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Abstract

This work proposes a semi-analytical method for simulation of the acoustic
response of multipole eccentered sources in a fluid-filled borehole. Assuming
a geometry that is invariant with respect to the azimuthal and vertical di-
rections, the solution in frequency domain is expressed in terms of a Fourier
series and a Fourier integral. The proposed semi-analytical method builds
upon the idea of separating singularities from the smooth part of the in-
tegrand when performing the inverse Fourier transform. The singular part
is treated analytically using existing inversion formulae, while the regular
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part is treated with a FFT technique. As a result, a simple and effective
method that can be used for simulating and understanding the main physical
principles occurring in borehole-eccentered sonic measurements is obtained.
Numerical results verify the proposed method and illustrate its advantages.

Keywords: Borehole acoustics, Multipole source, Eccentricity,
Semi-analytical method
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1. Introduction

Sonic logging instruments are routinely used to asses the main mechanical
properties of the subsurface, enabling estimation of the amount and type of
hydrocarbons present in a reservoir. However, in actual borehole logging
conditions, sonic logging measurements are often difficult to interpret, and
they may produce a miscalculation in the hydrocarbon estimation. A well-
known situation in which sonic measurements are challenging to interpret
is when the logging instrument is located at a nonzero distance from the
center of the borehole, the so-called borehole-eccentered measurements (cf. [1,
2]). To facilitate interpretation of borehole-eccentered measurements, it is
necessary to develop effective numerical simulation methods in frequency
domain, which provide direct information about the dispersion and velocities
of the wave propagation phenomena.

The numerical codes developed for this purpose — most of them based in
finite-element discretizations — need to be constantly improved and verified.
A powerful and simple test is to benchmark these codes with results that can
be obtained by a completely different method, the latter being as analytical as
possible. Analytical codes are also used to postprocess in real-time acquired
sonic waveforms, which enable corrections on the trajectory of the so-called
logging-while-drilling (LWD) instruments.

A simple way to obtain analytical representations of solutions is to assume
geometric invariance in two of the three spatial dimensions. Here, we assume
a concentric borehole model where the vertical and azimuthal directions re-
main invariant. In this case, the wavefield produced by a (time-harmonic)
point source can be represented by an inverse Fourier integral in terms of the
axial coordinate, and a Fourier series in terms of the azimuthal coordinate
(cf. [3]). The main computational difficulty is to deal with the singularities
of the integrand function in the Fourier inversion, which makes imposible
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a direct application of a FFT technique or any other conventional numeri-
cal integration method. Indeed, those singularities are not integrable in the
classical (L1 or Riemann) sense. Therefore, the Fourier inversion only has
a meaning in a distributional sense. So far, two numerical techniques have
been used to compute this last Fourier inversion integral. One technique is
known as the real axis integration (RAI) method, introduced by Rosenbaum
[4] and Tsang & Rader [5]. The other technique employs a deformed inte-
gration path in the complex plane and the most common reference to this
method is the work of Kurkjian [6].

The RAI method [5, 7] is conceptually easy to apply, but it is a method
adapted to recover the solution in time-domain rather than in frequency-
domain. Basically, by adding a sufficiently large imaginary part in the fre-
quency variable, the singularities of the integrand function are shifted away
from the real axis towards the complex plane. This allows to perform a di-
rect integration over the real axis with a FFT technique, at the expense of
introducing a solution defined over a complex path of the frequency domain
rather than the traditional real frequency domain space. This prevents us
from directly studying frequency domain features that are routinely analyzed
in borehole acoustics. For that purpose, one would need to perform addi-
tional Fourier transforms, which can be cumbersome and prone to numerical
errors. Nonetheless, the RAI method can be applied to several logging sce-
narios (see [8] or [9]).

On the other hand, the method that uses Cauchy theory [6] is well adapted
to recover the frequency-domain solution, but it can be difficult to handle
because it involves several integrals in the complex plane. Basically, the
Fourier inversion integral is computed as the sum of residues given by the
singularities, plus integrals over both sides of the brunch cuts where the
integrated function is non-analytic. A slight modification to this technique,
in which the residues are computed using a Laurent series expansion, can be
found in the recent article [10].

In this paper we use a different approach, which is at the same time
conceptually simple and adapted to recover the frequency-domain solution.
Since the integrand has non-integrable singularities, it must be regarded as a
tempered distribution (the space of distributions where the Fourier transform
is well-defined). Then, by isolating the singularities, we split the integrated
function into a non-integrable part (but still a tempered distribution) plus
an integrable part in the L1(R) sense. The non-integrable part is treated
analytically using conventional Fourier transform formulae, while the inte-
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grable part is treated numerically with a FFT technique over the real axis (no
complex integration paths are used). The idea of decomposing the inverse
Fourier transform into analytic and numeric counterparts is widely used in
many communities, particularly when evaluating Green’s functions for ap-
plications in electrical engineering, mechanical engineering, geophysics and
boundary elements (cf. [11, 12, 13, 14]). Our case is particularly challenging
because the map of singularities is complicated: we have several of them,
each one depends nonlinearly upon the frequency, and most of them have
cut-off frequencies.

We apply this approach to compute the (time-harmonic) acoustic re-
sponse of a fluid-filled borehole due to multipole eccentered excitations, in-
cluding some extreme situations where the sources are very close to the bore-
hole wall. We verify our technique against the classical results of Kurkjian
[6] and the latest finite-element approach proposed in [1].

