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SOME LOWER BOUNDS FOR SOLUTIONS OF SCHRÖDINGER
EVOLUTIONS

MIKEL AGIRRE AND LUIS VEGA

Abstract. We present some lower bounds for regular solutions of Schrödinger
equations with bounded and time dependent complex potentials. Assuming that
the solution has some positive mass at time zero within a ball of certain radius,
we prove that this mass can be observed if one looks at the solution and its
gradient in space-time regions outside of that ball.

1. Introduction

In this paper we are going to study the behavior of the solution of Schrödinger’s
initial value problem

(1)

{

∂tu = i(∆u + V (x, t)u)
u(x, 0) = u0(x)

where V (x, t) is a bounded complex potential. For the case where the potential is
identically zero, V ≡ 0, we can write down the explicit formula

(2) u(x, t) = eit∆u0(x) =
1

(2π)n/2

∫

Rn
e−it|ξ|2+ix·ξû0(ξ) dξ,

where eit∆u0(x) denotes the free solution and

f̂(ξ) = (2π)−n/2
∫

Rn
e−iξ·xf(x) dx,

is the Fourier transform of f . Simple computations give that identity (2) can also
be written as

u(x, t) =
1

(4πit)n/2

∫

Rn
ei

|x−y|2
4t u0(y) dy

=
ei

|x|2
4t

(4πit)n/2

∫

Rn
e−i x

2t
yei

|y|2
4t u0(y) dy.
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As a consequence

eit∆u0(x) =
ei|x|2/4t

(2it)n/2
f̂t

(

x

2t

)

,

with ft(x) = ei|x|2/4tu0(x). This identity implies that to give size conditions of u
at two different times, say t = 0 and t = T is equivalent to give size conditions
to fT and f̂T . This idea has been largely exploited by L. Escauriaza, C.E. Kenig,
G. Ponce, and L. Vega, see for example [5] to revisit some classical Uncertainty
Principles (UPs), as those by Hardy, Paley-Wiener, and Morgan. They give al-
ternative proofs to these classical results using techniques of Partial Differential
Equations, more concretely the so-called Carleman type inequalities. These UPs
are rigidity results in the sense that the conclusions are that the only function
satisfying the desired properties is either the trivial one, or some specific function,
as for example the Gaussian in the case of Hardy’s UP. Unlike this, the use of Car-
leman inequalities is rather flexible and allows perturbations by potentials V 6= 0.
Moreover, some lower bounds for general solutions are also proved.

All these results rely on assuming decay at two different times. The main purpose
of this paper is to start to explore the way to reduce the hypothesis from two times
to just one. Besides the fact that we consider this a very natural question by itself,
our main motivation has been to try to adapt the PDE techniques to prove more
sophisticated UPs as those proved by F. Nazarov in [7].

Our starting point is a general lower bound obtained in [4] (cf. Theorem 3.1) for
solutions of (1) for bounded potentials. The main assumption in that result is that
the solution has some nontrivial mass in a space-time cylinder with height t ∼ 1/2
and the basis given by a ball of radius 1. Then, the conclusion is that there exists
a constant c that depends just on the dimension such that the lower bound

(3)
∫ 1

0

∫

R−1<|x|<R
|u(x, t)|2 + |∇u(x, t)|2dxdt ≥ ce−cR2

,

holds for all R sufficiently large. In Theorem 2.1 we will obtain lower bounds
similar to (3) just assuming conditions at one time. In Theorem 2.2 we give some
uniqueness results about solutions of (1) for x ∈ R

n.

The organization of this paper is as follows. In section 2 we gather the main
results of the article. In sections 3 and 4 we give some auxilliary results necessary
for the proof. In particular, we introduce the so called Appell’s or pseudoconformal
transformations. They give us the extra parameter we need to avoid to assume
conditions at two different times. Here we use similar arguments to those in [6].
Finally the proof of Theorem 2.1 is given in section 5.
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2. The main results

By H1
loc(R

n) we mean the set of functions f that together with their gradients are
locally in L2(Rn) . We have the following result.

