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Abstract

Renewable energy sources are crucial to react to the continuous increase of energy consumption and pollution by

carbon dioxide emissions worldwide. Exemplary electric power can be generated from the production of biogas.

There exists a significant demand for improvement in terms of ecological stability and economic profitability for the

biogas production process. Biogas plants have to be continuously or periodically mixed to ensure the homogenization

of fermenting and freshly fed substrate. Mixers installed at the exterior of the biogas plant provide easier access

during maintenance and repairs than submerged mixers but concerns of sufficient mixing deter many operators

from using this technology. Recent studies have focused on different mixer types, the underlying model, the shape

of the mixer and also the optimization of geometry parameters. However, most investigations have been made

for small-scale reactors and due to the increased amount of dynamic fluid behavior, results can not be scaled up

easily. In this paper, a new solution for improved homogenization of the substrate mixture by proposing optimal

mixer configurations with steady flow with respect to a wide range of viscosity properties for a large-scale reactor

is provided. Robust optimization of a biogas reactor is coupled with CFD1 simulations to improve parameters for

the angles of inflow and the position of the substrate outlet. The optimization objective is to minimize the area in

the tank which is poorly mixed, e.g. where the velocity magnitude during mixing falls below a certain threshold.

Different dry substance contents are being investigated to account for the varying rheological properties of different

substrate compositions. Therefore a robust optimization approach with regard to the rheology is studied. Two

different dry substance content distributions are considered. The velocity threshold is calculated for each dry

substance content from the mixer-tank configuration of a real biogas reactor in Brandenburg, Germany (BGA

Warsow GmbH & Co.KG). The optimization results are compared to simulations of this original configuration and

to optimization results for each dry substance content individually. The significance of this approach to improve

mixing is elucidated. The optimized configurations reduce the dead volume zones significantly compared to the

original configuration. The outcomes of this paper can be particularly useful for plant manufacturers and operators

for optimal mixer placement and configuration in large tanks.
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Nomenclature

Acronyms

CFD Computational Fluid Dynam-
ics

(L)GPL (Lesser) General Public License

CAD Computer Aided Design

DAKOTA Design Analysis Kit for Opti-
mization and Terascale Applica-
tions

DIRECT DIviding RECTangles

DSC Dry Substance Content

FOAM Field Operation And Manipu-
lation

RŒNOBIO Robust energy-optimization of
fermentation processes for the
production of biogas and wine

SST Shear Stress Transport

Parameters

β,CDkω, σk, σω parameters from combination
of k − ǫ and k − ω model

β⋆ model constant

γ̇ shear rate, s−1

V̇ volumetric fow rate, m3 s−1

η viscosity, Pa s

ηL laminar viscosity, Pa s

ηT turbulent viscosity, Pa s

ρ fluid density, kgm−3

τij shear stress, Pa

τFij Favre-averaged turbulent stress,
Pa

P̃k production limiter

ε velocity threshold,m s−1

ζ vector of weighting factors

d vector of dead volumes, m3

Pk production measure

rin inlet radius, m

S invariant measure of strain rate

Uin velocity at inlet, m s−1

Umag magnitude velocity, m s−1

y distance to nearest wall, m

K consistency coefficient, Pa/sn

n Power Law index

Variables

ǫ, ω dissipation rates of turbulent
kinetic energy, m2 s−3

ui, uj velocity components, m s−1

θ vector of design variables, ◦

k turbulent kinetic energy,m2 s−2

p pressure, Pa

U velocity, m s−1

xi, xj coordinate direction

Keywords: Anaerobic Digestion, Bioenergy, CFD-Simulation, OpenFOAM, Robust Optimization

1. Introduction

1CFD: Computational Fluid Dynamics
2(L)GPL: (Lesser) General Public License
3CAD: Computer Aided Design
4DAKOTA: Design Analysis Kit for Optimization and Terascale Applications
5DIRECT: DIviding RECTangles
6DSC: Dry Substance Content
7FOAM: Field Operation and Manipulation
8RŒNOBIO: Robust Energy-Optimization of Fermentation Processes for the Production of Biogas and Wine
9SST: Shear Stress Transport
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Introduction. The year 2014 particularly showed the effect of the increasing use of renewable energy sources to react

to the continuous increase of energy consumption and pollution by carbon dioxide emissions worldwide. Despite the