This paper is organized as follows. First, we describe the model problem
to be solved. Then, we derive the mathematical formulation of our semi-
analytical method. Finally, we present some benchmarks and challenging
numerical results followed by the main conclusions. This paper also contains
an appendix that describes explicitly the radial stress in Fourier domain.

2. Model problem

Using cylindrical coordinates (r, θ, z), we consider a fluid with sound ve-
locity cf > 0 and density ρf > 0 filling the borehole Ωf := {(r, θ, z) : r < R}.
An isotropic elastic solid of density ρs > 0 and Lamé coefficients λ, µ > 0
is surrounding the borehole in a region Ωs := {(r, θ, z) : r > R}. The do-
mains are invariant under rotation and translation in the z-direction. We
want to analyze the pressure response in the fluid, due to a time-harmonic
point source excitation. Single point source is characterized by its angular
frequency ω > 0 and placed for convenience at (rs, 0, 0), where 0 < rs < R
(see Fig. 1). More complicated types of sources like eccentered monopoles,
dipoles or quadrupoles are obtained by a simple superposition technique (see
Section 3.4 or cf. [15]).

The characteristic wavenumbers are denoted by kf = ω/cf for the fluid,
and kp = ω(ρs/(λ+ 2µ))1/2 together with ks = ω(ρs/µ)1/2 for the compres-
sional and shear wavenumber of the solid, respectively.

The pressure response in the fluid and the displacement field response in
the elastic solid are represented by p = p(r, θ, z;ω) and u = u(r, θ, z;ω) =
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Figure 1: Typical geometry for problems with one acoustic source composed of four exci-
tation points (red points) and an array of eight receivers (yellow points). Left: centered
model. Right: eccentered model.

urer+uθeθ+uzez, respectively, where {er, eθ, ez} denotes the set of canonical
vectors in cylindrical coordinates. The corresponding set of partial deriva-
tives is denoted by {∂r, ∂θ, ∂z}.

Given an amplitude A ∈ C of the source, the pressure behavior in fluid
domain is governed by the Helmholtz equation:{

∆p+ k2fp = −A
r
δ(r − rs)δ(θ)δ(z) in Ωf ,

∂rp = ρfω
2ur over r = R ,

(1)

where the symbol δ stands for the Dirac delta distribution, and the scalar
Laplacian in cylindrical coordinates is given by:

∆ =
1

r
∂r(r∂r) +

1

r2
∂2θ + ∂2z .

The linear elastodynamic equations governing the displacement field in the
solid are: u+

1

k2p
∇∇ · u− 1

k2s
∇×∇× u = 0 in Ωs ,

σ(u)er = −per over r = R ,
(2)
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where σ stands for the Cauchy stress tensor in cylindrical coordinates (cf. [16]).

3. Derivation of the semi-analytical method

3.1. The spectral solutions

In this section, equations (1) and (2) will be transformed via classical
Fourier transform in the geometrical invariant variables (θ, z), i.e.,

v̂n(ξ) =
1

2π

∫
(−π,π)×R

v(θ, z) cos(nθ)eiξzdθdz.

The solutions of the transformed equations, which depend now on wavenum-
ber variable ξ and azimuthal order n (as well as on the observation radius r,
the source radius rs, and the angular frequency ω), will be called the spectral
solutions.

The inverse Fourier transform will be defined as:

v(θ, z) =
+∞∑
n=0

εn
2π

∫
R
v̂n(ξ)e−iξzdξ cos(nθ), where εn =

{
1 if n = 0 ,
2 if n > 0 .

3.1.1. Acoustic domain

Applying the Fourier transform to equation (1) we obtain:
d2r p̂n +

1

r
drp̂n +

(
α2
f −

n2

r2
)
p̂n = − A

2πr
δ(r − rs) for 0 ≤ r < R ,

drp̂n = ρfω
2ûr,n at r = R ,

(3)

where αf = αf (ξ) is the square root, defined by:

αf =
√
k2f − ξ2 =

{
(k2f − ξ2)1/2 if |ξ| ≤ kf

−i(ξ2 − k2f )1/2 if |ξ| > kf .
(4)

Solutions of (3) can be written as a linear combination of Bessel functions

Jn(αfr) and H
(2)
n (αfr). Formally, solving for p̂n we obtain:

p̂n =
Jn(αfr)

J ′n(αfR)

(
ρfω

2

αf
ûr,n
∣∣
r=R

+ A
i

4
Jn(αfrs)H

(2)′

n (αfR)

)

−A i
4
×
{
Jn(αfr)H

(2)
n (αfrs) if r < rs

Jn(αfrs)H
(2)
n (αfr) if r > rs .

(5)
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Using the Graf’s addition theorem (cf. [17]) and the Weyrich’s formula (see [18,
p.14]), we can verify that the last term in (5), which is defined by parts, corre-
sponds to the Fourier transform of the fundamental solution of the Helmholtz
operator in the whole space, i.e.,

E =
A

4π

e−ikf
√
z2+r2+r2s−2rrs cos θ√

z2 + r2 + r2s − 2rrs cos θ
.

Therefore, we only need to take the Fourier inversion for the first term of
equation (5), which corresponds to the reflection from the fluid/solid inter-

face, that we denote hereafter by P̂n.

