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Abstract. We will investigate the numerical solution of the control prob-
lem modelled by parabolic variational inequalities. The general point of view

adopted in this work has its roots in the work by R. Glowinski[1]. First, we

will introduce the model and describe the solution method. In Section 4 and
5, we will discuss the discretization of the model problem and then a conjugate

gradient algorithm for solving the problem numerically. Finally we will present

numerical results of optimal control problem related to variational inequality.

1. Introduction

Optimal control problems for variational inequalities have been a subject of
interest in the optimal control community starting from the 1980s. The motivation
for this study comes from two broad interesting applications.

• Reynolds lubrication(thin film)
• Principles of electro-wetting on dielectric(EWOD).

Principle of electro-wetting on dielectric has applications in solar concentrators,
mass spectronomy and electrofluidic displays. These problems are fairly compli-
cated from both the analytical and computational point of view. Our goal here is
to discuss the solution of control problems for parabolic inequalities of the obstacle
type by taking advantage of the penalty based technique. Using penalty, we will be
able to approximate the parabolic variational inequalities by nonlinear parabolic
equations and then we will apply the fairly classical method discussed in [1].

2. Problem formulation

Let Ω and ω be two bounded domains of Rd, with d ≥ 1, verifying ω ⊂ Ω. The
control problem that we consider is defined as follows:

(2.1)

{
Find u ∈ U such that
J(u) ≤ J(v),∀v ∈ U ,

with

U = L2(ω × (0, T )),
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0 < T <∞, and

(2.2) J(v) =
1

2

∫
ω×(0,T )

|v|2dxdt+
k1

2

∫
Ω×(0,T )

|y − yd|2dxdt+
k2

2

∫
Ω

|y(T )− yT |2dx

In (2.2), we assume that: (i) k1, k2 ≥ 0, with k1 + k2 > 0; (ii) yd ∈ L2(Ω× (0, T ))
and yT ∈ L2(Ω); (iii) y is defined from v via the solution of the following parabolic
variational inequality

(2.3)



y(0) = y0(∈ K);
a.e on (0, T ) , y(t) ∈ K and

〈∂y(t)
∂t , z − y(t)〉+

∫
Ω

A∇y(t).∇(z − y(t))

≥ 〈f(t), z − y(t)〉+
∫
ω

v(t)(z − y(t))dx,∀z ∈ K,

where (using φ(t) denote the function x → φ(x, t)) and:

• A ∈ (L∞(Ω))d×d,∃ α > 0 such that A(x)ξ.ξ ≥ α|ξ|2,∀ξ ∈ Rd, a.e in Ω,
• ·The convex set K is defined by

(2.4) K = {z|z ∈ H1
0 (Ω), z ≥ φ a.e on Ω},

with φ ∈ C0(Ω) ∩ H1(Ω) and φ|∂Ω ≤ 0 ; K is closed and non empty in
H1

0 (Ω) since it contains φ+(= max(0, φ)),

• 〈·, ·〉 denotes the duality pairing between H−1(Ω)(the dual space of H1
0 (Ω))

and H1
0 (Ω),

• f ∈ L2(0, T ;H−1(Ω))·
Proving the existence of solution to the elliptic analogues of problem (2.1) is easy;

on the other hand, proving the existence of solution to (2.1) is more complicated
task since it requires using spaces like Lp(0, T ;X), where X is a banach space.
Assuming that the solution do exist, we will discuss a method to approximate
them.

3. Penalty approximation of the control problem (2.1)

Let ε be a positive parameter. We approximate the control problem (2.1) by

(3.1)

{
Find uε ∈ U such that
Jε(uε) ≤ Jε(v),∀v ∈ U ,

with

(3.2) Jε(v) =
1

2

∫
ω×(0,T )

|v|2dxdt+
k1

2

∫
Ω×(0,T )

|y − yd|2dxdt+
k2

2

∫
Ω

|y(T )− yT |2dx,

where, in (3.2), k1, k2, yd and yT are like in (2.2), and where y is obtained from v
via the solution of the following nonlinear parabolic equation.
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(3.3)



y(0) = y0(∈ K);
a.e on (0, T ), y(t) ∈ H1

0 (Ω) and

〈∂y(t)
∂t , z〉+

∫
Ω

A∇y(t).∇zdx− ε−1
∫
Ω

((y(t)− φ)−)2zdx =

〈f(t), z〉+
∫
ω

v(t)zdx,∀z ∈ H1
0 (Ω)·

consider the nonlinear operator A defined by

(3.4) A(z) = −∇.A∇z − ε−1((z − φ)−)2

A is continuous from H1
0 (Ω) into H−1(Ω); it is also strongly monotone since it

verifies

(3.5)



〈A(y2)−A(y1), y2 − y1〉 =
∫
Ω

A∇(y2 − y1) · (y2 − y1)dx−

ε−1
∫
Ω

[((y2 − φ)−)2 − ((y1 − φ)−)2](y2 − y1)dx

≥
∫
Ω

A∇(y2 − y1) · ∇(y2 − y1)dx

≥ α
∫
Ω

|∇(y2 − y1)|2dx, ∀ y1, y2 ∈ H1
0 (Ω).

