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Imposing concavity constraints in the linear predictor scale, with a logit link
function, result in unimodal probability curves.

Let p(x), x ∈ R be the estimated response probability curve obtained when imposing concavity restrictions in
the linear predictor scale, with h = logit as link function. Then,

h(p(x)) is concave 1)=⇒ h(p(x)) is quasiconcave 2)=⇒ h−1(h(p(x))) = p(x) is quasiconcave 3)=⇒ p(x) is unimodal

1)

Definition 2.2 (Avriel et al. 1988): A function f defined on the convex set C ∈ Rn is called concave if for
every x1, x2 ∈ C and 0 ≤ λ ≤ 1 we have f(λ(x1 + (1− λ)x2)) ≥ λf(x1) + (1− λ)f(x2).

Theorem 3.1 (Avriel et al. 1988): Let f be defined on the convex set C ∈ Rn. It is a quasiconcave function
if and only if f(λ(x1 + (1− λ)x2)) ≥ min(f(x1), f(x2)) for every x1, x2 ∈ C and 0 ≤ λ ≤ 1.

It is clear that a concave function is also quasiconcave (not vice versa), since

f(λ(x1 + (1− λ)x2)) ≥ λf(x1) + (1− λ)f(x2) ≥ min(f(x1), f(x2))

2)

Proposition 3.2 (Avriel et al. 1988): Let φ be a quasiconcave function defined on C ∈ Rn and let f be a
nondecreasing function on D ∈ R, containing the range of φ. Then the composite function fφ(x) is also
quasiconcave.

Thus, this proof can be generalized to any link function h whose inverse h−1 is nondecreasing (in our case
h(p(x)) is quasiconcave, and h−1 (antilogit function) is a non decreasing function obtaining that the composite
h−1(h(p(x))) = p(x) is quasiconcave).

3)

Proposition 3.8 (Avriel et al. 1988): Let f be defined on the interval C ∈ R and suppose that it attains its
maximum at a point x∗ ∈ C. Then f is quasiconcave if and only if it is unimodal on C.

Proofs for Theorem 3.1, Proposition 3.2 and Proposition 3.8 can be found in Avriel et al. (1988).
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