Theorem 2.1. Let u ∈ C([0, 1] : H1
loc(R

n)) be a solution of
{

∂tu = i(∆u + V (x, t)u)
u(x, 0) = u0(x),

where V ∈ L∞(Rn × [0, 1]) is a complex potential and

‖ V ‖L∞(Rn×[0,1])≤ L.

Let R0 > 0 be such that for some c0 > 0,
∫

BR0

|u0|2dx = c2
0,

and let also M ≥ 4R0 + 1 so that

(4) sup
0≤t≤1

∫

BM

|u(x, t)|2 + |∇u(x, t)|2dx = A2 < +∞.

Then, there exist t∗ = min
(

256A
c0L

, 2−14
(

c0

A

)4
, R2

0, 1
L2

)

and a universal constant

cn that depends just on the dimension such that if 0 < t < t∗,

(5)
ecn

ρ2

t

t

∫ 3t

t/4

∫

||y|−ρ−ρ s
t
|<4ρ

√
t
|u(y, s)|2 + s|∇yu(y, s)|2 dyds ≥ c2

0, R0 ≤ ρ ≤ M.

We state a few remarks about the theorem.

Remark 1: Observe that M can be infinity.

Remark 2: (The periodic setting) Take T = [0, 2π]. Assume now that we have
a periodic in space solution u ∈ C([0, 1]; H1(T)) of the problem (1) and

∫

T

|u0|2dx = c2
0.

Choose ρ = 2π. Then the observability region has the form
∣

∣

∣

∣

y ± 2π
(

1 +
s

t

)∣

∣

∣

∣

< 8π
√

t, s ∈ [t/4, 3t],
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that by periodicity becomes
∣

∣

∣

∣

y ± 2π
s

t

∣

∣

∣

∣

< 8π
√

t, s ∈ [t/4, 3t].

Hence as a consequence of the above theorem there exists a universal constant c1

such that

(6)
ec1/t

t

∫ 3t

t/4

∫

|y±2π s
t
|<8π

√
t
|u|2 + s|∇u|2dyds ≥ c2

0.

This result can be seen as some kind of one dimensional observability inequality
for periodic solutions of (1), as shown by N. Burq and M. Zworski in [3] for time
independent potentials. Observe also that the variable t is very small, as estated
on Theorem 2.1. The drawback of (6) is that involves ∇u, and it is a very natural
question to know if this term is needed. Also, and because of this dependence on
the gradient, it is not clear up to what extent (6) implies a controllability result.
Nevertheless, observe that our result allows potentials that can depend on time
and holds in any dimension. The geometry of the controllability set becomes more
complicated as the dimension grows, and it would also be very natural to explore if,
with the methods used in this paper, one could get closer to the results obtained
for the two dimensional case by N. Anantharaman and F. Macia in [1], and J.
Bourgain, N. Burq, and M.Zworski in [2].

Our second main result is a uniqueness one and it is an immediate consequence of
Theorem 2.1, and therefore the proof will be omitted. As far as we know this type
of uniqueness result is completely new.

Theorem 2.2. Assume that for any u0 ∈ H1(Rn) there exists a unique solution

u ∈ C
(

[0, 1] : H1(Rn)
)

of

{

∂tu = i (∆ + V (x, t)) u x ∈ R
n , t ∈ (0, 1)

u(x, 0) = u0,

with V ∈ L∞
(

R
n × [0, 1]

)

. If cn is as in (5) and there exist Rj, j ∈ N such that

for all j

lim
t↓0

1

t
ecn

R2
j

t

∫ 3t

t/4

∫

||y|−Rj(1+s/t)|<4Rj

√
t
|u(y, s)|2 + s |∇u(y, s)|2 dyds = 0,

then u ≡ 0.

