number of trajectories to use in the analysis.14



of the model output, mathematically:

Sk =
V (E(Y |Xk))
V (Y )

(12)

where Xk denotes the k-th input factor, Y = ϕ(X) is the unidimensional

output of the simulation model represented by ϕ and X = (X1, . . . ,XK ) rep-

resents the model input. This index represents the contribution of the k-th

input factor to the output variance in isolation.

In turn, the total-effect is equal to the expected value of the conditional

variance of the model output on all the input factors but one, the k-th in-

put factor, denoted here as X∼k. It represents the contribution to the vari-

ance of the k-th input factor alone and in combination with the remaining

input factors. Mathematically it is written as:

STk =
E(V (Y |X∼k))

V (Y )
(13)

In simple cases, the sensitivity indices can be calculated analytically.

However, in most cases the models are too complex to allow the deriva-

tion of analytical expressions for equations 12 and 13. Saltelli et al. (2010)

compared different approaches for calculating the Sobol sensitivity in-

dices using Monte Carlo simulations. Here, we use the approach that was

identified as the best in terms of the convergence rate.

First, two independent matrices of dimensionN ×M are constructed, A

and B, the so-called sample and re-sample matrices, whereN andM are the

number of base simulations and input factors of the model, respectively.

The input factors can be multivariate, and therefore, M can be larger than

the number of input factors in the model, K . When the input factors are
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divided in groups, instead of considering every input factor alone, the ele-

ments in the Sobol decomposition that include this input factor represent

the contribution to the variance of all the input factors in the group as a

whole, in isolation in the case of first-order index, and in combination with

other sets of input factors, in the case of the rest of the elements in the

decomposition of variance. Hence, the input factors should be grouped

sensibly to obtain meaningful results.

Second, additional K matrices, {Ck}k∈1,...,K , are constructed from the

A and B matrices. Each Ck matrix is equal to A, except in the columns

that correspond to the k-th input factor, which are taken from matrix B.

Finally, the model is applied to each of the rows of A, B, and {Ck}k∈1,...,K
matrices. The numerator in equation 12 is then approximated by:

V (E(Y |Xk)) =
1
N

N∑
i=1

ϕ(Bi.) ·
(
ϕ(Ck,i.)−ϕ(Ai.)

)
(14)

where Ai., Bi. and Ck,i. denote the i-th row of matrices A, B, and Ck,

respectively. In turn, the numerator in equation 13 is estimated as:

E(V (Y |X∼k)) =
1

2N

N∑
i=1

(
ϕ(Ck,i.)−ϕ(Ai.)

)2 (15)

Finally, the total variance V (Y ) is approximated by:

V (Y ) =
1
N

N∑
i=1

ϕ(Ai.)
2 −

 1
N

N∑
i=1

ϕ(Ai.)


2

(16)

The convergence of the estimators can be assessed using the bootstrap

confidence intervals’ width (Sarrazin et al., 2016).
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2.2.1. Multivariate outputs

The generalized sensitivity indices proposed by Lamboni et al. (2011)

are the equivalent of the sensitivity indices defined in the previous section

but for the overall variance of the output of a model with a multidimen-

sional output. The generalized indices are based on the work of Campbell

et al. (2006) who proposed to decompose the multivariate output in an or-

thogonal system and then apply the sensitivity indices to the most infor-

mative components individually. Lamboni et al. (2011) developed further

the idea proposed by Campbell et al. (2006) and using principal compo-

nent analysis as orthogonal decomposition, proved that the first-order and

total-effect indices calculated on the sum of the principal components are

to multivariate outputs what the Sobol sensitivity indices are to the uni-

variate one.

2.3. Performance of the selection criterion

Two performance indicators are defined to evaluate the performance of

the calibrated visual criterion and other two selection criteria, the selec-

tion of a fixed number of factors for each output variable and the criterion

based on Savage scores (Campolongo et al., 2007). They are based on the

total-effect indices calculated on the reduced simulation model obtained

introducing variability exclusively in the KEE input factors selected with

the Morris method. The first performance indicator, uses the set of Sobol’s

total-effect sensitivity indices for each output variable Yj , S
j
T = {SjTk }

KEE
k=1, to

assess the performance of the criterion, where SjTk denotes the total-effect

of the k-th input factor for output variable Yj . In turn, the second one, the

generalized performance indicator, uses the generalized total-effect indices

17



for multivariate output defined by Lamboni et al. (2011), GT = {GTk }
KEE
k=1,

where GTk denotes the generalized total-effect index of k-th input factor.

To assess the performance of the criterion under different conditions,

the performance indicators are calculated for different sets of output vari-

ables Γ and different number of input factors in the Morris method. Let us

Z denote the number of input factors used in the fixed number of factors

criterion to calculate the set of input factors in the Morris method. Then,

the performance indicators are calculated as follows:

• The fixed number of factors criterion is applied to the Morris ele-

mentary effects selecting the Z input factors with the highest ele-

mentary effect value. The resulting number of selected input factors

is denoted as KEE,Z.

• The calibrated visual criterion is applied using KEE,Z number of in-

put factors as threshold.

• The Savage criterion is applied selecting the KEE,Z input factors with

the highest score.

• For a given selection criterion, to calculate the performance indica-

tor for output variable Y , first the corresponding total-effect values

are assigned to the input factors selected in the application of the

criterion, {X1, . . . ,XKEE,Z
}, i.e :

ρ
j
k =


0, if Xk < FM.

S
j
Tk∑KEE

i=1 S
j
Ti

, otherwise.
(17)
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where SjTk corresponds with the total-effect of input factor Xk for out-

put variable Yj . Then, the first performance indicator, Θ, is calcu-

lated as the ratio between the sum of all the ρjk over all the input

factors selected by the criterion and all the output variables in Γ .

The sum is then divided by the number of output variables to place

the possible values of the indicator between 0 and 1.

Θ =
1
|Γ |

|Γ |∑
j=1

KEE,Z∑
k=1

ρ
j
k (18)

The second performance indicator, the generalized indicator, ΘG, is

calculated similarly but instead of having one total-effect index per

output variable Y , there is only one total-effect index for all the out-

put variables. Hence, ρ depends only on the input factors and in

equation 18 the sum along output variables and the division by the

number of output variables disappear.