Due to the monotonicity of the above operator A, (3.3) has a unique solution which
follows from [3], [4] and [5]. In order to solve the control problem iteratively (using
a conjugate gradient algorithm for example) it may be most useful to be able to
compute the differential DJε(v) of Jε at v. We will find it using perturbation
method as discussed in [1].

3.1. Computation of DJk(v):optimality condition. Suppose that δv is a per-
turbation of v in U = L2(0, T ;H1

0 (Ω)) then,

(3.6)


δJε(v) =

∫
ω×(0,T )

DJε(v)δvdxdt =∫
ω×(0,T )

vδvdxdt+ k1

∫
Ω×(0,T )

(y − yd)δydxdt+ k2

∫
Ω

(y(T )− yT )δy(T )dx,

where, in (3.6) δy is the solution of the following parabolic equation(obtained by
perturbation of (3.3))

(3.7)



δy(0) = 0;
a.e on (0, T ), δy(t) ∈ H1

0 (Ω) and

〈 ∂∂tδy(t), z〉+
∫
Ω

A∇δy(t).∇zdx+ 2ε−1
∫
Ω

(y(t)− ψ)−δy(t)zdx =∫
ω

δv(t)zdx,∀z ∈ H1
0 (Ω).

Let us consider a function p defined over Ω× (0, T ), such that

(3.8) {p, ∂p
∂t
} ∈ L2(0, T ;H1

0 (Ω))× L2(0, T ;H−1(Ω)),
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a property which implies p ∈ C0([0, T ];L2(Ω)) as in [?]. Take z = p(t) in (3.7) and
integrate the resulting relation from t = 0 to t = T ; we obtain then

(3.9)


∫
Ω

p(T )δy(T )dx−
T∫
0

〈∂p(t)∂t , δy(t)〉dt +
∫

Ω×(0,T )

A
t∇p.∇δydxdt+

2ε−1
∫

Ω×(0,T )

(y − φ)−pδydxdt =
∫

ω×(0,T )

pδvdxdt.

Suppose that p is the (unique) solution of the following linear parabolic equation(the
adjoint equation)

(3.10)



p(t) ∈ H1
0 (Ω), a.e on (0, T ),

p(T ) = k2(y(T )− yT ),

−〈∂p(t)∂t , z〉+
∫
Ω

A
t∇p(t).∇zdx+ 2ε−1

∫
Ω

(y(t)− φ)−p(t)zdx

= k1

∫
Ω

(y(t)− yd(t))zdx,∀z ∈ H1
0 (Ω).

Taking z = δy(t) in (3.10) and combining with (3.6) and (3.9), we obtain

(3.11)

∫
ω×(0,T )

DJε(v)δvdxdt =

∫
ω×(0,T )

(v + p)δvdxdt

that is,

(3.12) DJε(v) = v + p|ω×(0,T )

Remark 3.1.1. The computation of DJε(v) will provide a guideline, when com-
puting (in section 5.4) the time discrete analogue of DJε(v).
Remark 3.1.2. The operator form of (3.10) (a weak formulation is given by )

(3.13)

 −
∂p
∂t −∇.A

t∇p+ 2ε−1(y − ψ)−p = k1(y − yd) in Ω× (0, T ),
p(T ) = k2(y(T )− yT )
p = 0 on ∂Ω× (0, T ),

which is (a relatively) simple linear parabolic equation.
From a practical point of view, the numerical solution of problem requires its space-
time discretization. The variational approach we took above makes easy the space
approximation of (3.1), if one uses, for example, the finite element techniques dis-
cussed in [1] . The time discretization requires a more careful attention and will be
discussed in the following section.

4. Time discretization of the control problem

Let N ≥ 1. We define the time discretization step by 4t = T
N and approximate

the penalized control problem (3.1) by

(4.1)

{
Find u4tε (= {un}Nn=1) ∈ U4tsuch that
J4tε (u4tε ) ≤ J4tε (v) ∀v(= {vn}Nn=1 ∈ U4t,
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where in (4.1)

(4.2) U4t = (L2(ω))N ,

and

(4.3) J4tε (v) =
4t
2

N∑
n=1

∫
ω

|vn|2dx+k1
4t
2

N∑
n=1

∫
Ω

|yn−ynd |2dx+
k2

2

∫
Ω

|yN−yT |2dx,

where in (4.3), {yn}Nn=1 is obtained from v via the solution of following time-discrete
nonlinear parabolic equation

(4.4) y0 = y0;

for n = 1, . . . , N , {yn−1, vn} → yn via the solution of the following nonlinear ellip-
tic problem

(4.5)


yn ∈ H1

0 (Ω),∫
Ω

yn−yn−1

4t zdx+
∫
Ω

A∇yn · ∇zdx− ε−1
∫
Ω

((yn − φ)−)2zdx =

〈fn, z〉dx+
∫
ω

vnzdx, ∀z ∈ H1
0 (Ω).