As a side result to Theorem 2.2 we could let the spatial parameter ρ tend to infinity
and obtain a similar conclusion.
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Theorem 2.3. Assuming the same conditions as in Theorem 2.2 and that there

exists t0 < t∗ such that

lim
ρ→∞

1

t0
e

cn
ρ2

t0

∫ 3t0

t0/4

∫

||y|−ρ(1+s/t0)|<4ρ
√

t0

|u(y, s)|2 + s |∇u(y, s)|2 dyds = 0,

then u ≡ 0.

Remark 3: Notice that our results are perturbative and allow complex potentials
that can depend on time. Therefore, it can be applied to solutions of non-linear
equations as long as a nice local in time well-posedness theory is available. We
can proceed as done in [5] and consider for example

(7) ∂tu = i(∆u + f(|u|2)u),

with f : R → R, and f(0) = f ′(0) = 0. Then, given two smooth solutions u1 and
u2 of (7), the difference ω = u1 − u2 satisfies an equation as (1), and therefore
Theorems 2.2 and 2.3 apply to ω.

3. Appell’s conformal transformation and Carleman’s estimate

We use the following result from [8] to generate a new family of solutions for
Schrödinger’s problem that depends on two parameters.

Lemma 3.1. If u(y, s) verifies

∂su = i(∆u + V (y, s)u + F (y, s)), (y, s) ∈ R
n × [0, 1]

and α and β are positive, then

ũ(x, t) =

( √
αβ

α(1 − t) + βt

)n/2

u

( √
αβx

α(1 − t) + βt
,

βt

α(1 − t) + βt

)

e
(α−β)|x|2

4i(α(1−t)+βt)

verifies

∂tũ = i(∆ũ + Ṽ (x, t)ũ + F̃ (x, t)), (x, t) ∈ R
n × [0, 1]

with

Ṽ (x, t) =
αβ

(α(1 − t) + βt)2
V

( √
αβx

α(1 − t) + βt
,

βt

α(1 − t) + βt

)

and

F̃ (x, t) =

( √
αβ

α(1 − t) + βt

)n/2+2

F

( √
αβx

α(1 − t) + βt
,

βt

α(1 − t) + βt

)

e
(α−β)|x|2

4i(α(1−t)+βt) .

Although the statement uses two parameters α and β we are going to define
γ = α/β and rewrite the dilations in a proper way. We need to be careful on
how these functions alter the domains of integration in the proof. It is important
to make a sensible use of the parameter γ in relation to these functions. For this
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reason, we give some estimations in the next section. We will not be considering
the function F either, since we will not consider outer forces disturbing our system.

Next we recall another result from [4], that plays a fundamental role in the rest of
the arguments. Therefore we include its proof for the sake of completeness.

Lemma 3.2 (Carleman estimate). Assume that R > 0 and ϕ : [0, 1] −→ R is a

smooth function. Then, there exists cn = c(n, ‖ ϕ′ ‖∞ + ‖ ϕ′′ ‖∞) > 0 such that

the inequality

(8)
σ3/2

cnR2
‖ eσ| x

R
+ϕ(t)e1|2

g ‖2≤‖ eσ| x
R

+ϕ(t)e1|2

(i∂t + ∆)g ‖2,

holds when σ ≥ cnR2 and g ∈ C∞
0 (Rn+1) has its support contained in the set

{(x, t) : | x

R
+ ϕ(t)e1| ≥ 1}.