power rise by 8.5% or 135Gigawatt and the continuously increasing energy consumption, it was possible to hold the

carbon dioxide emissions at a constant level (Sawin et al., 2015). Exemplary electric power generated from biogas is

an essential part of the energy mix in Germany accounting for 32 370GWh or 5.4% of gross electricity consumption

in 2016 (Umweltbundesamt, 2017). That is why the production of biogas is important for many countries. In some

countries it is already common practice and in others it is planned to be introduced or expanded (Kemausuor

et al., 2018). However, from 2020 due to many legal and economic regulations in Germany, a realignment of

the biogas production becomes unavoidable (Theuerl et al., 2019). Theuerl et al. (2019) provide a vision of the

future agricultural biogas plant. The investigations made in the present paper provide a small step towards the

accomplishment of their envisioned goals.

Since biogas reactors rely on a continuous, fermentative process, they have to be constantly fed with new

substrate. To make the production of biogas more efficient regarding ecological stability and economic profitability,

the fermentation process has to be optimized. Natural mixing through bubble formation and convection are not

sufficient in anaerobic digesters because of the high substrate viscosity (Vesvikar and Al-Dahhan, 2005). Mechanical

mixing therefore plays an important role in providing contact of the active biomass with the fresh substrate,

distributing fresh feed uniformly in the whole tank, avoiding builtup of toxic substances, and preventing temperature

gradients and substrate layering inside the tank (Weiland, 2010). One common type of mixing is through an external

draft tube allowing the operator to maintain and repair the high speed impeller mixer without emptying the tank.

A major disadvantage of this type of anaerobic digester is the fact, that once installed, the configuration can not

easily be changed. Therefore an optimal mixer placement has to be determined before constructing the plant.

Over the last decade a number of authors have applied CFD1 techniques to investigate different aspects of

anaerobic reactors (for an overview see Sadino-Riquelme et al. (2018)). While some authors have focused on

different mixer types (Meroney and Sheker, 2014, Alok and Immanuel, 2014), others have studied the influence

of the modeling approach (Aubin et al., 2004), the impact of switching between nozzle series during the process

(Dapelo and Bridgeman, 2018) or have investigated the rheological behavior of biogas substrates (Um and Hanley,

2008). However, most work has been done on small-scale reactors and results can not be scaled up easily because

of much more dynamic fluid behavior.

Ansoni and Seleghim (2016) describe a multiobjective optimization method based on a posteriori performance

parameters calculated from CFD1 flow solutions optimizing certain geometry parameters. However, this work is

also focused on a small-scale reactor.

Most other works pursue the aim of optimizing the shape of the mixer (Donno et al., 2019, Guo et al., 2015,

Pasquale et al., 2013), whereas the approach underlying the study in this paper focuses on the optimization of the

mixer configurations with steady flow and with respect to a wide range of viscosity properties. More details of the
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current study can be found in Müller (2019).

In the current study, the steady-state flow of the biogas substrate inside the tank driven by an external mixer

is simulated. In order to make the flowfield more homogeneous, an optimization framework is wrapped around the

CFD1 simulation. In this context, the primary focus of this research is to minimize the formation of so called dead

volume zones. The horizontal and vertical inflow angle as well as the outlet position of the external draft tube are

left as degrees of freedom in the optimization process. In practice the formation of dead volume zones brings along

a huge risk. For example, if a dead volume zone forms in the shape of a column in the middle of the tank that

means that the compound and pH-value in this zone will change over time compared to the well-mixed parts closer

to the tank walls. Consequently, the breakdown of this pile can lead to a collapse of the ecosystem. Thus a very

costly draining of the fermenter is required followed by a slow restart over a few weeks time.

The objective value in the optimization framework, the dead volume zone, is calculated by taking a theoretic

velocity threshold as the measure that divides the tank into two parts- a slow moving zone or dead volume zone

and a fast moving zone. Within the scope of this study it is not possible to take the goodness of mixture as the

objective quantity, as suggested by Kraume (2013), because the matter of the materials can not be investigated

individually. Neither does considering the velocity gradient as the decisive objective measure seem to be ideal within

this work. According to the plant operator the disposition of the substrate in one place can cause problems even if

it is well-mixed within the slow moving zone. Moreover, a slow absolute velocity can be considered as the critical

measure of mixture quality here because chemical reactions in the interior of the slow moving zone, especially

during acidogenesis, lower the pH value resulting in a change of the bacterial flora’s composition (for more on the

subprocesses of biogas production see e.g. Gujer and Zehnder (1983)). This in return can lead to a collapse of the

ecosystem in the whole fermenter.