3.1.2. Elastic domain

Here we follow an approach similar to [19]. According to equation (2),
we represent the field of displacements u = urer + uθeθ + uzez in terms of
its scalar and vector potentials, i.e.

u =
∇×Ψ

k2s
− ∇Φ

k2p
, (6)

where Φ = ∇ · u and Ψ = ∇× u. In turn, the vector potential is written in
terms of unknown scalar potentials as

Ψ = ψez +
1

k2s
∇∂zψ +

1

ks
∇× (χez) .

Taking, respectively, the divergence and the curl of equation (6), we conclude
that we need three scalar potentials (namely Φ, ψ, and χ) satisfying the
Helmholtz equations:

∆Φ + k2pΦ = 0 , ∆ψ + k2sψ = 0 , and ∆χ+ k2sχ = 0 . (7)

Explicitly, in the spatial and Fourier (spectral) domains, respectively, we
have:

ur =
1

k2s

[
1

ks
∂2rzχ+

1

r
∂θψ

]
− 1

k2p
∂rΦ, ûr,n = − 1

k2s

[
iξ

ks
drχ̂n +

n

r
ψ̂n

]
− 1

k2p
drΦ̂n,

uθ =
1

k2s

[
1

ks

1

r
∂2θzχ− ∂rψ

]
− 1

k2p

1

r
∂θΦ, ûθ,n = − 1

k2s

[
iξ

ks

n

r
χ̂n + drψ̂n

]
− 1

k2p

n

r
Φ̂n,

uz =
1

k2s

[
ksχ+

1

ks
∂2zχ

]
− 1

k2p
∂zΦ, ûz,n =

1

k3s
(k2s − ξ2)χ̂n +

iξ

k2p
Φ̂n.
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Let αp and αs be the square roots defined in the same way as (4), but
replacing the wavenumber kf by the wavenumbers kp and ks, respectively.
The outgoing solutions of equations (7) in Fourier domain are the Bessel

functions H
(2)
n (αpr) and H

(2)
n (αsr). Thus, we can write:

Φ̂n = −k2p c1,nH
(2)
n (αpr) , ψ̂n = −k2s c2,nH

(2)
n (αsr) , and

χ̂n = ik3s c3,nH
(2)
n (αsr) ,

for an unknown vector of coefficients cn = (c1,n, c2,n, c3,n)T that has to be
determined using the transmission condition imposed at r = R.

In matrix form, we recover the displacements as ûn = (ûr,n, ûθ,n, ûz,n)T =

Ûncn, where Ûn has the reduced form:

Ûn :=


αpH

(2)′

n (αpr)
n

r
H(2)
n (αsr) ξαsH

(2)′

n (αsr)
n

r
H(2)
n (αpr) αsH

(2)′

n (αsr) ξ
n

r
H(2)
n (αsr)

−iξH(2)
n (αpr) 0 iα2

sH
(2)
n (αsr)

 .

The transmission condition over the fluid/solid interface (see the boundary
condition of eq. (2)) is related to the outer pressure p̂n of the inner fluid by
the formula:

Ŝncn = −p̂n
∣∣
r=R

er , (8)

where the coefficients of matrix Ŝn (related to performing a Fourier transform
over the radial stress σ(u)er) can be found in Appendix A. Formally, solving
for ûn, we obtain:

ûn = −p̂n
∣∣
r=R

Ûn Ŝ
−1
n er . (9)

It will be useful to work with the adjoint matrix of Ŝn that we define to be

Ân := det(Ŝn)× Ŝ
−1
n .

3.1.3. The dispersion relations

To solve equations (5) and (9), we need to calculate the values of p̂n
∣∣
r=R

and ûr,n
∣∣
r=R

. Thus, evaluating the equations (5) and (9) at r = R, and using
the Wronskian identity [17], we arrive to the system:(

αfJ
′
n(αfR) −ρfω2Jn(αfR)

Û 1,n · Â1,n det(Ŝn)

)(
p̂n
ûr,n

) ∣∣∣
r=R

=

(
A
Jn(αfrs)

2πR
0

)
, (10)

8



where Û 1,n stands for the first row vector of matrix Ûn, while Â1,n stands

for the first column vector of the adjoint matrix Ân.
The determinant of the system in (10) characterizes the dispersion of the

guided modes inside the borehole. It has the form:

∆n = αfJ
′
n(αfR) det(Ŝn) + ρfω

2Jn(αfR)Û 1,n · Â1,n .

The dispersion relations for guided modes can thus be obtained by looking
for the pairs (ξ, ω) such that ∆n(ξ, ω) = 0.

Finally, to complete the expression (5) for p̂n, we compute:

ûr,n
∣∣
r=R

= −AJn(αfrs)

2πR∆n

Û 1,n · Â1,n .

3.2. Singularities

We are interested in computing the inverse Fourier transform of the re-
flection term P̂n. This term contains several real-valued singularities in the
ξ-variable which prevents a direct application of numerical inversion tech-
niques like the FFT. The key point in the analysis of these singularities is
that, using the Wronskian identity [17], P̂n can be rewritten as:

P̂n = A
i

4
Jn(αfr)Jn(αfrs)

αfH
(2)
n

′
(αfR)γn + ρfω

2H
(2)
n (αfR)βn

αfJ ′n(αfR)γn + ρfω2Jn(αfR)βn
,

where

γn(ω, ξ2) = det(Ŝn) and βn(ω, ξ2) = Û 1,n · Â1,n .