Proof. Let f = eσ| x
R

+ϕ(t)e1|2g. Then,

eσ| x
R

+ϕ(t)e1|2

(i∂t + ∆)g = Sσf − 4σAαf,

where

Sσ = i∂t + ∆ +
4σ2

R2
| x

R
+ ϕ(t)e1|2,

Aσ =
1

R
(

x

R
+ ϕ(t)e1) · ∇ +

n

2R2
+

iϕ′

2
(
x1

R
+ ϕ),

are the symmetric and anti-symmetric operators respectively. Thus,

A∗
σ = −Aσ, S∗

σ = Sσ

and

‖ eσ| x
R

+ϕ(t)e1|2

(i∂t + ∆)g ‖2
2= 〈Sσf − 4σAσf, Sσf − 4σAσf〉

≥ −4σ〈(SσAσ − AσSσ)f, f〉 = −4σ〈[Sσ, Aσ]f, f〉.

A calculation shows that

[Sσ, Aσ] =
2

R2
∆ − 4σ2

R4

∣

∣

∣

∣

x

R
+ ϕ(t)e1

∣

∣

∣

∣

2

− 1

2

[(

x1

R
+ ϕ(t)

)

ϕ′′ + ϕ′2
]

+
2iϕ′

R
∂x1 ,

and

‖ eσ| x
R

+ϕ(t)e1|2

(i∂t + ∆)g ‖2
2≥

16σ3

R4

∫
∣

∣

∣

∣

x

R
+ ϕe1

∣

∣

∣

∣

2

|f |2dxdt +
8σ

R2

∫

|∇f |2dxdt

+2σ
∫
[(

x1

R
+ ϕ

)

ϕ′′ + ϕ′2
]

|f |2dxdt − 8σi

R

∫

ϕ′(∂x1f)fdxdt.
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Hence using the hypothesis on the support of g and the Cauchy-Schwarz inequality,
the absolute value of the last two terms can be bounded by a fraction of the first
two terms on the right hand side when σ ≥ cnR2 for some large cn depending on
the dimension and ‖ ϕ′ ‖∞ + ‖ ϕ′′ ‖∞. Then the result follows.

�

4. Some a priori estimates

Before going into the proof of the theorem, we give some estimates of the support
functions we are going to be using. At some point in the previous section we
have talked about a transformation based on the conformal transformation and
mentioned that the parameters α and β will be replaced by γ > 0 defined as the
relation between the former ones, say α/β. We will also want this parameter γ to
be as big as possible so in principle we see it as γ >> 1. Having this in mind, we
define the following functions:

(9) α(t) =
1

γ1/2(1 − t) + γ−1/2t
,

s(t) =
t

γ(1 − t) + t
,

β(t) =
1

1 − t + γ−1t
− 1

γ(1 − t) + t
.

At some point on the proof there will be a change of variables so it is interesting
to see how we can write t in terms of s and see how the measure changes with
respect to γ. First we see that

(10) t(s) =
sγ

1 + s(γ − 1)
,

and so
dt =

γ

(1 + s(γ − 1))2
ds.

Along the proof we encounter two different time intervals due to the definition of
the cut-off functions. The first one is [3/8, 5/8]. For this interval observe that α(t)
can be estimated by

(11)
1

γ1/2
≤ α(t) ≤ 3

γ1/2
,

and the variable s lives in

(12) I1
s =

[

3

5γ + 3
,

5

3γ + 5

]

.
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The length of this interval can be estimated by

(13)
1

4γ
≤ |I1

s | ≤ 2

γ
,

and the differential,

(14)
γ

8
ds ≤ dt ≤ γds.

On the other hand, when t ∈ [1/4, 3/4] we can make the following estimations:

(15)
1

γ1/2
≤ α(t) ≤ 4

γ1/2
,

(16) 0 ≤ β(t) =
1

1 − t + γ−1t
− 1

γ(1 − t) + t
≤ 1

1 − t + γ−1t
≤ 4.

It should also be noticed that the variable s lives on the interval

I2
s =

[

1

3γ + 1
,

3

γ + 3

]

,

and its length is bounded from above and below as follows

(17)
1

2γ
≤ |I2

s | ≤ 3

γ
,

which means that when γ is large the variable s has size γ−1 and so we have the
following estimation for the differential

(18)
γ

16
ds ≤ dt ≤ γds.

