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Abstract Microstructures play an important role in the rescarch on shape
memory alloys (SMA). By using mathematical modeling tools to study micro-
structures, it is possible to predict the behaviors of these materials under applied
ficlds. In the current paper, a thermo-mechanical model is proposed to simulate
the microstructure of 8 SMA rod with both fixed and impact boundary condi-
tions via Legendre wavelets collocation method. Because of the good perfor-
mance of Legendre wavelets busis, this method shows excellent properties in
hoth precision and stability. A detailed numerical algorithm is given and the
backward differentiation formula is employed to perform all the simulations in
the current paper. Computational simulations are carried out to study the stress
induced phase transformation (PT). The dynamics of microstructure evolution,
presented at different temperatures, is well captured by our developed tech-
nique.

Keywords: Legendre wavelets; shape memory alloy; microstructure; Landau
theory; phase transformation.

1 Introduction

Shape memory alloys (SMA) are a kind of well-known smart materials
due to their unique thermo-mechanical properties. When the tempera-
ture varies, the lattice structure of SMA would switch between austenit-
ic phase (at high temperature) and martensitic phase (at low tempera-
ture). The shape memory effect implies that the deformation happened

in martensitic phase will be recovered in the austenitic phase when the
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SMA is under the appropriate thermal loading. The lattice structure of
SMA will also change from austenitic phase to martensitic phase under
applied proper mechanical loading at proper temperature, and the lattice
will tun back to austenite when the loading is removed. The defor-
mation happened during this process is actual PT which makes the de-
formation range far beyond the normal clastic deformation, and this
phenomenon is known as pseudoelasticity. Due to the unique properties,
including the shape memory effect and pseudoelasticity, SMAs are
widely applied in medical instruments, aerospace machinery and etc,
[1-3].

SMAs have recently been considered for dynamic loading applica-
tions such as energy absorbing, vibration damping devices, as well as
advanced SMA composite materials [4-6]. Different from that for tradi-
tional materials, the simulation of SMA’s response under different ex-
ternal loadings is more difficult to accomplish due to the phase trans-
formation, not to mention the existence of complex thermo-elastic cou-
pled effects. Therefore, it is very important to study the microstructure
evolution of SMA under different and complex extemal loadings,
which will help us better understand and predict the dynamical re-
sponse of SMA-based devices in engineering and other applications,
and ultimately to control such devices.

The rescarch on SMA models can be mainly divided into two parts:
micro-mechanical models and phenomenological ones. The micro-
mechanical medels are theoretically more convincing from a funda-
mental theoretical point of view and are attacked by a large number of

researchers to investigate various implementation methods [7-9]. Rep-



resentative works about micro-mechanical models were presented by
Lagoudas [10-17}, and improved by Tanaka [18-20], in which a ther-
modynamic approach was introduced into phase transformation simula-
tions which made the mechanical model more attractive. However, the
computation based on micro-mechanical models is much more demand-
ing than on the phenomenological ones. The computational cost for
micro-mechanical models in engineering applications is too expensive.
On the other hand, the phenomenological models, such as the models
based cn the Landau theory, could also lead to very good simulation
results, provided we have appropriate constitutive relations. The phe-
nomenclogical model is often more convenient for researchers to ana-
lyze and simulate SMA behavior. The Landau theory was employed to
model the SMA microstructure by Falk [21-23]. Afterwards, many re-
scarchers made a significant contribution to the phenomenological
model of SMA. Sprekels [24] was the first to introduce the thermo-
mechanical laws into the Landau-Ginzburg model. Bubner [25] studied
experimentally the thermodynamics response of SMA under defor-
mation-driven conditions. Berti [26] introduced the phase field method
to analyze the phase transitions in a non-isothermal situation. Dhote et
al [27-32] introduced the isogeometric analysis into phase field model
to improve the simulation accuracy. Nowadays, the phenomenological
model of SMAs has been improved in many different aspects, and cven
the 3-D cases could be appreximated by using the Landau model [33-
35].

In the numerical investigations about SMA structures and devices,

the finite element method [11] is the most popular tool due to its ma-



turity and existing commercial software for the purpose, such like
COMSOL. However, other numerical methods also have their own ad-
vantages in numerical investigations of SMA. Wang [36-39] employed
the Chebyshev spectral method to analyze the wave propagation under
impact loadings. The simulation made by the spectral method led to
new cncouraging results in the studies of microstructurc cvolution.
However, computational efficiency is still a huge problem for spectral
methods. The combination of wavelet and spectral methods can reduce
the computation time effectively [40], therefore it is natural to expect
that it should also be promising in modeling microstructure of SMA.

