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Summary. Growth curve studies are typically conducted to evaluate differences
among group or treatment-specific curves. Most analysis focus solely on the
growth curves, but it has been argued that the derivative of growth curves can
highlight differences among groups that may be masked when considering the
raw curves only. Motivated by the desire to estimate derivative curves hierarchi-
cally, we introduce a new sequence of quotient differences (empirical derivatives)
which, among other things, are well behaved near the boundaries compared to
other sequences in the literature. Using the sequence of quotient differences, we
develop a Bayesian method to estimate curve derivatives in a multi-level setting
(a common scenario in growth studies) and show how the method can be used to
estimate individual and group derivative curves and make comparisons. We apply
the new methodology to data collected from a study conducted to explore the im-
pact that radiation-based therapies have on growth in female children diagnosed
with acute lymphoblastic leukemia.

Keywords: Bayesian hierarchical models; Growth studies; Longitudinal data;
Penalized splines; Smoothing.

1. Introduction

Growth studies are quite common in a variety of scientific fields (biology, ecology,
etc.). These types of studies produce what is often referred to as longitudinal
data since growth is measured on each experimental unit/subject over time (see
Fitzmaurice et al., 2008, 2011; Diggle et al., 2013). This is the case for the 618
children that suffered from acute lymphoblastic leukemia (ALL) in the study we
consider (Dalton et al., 2003). One of the late effects of treatments taken for
childhood ALL is a decrease in growth (or short stature), and a motivation in
conducting the study was to determine if there exists an ALL treatment that
minimizes this adverse effect. Because cranial radiation has been connected with
a deficiency in hormones associated with the development of growth, the three
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treatments studied were: a) intrathecal therapy with no radiation b) intrathecal
therapy with standard radiation, and c) intrathecal therapy with twice-daily
radiation (hyperfractionated). Between 1987 and 1995 height was measured on
each subject at diagnosis and approximately every six months thereafter (see
Dalton et al., 2003, for more details). The resulting height measurements for
197 female subjects that were diagnosed with ALL between ages 2 and 9 are
provided in Figure 1. There is a rich literature dedicated to methods that have
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Fig. 1. For the childhood ALL study: subject-specific raw height measurements for
individuals that received one of the three treatments: intrathecal therapy with no radia-
tion, intrathecal therapy with standard radiation, and intrathecal therapy with twice-daily
radiation (hyperfractionated). Age is measured in years and height in centimeters.

been developed to fit curves such as those found in Figure 1. To provide context
associated with this literature, we introduce the following general framework. For
j = 1, . . . ,m and i = 1, . . . , nj , let (yij , tij) denote the i-th measured response
from individual j at time point tij and consider

yij = fj(tij) + εij , (1)

where {fj}mj=1 are subject-specific unknown functions and εij
iid∼ N(0, σ2j ). The

challenge is to estimate each of the fj and then possibly deviations from a popula-
tion curve that is often defined by a treatment/group assignment. Some methods
found in the literature that carry this out are based on semi- and non-parametric
frequentist approaches, such as smoothing splines (Brumback and Rice, 1998),
penalized regression splines (Durban et al., 2005; Djeundje and Currie, 2010),
and functional data analysis (Ramsay and Silverman, 2005; Yao et al., 2005).
In particular, the paper by Durban et al. (2005) first analyzed the ALL data
discussed here by means of a mixed-effects model formulation of truncated line
basis that allows to flexibly estimate both subject-specific and treatment-specific
growth curves. From a Bayesian perspective there appears to be two approaches
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to model (1) hierarchically. The first is to employ a hierarchy where each of the
fj is modeled with a Gaussian process that is centered on a group curve which
in turn is modeled with a Gaussian process (e.g., Behseta et al. 2005, Page et al.
2013, or Yang et al. 2016). The second is to express fj as a linear combination
of subject-specific basis functions and assign a prior distribution to the corre-
sponding basis function coefficients. Subsequently the posterior distribution of
basis function coefficients produces an estimate of fj (see Crainiceanu et al., 2005;
Botts and Daniels, 2008; Page and Quintana, 2015).

The preceding discussion underscores the fact that there are a number of
methods that might be employed to fit the data found in Figure 1. However, since
a motivation for conducting the study was to determine if an ALL treatment
mitigates the undesirable side effect of reduced growth, it seems reasonable to
consider treatment’s impact on the growth velocity or rate of growth (i.e., the

first derivative of fj which we denote with f
(1)
j ). As a result, for our application,

there is considerable interest in estimating, in addition to growth curves, the rate
of growth.

It would be straightforward to estimate derivative curves if parametric forms
for fj(·) for j = 1, . . . ,m are assumed to be known (so long as the paramet-
ric forms are differentiable Zhang et al. 2012). However, as with all type of
parametric models, assuming that the exact form of fj(·) being known is quite
restrictive, and if the model is misspecified, inferences will be wrong. Therefore,
we focus here on non-parametric approaches to curve estimation and as a con-
sequence, derivative curve estimation. Also, in practice non-parametric methods
can be used to confirm and thoroughly examine conclusions obtained by applying
parametric methods. Therefore, we don’t see non-parametric methods as merely
alternatives to existing parametric methods but rather as supplements that could
offer additional information and insights.