To respect the dependence on the rheological properties of the compound, the dry substance content is taken

into account as an uncertainty and a robust optimization approach is performed using gradient-free optimization,

i.e. here using the DIRECT5 algorithm. The robust optimization results are compared to single-set optimization

results for each examined dry substance content and to values resulting from taking the geometrical properties into

account as they are actually installed in the modeled biogas plant.

In Section 2 the materials and methods behind this robust CFD1 optimization are described. The CFD1

model, the methodology for the CFD1 simulation, the software framework and the robust optimization approach

including the formulation of the objective based on the velocity threshold calculated from the original configuration

are introduced. In Section 3 the introduced materials and methods are applied and visualized by some numerical

results. It follows a comparison and discussion of the simulation results of the original configuration with results from

the individual single-set optimizations (for each dry substance content independently) and the robust optimization

for two different distributions of the uncertainty set. Conclusions are presented in Section 4.
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material (40% corn silage, 30% grass silage, 30% cow dung and 2-4 t of cow manure). The operating temperature

is kept consistently at 43 ◦C and the gas yield averages approximately 330Nm3 h−1. Special characteristics of the

biogas plant are a shredding process of the biomass before feeding it to the system by means of a twin-screw extruder

manufactured by Börner and Börner (2011) and the externally installed axial mixer manufactured by Stirl (2008).

The extrusion process guarantees a higher gas yield through an improved homogeneity of the biomass and allows,

as a consequence, the mathematical modeling of the tank content as a single phase. The external mixer allows for

maintenance procedures and repairs of the mixer without emptying the plant. The fresh substrate is slowly fed via

the twin-screw extruder through a feeding tube to the draft tube every two hours during mixing times (for 40min

during each feeding cycle). The volumetric flow rate is approximately 1.75m3 s−1 through the outside piping of the

biogas plant at hand .

2.2. Software, Solver and Turbulence Model

For 3D-modeling of the biogas plant the CAD3 software SALOME (LGPL2 license LGPLv2.1, Version 7.6.0)

(Ribes and Caremoli, 2007) is used. The geometry of the fermenter including all relevant in- and outlets for the

substrate is modeled using measurements from the manufacturer and plant operator. By processing the modeling

data with a Python script using SALOME, it is subsequently possible to perform a design optimization on the

geometry by connecting it to the DAKOTA4 toolkit as described below. OpenFOAM7 is an open source software

library written in C++, containing many CFD1 solvers and utilities (Weller et al., 1998). All following computa-

tions and analyses are performed using OpenFOAM7 Version 2.4.0 (GPL2 license GPLv3). Various OpenFOAM7

utilities are used to draw up the simulations (e.g. mesh generation, parallelization) and to process the results (e.g.

visualization of data, sampling of results, calculation of field numbers). The OpenFOAM7 standard solvers use the

finite volume method, which is based on the discretization of the governing equations.

The solver which is used here, simpleFOAM7, discretizes and solves the underlying momentum, continuity, and

energy equations (Navier-Stokes-Equations) up to a stationary convergence of pressure p and velocity U in each

cell. The convergence criteria are determined by the user (e.g. residuals 1× 10−5 for p and U). As a turbulence

model the k -ω SST2.4 model is used, such that the required transport equations are also solved for turbulent kinetic

energy (k) and the dissipation rate of turbulent kinetic energy (ǫ) up to a predetermined convergence tolerance of

the residuals (1× 10−5) in each cell. Due to earlier observations of slow moving zones occuring near the tank wall,

the k -ω SST model seemed to be the ideal choice here as it provides a particularly robust and accurate near wall

treatment (Menter et al., 2003). Relaxation factors were set to 0.3 and 0.7 for p and for U , k, and ǫ, respectively.