In the comparison of the three criteria the one with the highest Θ is the

criterion which produces the best selection of input factors. Values of Θ

equal to 1 indicate that the input factors selected by the criterion are the

KEE,Z input factors in the top of the ranking, for all the output variables

in the case of the first indicator, and for the ranking obtained with the

generalized total-effect index in the case of generalized one. The procedure

is not applied to Z = 1 because it implies to select δH and δD in such a way

that only one input factor per output variable is selected, i.e., the three

criteria are equivalent.
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2.4. Illustrative Example

2.4.1. General description

The approach is illustrated using a complex implementation of FLBEIA

(Garcia et al., 2017b), a bio-economic simulation model that is used to de-

scribe fishery systems. In FLBEIA the fishery system is divided in two

main components, the real system that includes the fish stocks and the

fishing fleets, and the management system that is formed by the data

collection, the assessment model and the management advice. The main

components of FLBEIA are represented in Figure 2. All the variables in the

real system are subject to natural variability and the variables observed in

the management procedure are subject to epistemic uncertainty.

The model has been applied to the demersal fishery operating around

the Iberian Peninsula in southern Europe. This fishery comprises seven

fleets, the activity of which is divided into segments called metiers. The

model includes explicitly the stocks caught by the fleets for which ab-

solute estimates of abundance are available: hake, horse mackerel, four

spot megrim, megrim, and monkfish. Furthermore, the model includes

three widely distributed stocks, western horse mackerel, mackerel, and

blue whiting, because of their economic relevance. However, as the catch

extracted is a marginal part of the total catch of these stocks, the impact on

their biomass is minor and therefore, it has been assumed constant along

the simulation. The remaining stocks have been aggregated, at metier

level, in one total stock called OTH. As no abundance estimate for any

of these stocks exists, it has been assumed that the catch is a function of

the metier’s effort and independent of biomass.
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Figure 2: Conceptual diagram of the management strategy evaluation approach.

The operating model represents the fishery system and the management proce-

dure reproduces the actual management process step by step. The ellipses cor-

respond to the components of the FLBEIA model. The diagram has been taken

from Garcia et al. (2017b)
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A brief description of the submodels used to describe the processes

that constitute this specific implementation of FLBEIA is given in Table 1.

A detailed description of the case study appears in Garcia et al. (2017a).

Table 1: Models used for each stock and fleet in each model component.

Component Stock/Fleet Models Used

O
p
er
at
in
g
M
od

el B
io
lo
gi
ca
l

Hake Exponential Survival & Ricker Recruitment Model
H.Mackerel

Exponential Survival & Segment Regresion Recruitment Model
4 Spot Megrim
Megrim
Monkfish

Western H. Mackerel

Age Structured Fixed PopulationMackerel
Blue Whiting

OTH No population dynamics

Fl
ee
t

Trawlers Multi-metier fleets. Effort share given as input data
Gillnetters Total effort based on the quota share of all the stocks
Longliners Entry-Exit model

P. Trawlers Single Metier fleets
P. Polivalent Total effort based on the quota share of the target stock
S. Purse Seiners No economics considered.
P.Purse Seiners

M
an

ag
em

en
t
P
ro
ce
du

re O
b
se
rv
at
io
n

Hake All the variables are oberved with error
H.Mackerel Two types of errors, multiplicative and aging error
4 Spot Megrim Stock numbers and fishing mortality at age generated,
Megrim with error, in the observation model
Monkfish

Rest of the stocks Not observed

A
ss
es
s.

All the stocks No assessment model

A
d
vi
ce

Hake
H.Mackerel The harvest control rule (HCR) used by
4 Spot M. International Council for the Exploration of the Sea (ICES)
Megrim in the framework of MSY.
Monkfish

Western H. Mac.

The historical TAC with uncertaintyMackerel
Blue Whiting

2.4.2. Uncertainty Conditioning

Table A.5 in Appendix A shows a description of the K = 133 input

factors of the model. Some of them are single input factors and others

correspond with a set of input factors introduced in the model as a group
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(Cariboni and Campolongo, 2004). As a general rule, a uniform distri-

bution has been used to simulate uncertainty in the input factors. The

exceptions are maturity and retention curves, effort share along metiers,

and aging error. The values of maturity and retention curves have been

simulated using a beta distribution and effort share and aging error using

a Dirichlet distribution. The parameters of the distributions have been

obtained constraining the mean to the value in Garcia et al. (2017a) and

the coefficient of variation (CV) to a 30%. In the case of multiplicative

observation errors, that are not included in Garcia et al. (2017a), a mean

equal to one has been used, i.e, the errors are unbiased. The aging error

has been modeled using a square matrix in which elements ail describe

the probability of assigning age i to a fish of age l, and corresponds to

the expected value of the Dirichlet distribution. The matrix is the ”noise-

only, unbiased” matrix in Reeves (2003). Following recommendations in

Saltelli et al. (2010), we have sampled the unit hypercube using the Sobol

pseudo-random sequences (Sobol, 1967) to accelerate convergence. For

univariate input factors, the values have been transformed from the unit

hypercube to the original space Ω using inverse transformation method.

The conditioning and transformation of effort share and aging error has

been done using the procedure proposed in Devroye (1986) for Dirichlet

distribution.

2.4.3. Output variables

The output of the simulation model has been summarized using five

variables per stock and four variables per fleet, which results in J = 37 out-

put variables per year. The stock variables are the spawning stock biomass
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(SSB) and recruitment, which are related to the stock abundance, fishing

mortality, and catch, which are representative of their exploitation level,

and the total allowable catch (TAC), which is the output of the decision-

making process. The fleets’ performance has been summarized using ef-

fort, profits, gross value added, and number of vessels. Effort represents

the fleets’ activity, the profits represent their economic performance, the

gross value added is a measure of the goods produced by the fishing activ-

ity and the number of vessels shows the variation in the capital.

3. Results

3.1. Morris Elementary Effects Method

First, we have generated a set of R = 1000 trajectories, P, along ω.

Then, for r = 25,50,100, 150,200,250,300, we have applied the procedure

described in Campolongo et al. (2007) to find Pr .