To the best of our knowledge, modeling and estimating derivative curves in
the hierarchical setting found in Figure 1 has received little attention in the sta-
tistical literature (see, e.g., Simpkin et al., 2018). In fact, nonparametric methods
developed to estimate a single derivative curve f (1) are sparse compared to that
dedicated to estimating f . One possible reason for this is that f (1) is rarely (if
ever) directly measured, introducing complexities associated with modeling and
estimating f (1) that do not exist for f (Ramsay and Silverman, 2005). Although
sparse, the literature contains methods for estimating a single f (1) that are based
on splines (see, e.g., Ramsay and Silverman, 2005; Sangalli et al., 2009; Gra-
jeda et al., 2016; Song, 2016), local polynomial regression (Gasser and Müller,
1984; Fan and Gijbels, 1996) or weighted sequences/quotient differences of the
observed data (Müller et al., 1987; Härdle, 1999; De Brabanter et al., 2011; Wang
and Lin, 2015; Dai et al., 2016; Charnigo et al., 2011; De Brabanter et al., 2013;
De Brabanter and Liu, 2015). Thus, one approach to estimate derivative curves
in a hierarchical setting would be to apply one of the methods previously listed
independently for each subject. A group mean derivative curve could then be
estimated using the derivative curves derived from each subject’s model. Al-
though simple and straightforward, Kelley and Maxwell (2008) point out that a
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group mean derivative curve can be very different from that obtained by aver-
aging individual curves when growth curves are nonlinear. Thus, a hierarchical
modeling approach would be undoubtedly appealing. In addition, it would natu-
rally provide uncertainty estimates and permit borrowing of strength among the
subject-specific derivative curves when estimating a treatment or group curve.

The aim of this paper is to present a new hierarchical approach that permits
jointly and coherently estimating subject and group-specific derivative curves and
making comparisons among them. The method we develop employs a new way of
constructing empirical derivatives based on quotient differences of the observed
data, and a Bayesian method that allows estimating curve derivatives in a multi-
level setting. The use of quotient differences for estimating a single derivative
curve f (1) can be found in Charnigo et al. (2011), De Brabanter et al. (2013) or De
Brabanter and Liu (2015). All these approaches are based on what Ramsay and
Silverman (2005) call “central differences”. In this paper, we propose a variation
of what Ramsay and Silverman (2005) call “forward differences” as it seems more
natural that each empirical derivative be anchored to the time point at which
the derivative is being estimated. As it will be seen, the manner in which we
employ the forward differences mitigates boundary effects compared to central
differences. Finally, what we develop is able to accommodate subject-specific
derivative curves of varying lengths when estimating group curves, something
that is crucial for the study we consider.

The remainder of the paper is organized as follows. In Section 2 we detail
a new approach to constructing a sequence of quotient differences based on for-
ward and backward differences and a Bayesian hierarchical model that can be
employed to estimate subject-specific and group-specific (population) derivative
curves. Section 3 contains results from two simulation studies and in Section 4 we
consider two applications that illustrate the utility of the proposed methodology.
The paper closes with a brief discussion in Section 5.

2. Hierarchical Modeling of Curve Derivatives

In this section, we describe our approach to modeling and estimating deriva-
tive curves hierarchically. As mentioned, an overarching complication associated
with estimating a derivative curve is that the derivative is rarely if ever directly
measured. Thus, we begin by detailing our construction of a new sequence of
quotient differences which essentially produces noisy point-wise derivative mea-
surements and we then describe the specific components of a Bayesian model
that permits estimating group and subject-specific derivative curves. To simul-
taneously construct empirical derivatives and model the derivative curve, we
introduce unknown subject-specific parameters. These unknown objects are em-
bedded in a hierarchical model permitting us to construct a unique sequence of
empirical derivatives for each subject (something that is not trivial from a fre-
quentist perspective). This will require estimating parameters that are akin to
Box-Cox transformation parameters simultaneously with unknown model param-
eters which has been considered from a Bayesian perspective (e.g., Gottardo and
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Raftery 2009).

2.1. Sequence of Empirical Derivatives
Recall that we consider m independent subjects, with observations measured
on subject j denoted as (yij , tij), i = 1, . . . , nj . A natural estimate of the first
derivative for subject j at time tij would be

f̂
(1)
j (tij) =

y(i+1)j − yij
t(i+1)j − tij

(2)

Unfortunately, this estimator has been shown to be notoriously noisy (Ramsay
and Silverman, 2005; De Brabanter et al., 2011) with the variability depending
on the distance t(i+1)j − tij . To reduce this noise, we adopt ideas motivated
by D-nearest-neighbors and kernel smoothing by computing a weighted average
of D-lagged forward and backward differences. Employing both forward and
backward differences will help mitigate boundary effects.

Let (y(i+d)j − yij)/(t(i+d)j − tij) and (yij − y(i−d)j)/(tij − t(i−d)j) be the d-
th lagged forward and lagged backward quotient difference. Further, let Ku(d)
denote a kernel weight function based on bandwidth parameter u that assigns
weights to the d-lagged quotient differences that diminish as d increases (note
that the lag value is weighted, not necessarily the distance from tij). In what
follows we set Ku(d) = φ(d; 1, u), where φ(d; 1, u) denotes a Gaussian density
function with mean 1 and standard deviation u. By centering the kernel weight
function at one, 1-lagged forward and backward quotient differences receive the
most weight as u decreases. In addition to bandwidth parameter u, we also
introduce a window/neighborhood parameter D and only consider at most the
nearest D ≤ dn/2− 1e forward and backward lagged quotients. With this in
mind, the sequence of quotient differences we propose is

y
(1)
ij (Dj , uj) =

∑D?
Lj

d=1Kuj
(d)

(
yij − y(i−d)j
tij − t(i−d)j

)
+
∑D?

Uj

d=1 Kuj
(d)

(
y(i+d)j − yij
t(i+d)j − tij

)
∑D?

Lj

d=1Kuj
(d) +

∑D?
Uj

d=1 Kuj
(d)

,

(3)

where D?
Lj = Dj − (Dj − i + 1)+, D?