Using the strict monotonicity and the continuity of the operator

(4.6) z → z

4t
−∇ · Ā∇z − ε−1((z − φ)−)2 : H1

0 (Ω)→ H−1(Ω),

one can easily show that each of the N nonlinear elliptic problems (4.5) has a unique
solution.
In order to solve the control problem (4.1) by a conjugate gradient algorithm oper-
ating in U4t, We equip U4t with the inner product (., .)4t defined (with obvious
notation) by

(4.7) (v,w)4t = 4t
n=N∑
n=1

∫
ω

vnwndx,

and the corresponding norm. We are going to discuss, just below, the computation
of the differential DJ4tε of J4tε . To compute DJ4tε (v), we follow the approach
taken in Section (5.3) to compute DJε(v). Let us consider thus v ∈ U4t and let
us denote by δv a perturbation of v. We have then

(4.8) δJ4tε (v) = (DJ4tε (v), δv)4t,

and also

(4.9)

δJ4tε (v) = 4t
N∑
n=1

∫
ω

vnδvndx+k14t
N∑
n=1

∫
Ω

(yn−ynd )δyndx+k2

∫
Ω

(yN −yT )δyNdx,
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with {δyn}Nn=1 verifying the following perturbation of (4.4) and (4.5):

(4.10) δy0 = 0;

for n = 1, . . . , N, {yn−1, vn} → yn via the solution of

(4.11)


δyn ∈ H1

0 (Ω),∫
Ω

δyn−δyn−1

4t zdx+
∫
Ω

A∇δyn.∇zdx+

2ε−1
∫
Ω

(yn − φ)−δynzdx =
∫
ω

δvnzdx, ∀z ∈ H1
0 (Ω)

Let us consider {pn}Nn=1 ∈ (H1
0 (Ω))N ; taking z = pn in (4.11) we obtain, by sum-

mation and after multiplying by 4t,

(4.12)


4t
∑N
n=1

∫
Ω

δyn−δyn−1

4t pndx+4t
∑N
n=1[

∫
Ω

A∇δyn.∇pndx+

2ε−1
∫
Ω

(yn − φ)−δynpndx] = 4t
∑N
n=1

∫
ω

δvnpndx,

which implies (by discrete integration by parts )that

(4.13)
∫
Ω

pN+1δyNdx+4t
∑N
n=1[

∫
Ω

pn−pn+1

4t δyndx+∫
Ω

A
t∇pn · ∇δyndx+ 2ε−1

∫
Ω

(yn − φ)−pnδyndx] = 4t
∑N
n=1

∫
ω

pnδvndx,

with pN+1 still undetermined. Suppose that {pn}N+1
n=1 verifies the following discrete

adjoint equation.

(4.14) pN+1 = k2(yN − yT );

for n = N, . . .,1, {yn, pn+1} → pn via the solution of the following well-posed linear
elliptic problem

(4.15)


pn ∈ H1

0 (Ω),∫
Ω

pn−pn+1

4t zdx+
∫
Ω

A
t∇pn · ∇zdx+

2ε−1
∫
Ω

(yn − φ)−pnzdx = k1

∫
Ω

(yn − ynd )zdx,∀z ∈ H1
0 (Ω).

Taking z = δyn in (4.15) and combining with (4.14), (4.9) and (4.8), we obtain

(4.16) (DJ4tε (v), δv)4t = 4t
N∑
n=1

∫
ω

(vn + wn)δvndx,

that is

(4.17) DJ4tε (v) = {vn + pn|ω}Nn=1.

Remark 4.1.1. The way DJ4tε (v) was computed, via the solution of (4.4),(4.5)
(4.9), (4.14) and (4.15), suggest that one needs to store {yn}Nn=1(in fact its fully
discrete analogue obtained by space discretization). Actually a closer look shows
that if one operates properly, one needs to store a very small number of snapshots
to compute the differential of the cost function.
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5. Conjugate gradient solution of the problem 2.1

To solve the above control problem numerically, Polak-Ribiere’s conjugate gra-
dient algorithm was implemented since U4t is a hilbert space for the inner product
defined by (4.7) and the associated norm. The Polak-Ribiere’s conjugate gradient
algorithm reads as follows:
Initialization

(5.1) u0(= {u0
n}Nn=1) is given in U4t.