In this work, the Legendre wavelets method (LWM) has been devel-
oped and applied to simulate the microstructure evolution of SMAs.
Specifically, we focus on the microstructure evolution of a SMA rod
under impact loading in a dimensionless form. The wave propagation
during the phase transformation for different temperatures are simulat-
ed by the Landau theory as well. The wave pattem of SMAs is de-
scribed well for different internal friction coefficients. The current pa-
per is organized as follows. The thermo-mechanical model of SMA is
presented in section 2. A brief introduction to the LWM is given in sec-
tion 3. Finally, the simulations and analysis of different temperatures
are discussed in section 4. The computational and performance analysis

are discussed in section 5. Concluding remarks are given in section 6.

2 Mathematical model for SMA

A SMA thin rod with length L is considered as an initial-boundary val-

ue problem in the current paper. Functions u(x, t) and 8(x, t) denote



the displacement and temperature distributions at point x along the rod
at time t. The stress a(x, t) is assumed to be dependent only on time
and the axial position, so we can treat it as an 1-D problem. With con-
sideration of the internal friction, the momentum and energy balance
equations could be formulated in the following form [41]:

PUpe — Ox — Vilyye + kguxxxx +f=0, M

Cugt = kgxx + k19££t.
Here p is the density of the rod, v is the viscosity coefficient, k is the
heat conductance, c, is the specific heat capacitance and k, and k, are

the material constants, f is the external force. The stress o(x, t) can be

. a . . 2F
related to the strain £, where € = a_:’ by a nonlinear function ¢ = e

which is used to characterize the properties of the material. The func-
tion E is the potential energy function which is constructed on the basis
of the Landau theory [25]:

E=F(@)+2(0—6)e -2t $ Be0 1. 2002 ®
o= k{6 —0,)e — ky3 + kye5,

where k,, k3 are the material constants, 8, is the reference tempera-

ture.

There are two kinds of situations considered in the current investiga-

tion. The first is a case with fixed boundary conditions, as follows:

u(0,t) =0, u(l) =0,
Uee(0,) =0, u,, (L, t)=0,
0.(0,6) =0, 6.L¢t)=0,

The second one is the impact boundary conditions: the left end of this
rod (x = 0) is fixed, and its right end(x = L) is subjected to an impact
load. For the sake of clarification of studying the impact induced wave
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propagation in the SMA rod, the boundary conditions are formulated as
follows [25,37]:

u(0,t) =0, o(Lt)=s(t),
U (0,8) =0, u. (L, t)=0,
8.(0,£)=0, &,(Lt)=0,

where s(t) is the stress impact loading. The left side of the rod is fixed
and the right end is free. The loading is acting on the SMA rod at the
right end.

For the numerical investigation, the thermo-mechanical model includ-
ing martensitic phase transformations for a 1-D microstructure in SMA

can be described as follows [25]:

a8 8%u dtu
Py =0tV — kgt [,
ag= k1(6 - 91)5 + k283 + k3£5, 3
a8 a2 de
C”E-_- km'i' klaEa,

with the fixed boundary conditions:

u(0,t)} =0, u(l) =0,
Uer (0,8) = 0, u(L,t) =0,
8.(0,£)=0, 8, t)=0;

and with the impact boundary conditions:

u(0,t) =0, o(Lt)=s(t),
U (0,8) = 0, ug(L,t) =0,
8.(0,)=0, 8. (Lt)=0

3  Numerical algerithm based on the Legendre wavelets

The simulation of nonlinear wave propagation based on a system of

PDE:s is not a trivial task to implement even in 1-D situations, especial-



ly for coupled equations with phase transformation involved. The
choice of the algorithm will significantly affect the accuracy of the re-
sult. In the current paper, the Legendre wavelets method is employed to
perform the numerical analysis.

Wavelets methods can reduce the calculation cost effectively. The Le-
gendre wavelets method is originated from applying the wavelets
method to the mother function, which is chosen as Legendre polynomi-
als [42]. The Legendre wavelets family retains the following form:

Y () = [ Jm_-l-iZ;Pm(Z"x -m+1), for Sm<x<g @

0, otherwise,
where m=0,1,..,.M -1,n=1,23,..,2%1, 'm +§ is the coeffi-

cient of orthogonality. P, (x) are Legendre polynomials of order m on
interval [-1,1]. It should be noticed that equation (4) gives a set of basis
functions for the Legendre spectral method when the parameter k = 0.
This method could be regarded as dividing the interval [0, 1] into 2*
subintervals, and then applying the Legendre spectral method on each
subinterval.