Uj = Dj − (Dj − nj + i)+ with (·)+ denot-
ing the positive part. Notice that D and u are subject-specific which provides
greater flexibility in modeling individual derivative curves compared to assuming
that each subject has the same D and u. The objects D and u regulate the
variance/bias tradeoff that exists in the sequence of empirical derivatives. As
D and u increase more lagged quotient differences are included when computing

y
(1)
ij (Dj , uj) making the sequence more global which reduces variability at the

cost of introducing bias. As the D and u decrease, the elements of the sequence
converge to a version of (2) that includes a backward lagged quotient difference,
making the sequence more local which increases the variability, but reduces bias.
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A possibly simpler approach to constructing a sequence of quotient differences
that is a special case of that just described is to include all possible forward and
backward lagged empirical derivative estimates at time point tij and assign each
diminishing weight via Ku(d). That is to say,

y
(1)
ij (uj) =

∑i−1
d=1Kuj

(d)

(
yij − y(i−d)j
tij − t(i−d)j

)
+
∑nj−i

d=1 Kuj
(d)

(
y(i+d)j − yij
t(i+d)j − tij

)
∑i−1

d=1Kuj
(d) +

∑nj−i
d=1 Kuj

(d)
, (4)

where for i = 1 and i = nj we adopt the convention that corresponding summands
are empty. Note that in this case D plays no role. Both sequences of empirical
derivatives are considered in the simulation study of Section 3.

Although for a simpler case than the one considered in this paper, we mention

that if (tij − t(i−1)j) = (tkj − t(k−1)j) for all i 6= k, then y
(1)
ij (Dj , uj) reduces to

the quotient differences developed in De Brabanter et al. (2013) for i ∈ {Dj +
1, . . . , nj − Dj} but with different weights. For exterior points, however, the
quotient differences are very different, with ours including more summands. The
simulation study discussed in Section 3.1 suggests that this characteristic reduces
boundary effects. In addition, Web Appendix A contains a simple example that
illustrates how Dj and uj influence the variance/bias associated with sequences
(3) and (4) and how they handle boundary effects relative to the sequence found
in De Brabanter et al. (2013).

2.2. Data and Smoothing Model
In principle, given uj and/or Dj we can use the sequences {(y(1)ij (Dj , uj), tij)}nj

i=1

or {(y(1)ij (uj), tij)}nj

i=1 (j = 1, . . . ,m) together with any number of semi- and

non-parametric methods (both frequentist and Bayesian) to estimate subject’s

derivative curves (i.e., f
(1)
j ). A complication is how to handle the unknowns

Dj and uj . Because of this, we take on a Bayesian approach that facilitates
treating Dj and uj as unknowns and lends itself to the hierarchical modeling
that is detailed in this section. For simplicity, we describe our method using
y(1)(D,u) (equation (3)) as sequence y(1)(u) (equation (4)) essentially follows the
same arguments except that those associated with D are dropped. Specifically,
we propose the following model to estimate individual derivative curves

y
(1)
ij (Dj , uj) = f

(1)
j (tij) + εij where εij

iid∼ N(0, σ2j ). (5)

It can be argued that incorporating a more sophisticated error model (e.g., autore-

gressive) may be warranted here given that the y
(1)
ij (Dj , uj) are not independent.

This lack of independence is particularly troublesome for estimating Dj and uj
via cross-validation. However, from a Bayesian perspective dependence among

the y
(1)
ij (Dj , uj) does not change the sampling mechanism associated with Dj or

uj .

A fairly popular method of characterizing an unknown function such as f
(1)
j

is to define a collection of basis functions (e.g., wavelet, polynomial) and assume
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that f
(1)
j lies in their span. We adopt this method and employ a B-spline basis as

it has a number of attractive computational properties and its local behavior (see,
e.g., Eilers et al., 2015, for details) is crucial to modeling group-specific curves
in unbalanced design studies. We note that the approach we take is similar in
spirit to the model found in Page and Quintana (2015) for curve (not derivative)
estimation.

Let B`(t, ξ) denote the `-th B-spline basis function evaluated at t for knots ξ.
To facilitate estimating group-specific derivative curves in an unbalanced design,
ξ is comprised of the same knots for all subjects. Knot values span the range
between the first and last measurements times, regardless of subject. Then, we

can express f
(1)
j (tij) =

∑q
`=1 βj`B`(tij , ξ). In matrix notation, model (5) is thus

expressed as

y
(1)
j (Dj , uj) = Bjβj + εj ,

where y
(1)
j (Dj , uj) = (y

(1)
1j (Dj , uj), . . . , y

(1)
njj

(Dj , uj))
′ denotes the nj × 1 vector of

quotient differences for the j-th subject, Bj is the nj × q B-spline design matrix,
βj = (βj1, . . . , βjq)

′ is the q × 1 vector of the B-spline basis coefficients, and
εj ∼ Nn(0, σ2j I). We note that q (the length of β′j) depends on the dimension of
ξ and the degree of the B-spline basis.

In order to estimate group-specific curves, we assume that each βj is drawn
from a distribution that is centered at the corresponding group-specific B-spline
coefficients. More specifically, let gj ∈ {1, . . . , C} denote the j-th subject’s group
label where C is the number of groups and consider the following subject-specific
coefficient model

βj |gj ∼ N(θgj , λ
2
gjI), (6)

where (θ′1, . . . ,θ
′
C) are the collection of C group-specific coefficient vectors with

θh = (θh1, . . . θhq)
′ (h = 1, . . . , C). Notice that implicit in this model is the fact

that the group-specific curves take on the same basis employed for each of the
subject specific curves. Therefore, the decisions associated with the number and
location of inner-knots in ξ influences both sets of B-spline coefficients (βj and
θh).