(11)

Four types of singularities will be analyzed: singularities related to αf = 0,
singularities related to αp = 0, singularities related to αs = 0, and singulari-
ties related to the determinant ∆n = αfJ

′
n(αfR)γn + ρfω

2Jn(αfR)βn = 0.
In the following, we will make use of the following limiting forms for

Bessel function and small arguments (cf.[17]), when z → 0 :

Jn(z) ∼ zn

2nn!
and iH(2)

n (z) ∼


2

π
log(z) if n = 0 ,

−(n− 1)!

π

2n

zn
if n > 0 ,

(12)

as well as the derivative relation for Bessel functions (cf. [17]) :

wB′n(w) = nBn(w)− wBn+1(w) .
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3.2.1. Singularities related to ξ2 = k2f (or αf = 0).

This singularity is only related with the reflection of the fluid source wave
over the boundary r = R. It does not contain any information about the
formation.

Proposition 1. All possible singularities related to αf = 0 in P̂n are remov-
able, except when n = 0, where there is a log-type singularity.

Proof. Combining (11) with (12), we obtain for n ≥ 1 :

lim
αf→0

P̂n = A
rnrns

4πnR2n

(nγn − ρfω2Rβn)

(nγn + ρfω2Rβn)
,

and for n = 0 :

P̂0 = A
i

4
J0(αfr)J0(αfrs)

ρfω
2β0H

(2)
0 (αfR)− γ0αfH(2)

1 (αfR)

ρfω2β0J0(αfR)− γ0αfJ1(αfR)

∼ A
i

4

[
H

(2)
0 (αfR) +O(1)

]
,

(13)

when αf → 0.

Remark 1. Singularities associated with the roots of equation nγn(ω, k2f ) =
−ρfω2Rβn(ω, k2f ) exist at the intersection points of the curves defined by
∆n(ξ, ω) = 0 and the lines ξ2 = k2f . Hence, they are related to the dispersion
relation (guide modes).

3.2.2. Singularities related to ξ2 = k2p (or αp = 0).

This singularity contains the compressional wave information and there-
fore is related with compressional arrivals at the receivers. We observe a
non-smooth behavior of P̂n at these points, given by the change of sign in-
side the square root αp. The non-smoothness is more pronounced for n = 0.

Proposition 2. All possible singularities related to αp = 0 in P̂n are re-
movable, except when n = 0, where a singularity associated with the Bessel
function H

(2)
0 (αpR) may arise for particular frequencies.

Proof. Observe, that γn and βn can be factorized as:{
γn = Ŝ11,nÂ11,n + Ŝ21,nÂ12,n + Ŝ31,nÂ13,n ,

βn = Û 11,nÂ11,n + Ŝ21,nβ21,n + Ŝ31,nβ31,n ,
(14)
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Figure 2: Typical behavior of P̂0 in a neighborhood of ξ = kp. Left panel: the case when
we are far from a resonant frequency. Right panel: resonant frequency case.

where

β21,n = Û 13,nŜ32,n − Û 12,nŜ33,n and β31,n = Û 12,nŜ23,n − Û 13,nŜ22,n .

The only singular terms (when αp = 0) are Û 11,n and Ŝj1,n, for j = 1, 2, 3.
Using the limit forms (12), we obtain as αp → 0 for n ≥ 1:

Û 11,n = O(α−np ) and Ŝj1,n = O(α−np ) , for j = 1, 2, 3 .

Hence, for n ≥ 1, the terms in the numerator of P̂n are of the same order
as the terms in the denominator. Thus, P̂n has a finite limit as αp → 0.
However, for n = 0 and αp → 0 we obtain:

Û 11,n = O(1) , Ŝ11,n ∼ H
(2)
0 (αpR) , Ŝ21,n = 0 , and Ŝ31,n = O(1) .

Therefore, γ0 ∼ H
(2)
0 (αpR) + O(1) in this case, while β0 = O(1). The

terms in the numerator of P̂0 will be of the same order as the terms in

the denominator, except for frequencies such that J1(
√
k2f − k2pR) = 0. If

this last situation occurs, then the denominator of P̂0 will have a different
order than the numerator, and a log-type singularity related to H

(2)
0 (αpR)

will appear.

Remark 2. In general, the asymptotic expression for γ0 affects the smooth-
ness of P̂0 when αp = 0. We observe a log-type singularity if we match with

a frequency for which J1(
√
k2f − k2pR) = 0 (see Fig. 3). In any case, the

function P̂0 is integrable in a neighborhood of ξ = ±kp.
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3.2.3. Singularities related to ξ2 = k2s (or αs = 0).

This singularity contains the shear wave information and therefore is re-
lated with shear arrivals at the receivers. We observe a non-smooth behavior
of P̂n at these points, given by the change of sign inside the square root αs.
The non-smoothness is more pronounced for n = 1.

Proposition 3. All possible singularities related to αs = 0 in P̂n are remov-
able, except those located at the intersection points of the dispersion curves
∆n = 0 with the lines ξ2 = k2s .