A function f(x) defined on interval [0, 1] can be expanded as Legendre

wavelets as follows:

f(x) =X Xm=o CnmPnm(x) = CTl[J(x)_ (5)
Here ¢, ,, denotes the inner product of f (x) and Y, m(x). If Eq. (5) is

truncated, it can be rewritten as

FOx) = T2 Mt P m () = CTY(), ©)

where



C= [Clﬂl Cigevees Cpm11 €201 o0 s C2M—11 -=- 4 Egk—1ps o0y Czk—lu_l]r, 4]
and
¥Y(x) =
W’m(x)- sy ‘pM—l (x)l ‘pZO (X}, weey lpZM—l(x)' -y wzk'lo(x)t weny wzk-lu_:l (x)]T-

(8
The vector C in Eq. (7) is called the spectral space coefficient, and C is

the only data needed in the calculations that follow.

3.1  Operational matrix of derivatives

Due to the properties of Legendre polynomials, the calculation of de-
rivatives in the current analysis can be obtained by the matrix form
[42]:

d¥{x) __
— =D¥(x), 9)

where D is a 2XM x 2%M derivative matrix defined as follows:
F 0
D= 0 : F

0
0 0 - F
where Fis a M X M matrix which is defined as follow:

. {z"“,/(Zr- D2s-1), r=2,..,M,5=1,..,r—1,and (r + s) odd,
s =

0, otherwise.

(1)
The calculation of derivatives in the spectral space can be easily im-

plemented by multiplying spectral space coefficient C by the derivative
matrix D.



3.2 Numerical algorithm

In order to simulate the wave function, a new variable I/, the velocity,

au

is introduced as V = —. Another variable w is introduced by w = P

for simplifying the calculation of boundary conditons. The new govern-

ing equations with the fixed boundary condition are as follows:

ﬂ=v61u

& e W
av a*v Pw
pa—t= x TV F_kgﬁ+ﬁ w2
c"&_t k + klﬁ

o=k (8- 6,)2 —k, ("“) + k3 (%)5

u(0,ty=0, u{l)=0,
w(0,t)=0, w(lt)=0,
8.(0,t) =0, 6.(L¢t)=0.

The corresponding model with the impact boundary conditions is as

follows:
du a%u
x=Vaa=w
v w
Pat-“x’”’ g
20 (13)

Cv3 = k + klﬂs—

g =k (8 -6, —kz (E) +ks (‘;—:)5

u(0,t) =0, oa(l,t)=s(t),
w(0,t)=0, w(Lt)=0,
8,(0,t) =0, 6,(L¢t)=0.

By employing the LWM, the given set of differential equations in
{12,13) can be converted into Differential Algebraic Equations(DAEs).

The mechanical and thermal equations can be recasted into ODEs, and
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the stress-strain relationship which is the fourth line of (13) can be dis-
cretized into a set of algebraic equations. By combining ODEs and
algebraic equations, Eq.(12) and Eq.(13) can be rewritten in the fol-
lowing DAEs form:

L%+N(t.U)=O. (14)

where U = [u,V,w,o]7, L is the linear operator matrix, and N is the
nonlinear operator matrix related to t and variants of U, Eq. (14) is a
stiff system which is difficult to solve by conventional numerical inte-
gration algorithms. To cope with the difficulty, the backward differen-
tiation formula is applied here to discretize the time derivative as fol-

low:

LU™ - U™ ) + AtN(L, U™) = 0, (15)
where n is the cumrent time layer. Iterations are performed by using
Newton’s method to get U™ from U™ for each layer, and the stepsize
of the time advancing is chosen as At = 0.001ms. The iteration stops

when the relative residual is less than 1e~%.