Information that is able to guide inner-knot selection is rarely known, but
is crucial to producing an attractive curve without over-fitting. To overcome
this problem, we select a fixed number of equally spaced knots within the time
domain and employ the Bayesian penalized spline (P-spline) technology of Lang
and Brezger (2004). Bayesian P-splines are the Bayesian analogue to B-splines
penalized by b-order differences (Eilers and Marx, 1996) and are constructed
around b-order Gaussian random walks (Lang and Brezger, 2004). We opt to
employ this technology at the group level which results in smooth group-specific
derivative curves and allow individual derivative curves to flexibly vary around
their group counterpart (see equation (6)). Now, a first order Gaussian random
walk for θh (i.e., b = 1) is defined as

θh` = θh`−1 + υh`, for ` = 2, . . . , q and h = 1, . . . , C,
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with υh` ∼ N(0, τ2h). Typically p(θh1) ∝ 1 and this together with the previous
equation produces the following hierarchical prior for θh

p(θh|τ2h) ∝ exp

{
− 1

τ2h
θ′hKθh

}
,

τ2h ∼ IG(aτ , bτ ),

where K is a known penalty matrix whose entries are determined by the random
walk order and IG(·, ·) denotes an inverse-Gamma distribution with rate bτ . The
newly introduced Penalized Complexity (PC) priors of Ventrucci and Rue (2016)
could provide a more intuitively appealing prior specification for τ2h (compared
to the inverse-Gamma). However, since the PC prior cannot be employed as
currently constructed in the hierarchical model we opt to follow suggestions made
in Lang and Brezger (2004).

Regarding λ2h (see equation (6)), we assign λh ∼ UN(λh; 0, A), where UN(·; 0, A)
denotes a uniform density on interval (0, A) and A is a user supplied upper bound
on the standard deviation of βj . This parameter regulates the amount of flexi-
bility afforded subject-specific curves to vary around group-specific mean curves.
For σ2j we assign the commonly used conjugate prior σ2j ∼ IG(aσ, bσ) with aσ, bσ
being user supplied values and bσ corresponding to the rate.

To finish the model specification, prior distributions for Dj and uj (parame-
ters related to quotient differences) need to be assigned. For Dj we employ the
following

Pr(Dj = k) = πk, for k = 1, . . . , dn/2− 1e ,

where
∑dn/2−1e

k=1 πk = 1. In order to optimize the variance-bias tradeoff (as Dj

increases, variance decreases but bias increases, see Web Appendix A), the πk’s
should favor smaller values of Dj a priori for derivative curves that are wiggly
and moderate values of Dj for those that are less up and down. Selecting a
(dn/2− 1e)-dimensional sequence of πk’s that reflect this desired characteristic
would be challenging. One way of simplifying the prior elicitation while maintain-
ing the desire to place the majority of the prior mass on small or moderate values
of Dj with diminishing yet appreciable prior mass on large Dj values is to em-
ploy stick-breaking ideas (Sethuraman, 1994; Ongaro and Cattaneo, 2004). More
specifically, set π1 = p, π2 = p(1−π1) = p(1−p), π3 = p(1−π2)(1−π1) = p(1−p)2,
etc. Thus, for an arbitrary k, πk = p

∏
j<k(1−πj) = p(1− p)k−1. To ensure that

the πi’s sum to one, we set πdn/2−1e =
∏dn/2−1e
k=1 (1 − πk) = (1 − p)dn/2−1e. Now

instead of selecting dn/2− 1e πk values it is only necessary to select a value for
p (the probability that Dj = 1). Note that as p approaches 1 the sequence of
empirical derivatives becomes more local, making it more variable but with less
bias (essentially approaching (2)). Regarding uj , we assume uj ∼ Gamma(au, bu)
where bu is a scale parameter (i.e., E(uj) = aubu). For derivative curves that are
wiggly small values of uj are desirable (i.e., small values of au or bu or both) as
it creates a sequence of empirical derivatives that is local, while for less wiggly
derivative curves a more global sequence and thus large values for uj are prefer-
able (i.e., large values of au or bu or both). The impact that values selected for p,
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au, and bu have on model fit is explored extensively in the simulation provided in
Section 3 and Web Appendix C. Finally, as a means to visualize all the moving
parts of the model, we provide it in its entirety

y
(1)
j (Dj , uj) = Bjβj + εj , εj ∼ N(0, σ2j I), with σ2j ∼ IG(aσ, bσ),

βj |gj ∼ N(θgj , λ
2
gjI), with λh ∼ UN(λh; 0, A),

p(θh|τ2h) ∝ exp

{
− 1

τ2h
θ′hKθh

}
,

τ2h ∼ IG(aτ , bτ ),

P r(Dj = k) = p(1− p)k−1,
uj ∼ Gamma(au, bu).

(7)

2.3. Estimation of Subject-Specific Curves in Unbalanced Designs
The full conditional of βj gives insight to how the local property of the B-spline
basis accommodates subjects with an unequal number of measurements when
estimating βj . Through a bit of matrix algebra and using well known argu-
ments it can be shown that the mean of the full conditional of βj is the following
q-dimensional vector (here E[βj |−] denotes expectation with respect the distri-
bution of βj given all other unknowns and yj)

E[βj |−] =
[ 1

σ2j
B′jBj +

1

λ2gj
Iq

]−1[ 1

σ2j
y
(1)
j (Dj , uj)

′Bj +
1

λ2gj
θgj

]
. (8)

Because of the local structure of the B-spline basis, all columns of Bj associ-
ated with B-spline basis functions based on knots that are beyond each of the

t1j , . . . , tnjj are simply zero vectors. Therefore, the entries of y
(1)
j (Dj , uj)

′Bj

that correspond to the zero columns of Bj are also zero and as a result, the
corresponding entries of E[βj |−] are completely informed by θgj . Thus, the com-
pact support of the B-spline basis carries out a very natural updating scheme for
βi, mainly that if measurements exist, use them to estimate the corresponding
coefficients in βj ; otherwise, use the group coefficients θgj .