Proof. Again, we make use of expression (14) for γn and βn, and the limit

forms (12). Provided that αs = 0, the singular terms in (14) are Â1j,n

(for j = 1, 2, 3) and βj1,n (for j = 2, 3). When n = 0, we only need to

analyze Â11,n = Ŝ22,nŜ33,n, Â13,n = −Ŝ22,nŜ13,n, and β31,n = −Û 13,nŜ22,n

(the remaining terms are multiplied by zero). We obtain:

Â11,0 = O(1) , Â13,0 = O(1) , and β31,0 = O(1) , as αs → 0 .

For the case n = 1, we have:

Â11,1 ∼ H
(2)
0 (αsR) +O(1) , Â12,1 ∼ H

(2)
0 (αsR) +O(1) , Â13,1 = O(1) ,

β21,1 = O(1) , and β31,1 ∼ H
(2)
0 (αsR) +O(1), as αs → 0 .

For n ≥ 2, all the terms behave like O(α
2(1−n)
s ). Hence, for every n ≥ 0, we

observe that γn is of the same order as βn. Thus, the terms in the numerator
of P̂n are of the same order as the terms in the denominator and the existing
singularities cancel out. Other singularities related to ∆n = 0 (guided modes)
will be discussed in what follows.

Remark 3. The asymptotic expressions for γ1 and β1 in terms of Bessel
functions H0(αsR) affect the smoothness of P̂1 when αs = 0. Nevertheless,
the function is still finite and integrable (similar to Fig. 3, left panel).

3.2.4. Singularities related to ∆n = 0.

Finally, we comment on the singularities related to the roots of ∆n = 0.
These singularities contain all the information about the guided modes inside
the cylinder. The ones that can be detected at the receivers are typically
those related with low values of n. For a fixed frequency, we use a root
finder routine to compute the roots assuming a priori information available
in literature (cf. [20] or [21]). We assume the following:
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• Every root of ∆n is a simple root. If ξj is a root, also it is −ξj. So the

singularity of P̂n related to the roots ±ξj behaves like O( 1
ξ2−ξ2j

).

• For n = 0, there is at least one root associated with the Stoneley mode
which (in most applications) exists for each frequency ω > 0. The
low-frequency limit of the Stoneley mode is given by [21]:

ξST =
ω

cST
, where cST =

cf√
1 + ρfc2f/µ

< cf .

In a slow formation (kp < kf < ks):

• For each n ≥ 0 and fixed ω > 0, there is at most one root of ∆n. The
root approaches asymptotically the wavenumber of the Scholte wave
[21] (which is larger than ks) in a high-frequency limit.

• For n ≥ 1, the root appears for every frequency larger than a charac-
teristic cut-off frequency. At the cut-off frequency this root matches
with the shear wavenumber ks.

In a fast formation (kp < ks < kf ):

• For each n ≥ 0 and fixed ω > 0, there is a finite number of roots of
∆n. The roots have their respective cut-off frequencies (ω = 0 for the
Stoneley mode). At the cut-off frequencies, the roots match with the
shear wavenumber ks.

• For each n ≥ 0, the root with the lowest cut-off frequency approaches
to the wavenumber of the Scholte wave as ω grows. The remaining
roots approach kf in the high-frequency limit.

3.3. Inverse Transform

In this subsection we describe how to recover the spatial solution by means
of the inverse Fourier transform. First, we analyze the case of a point source.

To recover the spatial solution, we perform:

p = E +
1

2π

∫
R
P̂0(ξ)e

−iξzdξ +
1

π

∑
n≥1

cosnθ

∫
R
P̂n(ξ)e−iξzdξ . (15)
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Figure 3: Log of the modulus of P̂0 as a function of ξ and frequency f = ω
2π . Left panel:

slow formation case. The red curve is the singularity associated with the Stoneley mode,
while blue curves are zeros of Bessel function J0(αfR). Right panel: fast formation case.
We observe four curves of singularities (in red). The one under the fluid wavenumber line
is the Stoneley mode, while the other three have cut-off frequencies at shear wavenumber.

As discussed in the previous section, the reflection terms P̂n (n ≥ 0) have
singularities that prohibit a direct evaluation of the integrals in (15). The

idea is to split each P̂n into a sum of a singular (non-integrable) and a regular
(integrable) part:

P̂n = P̂ sing

n + P̂ reg

n . (16)

It is important to characterize properly the singular part. The regular part
is then obtained by using (16). The inverse Fourier transform of the singular
part is treated analytically in a distributional sense, while the regular part
is treated numerically with the FFT technique, i.e.,∫

R
P̂ reg

n e−iξzdξ =

∫
R
(P̂n − P̂ sing

n )e−iξzdξ ≈ FFT[P̂n − P̂ sing

n ] .

3.3.1. Treatment of the singular part

For each ω > 0 and n ∈ N, we define Nsing = Nsing(ω, n) to be the
number (possible zero) of singularities related to the roots of ∆n = 0. For
each singularity ξj = ξj(ω, n) > 0 (j = 1, ...,Nsing(ω, n)) we compute the
residue:

Resj(ω, n) = lim
ξ2→ξ2j

(ξ2 − ξ2j )P̂n .
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Thus, recalling that P̂0 has an extra singularity as αf → 0 (see subsec-
tion 3.2.1), we define the singular contribution as:

P̂ sing

n =


A
i

4
H

(2)
0 (αfR) +

Nsing∑
j=1

Resj
(ξ2 − ξ2j )

, if n = 0 ,

Nsing∑
j=1

Resj
(ξ2 − ξ2j )

, if n ≥ 1 .