In terms of illustration, the calibrated visual criterion has been applied

with the objective of reducing the number of input factors to the half, i.e,

KEE = 67. However, any other objective would be also valid. A set of

weights covering the unit cube with intervals of 0.01 width has been used

for the weighting procedure. Several weight combinations produce the

best match with the visual selection, and therefore, the combination that

minimizes the euclidean distance to (1/3,1/3,1/3) has been chosen. For

r = 300, the greatest weight, 0.53, has been assigned to the fixed number

of factors criterion, 0.35 to the high AEE value criterion and 0.12 to the

difference in AEE criterion.

The method’s convergence has been assessed using a bootstrap with
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Nboot = 500 iterations. The number of input factors selected in the 500

iterations increases quickly with the number of trajectories. With r = 25

trajectories, only 19 input factors have been selected in all the iterations

and with r = 300 this number has increased to 50 (Figure 3). When the

criterion is relaxed to 95% of the iterations, for r = 25, 42 input factors

are selected and then the number of input factors increases steadily and

becomes stable at 55 input factors for r ≥ 200. The sets F200,F250, and

F300 differ in one factor. This occurs because the difference in the value of

the AEEs of the input factors that are not in the top of the ranking is so

small that the ranking in those positions needs more iterations to stabilize.

Hence, to be cautious, we have used the union criterion for r ≥ 200, which

results in the selection of the 56 input factors listed in Table 2.

Figure 3: Number of input factors selected in all the bootstrap iterations (tri-

angles) and the number of those selected in 95% of the iterations (squares) as a

function of the number of trajectories used in the computation of the elementary

effects.

Although the objective is to select 67 input factors, only 56 have been
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Table 2: Input factors identified as important by the Morris elementary effects

method. SRR = Stock recruitment relationship, Obs. = Observation, HKE = hake,

HOM = horse mackerel, LDB = four spot megrim, MEG = megrim, MON = monk-

fish, PTB = Pair trawlers, DTS = Trawlers.

Stock Level
Factors Stock

Aging Error all
Maturity HKE, MON
Natural Mortality all
Weight all
Initial Population HKE, HOM
SRR parameters all
Uncertainty around SRR all
Obs. error in abundance HKE, HOM, MEG, MON
Obs.error in weight all
TAC MAC, HO8

Fleet Level
Factor Fleet

Crewshare ALL
Effortshare ALL
FuelCost DTS
Maximum days at sea ALL
w1 DTS

Fleet-Metier and Stock level
Factor Stock Fleet-metier

Cachability HKE PTB metier in DTS SP
Cachability HO8, LDB, MAC, MEG all

finally selected. The number of input factors selected with the calibrated

visual criterion in each bootstrap iteration varies between 60 and 72, with

median equal to 66 and mode equal to 67. The number of input factors is

not always equal to 67. Even if the number of input factors selected by the

fixed number of factors criterion is 67, the application of the weighted cri-

terion does not guarantee that the number of input factors selected is 67.

This happens because whereas the restriction of selecting 67 input factors

is applied to the three criteria globally, the weighted criterion is applied at

output variable level. Afterwards, in the analysis of convergence only 56
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input factors have been selected in 95% of the bootstrap iterations. There-

fore, there is a set of more than 10 input factors entering and leaving the

group of the most important 67 input factors. That is, the number of in-

put factors in the calibrated visual criterion should be increased to end up

with a larger group of selected input factors. However, the difference be-

tween the input factors that are not in the top of the ranking is that small

that the ranking of those input factors is difficult to stabilize.

In general, for recruitment, spawning stock biomass, TAC, and num-

ber of vessels, there is a set of input factors that are differentiated from

the rest because of their higher AEE value (see the graphs in the supple-

mentary material S1, S2 and S3). However, for the remaining variables the

differentiation is not equally clear. For most of the output variables, the

difference between the number of input factors selected visually and those

selected with the calibrated visual criterion is equal or lower than one (Ta-

ble 3). The biggest difference is obtained in the profits of trawlers where

visually 12 input factors are selected and with the calibrated visual crite-

rion only 7. When a set of input factors exists that is clearly distinguished

from the rest, the visual selection is more precise. However, when the dif-

ferentiation between sets is unclear, in the case of fishing mortality and

output variables relative to hake, for example, the calibrated visual crite-

rion tends to select more input factors. Furthermore, the variability in the

number of input factors selected is higher for the visual criterion and the

number of input factors selected is lower in general. Although variable by

variable some differences exist between the visual and calibrated criteria,

as the input factors are aggregated in a single set and the most important
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input factors appear at the top of many of the variables, at the overall level

the differences are small.

Table 3: Number of input factors selected by each of the selection criteria for

each output variable. The column ’Fixed’ corresponds with the fixed number of

factors criterion, ’High’ with the factors with high AEE value criterion, ’Diff’ with

the factors distinguished from the others criterion, ’Visual’ with the number of fac-

tors selected visually and ’Calib.’ with the visual calibrated criterion. (F = fishing

mortality, Rec. = Recruitment, Prof. = Profits, Eff. = Effort, nVes. = Number of

vessels, HKE = hake, HOM = horse mackerel, LDB = four spot megrim, MEG =

megrim, MON = monkfish, DFN = gillnetters, DTS = trawlers and HOK = long-

liners).

Fixed High Diff. Vis. Calib. Fixed High Diff. Vis. Calib.