Solve

y0
0 = y0;(5.2a) 

for n = 1, . . . , N, {yn−1
0 , un0} → yn0 via the solution of

yn0 ∈ H1
0 (Ω),∫

Ω

yn0−y
n−1
0

4t zdx+
∫
Ω

Ā∇yn0 .∇zdx−

ε−1
∫
Ω

((yn0 − φ)−)2zdx = 〈fn, z〉+
∫
ω

un0 zdx, ∀z ∈ H1
0 (Ω),

(5.2b)

and

pN+1
0 = k2(yN0 − yT );(5.3a) 

for n = N, . . . , 1, {yn0 , pn+1
0 } → pn0 via the solution of

pn0 ∈ H1
0 (Ω),∫

Ω

pn0−p
n+1
0

4t zdx+
∫
Ω

A
t∇pn0 .∇zdx+

2ε−1
∫
Ω

(yn − φ)−pn0 zdx = k1

∫
Ω

(yn − ynd )zdx;∀z ∈ H1
0 (Ω)

(5.3b)

Define g0 ∈ U4t by

(5.4) g0 = {un0 + pn0 |ω}Nn=1

if
‖ g0‖4t

max[1,‖ u0‖4t]
≤ tol take u4tε = u0; otherwise, set

(5.5) w0 = g0

For k ≥ 0, {uk,gk,wk} being known with gk and wk different from 0, compute
{uk+1,gk+1} and if necessary wk+1 as follows:
Descent direction

(5.6)

{
ρk ∈ R+,
J4tε (uk − ρkwk) ≤ J4tε (uk − ρwk),∀ρ ∈ R+

and set

(5.7) uk+1 = uk − ρkwk
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Testing the convergence and construction of the new descent direction:
Solve

y0
k+1 = y0;(5.8a) 

for n = 1, . . . , N, {yn−1
k+1 , u

n
k+1} → ynk+1 via the solution of

ynk+1 ∈ H1
0 (Ω),∫

Ω

ynk+1−y
n−1
k+1

4t zdx+
∫
Ω

Ā∇ynk+1.∇zdx−

ε−1
∫
Ω

((ynk+1 − φ)−)2zdx = 〈fn, z〉+
∫
ω

unk+1zdx ,∀z ∈ H1
0 (Ω),

(5.8b)

and

pN+1
k+1 = k2(yNk+1 − yT );(5.9a) 

for n = N, . . . , 1, {ynk+1, p
n+1
k+1} → pnk+1 via the solution of

pnk+1 ∈ H1
0 (Ω),∫

Ω

pnk+1−p
n+1
k+1

4t zdx+
∫
Ω

A
t∇pnk+1.∇zdx+

2ε−1
∫
Ω

(ynk+1 − φ)−pnk+1zdx = k1

∫
Ω

(ynk+1 − ynd )zdx, ∀z ∈ H1
0 (Ω).

(5.9b)

Define gk+1 ∈ U4t by

(5.10) gk+1 = {unk+1 + pnk+1|ω}Nn=1.

If
‖ gk+1‖4t

max[‖ uk+1‖4t,‖ g0‖4t]
≤ tol, take u4tε = uk+1; otherwise, compute

(5.11) γk =
(gk+1 − gk,gk+1)4t

‖ gk‖24t
[Polak −Ribiere′s update]

and

(5.12) wk+1 = gk+1 + γkwk.

Do k + 1→ k and return to (5.40).

The practical implementation of the above algorithm requires:

• The space approximation of the control problem (4.1).

• The solution of the finite dimensional problems approximating (after space
approximation) the elliptic problems (5.2b),(5.3b),(5.8b)and (5.9b).

• The solution of the fully discrete analogue of the line search problem (5.6).

Let’s assume that Ω ⊂ R2. Concerning the space approximation the simplest way
to proceed is to approximate ω by a polygonal domain ωh and then triangulate ωh
using a finite element triangulation T ωh . Similarly, we triangulate Ω using finite
element triangulation T Ω

h verifying T Ω
h |ω̄h

= T ωh . Figure 1 verifies the above as-
sumption for triangulation:
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Figure 1. Triangulation of Ω = (0, 1)× (0, 1) and ω = ( 1
4 ,

3
4 )× ( 1

4 ,
3
4 )

Following, for example, [1], two simple ways to approximate L2(ω) are given by

(5.13) V0
h = {v|v ∈ L2(ωh),v|K ∈ P0,∀K ∈ T ωh },

(5.14) V1
h = {v|v ∈ C0(ω̄h),v|K ∈ P1,∀K ∈ T ωh },

where, in (5.13) and (5.14) P0(K) and P1(K) are the space consisting of piecewise
constant and linear polynomials respectively on mesh cell K. From the above
approximation of L2(ω) we approximate U4t by