2.4. Computation
The full posterior distribution p(D,u,β,θ,σ2, τ 2|y) is not analytically tractable,
therefore we resort to numerical techniques based on MCMC to sample from it.
The algorithm we develop is a Gibbs sampler with Metropolis steps. Exact details
associated with updating each of the parameters are provided in Web Appendix
B. We briefly mention that updating Dj and uj require a bit more care as their full
conditionals are not of recognizable form. We employ a random walk Metropolis
step for uj and a independent Metropolis step for Dj . The algorithm behaved
well with good mixing and rapid convergence. See Web Appendix B for more
details.
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2.5. Accommodating Missing Response Values
The hierarchical model specified in (7) assumes that a response is recorded for
each subject at all planned measurement times. That is, what Daniels and Hogan
(2008) call the full data is the same as the observed data. However, it is common
in longitudinal type studies that the full data are not available. In the presence
of missing response values, it would be necessary to add a level to (7) that
models the full data (i.e., observed responses, missing responses, and missingness
mechanism). Daniels and Hogan (2008) describe a number of possible models for
an array of missingness mechanisms. Since the full data model can be specified
independently of (7) our fully Bayesian approach provides benefit as no new
inference techniques are needed (see Ibrahim et al. 2005). Within a Bayesian
framework the missing observations are treated as unknowns and as a result would
be updated accordingly within the MCMC algorithm detailed in Web Appendix
B. Thus, in the presence of missing response values, our procedure operates as
before except the sequence of empirical derivatives is constructed with a mix of
observed response values and updated values for missing observations.

3. Simulation Studies

To study the performance of our derivative curve estimation procedure, we con-
ducted two separate simulation studies. The first was designed to study the
behavior of the new sequences of empirical derivatives described in Section 2.1,
while the second explored the performance of our hierarchical modeling approach.
All simulations were done using R (R Core Team, 2018). Extra simulation results
can be found in the online supporting material.

3.1. Simulation 1: Derivative Curve Estimation Based on Sequence of Empiri-
cal Derivatives

This sub-section details a simulation study carried out to investigate the utility of
our approach in estimating derivative curves based on the sequence of empirical
derivatives developed in this paper. The main aim of this study was twofold: (a)
to explore how values selected for p, au, and bu influence derivative curve fit, and
(b) to compare our approach to established alternatives.

Because potential competitors were not developed in a hierarchical model
framework, this simulation study focused on estimating a single derivative curve.
This required using the following simplified version of the Bayesian hierarchical
model described in (7)

y(1)(D,u) = Bβ + ε, ε ∼ N(0, σ2I), with σ2 ∼ IG(aσ, bσ),

p(β|τ2) ∝ exp
{
− 1

2τ2
β′Kβ

}
, with τ2 ∼ IG(aτ , bτ ),

P r(D = k) = p(1− p)k−1,
u ∼ Gamma(au, bu).

(9)

Model (9) was fit using the sequences of quotient differences proposed in this
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paper, and comparisons with three competitors were examined. The first com-
petitor was the sequence of quotient differences proposed by De Brabanter et al.
(2013), the second was the derivative estimation procedure outlined in Dai et al.
(2016) (which is also based on empirical derivatives), and the third was the local
polynomial approach (Fan and Gijbels, 1996) (which is not based on empirical
derivatives). In order to directly compare the performance of the sequences of
quotient differences we propose to that described in De Brabanter et al. (2013), in
the latter case we estimated the derivative curve in two ways. The first employed
the same Bayesian model detailed above, and the second used the kernel-based
estimation method suggested in De Brabanter et al. (2013). In both cases, the
weights for constructing the sequence were those proposed in that paper.

Since our overarching goal is to model derivative curves hierarchically we
are mainly interested here in showing that our sequence of empirical derivatives
coupled with model (9) produces derivative curve estimates that are competitive
relative to competitors for a number of combinations of p, au, and bu. Showing
this would imply that extending the procedure to a hierarchical setting would be
reasonable, which would be appealing as extending other existing methods (e.g.,
local polynomials) to a hierarchical setting was not obvious.

3.1.1. Scenarios and Set-up

We considered the following two data generating mechanisms

(a) yi = t3i +N(0, s2) for t ∈ [−1, 1]. Thus f(t) = t3 and f (1)(t) = 3t2.

(b) yi = sin(ti)+N(0, s2) for t ∈ [−5, 5]. Thus f(t) = sin(t) and f (1)(t) = cos(t).

These functions were considered as the derivative in (a) is smoother than that
in (b). Using each data generating mechanism, we created datasets with n ∈
{20, 50, 100} equally spaced time points. To study how noise relative to signal
influences derivative fits we set s ∈ {0.1, 0.5}. When fitting the model we fixed
p ∈ {0.1, 0.5, 0.9} along with au ∈ {0.1, 1, 10} and bu ∈ {0.1, 1, 10}.

For each factor combination (i.e., f(·), n, s, p, au, bu) 100 data sets were
generated. For each generated data set, model (9) was fit by collecting 2,000
MCMC draws after discarding the first 1,000 as burn-in. For the P-spline model
described in equation (9), we used a second order Gaussian random walk and 40
evenly spaced knots in the domain of t. We set aσ = bσ = aτ = 1. As mentioned
by Jullion and Lambert (2007), selecting appropriate values for bτ depends on
sample size, signal to noise ratio, and the knot configuration. In an attempt to
remove the effect that this prior has when making comparisons across data gen-
erating scenarios, we specify bτ so that the induced prior on the effective degrees
of freedom is centered approximately at 4 with standard deviation about 1.5 for
the cubic scenario and 10 with standard deviation 3.8 for the sine scenario. Exact
values of bτ are provided in Table S.1 of the Supplementary Material. For the
kernel-based estimation procedure described in De Brabanter et al. (2013), D was
selected using the rule-of-thumb detailed in that paper and the optimal smooth-
ing parameter was determined by weighted generalized cross-validation (see De
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Brabanter et al., 2013, for more details). For derivative estimation using Dai
et al. (2016), the bias-reduction level q and the sequence order r need to be cho-
sen. In this study, we considered q = 3 for f(x) = x3 and q = 7 for f(x) = sin(x),
and, as suggested by the authors, r was chosen as that minimizing the averaged
mean squared error in the sequence {2l : 1 ≤ l ≤ n/2} (the code we use to fit
this method was kindly provided by the authors). Finally, for the local poly-
nomial approach, we used 3rd-order polynomials and the bandwidth/smoothing
parameter involved was selected using cross-validation. Derivative estimation
was carried out using the locPolSmootherC function in the R-package locpol

(Cabrera, 2012).