Now, using the inversion formulas provided by [18, 22], we obtain:

∫
R
P̂ sing

n e−iξzdξ =


−A

2

e−ikf
√
R2+z2

√
R2 + z2

− iπ
Nsing∑
j=1

Resj
ξj

e−iξj |z| if n = 0 ,

−iπ
Nsing∑
j=1

Resj
ξj

e−iξj |z| if n ≥ 1 .

3.4. The multipole source eccentered model

We consider infinitesimal point sources placed along an eccentered circle
of radius ra :

S :=
{

(rc, 0) + (ra cos θa, ra sin θa) : 0 ≤ θa < 2π
}
,

where rc (the eccentricity) and ra are such that rc + ra < R (the radius
of the borehole). Each single point source has a characteristic amplitude
A = cos(m(θa − ϕ)), where m ≥ 0. This model can describe: monopole
(m = 0), dipole (m = 1), quadrupole (m = 2), as well as higher order
sources. The angle ϕ ∈ [0, 2π) can be used to rotate the axis of the sources.
Using this setting, the excitation term can be expressed as:

E =
ra
4π

∫ 2π

0

e−ikf
√

(x−xs)2+(y−ys)2+z2√
(x− xs)2 + (y − ys)2 + z2

cos(m(θa − ϕ)) dθa ,

where (x, y) = (r cos θ, r sin θ) and (xs, ys) = (rc + ra cos θa, ra sin θa). The
spatial response in (r, θ, z) can be expressed formally as:

P = E +
ra
π

∫
R

(∫ 2π

0

P̂0(ξ)

2
+
∑
n≥1

cos(n(θ − θs))P̂n(ξ) dθa

)
e−iξzdξ ,

15



where (rs, θs) are the polar coordinates of (xs, ys), and for n ≥ 0,

P̂n =
i

4
Jn(αfr)Jn(αfrs)

γnαfRH
(2)′
n (αfR) + βnH

(2)
n (αfR)

γnαfRJ ′n(αfR) + βnJn(αfR)
cos(m(θa − ϕ)) .

Notice that the singularities remain invariant to the source positions, since
they solely depend on the geometry of the problem and the material prop-
erties. The same decomposition technique into singular and regular parts
apply for this case.
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Figure 4: Log of the amplitudes of the excited propagative modes from n = 0 to n = 9 in
a slow formation monopole setting. First column: centered case using 4, 8 and 16 source
points respectively. Second column: same as first column, but considering one centimeter
of eccentricity.

In practice, the angular integral in the θa-variable is calculated using
the trapezoidal rule. This is perhaps a more realistic model, since actual
logging devices work with four or eight sources uniformly distributed over
the ring. However, we remark that additional modes may appear by using
this technique, and they are physically correct. The latter may be avoided by
considering finite-size sources along the azimuthal direction, or by increasing
the number of point sources over the ring. The reason is simple: for example,
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let us consider the centered case (rc = 0) and M points uniformly distributed
over the ring, i.e., {raeiθs : θs = 2πs/M, s = 1, ...,M}. For the monopole case
(m = 0) the reflection term reduces to:

P − E = ra

∫
R

(
P̂0(ξ) +

2

M

M∑
s=1

∑
n≥1

cos(n(θ − θs))P̂n(ξ)

)
e−iξzdξ .

The sum
∑M

s=1 cos(n(θ−θs)) vanishes unless n is a multiple of M . The larger
the M , the smaller the contribution of n = M, 2M, ... in the sum. For M = 8,
the contribution of n = 8 is probably negligible, while for M = 4 (the case
considered in [15]) the contribution of n = 4 may not be negligible and could
confuse the interpretation of post-processed data (see Fig. 4).

4. Numerical results

4.1. Verification with other methods.

In this section, we verify our method by comparing our results against
those obtained by other numerical techniques.

Figure 5: Full waveforms excited by a 5 kHz source. Left panel: fast formation. Right
panel: slow formation.

We start comparing with the method used by Kurkjian [6], in which the
Fourier integration along the real axis is replaced by integration along the
paths on each side of the branch cuts of the square roots αp and αs, plus
residual contributions of the singularities given by the roots of ∆n = 0.
The parameters for a fast and slow formation are given in [6, Table 1]. We
reproduce waveforms excited by a pulse, the second derivative of a Blackman-
Harris window function (cf. [23]), with a 5 kHz central frequency. This means
that we had computed responses for several frequencies, and used an extra
FFT to recover the time domain solution. In Fig. 5, we display the waveforms
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Figure 6: Tube (Stoneley) mode. Left panel: fast formation. Right panel: slow formation.

Figure 7: Full waveform minus tube mode. Left panel: fast formation. Right panel: slow
formation.

analogously to those in [6, Fig. 10a & Fig. 5]. In Fig. 6, we show the tube
mode waveform analogously to that in [6, Fig. 10b & Fig. 6c]. In Fig. 7,
we display the full waveforms minus the tube mode analogously to the one
described in [6, Fig. 12a & Fig. 8a]. In each case, we observe that results
are identical (up to a scaling factor on the amplitudes), without using any
complex integration path.