HKE 6 5 2 5 5 HKE 6 8 9 6 7
HOM 6 2 6 6 5 HOM 6 5 7 7 6

SSB LDB 6 5 8 8 6 TAC LDB 6 5 9 5 6
MEG 6 5 9 5 6 MEG 6 7 16 7 7
MON 6 5 8 8 6 MON 6 10 6 5 7

HKE 6 16 5 5 9 DFN 6 14 3 8 8
HOM 6 6 11 7 6 Prof. DTS 6 9 4 12 7

Catch LDB 6 9 1 6 6 HOK 6 11 9 8 8

MEG 6 17 9 6 10 DFN 6 21 8 8 11
MON 6 12 6 5 8 Eff. DTS 6 10 6 10 7

HKE 6 19 5 9 10 HOK 6 13 9 8 9

HOM 6 7 1 5 6 DFN 6 16 1 7 9
F LDB 6 10 6 5 7 GVA DTS 6 8 6 11 7

MEG 6 9 6 4 7 HOK 6 11 3 8 7

MON 6 32 4 14 15 DFN 6 1 5 5 4

HKE 6 8 8 6 7 Nves. DTS 6 1 1 5 4
HOM 6 3 6 6 5 HOK 6 1 4 4 4

Rec. LDB 6 2 2 7 4
MEG 6 2 2 2 4
MON 6 3 4 3 5

The application of the Morris method results in the selection of most

of the biological input factors (24 input factors out of 35, 69%). On the

contrary only a few economic input factors have been selected (5 out of
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33, 15%). In the observation error category almost half of the input fac-

tors have been selected (16 out of 34, 47%) and in the case of technical

input factors one third (11 out of 33, 33%). The uncertainty derived from

observation errors, identified as important by the morris method in many

cases, can be reduced improving the sampling programs and the mathe-

matical models used to estimate the stock status. In this sense, a variance

decomposition GSA including those input factors, would provide the ba-

sis to carry out a cost benefit analysis of improving the assessment process

of these stocks. Although the uncertainty in the rest of the selected in-

put factors cannot be reduced, this analysis highlights the importance of

considering uncertainty in these input factors when the performance of

management strategies is evaluated in the long-term. For example, nat-

ural mortality is often considered constant and has been identified as an

important input factor for all the stocks. The uncertainty related with the

recruitment process has been classified as important in all the cases, in line

with common practice. The TACs of the pelagic stocks, considered non-

target stocks for this fishery and included in this analysis as secondary

stocks, have been identified as one of the most important input factors, in

line with the claims of the fishing sector. Most of the economic input fac-

tors have been rejected. One of the reasons could be that the fleet dynamic

model used to predict the effort allocation of the fleets does not consider

any economic incentive and economic input factors are simply used to

transform the fish tons caught into monetary terms. The effort share in-

put factor has been identified as important for all the fleets, stressing the

importance of considering fleet dynamic models in this kind of simula-
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tion models. Catchability, the input factor that measures the productivity

of the fleets, has been selected only in one third of the cases, in fact, the in-

put factor that differed in F250 and F300 is the catchability of pair trawlers

on hake.

The AEEs for all the input factors and output variables for r = 300

are provided as supplementary material in a Shiny application (https:

//aztigps.shinyapps.io/GSAApp/, password: flbeiaGSA, the code and

data to run the application locally can be downloaded from Zenodo https:

//zenodo.org/record/3402534 (Garcia, 2019)).

3.2. Sobol Variance Decomposition Method

We have analyzed the convergence of the Sobol sensitivity indices, ex-

amining the width of the bootstrap confidence intervals, as proposed by

Sarrazin et al. (2016). The width decreases rapidly with the number of

base simulations N for N < 2000 (Figure 4). For N = 150, the width of

the confidence interval of the total-effect index of all the input factors and

output variables in 2020 is greater than 0.5, but for N = 1500, 75% of the

intervals are already narrower than 0.05. However, the decrease rate slows

for N ≥ 2000 and for N = 10000, 4% of the confidence intervals are wider

than 0.05 (Figure 4).

In general, most of the variance of the output variables is explained by

the interaction between input factors. The number of vessels, the recruit-

ment and the SSB are the variables of which the variance is explained by

the smaller number of input factors. On the opposite side, the variance

of the output variables related with effort, fishing mortality, effort itself,

profits and GVA, is explained by a great number of input factors (Figure
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Figure 4: Boxplot of the width of the confidence intervals of the total-effect index

of the input factors and output variables in 2020. The x-axis correspond with the

base sample size N used. The red dashed line indicates the 0.05 threshold for the

width.

5).

Once the sensitivity indices have been calculated for N = 10000 we

have used the method proposed by Lamboni et al. (2011) to calculate the

generalized global sensitivity indices using the output variables in 2020.

The main result obtained at output variable level is corroborated by the

global index: the output variance is largely explained by the interaction

between input factors (Figure 6). When the 37 variables are used, thirty

input factors are ”lower sensitivity” factors (contributing less than 5% to

the overall variance (Sarrazin et al., 2016)), i.e., only 26 input factors con-

tribute considerably to the output variance. The total-effect of the general-

ized sensitivity index has been used to calculate the performance indicators

of the selection criterion. As the index depends on the output variable

used, it has been calculated for each set of the output variables.
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A complete set of barplots with the first-order and total-effect indices

and their confidence intervals is available in a Shiny application (https:

//aztigps.shinyapps.io/GSAApp/, password: flbeiaGSA, the code and

data to run the application locally can be downloaded from Zenodo https:

//zenodo.org/record/3402534 (Garcia, 2019)).

3.3. Performance of the selection criterion

The individual and overall level output variables defined in section 2.3

have been calculated for Z = 2,3,4 and for the three criteria, the calibrated

visual criterion, the fixed number criterion and the savage criterion. For

Z > 4, the number of input factors selected with the calibrated visual cri-

terion is higher than 56. Hence, it makes no sense to calculate the per-

formance indicator because all the input factors selected by the Morris

method are selected by the calibrated visual criterion.

Furthermore, we have evaluated the sensitivity of the performance of

the calibrated visual criterion to the choice of the output variables. We

take three subsets of the output variables, calculate the corresponding

generalized sensitivity indices and apply the selection criterion using the

output variables selected to calculate the performance indicator. In the

first set we use all the output variables, i.e., a set with 37 variables. In

the second subset with 29 variables, we remove the fishing mortality and

the gross value added from the output variables because they are highly

correlated with the other variables. In the third subset with 21 variables,

besides fishing mortality and gross value added we also eliminate catch

and effort. Hence, in the subsets with 21 and 29 variables we remove the

output variables that are highly correlated with the rest. Furthermore,
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Figure 5: Variance explained by total-effects for all the output variables in 2020

year. Light yellow represents 0 and dark red 1.
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Figure 6: Generalized global sensitivity indices obtained using the 37 output

variables. Blue bars correspond with the value of the first-order indices and the

red bars with the difference between the total-effects and first-order indices. There-

fore, the full bar shows the total-effects.
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with this choice we make the output variables of which the variance is

explained by few input factors predominant.