(5.15) U l,4th = (V lh)N , for l = 0, 1.

and we approximate the space H1
0 (Ω) by

(5.16) Z0h = {z|z ∈ C0(Ω̄h), z|K∈P1 ,∀K ∈ T Ω
h , z = 0 on ∂Ωh}

where Ωh = Ω if Ω is a polygonal domain of R2, and a polygonal approximation of
Ω otherwise (we assume all the vertices of T Ω

h belong to Ω̄). It is then quite natural
to approximate the space K by

(5.17) Kh = {z|z ∈ Z0h, z(P ) ≥ φ(P ),∀P ∈
∑

h
}

Above,
∑
h is the set of the vertices of T Ω

h . We approximate then the penalized
control problems (3.1) and (4.1) by

(5.18)

{
Find u4th = {un}Nn=1 ∈ U

l,4t
h such that

J4thε (u4tε ) ≤ J4thε (v),∀ v(= {vn}Nn=1) ∈ U l,4th ,

with

(5.19)

J4thε (v) =
4t
2

N∑
n=1

∫
ωh

|vn|2dx+
k1 4 t

2

N∑
n=1

∫
Ωh

|yn − yndh|2dx+
k2

2

∫
Ωh

|yN − yTh|2dx,
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where in (5.19):

• ydh and yTh are approximations of yd and yT (obtained by interpolation in
general, if yd and yT are continuous functions)
• {yn}Nn=1 is obtained from v via the solution of the following fully discrete

non-linear parabolic problem

y0 = y0h;(5.20a) 

For n = 1, . . . , N, {yn−1, vn} → yn via the solution of
yn ∈ Z0h,∫
Ωh

yn−yn−1

4t zdx+
∫

Ωh

A∇yn.∇zdx−

ε−1

3

∑
P∈Σ0h

∫
Ω

|ωP |((yn(P )− φ(P ))−)2z(P )dx =

〈fn, z〉h +
∫
ωh

vnzdx ,∀z ∈ Z0h,

(5.20b)

where in (5.20) (i)y0h is the approximation of y0 (obtained by interpolation in
general if y0 is a continuous function).(ii)

∑
0h is the set of the vertices of T Ω

h

which are not located on ∂Ωh. (iii) ωp is the polygonal union of those triangles of
T Ω
h which have P as a common vertex and |ωP | is the measure of ωP .

The associated adjoint equation reads as:

(5.21)

{
pN+1 ∈ Z0h,∫
Ωh

PN+1zdx = k2

∫
Ωh

(yN − yTh)zdx ,∀z ∈ Z0h

for n = N, . . . , 1, {pn+1, yn} → pn via the solution of following linear discrete
elliptic problem

(5.22)



pn ∈ Z0h,∫
Ωh

pn−pn+1

4t zdx+
∫

Ωh

A∇pn.∇zdx+

ε−1
∑
P∈Σ0h

|ωp|((yn(P )− φ(P ))−)pn(P )z(P )dx =

k1

∫
Ωh

(yn − yndh)zdx;∀z ∈ Z0h.

Concerning the solution of the nonlinear discrete elliptic problems (5.20), we advo-
cate Newton method which can be automated by tools in FEniCS. In a nutshell,
one can just pass the nonlinear form, the unknown state variable as function object,
the essential boundary conditions and the variational form for the Jacobian of the
nonlinear form. We will discuss the implementation with minor modification from
(5.20) in Appendix.
Finally, concerning the solution of the fully discrete analogue of the line search
problem (5.6), we advocate the Back tracking inexact line search using armijo rule
to readily identify a relatively small interval containing the solution, that is, the
fully discrete analogue of the solution ρk of the one dimensional optimization prob-
lem (5.6). The code used for the line search was a direct implementation of the
Pseuso-code in the book by Nocedal and Wright[6].
Remark 5.1.1. The function fn occurring in the right hand side of (5.20) is
a convenient approximation of f at t = n 4 t and we define fn ∈ H−1(Ω) as
fn = f(n4 t). Then, since 〈., .〉h is an inner product on Z0h, one may define fnh by

〈fnh , z〉h = 〈fn, z〉,∀z ∈ Z0h, f
n
h ∈ Z0h
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Discussion: checkpointing. If the forward problem is non-linear, then the solu-
tion computed by the forward problem must be available during the execution of
the adjoint problem. The adjoint problem depends on the forward solution. If the
adjoint problem is solved backwards in time, the forward solution (or the ability to
recompute it) must be available for the entire length of forward and adjoint solves.
In large simulations, it quickly becomes impractical to store the entire forward so-
lution through time at once. The alternative to storing the forward solution is to
recompute them when necessary from checkpoints stored during the forward run;
however a naive re-computation would greatly increase the computational burden
of the problem to be solved. Therefore, some balance of storage and re-computation
is necessary. This problem has been extensively studied in [7] and a similar memory
saving devices has been introduced by Griewank [8] in the context of Reverse-Mode
Automatic Differentiation. The checkpoint can be thought of as a pointers repre-
senting the intermediate states of the evolution. To implement the checkpointing,
we invoke revolve library. The routine revolve sets the checkpoints in binomial fash-
ion and the intermediate values are being recalculated instead of being recorded.
All coding has been done in python.