Observe next that if we combine (9) with (10) we can write

(19)
√

γα(t(s)) = 1 + sγ − s.

Assume now that u ∈ C([0, 1], H1
loc(R

n)) is a solution to (1). Then, the following
identity holds
(20)

|u(x, t)|2 − |u(x, 0)|2 = −2Im
∫ t

0

(

div(u(x, s) · ∇u(x, s)) + V (x, s)|u(x, s)|2
)

ds,

where V is a complex bounded potential. The proof of this identity is the following:

First observe that

div(u∇ū) = |∇u|2 + u∆ū ⇒ u∆ū = div(u∇ū) − |∇u|2,
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and so we compute the derivative on the second variable of the squared term

d

dt
|u(x, t)|2 =

d

dt
(uū) = ∂tuū + u∂tū

= u∂tū + u∂tū = 2Re(u∂tū)

= 2Re(ui(∆ + V )ū) = 2Re(iu∆ū + iV |u|2)
= −2Im(u∆ū + V |u|2)
= −2Im(div(u∇ū) − |∇u|2 + V |u|2)
= −2Im(div(u∇ū) + V |u|2),

which concludes the proof.

We are ready now to discuss the proof of the main theorem on this paper.

5. Proof of Theorem 2.1

We follow very closely the arguments in [6]. The goal is to use the Carleman
estimate (8) in a suitable way so that we can control both u and ∇u by the initial
data. For this purpose we want to build an auxilliary function g. First, let γ be
large enough, say γ > 16 and define R = R0

√
γ. Define also the following cut-off

functions, θR, η ∈ C∞
0 (Rn), ϕ ∈ C∞([0, 1])

θR(x) =

{

1, |x| ≤ R
0, |x| ≥ R + 1

η(x) =

{

1, |x| ≥ 2
0, |x| ≤ 3/2

ϕ(t) =

{

4, t ∈ [3/8, 5/8]
0, t ∈ [0, 1/4] ∪ [3/4, 1].

For future purposes we will be assuming that R ≥ 2. Next we use the confor-
mal transformation (3.1) on the solution u to generate a new family of solutions
depending on the parameter γ, say

v(x, t) = α(t)n/2u(α(t)x, s(t))e− i
4

β(t)|x|2 , (x, t) ∈ R
n × [0, 1]

where the functions α, β and s were introduced on the previous section.

We use all the information gathered above to define the function g as follows:

g(x, t) = θR(x)η
(

x

R
+ ϕ(t)e1

)

v(x, t) , (x, t) ∈ R
n × [0, 1].

Observe that due to the nature of the test functions, g is compactly supported
and,
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• g = θRv on (x, t) ∈ {|x| ≤ R + 1} × [3/8, 5/8]

• ∇xv(x, t) = α(t)n/2e− i
4

β(t)|x|2(α(t)∇u − i
2
β(t)x · u)

• supp g ⊆ {
∣

∣

∣

x
R

+ ϕe1

∣

∣

∣ ≥ 1}

where u = u(α(t)x, s(t)). With the function we just defined, we are ready to use
the Carleman estimate. Recall that for σ ≥ cnR2

(21)
σ3/2

cnR2
‖ eσ| x

R
+ϕ(t)e1|2

g(x, t) ‖2 ≤ ‖ eσ| x
R

+ϕ(t)e1|2

(i∂t + ∆)g(x, t) ‖2 .