3.1.2. Results of Simulation Study 1
Derivative fit was assessed by computing the integrated mean squared error
(IMSE) (i.e., 1/n

∑n
i=1(f

(1)(ti)− f̂ (1)(ti))2). To assess performance of procedures
near the boundaries, we calculated the IMSE for the interior 90% of observations
separately from the outer 10%. For derivative fits that employed Bayesian model
(9), the average point-wise 95% credible interval width and average point-wise
coverage were also calculated. For ease of exposition, the majority of numerical
and graphical results are provided in Web Appendix C, and we focus here on
discussing the main findings in the case that au = 1 (similar patterns arose for
other values of au).

With respect to coverage and credible interval width (Tables S.2 - S.3 in
Web Appendix C), it appears that for many of the prior value combinations
the two sequences of quotient differences proposed in this paper (y(1)(D,u) and
y(1)(u)) perform better in terms of coverage with comparable interval widths than
that proposed by De Brabanter et al. (2013). This is particularly true on the
boundaries (again, see Tables S.2 - S.3 in Web Appendix C). Generally speaking,
performance of the procedure when using y(1)(u) worsens as and bu increases.
The results also suggest that increasing p when using y(1)(D,u) mitigates this
effect.

Regarding the results associated with IMSE (Figures S.2 - S.5 in Web Ap-
pendix C), large values of p seem to provide benefit for the sine function scenario,
but not the cubic function scenario. As with coverage, for y(1)(u), large bu values
seem to negatively impact the IMSE in both data generating scenarios, but has
less influence for y(1)(D,u) for p > 0.1. Overall, the simulation study highlights
the fact that for a number of combinations of p and bu (and setting au = 1)
using the Bayesian hierarchical model based on y(1)(D,u) or y(1)(u) performs
better relative to the sequence proposed by De Brabanter et al. (2013) (using
either the Bayesian model or the kernel-based approach) and is very competitive
to the method proposed by Dai et al. (2016) and the local polynomial approach
(which could be considered the non-parametric gold standard estimation proce-
dure in the cubic scenario). To see this a bit more clearly, we provide Figures
2(a) and 2(b). These figures display the true derivative curve versus the aver-
age estimated derivative curves (averaged across the 100 data sets), along with
2.5 and 97.5 simulation estimation percentiles for both scenarios. The factors
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Fig. 2. True derivative curve (solid black line) versus the average of estimated derivative
curves (solid red line) over the 100 synthetic data sets for n = 50, s = 0.5, au = 1,
bu = 0.1, and p = 0.9. The interval bands represent the 2.5 and 97.5 percentiles of
the estimated derivative curves. y(1)(D,u) and y(1)(D) refer to the results using the
Bayesian model proposed in this paper, DAI to the proposal by Dai et al. (2016), LP
to the local polynomial approach, and ỹ(1)B (D) and ỹ(1)K (D) to the sequence of quotient
differences proposed by De Brabanter et al. (2013) using respectively the Bayesian
model described in this paper and the kernel-based approach proposed in De Brabanter
et al. (2013). (a) Data generating mechanism where f(t) = t3 and as a result f (1)(t) =
3t2. (b) Data generating mechanism where f(t) = sin(t) and as a result f (1)(t) = cos(t).
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selected are n = 50, s = 0.5, au = 1, bu = 0.1 and p = 0.9. (For other factors see
Figures S.6 -S.29 in Web Appendix C). These plots illustrate the benefit that
y(1)(D,u) and y(1)(u) provide in derivative curve estimation near the boundaries
and overall derivative estimate. Note that, especially for the sine function sce-
nario, derivative fits based on y(1)(D,u) and y(1)(u) present a lower variance (but
slightly larger bias) than the alternative procedures. Although we showed im-
proved performance on the boundaries for many combinations of bu, and p, even
more important to this paper, is that the sequence of empirical derivatives that
we develop is easily employed in a hierarchical setting, which we address in the
next section.

Based on this simulation study (again, see Web Appendix C for details),
we conclude that, generally speaking, our approach is fairly robust to values
employed for p and bu (after setting au = 1) so long as they are reasonably
selected based on the wiggliness of the raw curves and the signal-to-noise ratio.
Just as in other methods that employ regularization or smoothing parameters
(i.e., smoothing-splines), bu and p will need to be selected on a case-by-case basis.
That said, the simulation seems to suggest that it is preferable to err on the side
of sequences of empirical derivatives that are local (which are less biased). Thus,
we recommend setting au = 1 and bu = 1 preliminarily and adjust bu if necessary
depending on wiggliness of curve. For y(1)(D,u) we suggest setting p = 0.9
as this seems to protect the sequence of empirical derivatives from becoming
to global. Values selected for aτ and bτ also impact the derivative curve fits.
Since their selection is not the focus of this paper, we direct interested readers
to the growing literature dedicated to properly specifying the smoothing priors
in Bayesian penalized splines (see for example Jullion and Lambert 2007).