6. Numerical results

In the following experiments, we will investigate the controllability issues related
to variational inequality. For these investigations, we used the data mentioned in
Table 1. In the numerical experiments, the desired target yT , initial condition as
y0 and the source term f , are, for simplicity replaced by approximations, yTh, y0h,
fh. For simplicity we choose φ = 0 and diffusion tensor to be identity matrix for
all numerical experiments. The primary reason being the difficulty we faced while
generating the form for the nonlinear solver in FEniCS [9].

Table 1. Parameters used to investigate control of parabolic vari-
ational inequality

Physical Parameters Ω (0, 1)× (0, 1)
ω (0, 1)× (0, 1)

Penalty parameters k1, k2 102, 104, 106

Time discretization parameter 4t 10−2

(6.1)


yT (x, y) = exp(− 1

1−x2 − 1
1−y2 )

f = |xy − 0.5|+ 0.25
yd = 0

6.0.1. Numerical results for ω = (0, 1) × (0, 1). We choose 4t = 0.01 as the
time-step and total time T = N × timestep, where N is the parameter supplied
by the developer. For the first experiment we choose N = 100 which implies T =
1. In these experiments, we have chosen u0 = 0 as initial guess for control, and
k1, k2 as the value of the penalty parameter. The corresponding numerical results
have been summarized in Table 1, 2, and 3 where uc and yc denote the computed
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control and corresponding computed state, respectively, and CGIters is the number
of iterations required to achieve the convergence of the conjugate gradient algo-
rithm with tolerance, tol = 10−6. If the stopping tolerance is too fine then the
optimization algorithm performs badly, albeit the relative error decreases. Norm
uc is ‖uc‖L2(ω×(0,T )) and Rel. error denotes the relative error between the desired

target yT and computed state yc(T ) which we denote by
‖yc(T )−yT ‖L2(Ω)

‖yT ‖L2(Ω)
. First of

all we present the controllability result when control is distributed on the whole
domain. However, It is not practically realistic to place the control actuators on
the whole domain, we therefore investigated the controllability issues for the case
when control is distributed on the subset of the domain. We investigated the effect
of ε on the convergence when the control is distributed on the whole domain. We
present the summary of convergence for k1 = 104 , k2 = 102 and different values
of ε in Table 2. It is not surprising that we get better performance at ε = 10−8.
It is well known from the proof stated in Mignot et al. [10], Glowinski [2] that the
solution yε of the penalized problem converges to that of variational inequality as
ε → 0 . However we do not see significant difference in the Rel.error and conver-
gence of the algorithm is not only decided by ε. The penalty parameters k1 and k2,
the desired target yT and source term f are also key players affecting the Rel. error.

Table 2. Summary of convergence for k1 = 104, k2 = 102, ω =
(0, 1)× (0, 1), and T=1

ε k1 k2 CGIters Norm uc Rel. error
10−2 104 102 41 1.0125 0.2551
10−3 40 1.0275 0.2536
10−4 36 1.0377 0.2481
10−6 18 1.2579 0.2421
10−8 17 1.8119 0.1357

We, therefore fix the value of ε = 10−8 and study the effect of different values of
k1 and k2 on the convergence of the conjugate gradient algorithm. We observe that
k1 is the dominating factor concerning the aspect of the optimal control and the
convergence behaviour of the algorithm. The performance is better when the value
of k1 is relatively large as compared to the value of k2, but when we choose the
value of k2 relatively large as compared to the value of k1 the performance of our
conjugate gradient algorithm deteriorates and fails to converge to minimum of J , as
soon as the discretization parameters are small enough. The numerical experiments
reported indicate that a substancial performance may be obtained after a modest
number of iterations. We also investigate the effect of discretization parameter
on the convergence of the conjugate-gradient algorithm. We choose ε = 10−8,
k1 = 104, k2 = 102 and T = 1 to investigate the h-convergence. We observe that
as we go on refining the mesh the number of iterations required to achieve the
convergence decreases. However the values of L2 norm of the optimal control and
Rel. error show stabilizing behaviour. No dramatic differences in Rel.error when
the discretization is refined. We present the visualization of computed state yc, the
desired target yT for ω = (0, 1)× (0, 1) in Figure 2 and the snapshots of control at
different instants of time for this first experiment in Figure 3. We observe that the
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Table 3. Numerical results with ε = 10−8, and ω = Ω = (0, 1)× (0, 1)