4 Numerical simulation

The model parameter values for the numerical experiments in the pre-
sent paper can be found in Ref. [43]. Specifically, we have been using
the Au,3CuggZng; material with the following coefficients:

k, = 4B0g(ms)~*(em)™2K™2, k, = 6 x 108g(ms)~2(cm)~1K 1,
k; = 4.5 % 108g(ms)~2(cm)~1K"1, 6, = 208K, p = 11.1g(cm) 73,
kg = 10g(ms)~2, ¢, = 29g(ms)~*(em)~ 'K,

k=19x10"%2cm g(ms) 3K, v = 10g(cm) " (ms)~L.
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As mentioned in section 3, the LWM is actually an approximation in
differential subintervals, therefore, it is important to choose an appro-
priate boundary condition transfer algorithm. The boundary condition
transfer algorithm in the current paper is constructed in a similar way as
that for cubic spline functions. For any function, it will be defined as ¢?
function across the subinterval boundary, therefore the following rela-
tionship at the boundary interface x; between each subintervals could

be formulated:

) =3

ar aifr
= X)) == xp).
Fxiere 0 = 3y () =35 @) (16)

right

fiere(x0) = frigne(x1), (x),

ar
8x2ipp;
The choices of Legendre wavelets coefficients k and M are also im-
portant in the simulations. The coefficient M represents the number of
the points in each subinterval, it determines the accuracy and computa-
tion time of the simulation. For the same accuracy, increasing k and
decreasing M will reduce the computational time. In the current paper,
the parameters are chosen as k=6 and M=4. It should be noted that the
value of k cannot be too small, since the boundary condition transfer

algorithm would require two nodes in each subinterval.

4.1  Dimensionless form of the governing equations

For the numerical experiment, the dimension disunity of the nonline-
ar terms may cause significant computational difficulties and even af-
fects the convergence of the simulation when the problem is a stiff cou-
pled system. There are many advantages to rescale the equations into a
dimensionless form, such as simplifying the calculations and improving
numerical stability. Here Eq.(12) and Eq.(13) are rescaled into a dimen-
sionless form by using the following strategy. The least number of co-
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efficients would be remained in the new governing equations. Every

variable gets a new form here:

£ = ggf,x = 6%t = tof,0 = 6,0, (17
Firstly, the coefficients in nonlinear terms of the Landau theory, such
as k,, ky and k3 should be transferred into a dimensionless form:

£y = % Then, the momentum and energy balance should take the
3

JTaks 1, = {2 g, = 100. Finally, the
2 2

dimensionless form if § =

mechanical field Eq.(12) and Eq.(13) can be rescaled as follows:

T _ & M _
- Vam =W
W _ ., B W, 2z 18
=Gt Tom—kegm+ )
F=k(0—0,) —& +&
The thermal equation can then be written in the following form:
98 _ @0 | 7m0
5= km-i- klﬂsﬁ, (19)

where the new dimensionless coefficients are k = 6.9 x 1078,

key = 0.6, k] = 0.2207,k; =1x 1074, 7 = 9.49 x 1073,

4.2  Simulation results
In this section, the numerical results abtained with the above model are
discussed. The simulations with both fixed and impact boundary condi-
tions have been carried out.

The first part of numerical simulations is with the impact boundary
condition. The stress on the rod right end is regarded as the impact

loading since it is a 1-D model. A rectangular loading profile, which is
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approximately treated as a pulse stress impact loading, is employed in

these simulations:

_ {4000, 0<t < 0.005ms,
s(t) = [ 0, t> 0.005ms. 20)
This can be convert into the dimensionless form:

_ {0484, 0<t<0.379,
s(0) = { 0, £>0379. 20)

There should be 6 martensite phases existed during the martensite
phase transformations of Au,3CuzgZn,, , since it is a cubic-to-
orthorhombic one. However, according to the Ginzburg-Landau theory,
the martensite phase transformations happened in a SMA rod, which
means it can be simplified to a 1D situation, only involve one austenite
and martensite twins for simplification [21,22,43]. For the numerical
analysis, the Landau free energy density function F = %(B —6,)e* -

% et + % €8 is employed. There are three local minima of this function,
which represent three phase states: the local minimum & = 0 represents
the austenite phase (A), and the other two symmetric local minima rep-
resent two martensitic phases (M* and M™).

The first simulation for the thermo-mechanical model is performed at
a low temperature of 210°K. At this temperature, the stress-strain rela-
tionship is nonlinear and we have to deal with a hysteresis loop when
the stress varies, due to the curve AC is unstable and strain will jump
from A to B or C to D [25,37], as sketched in Fig.1. At this tempera-
ture, only martensite is stable, so we set the initial condition at M~