3.2. Simulation 2: Performance of Hierarchical Model in Estimating Group
Derivative Curves

The purpose of the second simulation was to investigate how coupling the hierar-
chical model in (7) with the new sequences of empirical derivatives described in
Section 2.1 performed in estimating group derivative curves. Based on the ALL
data, we created synthetic data sets in the following way. For each treatment, the
individual measured growth curves were used to compute three empirical treat-
ment mean curves. The empirical mean curves were calculated using means that
were computed cross-sectionally after grouping growth measurements into twenty
time intervals or bins (this was done since subjects were not all measured at the
same time points). The empirical mean curves were then fit to a Richards model
(or generalized Logistic curve) (Richards, 1959) to produce “theoretical” treat-
ment/group curves. This was done using nonlinear least squares. A Richards
model was used as it fit the empirical treatment curves well. Then synthetic
growth curves for subjects were generated using a Gaussian process with an ex-
ponential covariance function and the estimated “theoretical” treatment curves
as mean functions. The range parameter of the exponential covariance function
was set to 10 and the variance to 4. These values ensured that the synthetic
growth curves were essentially monotone. As a means to visualize the type of
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data generated in the simulation, we provide Figure 3.

As suggested by the first simulation study, for this study we fixed au = 1
and considered bu ∈ {0.01.0.1, 1, 10, 100} and p ∈ {0.1, 0.9}. We set aτ = 1 and
bτ = 2, as the derivative curves were similar to those from the sine scenario
from the previous simulation. Lastly we considered A = {1, 5}. Using the data
generating mechanism just described, we created synthetic data sets with m = 30
subjects per group and n ∈ {20, 50} observations per subject, at equally-spaced
time points. In addition to generating data that are balanced, we also considered
unbalanced data (a characteristic of the ALL data). This was done by randomly
selecting 50% of the subjects and then removing a random number of time points.
The number of time points to be removed was determined using a shifted Poisson
distribution (shifted up by one) with a mean of 4. To each generated data set,
we fit model (7) by collecting 1,000 MCMC samples after discarding the the first
3,000 as burn-in and thinning by 2. For each factor combination (i.e., n, p, bu)
and balanced/unbalanced design, we run a total of 100 repetitions. Performance
was assessed by computing the IMSE, the width of the credible bands, and the
coverage of the credible bands for the estimated group curves.

Results for the unbalanced case can be found in Figure 4 (the balanced case
produced very similar results). It seems that we are able to recover well (in terms
of coverage) the group curves for small values of bu and large p at the cost of
credible interval width. This implies that small variance high bias estimates when
bu is large (and p is small) are not desirable. It seems that A does not impact
estimation of group curves. This is to be expected as the impact of A is felt at
the subject curve level. The upshot regarding the simulation study is that for
specific values of bu and p our methodology does well in recovering group curves
in settings like that of the ALL data.
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Fig. 3. Example of the synthetic data from the generalized Logistic mode used in the
simulation study along with the true group growth curves and derivative curves.
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Fig. 4. Results from the simulation study conducted to explore behavior of the hier-
archical model (7). Results presented are for the unbalanced data case. y(1)(D,u)
and y(1)(D) refer to the methods developed in this paper. The top left plot displays
the integrated mean squared error average across 100 synthetic data sets, the top right
plot displays the average point-wise credible interval width average across 100 synthetic
data sets, and the bottom left plot the point-wise coverage average across 100 synthetic
data sets

4. Applications

We now consider the ALL data introduced in Section 1. In order to compare the
growth curve derivatives of the ALL study subjects to those of healthy subjects,
we also consider growth curve derivative estimation using the well known Berkeley
growth study. This dataset is publicly available in the fda package by Ramsay
et al. (2014) in R.

4.1. Growth Curve Derivatives for Berkeley Growth Study
The Berkeley growth study consists of 93 subjects 39 of which are male and 54
female. On each subject 31 growth measurements were taken. The first was
taken during the first year of life and the last during the 18th year. The top left
plot of Figure 5 displays each subject-specific growth curve.

We fit the hierarchical model detailed in the previous section to these data
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Fig. 5. For the Berkeley growth study: Top left, growth curves for the 93 subjects in
the Berkeley growth study. Red: girls. Blue: boys. Top right, estimated subject-specific
growth curve derivatives based on the Bayesian hierarchical model. Bottom left, deriva-
tive curve estimates for each gender with point-wise error bands. Results are based on
the Bayesian hierarchical model. Bottom right, estimate of difference between gender
specific derivative curves.
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using the sequence of quotient differences y(1)(D,u). For the P-spline model we
considered a second order Gaussian random walk and 40 evenly spaced knots.
Further, we set aσ = bσ = 1 and since these growth curves are more similar to
the sine scenario of the first simulation, set aτ = 1 and bτ = 1/0.5. The MCMC
algorithm was used to collect 1,000 MCMC iterates after discarding the first
10,000 as burn-in and thinning by 10. Guided by the simulation study of Section
3.2 we set p = 0.9, au = bu = 1, and A = 1.0. We fit the hierarchical model using
other specified prior values and found derivative curve fits to be robust.

The results are provided in Figure 5. The top right plot in the figure con-
tains the subject-specific derivative curve estimates and bottom left displays
gender-specific derivative curve estimates. As expected, the rate of growth de-
creases as toddlers approach pubescence regardless of gender. As individuals
enter pubescence, gender differences in the rate of growth become evident as
females enter the pubescent growth spurt earlier than males and that of males
lasts longer. This pattern is quite stable for both individual and gender-specific
derivative curves, something that is absent in the ALL data considered next.
Differences between gender-specific derivative curves are more clearly seen in the
bottom right plot of Figure 5. This plot contains the difference of the derivative
curves and displays the sharp change in growth rate difference between males
and females between 12-15 years of age.