Next, we compare results obtained with our method versus those obtained
with a high-order adaptive finite-element method [1]. In this case, we have
used a 5 kHz ring source in a slow formation for several borehole-eccentered
distances rc. We display the normalized pressure at a monopole (ring) re-
ceiver as a function of the distance from the ring source (transmitter). Results
match very accurately, as it can be observed in Fig. 8.

4.2. Numerical experiment: Convergence of the FFT.

The proposed method builds upon the idea of separating singularities
from the regular part of the integrand when performing the inverse Fourier
transform. We expect then a nice convergence of the FFT treatment of that
regular part. This is exactly what we observe in the following experiment.
We fix an upper integration limit for the FFT and then consider an increasing
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Figure 8: Comparison of the numerical solution to the analytical one for a borehole-
eccentered sonic logging problem at 5 kHz. Different panels correspond to various distances
between the center of sources/receivers and the axis of symmetry.

sequence of meshes from 210 nodes up to 220 nodes. In each of the meshes we
compute the same problem, a 10KHz centered monopole in fast formation
which originally has three singularities. Additionally, to also test the conver-
gence of the RAI method, we add an imaginary part ωI > 0 to the angular
frequency and perform a direct FFT without extracting the singularities (re-
call that singularities are shifted to the complex plane in this case). In Fig. 9,
we display the relative error between the results of two consecutive meshes.
The solid line is the convergence history obtained by our proposed technique,
which is very stable. The dashed lines correspond to the FFT convergence
of the RAI method with increasing imaginary parts ωI > 0. We observe that
ωI has to be rather large in order to obtain reasonable results.

4.3. Numerical experiment: Approaching the borehole wall.

In this experiment, we show how increasing the eccentricity in such a
way that the source approaches the borehole wall, increases the amplitudes
of higher order modes.
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Figure 9: FFT convergence for our proposed method and for the RAI method with different
imaginary parts.

In the eccentric model, higher order guided modes always exist. How-
ever, they are to small to be detected by a post-processing algorithm. One
can always compute the dispersion curve of such modes with a root-finding
technique (see Fig. 10), but we do not know if the modes have an impor-
tant contribution to the solution or not. The last can only be observed by
computing the amplitude of each mode independently. As we approach the
borehole wall, the amplitudes of higher order modes grow and they converge
to the limiting scenario in which the source is located at the borehole wall.

ρ (kg/m3) Vp (m/s) Vs (m/s) Borehole radius (m) 0.1097

Formation 2100 2540 1269 Imaginary tool radius (m) 0.045

Fluid 1100 1524 - Number of source points 16

Table 1: Assumed material properties and geometry of the problem.

The material properties and geometry of this experiment are given in
Table 1. We used an eccentered monopole source in slow formation assum-
ing equal strength of the source for every frequency. Thus, we display the
so-called raw spectra (see Fig. 11). We only plot amplitudes over a 10−5
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Figure 10: Slowness curves of the first ten cylindrical modes in the slow formation setting
of Table 1. Every other mode appears after 25 KHz.

threshold. When the ring source is at 3cm from the borehole wall, only
four cylindrical modes exist (Fig. 11, top left). Incrementing the eccentric-
ity in 1cm generates an increase of the amplitudes of every mode (Fig. 11,
top right). When further rising the eccentricity by 1 more cm., we observe
seven modes over the 10−5 threshold (Fig. 11, bottom left). Finally, when
the source is at the borehole wall, every cylindrical mode (whose cut-off fre-
quency is under 25 KHz) is over the 10−5 threshold (Fig. 11, bottom right).

4.4. Numerical experiment: eccentered/rotated dipole and quadrupole sources

We conclude this section showing a physically interesting phenomena.
When using a centered dipole (n = 1) or a quadrupole (n = 2) source there
is no Stoneley mode contribution. In the eccentered case, however, the situ-
ation changes. As we increase the eccentricity, modes of all orders (including
lower and higher-order modes) are excited. Particularly, eccentered dipole or
quadrupole sources can excite the Stoneley mode. However, it is possible to
eliminate the Stoneley mode contribution by rotating the source by 90◦ for
the dipole, and by 45◦ in the quadrupole case. The latter is independent of
the amount of eccentricity used.

The material properties and geometry of this experiment are given in
Table 1. We work with slow formation and two borehole-eccentered dis-
tances. The first one is 2.5 cm, and the second one is 5.0 cm (just 1.47 cm
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Figure 11: Amplitudes of the excited cylindrical modes due to an eccentered monopole
source. From left to right and from top to bottom, the distances of the ring source to the
borehole wall are 3cm, 2cm, 1cm and 0cm respectively.

from the borehole wall). We compute the amplitudes of the excited bore-
hole modes. In the dipole case (Fig. 12), we have used the Ricker wavelet
source at central frequency at 5 kHz. Results for four different rotation
angles

{
ϕ = π

2
( l−1

l
) : l = 1, 10, 100, 1000

}
are presented. Hence, for l = 1,

there is no rotation and for l = 1000, we approach 90◦. The left column
shows the results for rc = 2.5 cm. We observe that only the first five modes
(n = 0, 1, 2, 3, 4) contribute with amplitudes above the 10−8 threshold. The
amplitude of the Stoneley mode (black line) vanishes as we approach the
90◦ rotation, while the amplitudes of other modes remain almost invariant.
Analogously, the right column shows the results for rc = 5.0 cm. As we ap-
proach the borehole wall, the contributions of higher-order modes are larger.
We observe amplitudes above the 10−8 threshold for the first seven modes
(n = 0, 1, 2, 3, 4, 5, 6). The amplitude of the Stoneley mode also vanishes as
we approach the 90◦ rotation.