We need to work out both sides of the inequality. The goal is to give an estimation
from below to the left hand side using the information we have about the initial
data. Once this is done, we will find suitable upper estimates of the right hand
side in order to hide the terms we don’t need using the parameter σ. Let’s thus
look at the l.h.s. of the inequality above,

‖ eσ| x
R

+ϕ(t)e1|2

g(x, t) ‖2
2 =

∫

t

∫

x
e2σ| x

R
+ϕ(t)e1|2

|g(x, t)|2dxdt

≥ e8σ
∫ 5/8

3/8

∫

|x|≤R+1
|θR(x)v(x, t)|2dxdt

= e8σ
∫ 5/8

3/8

∫

|x|≤R+1
α(t)n|θR(x)u(α(t)x, s(t))|2dxdt

≥ e8σ γ

8

∫ s( 5
3

)

s( 3
5

)

∫

|y|≤α(t(s))(R+1)
|θR(α−1(t(s))y)u(y, s)|2dyds.

We have made the change of variables y = α(t)x and s = s(t) together with
the estimate (14) on the differential and change of measure we mentioned on the
previous section. Now we want to plug the initial data into the equation. To do so
we measure the size of the difference between our function u and the initial data
u0, say

B =

∣

∣

∣

∣

∣

∫

s∼γ−1

∫

|y|≤α(t(s))R
θ2

R(α−1(t(s))y)(|u|2 − |u0|2)dyds

∣

∣

∣

∣

∣

.

Next we use (20) to obtain,

B =

∣

∣

∣

∣

∫

s∼γ−1

∫

y
θ2

R

(

−2Im
∫ s

0
(div(u∇ū) + V |u|2)ds′

)

dyds

∣

∣

∣

∣

=

∣

∣

∣

∣

2Im
∫

s∼γ−1

∫ s

0

∫

y
θ2

R(div(u∇ū) + V |u|2)dyds′ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

2Im
∫

s

∫

s′

∫

y
θ2

Rdiv(u∇ū)dyds′ds
∣

∣

∣

∣

+
∣

∣

∣

∣

2Im
∫

s

∫

s′

∫

y
θ2

RV |u|2dyds′ds
∣

∣

∣

∣

= B1 + B2.
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Here we study the contribution of both integrals separately and see how to choose
γ in a suitable way depending on the parameters c0, A and L so that we have a nice
bound from below for the left hand side of Carleman’s estimate on this particular
case. For the estimation of both B1 and B2 we use (13) and (14) so that

B2 =

∣

∣

∣

∣

2Im
∫

s

∫

s′

∫

y
θ2

R(α−1(t(s)))V (y, s′)|u(y, s′)|2dyds′ds

∣

∣

∣

∣

≤ 4L

γ

∫

s′

∫

y
|u|2dyds′

≤ 8L

γ2
sup

s′∼γ−1

∫

|y|≤4R/
√

γ
|u|2dy

≤ 8A2L

γ2
.

As for B1 we have, using integration by parts,

B1 =

∣

∣

∣

∣

∣

4Im
∫

s∼γ−1

∫ s

0
α−1(t(s))

∫

|y|≤α(t(s))R
(θR∇θR)(u∇ū)dyds′ds

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

4
√

γIm
∫

s∼γ−1

∫

s′∼γ−1

∫

y
(θR∇θR)(u∇ū)dyds′ds

∣

∣

∣

∣

≤ 4
√

γ
∫

s∼γ−1

∫

s′∼γ−1

∫

y
|u∇ū|dyds′ds

≤ 16γ−3/2 sup
s′∼γ−1

∫

|y|≤α(t(s))R
|u∇ū|dy

≤ 8γ−3/2 sup
s′∼γ−1

∫

|y|≤4R/
√

γ
|u|2 + |∇u|2dy

≤ 8A2

γ3/2
.

Now if we put all together and remember that there was a factor γ multiplying
the equation, we have

γB ≤ 8A2

γ1/2
+

8A2L

γ
=

8A2

γ1/2
(1 + Lγ−1/2).

Therefore, if we choose γ ≥ L2 we have that

γB ≤ 16A2

γ1/2
.