The performance indicator of the calibrated visual criterion is always

closer to one than that of fixed-number of factors criterion (Table 4), i.e,

the input factors selected with the calibrated visual criterion correspond

with input factors that are higher in the ranking of the total-effects. The

indicator for Savage criterion is the indicator closest to one only for the

indicator at overall level when Z , 4 (Table 4).

Table 4: The performance indicator that measures the match between the ranking

obtained in the generalized sensitivity indices and the indices selected by the

Morris method using the calibrated visual criterion, the fixed number criterion

and the Savage scores. The first column corresponds with the number of output

variables used, the second column with the number of input factors, and the rest

of the columns with the value of the performance indicator defined in equation

18 and the generalized performance index for each of the criteria.

Output Variables Input Factors

Performance indicator Generalized Performance Indicator

Fixed Number Savage Calibrated Fixed Number Savage Calibrated

21 29 (Z=2) 0.56 0.52 0.64 0.47 0.68 0.56
29 31 (Z=2) 0.59 0.60 0.69 0.55 0.71 0.64
37 32 (Z=2) 0.59 0.62 0.66 0.56 0.72 0.63
21 39 (Z=3) 0.69 0.63 0.78 0.61 0.79 0.73
29 41 (Z=3) 0.70 0.72 0.81 0.67 0.82 0.77
37 44 (Z=3) 0.73 0.76 0.84 0.72 0.84 0.81
21 46 (Z=4) 0.82 0.71 0.91 0.72 0.84 0.85
29 50 (Z=4) 0.87 0.79 0.94 0.83 0.86 0.92
37 53 (Z=4) 0.86 0.81 0.96 0.83 0.87 0.94

4. Discussion

We have defined a selection criterion for the Morris elementary effects

method that allows to select the most important input factors using a cri-
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terion that mimics the visual selection. Ideally, the selection should be

done visually. However, the visual selection is not easily applied consis-

tently when the number of output variables is high and the discrimination

among input factors is unclear. Furthermore, it cannot be applied in an

automatic way, for example in bootstrap simulations. The new criterion

defined here provides a good approximation of the visual approach and

has the advantages of being consistent along the whole selection process

and of being able to be used in an automatic way. Other authors use the

fixed-number of factors criterion applied to each output variable (Hussein

et al., 2011; Morris et al., 2014; DeJonge et al., 2012). This approach is con-

sistent along output variables, but could lead to unimportant input factors

being selected in some cases (for example, in recruitment) and to impor-

tant ones being discarded in others (for example, in profits). Campolongo

et al. (2007) use Savage scores (Savage, 1956) to identify the most impor-

tant input factors in a multi-dimensional output model. However, Savage

scores are mostly used to compare ranking of input factors obtained us-

ing different approaches (Confalonieri et al., 2010; Borgonovo et al., 2003;

Cucurachi et al., 2016) and their performance as a selection criterion has

never been evaluated.

The calibrated visual criterion is better than fixed-number of factors

and Savage criteria when comparing their performance for each output

variable. Hence, if the objective is to explain the variance of every single

output variable the calibrated visual criterion would be always preferred.

For example, in the case study used here, the Savage criterion discards the

input factor that explains most of the variance in the number of vessels
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output variable. This happens because Savage criterion penalizes the in-

put factors that are important in only one output variable in favor of those

that are important in several variables, even if the variables are correlated.

However, at overall level, if an small number of input factors are selected,

the performance of the Savage criterion is better. This is because the basis

of the generalized sensitivity index is more similar to the Savage criterion

than to the calibrated visual one.

In summary, if the interest is to select the input factors that are the

most important at overall level, even if the input factors that explain a sig-

nificant part of the variance of a single output variable are left out and the

number of input factors to be selected is low, the Savage criterion would

be preferable. However, if the focus is on explaining the variance of every

single output variable or the number of input factors to be selected is high,

the calibrated visual criterion would be better.

The performance of the criteria has been evaluated using the ranking of

the total-effects estimated by the Sobol method, considered as the reference

method by many authors (Yang, 2011; Confalonieri et al., 2010; Sarrazin

et al., 2016; Homma and Saltelli, 1996), for the input factors selected by

one of the criteria evaluated here, the calibrated visual criterion. This fact

may seem to produce a positive bias towards this criterion. However, the

number of input factors selected by the criteria in the evaluation are lower

than those considered in the Sobol method, especially for Z < 4. Hence,

the ranking used for the performance evaluation is considered sufficiently

broad to provide an unbiased assessment.

We select Lamboni et al.’s (2011) method to calculate the multivari-
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ate indices because of its simplicity and ease of application. We discard

Garcia-Cabrejo and Valocchi’s (2014) method, because it requires adjust-

ing a metamodel based on the polynomial chaos expansion. The most

recent method, Xu et al.’s (2018), uses an index to assess the inputs’ effect

on the entire joint probability distribution of the multivariate output but

its application is complex.

In the convergence assessment of the Morris method we take 95% as a

threshold to ensure convergence. Nevertheless, other values could also be

adequate, considering that higher values slow the convergence and lower

values could lead to the selection of unimportant input factors. We rec-

ommend to use high values of alpha, as long as computational resources

allow it.

We could have assessed the convergence using the ”factor screening”

criterion in Sarrazin et al. (2016). This criterion focuses on the width of

the confidence interval of the non-selected input factors (input factors X

for which mrX < 0.95 ·Nboot) and considers that it has converged when the

width is narrower than 0.05. Of the 77 input factors withmrX < 0.95 ·Nboot,

only 26, i.e., 34%, have converged when r = 300. Therefore, according to

this criterion we should increase r with the subsequent increase in com-

putational cost.