To conduct the following optimization studies, the CFD1 software is coupled with the DAKOTA4 toolkit (LGPL2

license LGPLv3, Version 6.2) by Sandia Corporation (Adams et al., 2014). This software acts as a black box

optimization solver where the black box is the OpenFOAM7 model.
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2.3. Flow Model Development

The biogas substrate flow inside the tank is modeled by the incompressible Navier-Stokes equations with tur-

bulence. The modeling approach is based on the model chosen by Wu and Chen (2008) making the following

assumptions:

• 3-D and steady-state flow field

• incompressible and non-Newtonian fluid

• constant temperature (43 ◦C)

• single-phase flow model

Rather than simulating the mixer blades, a simplified numerical model was developed calculating the tank flow field

using volumetric flow rates. A system of differential equations is solved consisting of the continuity equation for

the conservation of mass, the momentum equation for the momentum conservation and energy equations including

a specific turbulence model.

The continuity equation that was solved looks like the following

∂ui
∂xi

= 0, (1)

where ui represents the fluid velocity in tensor form and xi are the components in the i different directions.

The momentum equation is described by the following expression

∂

∂t
(ρui) +

∂

∂xj

(ρujui) = − ∂p

∂xi

+
∂τij
∂xj

, (2)

where ρ is the fluid density and p the static pressure. The shear stress τij is dependent on the viscosity η by

τij = η

(

∂ui

∂xj

+
∂uj

∂xi

)

(3)

and the viscosity is dependent on the shear rate by the non-Newtonian Power Law model, i.e.

η = Kγ̇n−1 with ηmin ≤ η ≤ ηmax. (4)

The quantity uj represents the fluid velocity like ui above. Furthermore, K represents the consistency

coefficient, γ̇ the shear rate and n the Power Law index which expresses the fluid type, i.e. whether it is shear

thinning (n < 1), Newtonian (n = 1) or shear thickening (n > 1).

The energy equations are derived by using the k − ω SST turbulence model. This model combines the benefits of
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the k − ω model and the k − ǫ model with a high Reynolds number. Thus, the turbulent kinetic energy k and the

dissipation rate ω can be modeled by differential equations.

The transport equation for the turbulent kinetic energy (k) is represented by

∂

∂t
(ρk) +

∂

∂xi

(ρuik) =
∂

∂xi

[

(ηL + σkηT )
∂k

∂xi

]

+ P̃k − β⋆ρωk.

and the transport equation for its dissipation rate (ω) is expressed by

∂

∂t
(ρω) +

∂

∂xi

(ρuiω) =
∂

∂xi

[

(ηL + ηTσω)
∂ω

∂xi

]

+ αρS2 − βρω2 + 2(1− f1)
ρσω2

ω

∂k

∂xj

∂ω

∂xj

,

where f1 is a function which combines the model coefficients of the k− ω model with the transformed k− ǫ model,

i.e.

f1 = tanh





(

min

(

max

( √
k

β⋆ωy
,
500ν

y2ω

)

,
4ρσω2

k

CDkωy2

))4


 (5)

with

CDkω = max

(

2ρσω2

ω

∂k

∂xj

∂ω

∂xj

, 10−10

)

(6)

and y describes the distance to the nearest wall. Moreover, the dynamic viscosity η is given by the sum of the

laminar viscosity ηL and the turbulent viscosity ηT . (for details see Menter et al. (2003) or Blazek (2004, p. 61)).

Furthermore, β⋆ represents a model constant. In order to prevent build up of turbulence in stagnation regions, a

production limiter is used which is described by P̃k with

Pk = ηT
∂ui

∂xj

(

∂ui

∂xj

+
∂uj

∂xi

)

→ P̃k = min(Pk, 10β
⋆ρkω). (7)

The coefficients of the SST turbulence model β,Cω, σk and σω result from a combination of the coefficients of the

k − ω model with the coefficients of the transformed k − ǫ model. The parameter α is calculated by

α = α1f + α2(1− f).

The other constants are β⋆ = 0.09, α1 = 5/9, β1 = 3/40, σk1
= 0.85, σω1

= 0.5, α2 = 0.44, β2 = 0.0828, σk2
= 1,

σω2
= 0.856. The turbulence viscosity is obtained using

ηT = a1
k

max(a1ω,b1f2S)
.