ε k1 k2 CGIters Norm uc Rel.error
10−8 102 102 62 1.5243 0.2481

104 102 17 1.8119 0.1357
106 102 14 0.1182 0.0180
102 104 558 15.2588 0.2965
102 106 > 1268 - -

control creates an even temporal distribution. Finally we present the visualization
of time evolution of the L2 norm of the optimal control for different values of k1

and k2 in Figure 5.4.

Table 4. Numerical results for h-convergence, T = 1, k1 = 104,
k2 = 102, 4t = 0.01, and ε = 10−8

h Norm uc CGIters Rel.error
1
32 3.9345 23 0.3161
1
64 1.8119 17 0.1357
1

128 1.6192 8 0.1124
1

256 1.0290 6 0.1048
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(a) Desired target, yT

(b) Computed state yc(T )

(c) Difference between the de-
sired target, yT , and computed

state yc(T )

Figure 2. Visualization of the desired target, yT , computed state,
yc(T ), for k1 = 104, k2 = 102, h = 1

64 , T = 1, and ω = Ω. The
color bar represents the value of function at mesh coordinates.
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(a) Control at t = 0.01 (b) Control at t = 0.03

(c) Control at t = 0.06 (d) Control at t = 0.09

(e) Control at t = 0.17 (f) Control at t = 0.19

Figure 3. Snapshots of the optimal control at different time in-
stants, k1 = 106, k2 = 102, ω = Ω, T = 0.2, and 4t = 0.01. The
color bar represents the value of the function at mesh coordinates.
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(a) k1 = 102, k2 = 102

(b) k1 = 104, k2 = 102 (c) k1 = 106, k2 = 102

Figure 4. Time evolution of the L2 norm of the optimal control
function for k1 = 104 and k2 = 102, T = 0.4, 4t = 0.01, and
ω = Ω.



CONTROL OF DISTRIBUTED PARAMETER SYSTEMS MODELLED BY PVI OF THE OBSTACLE TYPE17

6.0.2. Numerical results for ω = ( 1
4 ,

3
4 ) × ( 1

4 ,
3
4 ). In this section we present the

controllability result when the control is supported on the sub domain ω = ( 1
4 ,

3
4 )×

( 1
4 ,

3
4 ). First, we investigate the effect of epsilon on the controllability for the value

of k1 = 104 and k2 = 102. We choose tol = 10−6 for this experiment. We present the
summary of convergence results for k1 and k2 fixing ε = 10−6 in Table 5. In Table
6 we present the effect of discretization parameter h(mesh width of discretization)
on the controllability for k1 = 104, k2 = 102 and time T = 1 when control is
implemented on the sub-domain. We plot the computed state yc(T ), the desired
target yT and difference between the computed state and desired target in Figure
5. In Figure 6 we present the snapshots of the control at different instants of time.
Figure 6(a) and 6(b) is presented differently with an intent to demonstrate the
activation of control near zero in the negative y axis. Activation of control near
zero in the negative y axis contributes to the low value of the cost of the optimal
control.

Table 5. Summary of convergence results for k1 = 104, k2 = 102,
T = 0.5, 4t = 0.01, and h = 1

64

ε k1 k2 CGIters Rel.error Norm uc

10−2 104 102 55 0.4240 1.2504
10−3 54 0.4227 1.2536
10−4 48 0.4215 1.2761
10−6 16 0.4110 1.3785
10−8 14 0.4041 1.6192

Table 6. Summary of h-convergence for ω = ( 1
4 ,

3
4 ) × ( 1

4 ,
3
4 ), 4t

= 0.01, T=0.5, k1 = 104, and k2 = 102

h Norm uc CGIters Rel.error
1
16 3.7868 81 0.4174
1
32 2.7387 56 0.4156
1
64 1.6192 16 0.4110
1

128 1.0290 9 0.4039

We observe that the cost of the control(‖uc‖L2(ω×(0,T ))) in this case does not show
significant difference from the case when the control was distributed on the whole
domain. The primary reason for this similarity is the selection of the symmetrical
domain which activates the control in similar fashion. We also observe the similar
controllability behaviour in case of the sub domain i.e k1 is the dominating factor.
The Rel.error shows stabilizing behaviour and the factor that effects Rel.error are
k1, k2 and ε. The performance is better when we choose high value of k1 = 106 and
low value of k2 = 102. Finally, we present the visualization of the time evolution of
the L2 norm of the optimal control for control supported on sub domain in Figure
7.
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(a) Desired target yT

(b) Computed state yc(T )

(c) Difference between the de-
sired target, yT , and computed

state yc(T ).