The quadrupole case (Fig. 13) is very similar. We have used the Ricker
wavelet at central frequency 6 kHz, and we display results for four rotation
angles

{
ϕ = π

4
( l−1

l
) : l = 1, 10, 100, 1000

}
, where mode amplitudes are above

10−11. The left column shows the case rc = 2.5 cm and it involves contri-
butions from the first eight modes (n = 0, ..., 7). The right column shows
the case rc = 5 cm and it involves contributions from the first ten modes
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Figure 12: Amplitudes of the excited modes for an eccentered/rotated dipole source. Left
column: 2.5 cm of eccentricity. Right column: 5.0 cm of eccentricity. From top to bottom:
rotation by 0, 9

20π, 99
200π and 999

2000π degrees respectively.

(n = 0, ..., 9). In both situations, we observe that the amplitude of the Stone-
ley mode vanishes as we approach the 45◦ rotation, while the amplitudes of
other modes remain almost invariant.

Further 3D numerical experiments for the case of borehole-eccentered
measurements with dipole excitation [24] confirm that similar effects are also
observed in the presence of a mandrel, where a rotation of the tool may
significantly reduce the amplitude of the compressional wave.

5. Conclusions

We have described a semi-analytical method for simulation of acoustic
logging measurements due to (time-harmonic) multipole eccentered sources.
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Figure 13: Amplitudes of the excited modes for an eccentered/rotated quadrupole source.
Left column: 2.5 cm of eccentricity. Right column: 5.0 cm of eccentricity. From top to
bottom: rotation by 0, 9

40π, 99
400π and 999

4000π degrees respectively.

The method consists of separating singularities from the smooth part of the
solution within the Fourier domain, and then, treating both components of
the solution separately when performing the inverse Fourier transform. The
resulting procedure is simple to implement and provides very effective sim-
ulations and understanding of borehole-eccentered sonic measurements phe-
nomena. The method is built on separating the modal contributions from the
full solution, so the acquisition of dispersion curves is fast and straightfor-
ward (time-domain methods need post-processing algorithms to recover this
data). The last property provides a powerful tool to help the interpretation
of borehole-eccentered measurements in real-time. Numerical experiments
indicate that we matched the results obtained by other methods existing in
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the literature. Moreover, we are able to accurately simulate situations in
which the sources and transmitters are arbitrarily close to the borehole wall.

Acknowledgment

The work reported in this paper was funded by The University of Texas
at Austin’s Research Consortium on Formation Evaluation, jointly sponsored
by Afren, Anadarko, Apache, Aramco, Baker-Hughes, BG, BHP Billiton, BP,
Chevron, China Oilfield Services, LTD., ConocoPhillips, ENI, ExxonMobil,
Halliburton, Hess, Maersk, Marathon Oil Corporation, Mexican Institute
for Petroleum, Nexen, ONGC, OXY, Petrobras, PTT Exploration and Pro-
duction, Repsol, RWE, Schlumberger, Shell, Statoil, TOTAL, Weatherford,
Wintershall and Woodside Petroleum Limited.

David Pardo has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No 644602, by the RISE Horizon 2020 European Project
GEAGAM (644602), the Project of the Spanish Ministry of Economy and
Competitiveness with reference MTM2013-40824-P, the BCAM “Severo Ochoa”
accreditation of excellence SEV-2013-0323, the CYTED 2011 project 712RT0449,
and the Basque Government through the BERC 2014-2017 program and the
Consolidated Research Group Grant IT649-13 on “Mathematical Modeling,
Simulation, and Industrial Applications (M2SI)”.

25



Appendix A. The stress matrix Ŝn

Matrix Ŝn gives the Fourier transform of the radial stress σ(u)er at the

boundary r = R (see eq. (8)). The coefficients of Ŝn are:

Ŝ11,n = µ
(

2 n
2

R2 − (α2
s − ξ2)

)
H

(2)
n (αpR)− 2µαp

R
H

(2)′
n (αpR)

Ŝ12,n = 2µn
(
αs

R
H

(2)′
n (αsR)− 1

R2H
(2)
n (αsR)

)
Ŝ13,n = −2µξ

(
αs

R
H

(2)′
n (αsR) + (α2

s − n2

R2 )H
(2)
n (αsR)

)
Ŝ21,n = 2µn

(
1
R2H

(2)
n (αpR)− αp

R
H

(2)′
n (αpR)

)
Ŝ22,n = µ(α2

s − 2 n
2

R2 )H
(2)
n (αsR) + 2µαs

R
H

(2)′
n (αsR)

Ŝ23,n = 2µξn
(

1
R2H

(2)
n (αsR)− αs

R
H

(2)′
n (αsR)

)
Ŝ31,n = i2µξ αp

R
H

(2)′
n (αpR)

Ŝ32,n = iµξn 1
R2H

(2)
n (αsR)

Ŝ33,n = iµ(ξ2 − α2
s)
αs

R
H

(2)′
n (αsR)
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