2.4. CFD Simulation of the Biogas Plant

The structure of the simulation using the different software can be found in Figure 3.
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Boundary Field OpenFOAM7 R© Condition Value

Tank U fixedValue (0 0 0)

Tank p zeroGradient –

Tank k kqrWallFunction 1× 10−20

Tank ω omegaWallFunction 1× 10−2

Inlet U fixedValue (−3.095 5.360 0)1

Inlet k fixedValue 1× 10−1

Inlet ω fixedValue 1× 10−2

Inlet p zeroGradient –

Outlet U , k, ω zeroGradient –

Outlet p totalPressure 0

1 according to the volumetric flow rate of 1.75m3 s−1 in the standard case (tangential inlet in an angle of 60◦)

Table 2: Overview of the used boundary and initial conditions for the CFD simulations of the biogas plant

where V̇ denotes the volumetric flow rate and rin stands for the inlet radius which is considered to be 0.3m in

our case. This results in an inlet velocity Uin of 6.19ms−1. The velocity is expressed as a vector along the x-axis

which can then be transformed by vector transformation. This is realized using the R-function rotate3D with the

horizontal and vertical influx angle. For the latter computation we perform vector rotations with the angle α around

the y-axis (as in Eq. (9)) and with the angle β around the z-axis (as in Eq. (10)).

Ry(α) =













cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α))













(9)

Rz(β) =













cos(β) − sin(β) 0

sin(β) cos(β) 0

0 0 1













(10)

For the OpenFOAM7 rheology model powerLaw, we use the values from Table 4 as explained in detail later in

Section 2.5.2.

2.5. Optimization

The coupling of the CFD1 simulation with the optimization can be found in Fig. 4. For this coupling procedure,

the response metrics (design function) of the CFD1 simulation (OpenFOAM7) are handed as an output file to the

optimization level (DAKOTA4). The optimization integrates this output into the algorithm and an optimization

problem is solved for the design parameters. These design parameters are then handed to the computational model

in form of an input file again. This methodology is also called black box approach because DAKOTA4 does not

interact with the simulation code itself and just processes the input parameters in a given format.

10



Optimization

Input parameters
(design variables)

Response metrics
(design function)

Computational model
(simulation)

Figure 4: Optimization setup

2.5.1. Geometry and Optimization Parameters

The height of the modeled fermenter is 10m and it has a radius of 5.5m. The external mixer is fed through a

pipe with a radius of 0.6m that exits the tank at 9m height and pumps the substrate back at 0.5m above the tank

bottom. The optimization software requires the input parameters to be varied as well as the objective parameter

to be optimized. Input parameters are the rotation angle of the outlet with respect to the inlet on the tank wall

(0◦ to 360◦) and the influx vectors in the vertical (−45◦ to 45◦) and horizontal (0◦ to 70◦) plane at the inlet. These

will be denoted θ or θ1, θ2, θ3 in the following. The objective variable is based on the volume in the tank in which

the substrate is moving with a velocity less than ε, where ε [m s−1] is chosen, such that

∫

V

χ[0,ε](Umag(θ))dc = 475m3. (11)

The threshold ε is chosen based on where the volume integral of a dirac delta function χ[0,ε] dependent on the

magnitude velocity of cell θ is equal to half of the total tank volume of approximately 950m3 for the standard

geometry with the coordinates (0, 0, 60). The standard geometry is the geometry used by our industry partner

with the rotation angle of the outlet with respect to the inlet of 0◦, with a vertical inflow angle of 0◦ and with a

horizontal inflow angle of 60◦. Thereby χ[0,ε](Umag(θ)) with χ[0,ε] : Θ → {0, 1} is defined by

χ[0,ε](Umag(θ)) :=











1, if Umag(θ) ∈ [0, ε]

0, else .

, (12)

where Θ is the space of cells. The calculated values for ε are shown in Table 3. They divide the tank volume into

a slow and fast moving zone for the different dry substance contents. The slow moving zone is called dead volume

zone throughout this work.
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DSC6 Velocity Threshold ε
(in %) (in m s−1)

2.5 1.25
3.95 1.17
5.4 1.13

6.45 1.00
7.5 9.49× 10−1

8.3 9.14× 10−1

9.1 8.92× 10−1

10.6 4.39× 10−1

12.1 3.27× 10−1

Table 3: Overview of the calculated thresholds for the maximum velocity in the slow-moving zone for the different dry substance contents

2.5.2. Substrate Characteristics

The biogas substrate is modeled as an incompressible and non-Newtonian fluid. It was not possible within the

scope of this study to determine the rheological properties in the biogas plant and according to the plant operator

measured rheological values would have only been useful to limited extend as the composition changes significantly

over time. That is why we use multiple sets of experimental data for each simulation iteration as already used in the

study of Wu and Chen (2008) from (Achkari-Begdouri and Goodrich, 1992) and (Landry et al., 2004) (see Table 4).