5. Conclusions

We have defined a selection and a convergence criteria to ensure a ro-

bust combination of the Morris method with the Sobol method or other

GSA methods with a high computational cost. The calibrated visual crite-
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rion mimics the visual selection criterion, combining three of the features

that are considered when selecting the input factors visually: the value

of the absolute elementary effects in relation to the maximum, the num-

ber of input factors selected, and the difference in the absolute elementary

effects between consecutive input factors. The criterion provides an ob-

jective method to select the most important input factors and a procedure

to automatize the process. The automation allows its use in simulation

mode, which is essential for calculating the confidence intervals of the in-

dices using bootstrapping. In a comparison of the performance of three

selection criteria the visual calibrated criterion has been the best of the

three. The convergence criterion has been specifically defined to ensure

the convergence of the Morris method when the objective is to select a

maximum number of input factors. Moreover, the computing load re-

quired to achieve convergence for this criterion has proved to be lower

than the criterion focused in the width of the confidence intervals.

Software availability

The R functions to implement the selection and convergence criteria

are available in Zenodo https://zenodo.org/record/3402534 (Garcia,

2019). In the same repository, there is an example showing how to use

these functions in practice.

Acknowledgments

Financial support for this study was provided, in part, by the De-

partment of Agriculture, Fishing and Food from the Basque Government

39

https://zenodo.org/record/3402534


(FLBEIA and IMPACPES Grant agreement no. 227390 and 289257, re-

spectively), the Department of Education, Language Policy and Culture

from the Basque Government (IT1294-19) and BERC.2018-2021 program),

the Spanish Ministry of Economy and Competitiveness MINECO and FEDER

(MTM2016-74931-P, and BCAM Severo Ochoa excellence accreditation

SEV-2017-0718). We would like to thank the two anonymous reviewers for

their detailed comments and suggestions that have helped to greatly im-

prove the quality of the document and Editage [http://www.editage.com]

for editing and reviewing this manuscript for English language. This is

publication number 936 of AZTI.

References

Balci, O., 1997. Verification validation and accreditation of simulation

models, in: Proceedings of the 29th Conference on Winter Simulation,

IEEE Computer Society, Washington, DC, USA. pp. 135–141.

Borgonovo, E., Apostolakis, G., Tarantola, S., Saltelli, A., 2003. Compar-

ison of global sensitivity analysis techniques and importance measures

in psa. Reliability Engineering & System Safety 79, 175 – 185. SAMO

2001: Methodological advances and innovative applications of sensitiv-

ity analysis.

Borgonovo, E., Plischke, E., 2016. Sensitivity analysis: A review of recent

advances. European Journal of Operational Research 248, 869 – 887.

Borgonovo, Emanuel Castaings, W.T.S., 2011. Moment independent im-

40



portance measures: New results and analytical test cases. Risk Analysis

31, 404–428.

Campbell, K., McKay, M.D., Williams, B.J., 2006. Sensitivity analysis

when model outputs are functions. Reliability Engineering & System

Safety 91, 1468 – 1472. The Fourth International Conference on Sensi-

tivity Analysis of Model Output (SAMO 2004).

Campolongo, F., Cariboni, J., Saltelli, A., 2007. An effective screening de-

sign for sensitivity analysis of large models. Environmental Modelling

& Software 22, 1509–1518.

Campolongo, F., Saltelli, A., Cariboni, J., 2011. From screening to quanti-

tative sensitivity analysis. a unified approach. Computer Physics Com-

munications 182, 978–988.

Cariboni, J., Campolongo, F., 2004. Grouping model input factors to

perform a sensitivity analysis computationally efficient, in: Spitzer, C.,

Schmocker, U., Dang, V.N. (Eds.), Probabilistic Safety Assessment and

Management, Springer London, London. pp. 2018–2023.

Confalonieri, R., Bellocchi, G., Bregaglio, S., Donatelli, M., Acutis, M.,

2010. Comparison of sensitivity analysis techniques: A case study with

the rice model warm. Ecological Modelling 221, 1897–1906.

Cucurachi, S., Borgonovo, E., Heijungs, R., 2016. A protocol for the global

sensitivity analysis of impact assessment models in life cycle assess-

ment. Risk Analysis 36, 357–377.

41



DeJonge, K.C., Ascough, J.C., Ahmadi, M., Andales, A.A., Arabi, M., 2012.

Global sensitivity and uncertainty analysis of a dynamic agroecosystem

model under different irrigation treatments. Ecological Modelling 231,

113 – 125.

Devroye, L., 1986. Non-Uniform Random Variate Generation. Springer-

Verlag New York Inc.

Garcia, D., 2019. dorleta/robust Morris Sobol: First release of Robust

combination of Morris and Sobol methods.

Garcia, D., Prellezo, R., Sampedro, P., Da-Rocha, J.M., Castro, J., Cerviño,

S., Garcı́a-Cutrı́n, J., Gutiérrez, M.J., 2017a. Bioeconomic multi-

stock reference points as a tool for overcoming the drawbacks of the

landing obligation. ICES Journal of Marine Science 74, 511–524.

10.1093/icesjms/fsw030.

Garcia, D., Sánchez, S., Prellezo, R., Urtizberea, A., Andrés, M., 2017b.

Flbeia : A simulation model to conduct bio-economic evaluation of fish-

eries management strategies. SoftwareX 6, 141–147.

Garcia-Cabrejo, O., Valocchi, A., 2014. Global sensitivity analysis for mul-

tivariate output using polynomial chaos expansion. Reliability Engi-

neering & System Safety 126, 25 – 36.

Homma, T., Saltelli, A., 1996. Importance measures in global sensitivity

analysis of nonlinear models. Reliability Engineering & System Safety

52, 1 – 17.

42



Hussein, C., Verdoit-Jarraya, M., Pastor, J., Ibrahim, A., Saragoni, G., Pel-
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Appendix A. List of input factors

Table A.5: All the random factors considered in the GSA. They are ordered

in alphabetical order. The name column correspond with the name used to

denote the factors in the figures and the tables. The other three columns

correspond with the component of the model the factor belongs to, its

description and the stock and/or fleet it belongs to.