Figure 5. Visualization of yc, yT and the difference of yc and yT
for k1 = 106, k2 = 102, T = 1, h = 1

64 , and ω = ( 1
4 ,

3
4 ) × ( 1

4 ,
3
4 ).

The color bar represents the value of the function at mesh coordi-
nates.
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(a) Control at t = 0.01 (b) Control at t = 0.03

(c) Control at t = 0.06 (d) Control at t = 0.09

(e) Control at t = 0.17 (f) Control at t = 0.19

Figure 6. Snapshots of the optimal control at different time in-
stants, k1 = 106, k2 = 102, ω = ( 1

4 ,
3
4 ) × ( 1

4 ,
3
4 ), T = 0.2, and

4t = 0.01. The color bar represents the value of the function at
mesh coordinates.
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(a) k1 = 102, k2 = 102

(b) k1 = 104 ,k2 = 102

(c) k1 = 106, k2 = 102

Figure 7. Time evolution of the L2 norm of the optimal control
function for k1 = 104 and k2 = 102, T = 0.4, 4t = 0.01, and
ω = ( 1

4 ,
3
4 )× ( 1

4 ,
3
4 ).
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We end this section with controllability results for space discretization used in
(5.17) to discretize the control space i.e:

(6.2) V0
h = {v|v ∈ L2(ωh),v|K ∈ P0,∀K ∈ T ωh },

The control is assumed to be piecewise constant. More precisely, u is assumed to
be constant on each triangle of the triangulation. In this case, each basis function
equals unity on exactly one triangle and zero otherwise. We use the data in Table
1 for this experiment. Also the desired target yT , the source term f and yd is same
as the first experiment. We choose T = 1, 4t = 0.01, h = 1

64 for this experiment
but for visualization purposes we choose small T to demonstrate the activation
of control. In order to investigate the effect of the penalty parameter ε on the
controllability of variational inequality, we choose the value of k1 and k2 as 106 and
102 respectively because of the experience we got after experimenting with previous
test cases. The control is supported on ω = ( 1

4 ,
3
4 ) × ( 1

4 ,
3
4 ) which is symmetrical

around the center. We present our investigation for the effect of ε on controllability
in Table 7. We observe in Table 8 that the conjugate gradient algorithm takes less
iterations to converge if we discretize the control space as mentioned in (5.58). The
reason for such behaviour is the appearance of diagonal matrix in the control term
after full discretization of the objective functional.
We present the visualization of desired target yT , computed state yc(T ) and the
difference of yc(T ) and yT in Figure 7. The time evolution of the L2 norm of the
optimal control for different values of k1 and k2 is shown in Figure 10. Figure
9 clearly shows the piecewise activation of control when control is supported on
the whole domain ω = (0, 1) × (0, 1). However, we will not delve into the greater
details and only stick to the case where control is distributed on the sub domain
ω = ( 1

4 ,
3
4 )× ( 1

4 ,
3
4 ).

Table 7. Summary of convergence results with k1 = 106, k2 =
102, ω = ( 1

4 ,
3
4 )× ( 1

4 ,
3
4 ), h= 1

64 , and T=1

ε k1 k2 CGIters Norm uc Rel.error
10−2 106 102 70 3.3948 0.0174
10−3 106 102 64 2.9109 0.0174
10−5 106 102 23 1.6193 0.0174
10−8 106 102 17 0.6572 0.0064

Table 8. Numerical results with ε = 10−8, ω = ( 1
4 ,

3
4 ) × ( 1

4 ,
3
4 ),

T=1, and h = 1
64

ε k1 k2 CGIters Norm uc Rel.error
10−8 102 102 11 2.1656 0.4758

104 102 12 1.3854 0.2962
106 102 17 0.6572 0.0064
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(a) Target function yT

(b) Computed state yc(T )

(c) Difference be-
tween the target

function, yT , and

computed state
yc(T )

Figure 8. Visualization for ω = ( 1
4 ,

3
4 )× ( 1

4 ,
3
4 ),T=0.4, k1 = 104,

and k2 = 102. The color bar indicates the value of the function at
mesh coordinates while in the case of the difference it represents
the value of the difference taken pointwise.
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(a) k1 = 106, k2 = 102 (b) k1 = 104, k2 = 102

(c) k1 = 102, k2 = 102 (d) k1 = 106, k2 = 104

(e) k1 = 104, k2 = 104 (f) k1 = 102, k2 = 104

Figure 9. Time evolution of the L2 norm of optimal control for
different values of k1 and k2, 4t = 0.01, T = 0.4, and ω = ( 1

4 ,
3
4 )2.
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