state, which means that if; = —0.89% and £; = —0.89 [43]. The simu-
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lation results are presented in Fig. 2 and Fig.3. The displacement and
strain distributions are plotted in Fig.2 (a) and (b), respectively whilst
the SMA temperature distribution is plotted in Fig.3. It is shown clear-
ly by Fig.2 (b) that the interface between M* and M~ is pushed from
the right side to the left side by the impact loading. Under this loading,
all the martensite is turned gradually from M~ to M*. The temperature
distribution variation is also like a wave, as sketched in Fig.3. The tem-
perature of SMA material at the interface is much lower than in the
other area. This could be easily explained by the fact that there is latent
heat needed for the phase transformation induced at the interface. It is
also clearly illustrated by Fig.3 that the temperature of the right part of
the interface, which has already experienced the martensite phase trans-
formation, is a little higher than on the left side. This phenomenon is
consistent with those simulation results reported in literatures
[25,26,36]. Thus, the thermo-mechanical coupling effect is captured
well in this simulation.

The second numerical simulation with the same boundary conditions
is performed with a high temperature at 330°K, and the results are pre-
sented in Figs.4, 5 and 6. It is clearly shown by Fig.4 that only one
loca! minimum € = 0 exists in the Landau free energy density function
F, which means that only austenite phase is stable at this temperature.
At this temperature, the stress-strain curve is a monotone one, It is also
clearly illustrated by the numerical results that the hysteresis loop no
longer exists, due to the curve AC is stable and no jump happened here,
as sketched in Fig.4. The strain distribution in the SMA rod is very

smooth, which could be regarded as a signal that there would be no
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phase transformation during the simulation. Thus, when the initial con-
ditions are set to &i; = 0,V = 0, a thermal wave will be induced by the
impact loading, as sketched in Fig.6 The thermal wave propagates from
the right end to the left end, and bounced back from the end with a pat-
tern very similar to that of the mechanical waves. This thermal wave is
induced by a pure mechanical loading and can be easily explained by
the thermo-mechanical coupling and the latent heat effects in the SMA
materials [37].

The second part of our numerical simulations is carried out with the
fixed boundary conditions. The mechanical loading changes as a func-

tion of time and is defined as

f = 0.0484sin(mt/2). 1)

Under this mechanical loading, the SMA rod should switch between
martensitic phase and austenite phase. For this simulation, the tempera-
ture is set to 240°K. According to the assumptions, the initial phase
state in this simulations should be the austenitic phase, so the initial
value of displacements in this section was set to ; = 0.

The mechanical and temperature initial conditions (240°K) taken for
this simulation allows both martensitic and austenitic phases co-exist.
At this temperature, the Landau free energy function has two symmet-
ric local minima, as sketched in Fig.7, which corresponds to the twin
martensitic phase, and one central minimum that corresponds to the
austenitic phase. The martensite, which only exists when the SMA is
under an external thermal or mechanical loading, is metastable at this

temperature and it will be transformed into the austenite when the load-
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ing is removed. The pseudoelastic effect could be triggered by this pro-
cess.

The simulation results are presented in Fig.8. It is shown that the aus-
tenite phase is transformed into the twin martensitic phase when the
absolute value of loading exceeds a certain value. The phase transfor-
mations here are induced by the applicd mechanical loading. The tem-
perature evolution is also presented in Fig.9. The temperature evolution
figure shows a strong nonlinear thermo-mechanical coupling behavior.
A sharp change in temperature changes always accompanied by a sharp
change of displacement and strain distributions. The thermo-
mechanical coupled effects are captured well in this numerical experi-
ment. When the external loading retums to zero, the displacement also
returns back to the initial value, which indicates that the SMA rod be-
comes in the austcnitic phasc again. This numerical simulation gives a

clear demonstration of the pseudoelastic effect, as stated previously.

5 Computational analysis and performance

In this section we provide detail on the two key aspects of computa-
tional performance of our developed numerical methodology: (a) effi-

ciency and (b) stability.

5.1 Computation efficiency

In this section, numerical experiments are presented for the isothermal
static situation. Specifically, for this case, the terms involving time de-
rivatives are set to zero, therefore Eq. {3) can be written in the ordinary
differential equation(ODE) form:
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(8 - 8) % 4y (22) 28 4 1y (29)

ax? dx/ ax? ox

4
U _ g Cuir=0, @3

xz 0 axh
with the same fixed boundary conditions as in (3). The dimensionless
form of the governing equations can be obtained from Eq.(18) as :

' =

F e 4)
a=kiE+&+8,

0g =

where F; =0.192, f = 04, £ =22, the temperature is set to 240°K.