Name Component Description Stock/Fleet

AgingError HKE

Observation Model

Hake
AgingError HOM Error in the aging process. H.Mackerel
AgingError LDB The probability of assigning 4 Spot M.
AgingError MEG age ’i’ to a fish of age ’j’ Megrim
AgingError MON Monkfish

CapitalCost DFN SP Fleets OM

Current value of the capital invested multiplied with the opportunity cost of capital

Gillnetters
CapitalCost DTS SP Entry-Exit Model Trawlers
CapitalCost HOK SP Longliners

Crewshare DFN Fleets OM The proportion of the turnover Gillnetters
Crewshare DTS Entry-Exit Model that is paid to the crew Trawlers
Crewshare HOK Longliners

DiscNError HKE

Observation Model

Error in the observed numbers Hake
DiscNError LDB of discarded fishes 4 Spot M.
DiscNError MEG Megrim

DiscWError HKE
Observation Model

Error in the observed total Hake
DiscWError LDB weight of discards 4 Spot M.
DiscWError MEG Megrim

Effshare DFN Fleets OM Distribution of total effort Gillnetters
Effshare DTS Short Term among metiers Trawlers
Effshare HOK Dynamics Longliners

Fcost DFN Fleets OM Fixed Cost per vessel Gillnetters
Fcost DTS Entry-Exit Model Also used to calculate profits Trawlers
Fcost HOK at fleet level Longliners

FuelCost DFN SP Fleets OM

Fuel Cost per unit of effort

Gillnetters
FuelCost DTS SP Entry-Exit Model Trawlers
FuelCost HOK SP Longliners

InvestShare
Fleets OM Proportion of profits

Fleet independentEntry-Exit Model used to invest in new vessels

LandNError HKE

Observation Model

Hake
LandNError HOM Error in the observed numbers H.Mackerel
LandNError LDB of landed fishes 4 Spot M.
LandNError MEG Megrim
LandNError MON Monkfish

LandWtError HKE

Observation Model

Hake
LandWtError HOM Error in the observed total H.Mackerel
LandWtError LDB weight of landings 4 Spot M.
LandWtError MEG Megrim
LandWtError MON Monkfish

M HKE

Biological OM

Hake
M HOM Instantaneous rate of H.Mackerel
M LDB natural mortality at age 4 Spot M.
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M MEG Megrim
M MON Monkfish

Mat HKE

Biological OM

Hake
Mat HOM Proportion of mature H.Mackerel
Mat LDB individuals at age 4 Spot M.
Mat MEG Megrim
Mat MON Monkfish

MaxDays DFN SP Fleets OM Maximum Number of Days a Gillnetters
MaxDays HOK SP Entry-Exit Model vessel can operate Trawlers
MaxDays DTS SP within a year Longliners

N HO8

Biological OM

Number of fish at age Western H. Mac.
N MAC along the simulation Mackerel
N WHB Blue Whiting

N HKE

Biological OM

Hake
N HOM Number of fish at age in the H.Mackerel
N LDB first year of the simulation 4 Spot M.
N MEG Megrim
N MON Monkfish

price HKE Hake
price HOM HO8 Fleets OM Horse Mackerels

price MAC Fleet and Metier Independent Mackerel
price MEG LDB Entry-Exit Model Price of fish per ton Megrims

price MON Monkfish
price WHB Blue Whiting

price OTH DTS SP M1 OTH Trawlers OTB DEM
price OTH DTS SP M2 OTH Trawlers OTB PEL
price OTH DTS SP M3 Fleets OM Price per ton of the OTH stock. OTH Trawlers PTB

price OTH HOK DFN M1 The composition of OTH OTH G&L Trammel net
price OTH HOK DFN M2 Entry-Exit Model depends on the metier and OTH G&L Hand Line
price OTH HOK DFN M3 hence the price is OTH G&L Longine
price OTH HOK DFN M4 metier dependent. OTH G&L Gillnet ¿= 100
price OTH HOK DFN M5 OTH G&L Gillnet 60-79
price OTH HOK DFN M6 OTH G&L Gillnet 80-99

q HKE Baka SP Hake SP Trawl
q HKE DTS PT Hake PT Trawl
q HKE GNs 60 Hake G&L 60-79
q HKE GNS 80 Hake G&L 80-99

q HKE LLS Hake G&L Longline
q HKE Pair Hake SP Trawl PTB

q HKE PGP PT Hake PT PGP
q HO8 W. Horse Mackerel

q HOM PS PT H. Mackerel PT PS
q HOM DFN HOK H. Mackerel G&L

q HOM DTS PT Fleets OM H. Mackerel PT Trawl
q HOM DTS SP Catchability per fish stock H. Mackerel SP Trawl
q HOM PGP PT Catch (Defined at metier/fleet level H. Mackerel PT PGP
q HOM PS SP Production Model depending on H. Mackerel SP PS

q LDB data availability) 4 Spot Megrim
q MAC Mackerel
q MEG Megrim

q MON DTS PT Monkfish PT Trawl
q MON DTS SP Monkfish SP Trawl

q MON HOK DFN Monkfish Sp. G&L
q MON PGP PT Monkfish PT PGP

q OTH DTS SP M1 OTH Trawlers OTB DEM
q OTH DTS SP M2 OTH Trawlers OTB PEL
q OTH DTS SP M3 OTH Trawlers PTB

q OTH HOK DFN M1 OTH G&L Trammel net
q OTH HOK DFN M2 OTH G&L Hand Line
q OTH HOK DFN M3 OTH G&L Longine
q OTH HOK DFN M4 OTH G&L Gillnet ¿= 100
q OTH HOK DFN M5 OTH G&L Gillnet 60-79
q OTH HOK DFN M6 OTH G&L Gillnet 80-99
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q WHB Blue Whiting

ret HKE DTS SP Hake SP Trawl OTB
ret HKE DTS PT Fleets OM The retention ogive. A vector Hake PT Trawl
ret LDB DTS SP at age with the proportion of 4 Spot Megrim SP Trawl
ret MEG DTS SP Entry-Exit Model catch that is retained onboard 5 Spot Megrim SP Trawl

ret MAC Mackerel all fleets

SR params HKE Hake
SR params HOM Biological OM The parameters of the stock H.Mackerel
SR params LDB Stock Recruitment recruitment models 4 Spot M.
SR params MEG Model Megrim
SR params MON Monkfish

SR uncerta HKE Hake
SR uncerta HOM Biological OM A time series with the annual H.Mackerel
SR uncerta LDB Stock Recruitment deviations of recruitment 4 Spot M.
SR uncerta MEG Model from stock-recruitment model Megrim
SR uncerta MON Monkfish