Now want to hide the contribution of B using c0. To do so we need to work out
the extra term introduced when B was defined, say

γ
∫

s

∫

y
θ2

R|u0|2dyds.
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Clearly, the inclusion Bα(t(s))R ⊂ Bα(t(s))(R+1) and the definition of θR together with
(13) gives us

γ
∫

s

∫

Bα(t(s))(R+1)

θ2
R|u0|2dyds ≥ γ

∫

s

∫

Bα(t(s))R

θ2
R|u0|2dyds

= γ
∫

s

∫

Bα(t(s))R

|u0|2dyds

≥ γ
1

4γ

∫

BR0

|u0|2dy

≥ c2
0

4
.

Thus if
c2

0

8
≥ 16A2γ−1/2, then

γ ≥ 214
(

A

c0

)4

,

and we can hide the contribution of B inside c2
0 and conclude

(22) ‖ eσ| x
R

+ϕ(t)e1|2

g(x, t) ‖2
2≥

e8σ

64
c2

0.

Now we study the right hand side of the Carleman estimate. First compute the
operator to see how the supports of the resulting expressions change:

(i∂t + ∆)g(x, t) = θRηṼ v + θR(iϕ′∂x1ηv + 2R−1∇η · ∇v + R−2∆ηv)

+ η(2∇θR · ∇v + ∆θRv)

= E1 + E2 + E3,

where E2 and E3 are supported in

• 3/2 ≤
∣

∣

∣

x
R

+ ϕ(t)
∣

∣

∣ ≤ 2 , t ∈ [1/4, 3/4]

• {R ≤ |x| ≤ R + 1} × [1/4, 3/4, ]

respectively. From the definition of the conformal transformation and the assump-
tion on V we have that |Ṽ | ≤ Lγ−1 on the support of g. Thus,
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‖ eσ| x
R

+ϕ(t)e1|2

(i∂t + ∆)g(x, t) ‖2
2 =

∫

t

∫

x
e2σ| x

R
+ϕ(t)e1|2

|(i∂t + ∆)g(x, t)|2dxdt

≤ L2γ−2 ‖ eσ| x
R

+ϕ(t)e1|2

g ‖2
2

+ e8σ
∫ 3/4

1/4

∫

|x|≤R+1
(|v|2 + 4R−2|∇v|2)dxdt

+ e72σ
∫ 3/4

1/4

∫

R≤|x|≤R+1
(|v|2 + |∇v|2)dxdt

= L2γ−2 ‖ eσ| x
R

+ϕ(t)e1|2

g ‖2
2 +e8σI1 + e72σI2.

Observe that from (21) the first term can be hidden on the left hand side of the
inequality if

(23)
σ3/2

cnR2
≥ 2L

γ

So we only need to study the contribution of I1 and I2. To see things more clearly
we split I1 in the sub-integrals I11, I12, the first one measuring the contribution of
v, and the second one doing the same for the gradient ∇v.

I11 =
∫ 3/4

1/4

∫

|x|≤R+1
|v|2dxdt =

∫ 3/4

1/4

∫

|x|≤R+1
α(t)n|u(α(t)x, s(t))|2dxdt

≤ γ
∫ s(3/4)

s(1/4)

∫

|y|≤α(t(s))(R+1)
|u(y, s)|2dyds.

Here we have simply made a change of variables and use the information we have
about the behavior of the functions α(t) and s(t) when γ is big enough. As for I12

we use the triangular inequality together with the change of variables y = α(t)x
and the estimations with γ, as we see here

I12 =
∫ 3/4

1/4

∫

|x|≤R+1
4R−2|∇v|2dxdt

= 4R−2
∫ 3/4

1/4

∫

|x|≤R+1
α(t)n|α(t)∇u − i

2
β(t)xu|2dxdt

≤ 4R−2γ
∫ s(3/4)

s(1/4)

∫

|y|≤α(t(s))(R+1)
|α(t(s))∇u(y, s) − i

2
β(t(s))α−1(t(s))yu|2dyds

≤ 4R−2γ
∫

s∼1/γ

∫

|y|≤α(t(s))(R+1)

(

16

γ
|∇u|2 + 4(R + 1)2|u|2

)

dyds

= 4γ
∫

s∼1/γ

∫

|y|≤α(t(s))(R+1)

(

16

R2γ
|∇u|2 + 4

(

1 +
1

R

)2

|u|2
)

dyds.
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Using now that R = R0
√

γ ≥ 2 we get

I12 ≤ 36γ
∫

s∼γ−1

∫

|y|≤α(t(s))(R+1)
|u|2 + γ−1|∇u|2dyds.