Thus, the initial condition is identified with the austenitic phase:

U (x) = 0. (25)
As mentioned in Ref. [40], the LWM is expected to be able to effective-

ly reduce the computation cost. For the purpose of illustrating this, a
table on computation times with different computation parameters for
the same problem is presented. The results on computational efficiency

are in line with expectations. Table 1 shows the time for each grid to

obtain the specified tolerance error with the norm ||L':—L:+

N(t,x,U )"2. It is evident from this table that the time spent increases

significantly with the increase of the M value, however it is not sensi-
tive to the change of k. Hence, the calculation time can be reduced by
controlling the number of points in one interval and increasing the
number of intervals appropriately. However, the coefficient M cannot
be too small because of the restriction caused by the matching of adja-
cent subintervals.

By performing more numerical simulations, it is found that by using
different grid points in different subintervals it is also possible to im-

prove further the computation efficiency. An experiment is performed
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on a mixed grid withk =3,M =6and k = 4,M = 6, and the results
are presented in Fig.10. The computational time is 123.69s, whilst the
error tolerance is almost the same as the one with gridk=4,M = 6,
but it takes even less computation time to achieve the convergence.
From these numerical experiments, it is clearly that the wavelets
method could be very effective in simulations of the nonlinear thermo-
mechanical dynamics with phase transformation, when the computation
parameters are appropriately set. Meanwhile, the method could be im-
proved even further by constructing adaptive grids based on the wave-

lets methods.

52  Stability

In order to avoid the appearance of Runge’s phenomenon, the conven-
tional spectral methods such as the Chebyshev method divide the dif-
ference interval non-uniformly in such a way that the grid points are
dense at the boundary and sparse in the central arca. However, marten-
site phase transition boundaries always occur in the central area. This
can be avoided by increasing k value in the LWM. Therefore, the spec-
tral wavelet methods have natural advantages over the conventional
ones.

In order to demonstrate these advantages, including stability proper-
ties, of the Legendre wavelets method, the same dynamic numerical
experiment with fixed boundary conditions is carried out by one of the
conventional spectral methods, namely the Chebyshev method. The
Matlab function Chebfun [44], based on the Chebyshev method, is used

here for comparison. The same optimization and time discretization

18



strategies are applied here. However, the results are not as good as the
results of the LWM. With the same coefficients in sectiond.1, the
Chebfun results are unstable and the term of the domain wall energy
fails to control the function, which can be seen in Fig.11. To let it
works again, the dimensionless form must be modified to increase the
new value of l-c; when it is less than 1. For the new results (E; = 1),
both methods would work. However, it is clearly seen in Fig.12 that the
simulation results obtained with Chebfun are still worse than those ob-
tained with the LWM, in particular in its ability to describe the bounda-
ry interface of martensite phase transformation. It does not successfully
simulate the boundary interface. Chebfun is a good method, but the
conclusion can be drawn that the LWM is more robust than Chebfun in

the context of our problems.

6 Conclusions

In the current paper, a fully coupled thermo-mechanical model has been
adopted to simulate the microstructure evolution of a SMA rod under
impact loadings and periodic mechanical loadings. The phase transfor-
mation process with both fixed and impact boundary conditions has
been successfully simulated via the Legendre wavelets method. The
numerical algorithm for solving the coupled nonlinear system of partial
differential equations has been presented in detail. The microstructure
evolutions induced by impact loadings have been analyzed in detail
with different initial conditions. The advantages of the Legendre wave-
lets method for the SMA modeling have been highlighted and computa-

tional performance has been analyzed.
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Fig. 1 (a) Relationship of stress and strain and (b) figure of the Laﬁdau free energy
density function at 210°K
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Fig.2 (a) Displacement and (b)strain microstructures evolution at 210°K

Fig. 3 Temperature evolution with initial value at 210°K.
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Fig. 4 (2)Relationship of stress and strain and {bjfigure of the Landau free energy den-
sity function at 330°K
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Fig. 5 (a)Displacement and {b}strain microstructures evolution at 330°K

Fig. 7 (a) Relationship of stress and strain and(b) figure of Landau free energy function
at 240°K
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Fig. 10 (blue line) k=3, M=6; (red line} k=4, M=6
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Flg. 12 The simulation results of microstructure via Chebfun: {a) strain; (b) displace-
ment.

Table 1. The calculation times with different grids and accuracies.
102 103 10~*
k=2,M=6 93.40s 108.05s 115.45s
k=3,M=6 99.57s 116.52s 120.65s
k=4,M=6 115.00s 123.98s 148.51s
k=2,M=12 402.74s 429.18s 452.2%