StkNError HKE

Observation Model

Hake
StkNError HOM A vector at age with the H.Mackerel
StkNError LDB observation error in the 4 Spot M.
StkNError MEG stocks numbers Megrim
StkNError MON Monkfish

StkWError HKE

Observation Model

Hake
StkWError HOM A vector at age with the H.Mackerel
StkWError LDB observation error in the 4 Spot M.
StkWError MEG stocks weight Megrim
StkWError MON Monkfish

TAC HO8

Advice Model

The TAC of the Western H. Mac.
TAC MAC widely distributed stocks Mackerel
TAC WHB Blue Whiting

vcost DFN Fleets OM

Variable Cost per unit of effort

Western H. Mac.
vcost DTS Entry-Exit Model Mackerel
vcost HOK Blue Whiting

w1 Fleets OM Proportion in which capacity
Fleet independentw2 Entry-Exit Model (in/de)crease (w1/w2) yearly

Wt HKE Hake
Wt HOM Biological OM A vector at age with the mean H.Mackerel
Wt LDB Stock Recruitment weight of the fish individuals 4 Spot M.
Wt MEG Model Megrim
Wt MON Monkfish
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Appendix B. Notation

Notation

A,B The sample and re-sample matrices used to compute the importance

indices in Sobol method.

Ai.,Bi.,Ck,i. The i-th row of the corresponding matrix.

Ck The matrix that is equal to A except in the column(s) that corre-

spond with the k-th input factor, that is (are) taken from B matrix.

F The set of all the input factors.

Fr The set of input factors selected with morris method when r trajec-

tories are used.

FD The set of input factors selected with the factors distinguished from

the others criterion.

FF The set of input factors selected using the fixed-number of factors

criterion.

FH The set of input factors selected with the factors with high AEE value

criterion.

FV The set of input factors selected with the visual procedure.

FW The set of input factors selected with the weighted criterion.

FM The set of input factors selected when the Morris method is applied.

GT The set of total generalized indices.
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GTk Total-effect generalized index of the k-th input factor.

J The dimension of the output of the simulation model.

j subscript used in output variables along the manuscript.

K The number of input factors.

k subscript used for input factors along the manuscript.

Kr The cardinality of Fr .

KEE,Z The number of input factors selected with the fixed number crite-

rion when Z input factors are selected for each output variable.

KEE The number of input factors chosen a priori to be selected with the

Morris method to be considered in the Sobol method.

M Number of input factors, without grouping, in the Sobol method.

mrX The number of iterations in which a input factor X is selected in the

bootstrap of the Morris method with r trajectories.

N The base sample size in the Sobol method.

Nboot Number of bootstrap iterations.

P A large enough set of trajectories defined in ω.

Pr The r trajectories within P that provide the best coverage of ω.

p A trajectory in ω that belongs to P.

R The cardinality of P.

50



r The number of trajectories used in the Morris method.

rmax Maximum number of trajectories used in the Morris method.

S
j
T The set of total-effects of output variable Yj .

Sk First-order index for the k-th input factor.

STk Total-effect index for the k-th input factor.

S
j
Tk

Total-effect index for the k-th input factor and output variable Yj .

wD The weight given to the factors distinguished from the others criterion

in the computation of the calibrated visual criterion.

wF The weight given to the fixed-number of factors criterion in the com-

putation of the calibrated visual criterion.

wH The weight given to the factors with high AEE value. criterion in the

computation of the calibrated visual criterion.

X∼k A sampling point in ω or Ω conditioned in all the input factors

except the k-th one.

X Input factor X or sampling point in ω or Ω.

Xk k-th input factor.

Y A multidimensional output variable.

Y An unidimensional output variable.
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Z Number of input factors selected for each indicator in the applica-

tion of fixed-number of factors in the evaluation of the performance

of the selection indicators.

α The threshold used for proportion to select the important input fac-

tors in the bootstrap of the Morris methods.

∆ The width of the subintervals in the Morris method.

δD The proportion used in the factors distinguished from the others cri-

terion to select those input factors that are aside of the rest.

δF The number of input factors selected in the fixed-number of factors

selection criterion.

δH The proportion used in the factors with high AEE value selection cri-

terion.

Γ A set of output variables.

πrX(i) Indicator variable of input factor X to be selected in iteration i of

the Morris method with r trajectories.

ϕ The simulation model.

Ω The existence domain of the simulation model.

ω The [0,1]K unit hypercube.

ρ
j
k Auxiliar variable used to calculate the performance indicators, Θ

and ΘG, in the evaluation of the selection criteria corresponding to

the k-th input factor and the j-th output variable.
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Θ The first performance indicator.

ΘG The generalized performance indicator.
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Appendix C. Supplementary Material: Morris absolute elementary ef-

fects graphs

For each output variable and stock or fleet combination only the 15

input factors with the highest AEE are ploted. The vertical lines corre-

spond to the different criteria used to select the input factors. Red and

Blue solid lines correspond to the selection criterion defined here and the

visual selection respectively. The green, pink and light blue lines corre-

spond with the high AEE, fixed number of input factors and input factors

distinguihed from the others criteria respectively.
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Figure S1: Absolute elementary effects (AEE) for hake (HKE), horse mackerel

(HOM) and four spot megrim (LDB) stocks and all the stock output variables.
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Figure S2: Absolute elementary effects (AEE) for megrim (MEG) and monkfish

(MON) stocks and all the stock output variables.
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Figure S3: Absolute elementary effects (AEE) for the spanish trawlers (DTS), gill-

neters (DFN) and longliners (HOK) and all the fleet output variables.

57


	Introduction
	Material and Methods
	The Morris elementary effects method
	The calibrated visual criterion
	Convergence criterion

	Sobol variance decomposition method
	Multivariate outputs

	Performance of the selection criterion
	Illustrative Example
	General description
	Uncertainty Conditioning
	Output variables


	Results
	Morris Elementary Effects Method
	Sobol Variance Decomposition Method
	Performance of the selection criterion

	Discussion
	Conclusions
	List of input factors
	Notation
	Supplementary Material: Morris absolute elementary effects graphs