And if we put both I11 and I12 together and use (17) we can estimate I1 as follows

I1 ≤ 72γ
∫

s∼ 1
γ

∫

|y|≤α(t(s))(R+1)
(|u|2 + γ−1|∇u|2)dyds

≤ 216 sup
s∼γ−1

∫

|y|≤α(t(s))(R+1)
(|u|2 + γ−1|∇u|2)dy

≤ 216 sup
s∼γ−1

∫

|y|≤M
(|u|2 + γ−1|∇u|2)dy

≤ 216A2.

Following a similar computation we can estimate I2 as,

I2 ≤ 32γ2R2
0

∫

s∼ 1
γ

∫

α(t(s))R≤|y|≤α(t(s))(R+1)
|u|2 + γ−1|∇u|2dyds.

Observe now that the spatial variable y lives in a region of length α. We would
like to rewrite that region in terms of γ. Using (15) and (19) together with an
appropriate estimation for s we have that I2 can be written as

I2 ≤ γ232R2
0

∫

s∼γ−1

∫

||y|−R0−R0sγ|< 4R0√
γ

|u|2 + γ−1|∇u|2dyds.

Now if we put everything together we have the following inequality

σ3/2

cnR2

c0

16
≤ 16A + 6γR0e36σ

(

∫

s∼γ−1

∫

||y|−R0−R0sγ|< 4R0√
γ

(|u|2 + γ−1|∇u|2)dyds

)1/2

.

(24)

To hide the first term of the right hand side inside the left hand side we ask the
following

(25)
σ3/2

cnR2
≥ 512A

c0
=⇒ σ ≥ ĉnR4/3,

for some universal ĉn that depends on cn, c0 and A. Since we want (23) and (25)
to be satisfied we impose the following condition on the parameter γ

(26)
2L

γ
≤ 512A

c0

=⇒ γ ≥ c0L

256A
.
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And thus, whenever

γ ≥ max

(

c0L

256A
, 214

(

A

c0

)4

,
1

R2
0

, L2

)

,

we can hide the contribution of the first term on the right hand side of (24) into
the left hand side, so

σ3/2

cnR2

c0

32
≤ 16R0γe36σ

(

∫

s∼γ−1

∫

||y|−R0−R0sγ|< 4R0√
γ

(|u|2 + γ−1|∇u|2)dyds

)1/2

.

On the other hand σ has to be greater than cnR2 according to Carleman’s estimate,
which is a stronger condition than the one we just found. Hence if σ = 64cnR2 we
have that for some universal constant cn,1 which depends only on cn,

c0 ≤
(

γecn,1R2
0γ
∫

s∼γ−1

∫

||y|−R0−R0sγ|< 4R0√
γ

(|u|2 + s|∇u|2)dyds

)1/2

,

now if we rename γ−1 ≡ t observe that

t ≤ min

(

256A

c0L
, 2−14

(

c0

A

)4

, R2
0,

1

L2

)

= t∗,

and

c2
0 ≤ ecn,1

R2
0

t

t

∫ 3t

t/4

∫

||y|−R0−R0
s
t
|<4R0

√
t
(|u|2 + s|∇u|2)dyds,

as we wanted to see.

�

On the statement of the theorem we write cn for simplicity. Observe also that if
we take ρ ∈ [R0, M ] the result will still be true. This happens because no matter
what ρ we choose, c0 does not change.
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