4.2. Growth Curve Derivatives for Childhood ALL
We now turn our attention to the ALL study. The top row of Figure 6 is a
replica of Figure 1 except that we highlight nine individuals that will be used
to illustrate and communicate results. These data correspond to 197 females
diagnosed with childhood ALL between 2 and 9 years of age. Growth was mea-
sured for each subject at unequal intervals with a total of 1988 observations.
Notice from Figure 6 that unlike the Berkeley growth study, in the ALL study
not all subjects recorded the same number of growth measurements (the number
of observations per subject ranges from 1 to 21). In addition, for five subjects,
multiple height measurements were recorded at the same age. Since both these
cases make it impossible to estimate a derivative curve based on a sequence of
empirical derivatives, we only include subjects with at least 3 growth measure-
ments and used the average height when height was measured multiple times at
the same age. This results in 1968 observations for 186 subjects

We fit the model based on y(1)(D,u) to the childhood ALL data by collecting
1,000 draws after discarding the initial 10,000 as burn-in and thinning by 5. Since
there are many subjects for ALL data with less than 10 observations, we used a
second-order Gaussian random walk with only 20 evenly spaced knots. Motivated
by the simulation studies, we set aτ = 1, bτ = 1/0.5, p = 0.9, au = bu = 1. As
before, aσ = bσ = 1. Since subject curves are more variable here than in the
Berkeley data, we set A = 2 to allow subject derivative curves added flexibility to
vary around the mean derivative curve. The estimated subject-specific derivative
curves are provided in the bottom row of Figure in 6 while the treatment-specific
derivative curves are in Figure 8.
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Fig. 6. For the childhood ALL study: the top row are the raw subject-specific growth
curves for individuals separated by the three ALL treatments and the bottom row are
the individual derivative curves estimates based on the Bayesian hierarchical model.
Nine subjects are highlighted to illustrate how variable derivative curves can be even
when growth curves are quite similar.
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From the bottom row of Figure 6 the first thing to notice is that regardless
of treatment, females diagnosed with ALL and assigned one of the treatments
have drastically different growth rate curves compared to females in the Berkeley
study even though the raw growth curves appear very similar (compare Figures
1 and 5). In fact, the estimated derivative curves in Figure 6 display patterns
that are very foreign to expected growth velocity curves (as seen in Figure 5).
That said, the estimated derivative curves of the nine subjects highlighted in the
bottom row of Figure 6 are very reasonable when comparing them to the actual
changes of growth rate that exist visually over time in the raw growth curves.

We compare the nine highlighted estimated derivative curves in Figure 5 to
those obtained by the local polynomial approach (Fan and Gijbels, 1996) applied
to each subject independently. The results are found in Figure 7 and verify the
general shape of the derivative curves. However, the hierarchical model provides
more reasonable fits on the boundaries and slightly smoother derivative curves
relative to employing the local polynomial approach to each subject indepen-
dently.

From Figure 8 there are clear differences in the treatment-specific derivative
curves with no radiation treatment having more accelerated growth initially and
maintaining growth longer (something that is expected). The double radiation
therapy seems to negatively impact growth rate more than the standard radia-
tion therapy as it peaks earlier and declines faster. These difference are further
highlighted in the bottom plot of Figure 8 where the two radiation therapies are
compared to the non radiation therapy. Notice that differences between the two
radiation therapies and non radiation therapy are more pronounced during years
when the preadolescent growth spurt typically begins for females.

The estimated derivative curve shape seems to corroborate studies conducted
in developed countries that have shown that children diagnosed with ALL and
prescribed radiation type therapies have deceleration of growth in the initial phase
of therapy (Ahmed et al., 1997). In fact, for these individuals, the growth rate
continues to increase up through year 5 albeit at a much slower rate. Therefore
patients with childhood ALL had accelerated growth relative to healthy subjects,
but still grew much less.

5. Discussion

We have developed a statistical methodology that takes advantage of the hi-
erarchical structure that typically exists in growth studies to estimate subject-
specific derivative curves and then, borrowing strength among them, estimate
group-specific derivative curves. The methodology developed is based on a new
approach to constructing sequences of quotient differences (empirical deriva-
tive estimates) that incorporates both forward and backward differences. We
showed through simulations that this new approach is better able to balance
variance/bias inherent in sequences of empirical derivatives and greatly reduces
boundary bias relative to central differences.

Employing the methodology showed that considering derivative curves in
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growth studies provides valuable information beyond that available in the raw
growth curves. In particular, raw growth curves produced by individuals in the
Berkeley study appeared to be fairly similar to those corresponding to individ-
uals that had been diagnosed with ALL, but the growth rate curves were very
dissimilar. In addition, the treatment-specific derivative curves tended to corrob-
orate results found in Durban et al. (2005) while highlighting time points where
differences among radiation treatments occur.

Even though the methodology presented here was motivated by a specific
application of estimating the first derivative of growth curves, it can provide util-
ity in any application or field that considers derivatives and routinely produces
data with a hierarchical structure (i.e., biology, physics, or chemistry). Addi-
tionally, it is completely plausible that higher-order derivatives are also valuable
(e.g. mass spectrometry). The methodology we developed can be straightfor-
wardly extended to incorporate higher order derivatives (something explored in
De Brabanter et al., 2013). Although not formally considered in our application,
it seems reasonable that the differences seen in the derivative curves (and absent
in raw curves) can be useful when there is interest in curve clustering. It is inter-
esting too that the derivative curves seem to discriminate between genders more
so than the raw curves (although scale between them is much different). As a
result, using derivative information for classification purposes seems promising
and is the focus of future research.

Lastly, an R-package (HDCurves) containing functions that were employed to
fit the hierarchical model described in this paper can be download from CRAN.

Acknowledgements
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