In addition to these literature values, interpolated quantities are used in this study which are highlighted in gray in

Table 4. In other words, the values for DSC6 3.95, 6.45, 8.3 and 10.6% are interpolated values and the other ones

are literature values. The arithmetic or weighted arithmetic mean of the resulting dead volumes for each substrate

is therefore the actual objective parameter. The consideration of different substrate characteristics ensures a robust

model to optimize the input parameters across a wide spectrum of biogas substrates. From the data provided by

BGA Warsow GmbH & Co.KG the most likely occuring dry substance content (DSC6) lies between 9 and 10% and

a dry substance content above 10.5% yields stress. A DSC6 below 3.8% is improbable.

DSC6 (%) K (Pa sn) n γ̇(s−1) min (Pa·s) ηmax (Pa·s) ρ (kg/m3)

2.5 0.042 0.71 226-702 0.006 0.008 1000.36
3.95 0.117 0.636 138-702 0.008 0.019 1000.57
5.4 0.192 0.562 50-702 0.01 0.03 1000.78
6.45 0.333 0.5475 36-550.5 0.02 0.1 1000.89
7.5 0.525 0.533 11-399 0.03 0.17 1001
8.3 0.7885 0.5 11-277.5 0.05 0.23 1001.155
9.1 1.052 0.467 11-156 0.07 0.29 1001.31
10.6 3.4685 0.417 7-152.5 0.16 1.61 1001.52
12.1 5.885 0.367 3-149 0.25 2.93 1001.73

Table 4: Rheological properties from (Wu and Chen, 2008) and interpolated values highlighted in gray

2.5.3. Optimization under Uncertainties

As the consistence of the biogas substrate is very uncertain and has a remarkable impact on the rheological

properties, the DSC6 is included in the model as an uncertainty. One could also look for the optimal geometry
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based on the data provided by BGA Warsow GmbH & Co.KG, illustrated in Fig. 5, i.e.

ζ = (0, 0.0120, 0.0528, 0.0945, 0.1353, 0.1761, 0.2179, 0.1761, 0.1353)T with

9
∑

i=1

ζi = 1.

The objective function is formulated as

Φ(d) = ζT d (13)

with d = (d1, . . . , d9)
T where d is the dead volume vector with the dead volumes resulting from the 9 different

dry substance contents. This means that in terms of terminology we assume two different weight distributions

and then the objective is represented by the expected mean value of the events and weights representing their

occurrence. Thus our objective represents the expected costs assuming two different weight distributions. In

terms of optimization under uncertainties one usually distinguishes between robust optimization and stochastic

programming. The main difference is that for stochastic programming one assumes the probability distribution of

the uncertain data to be known. In contrast to this, for robust optimization one does not make this assumption but

assumes that the uncertain data set can be represented by an uncertainty set. With this approach one generates a

solution that is optimal in some sense for all uncertainties chosen from the uncertainty set. More information on

the differences in between these two approaches can be found e.g. in (Gorissen et al., 2015, Bertsimas et al., 2011).

Here, the considered robust optimization problem is described by

(P )































































min
θ1,θ2,θ3

Φ(d)

s.t. Black Box Model

0 ≤ θ1 ≤ 360

−45 ≤ θ2 ≤ 45

0 ≤ θ3 ≤ 70

, (14)

where the black box model corresponds to the OpenFOAM7 model. As the optimization method of choice, the

DIRECT5 (DIviding RECTangles) method (Jones et al., 1993) is used. This is a deterministic direct search sampling

method where, starting with a hyperrectangle, the space is divided along the set of longest sides. Convergence results

can be found in Finkel and Kelley (2004).

3. Results and Discussion

As explained in Section 2.5.1, the velocity thresholds for the definition of the dead volume zone are calculated

first based on the original configuration (see Table 3). Most of the following results were computed on a cluster
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at Trier University with four AMD OpteronTM 6176 SE Multi-Core-Processors (12 cores each) and 264 GB RAM.

The calculations for the weighted robust mean optimization were run on a DellPrecision Tower 7810 Workstation

with two Intel Xeon E5-2660 v3 Multi-Core-Processors (10 cores each) and 64 GB RAM (8x8 GB@2133 MHz) at

Hochschule Geisenheim University.

The original configuration of the biogas plant in Warsow (Original Configuration) is compared to the single-set

optimization approach (Single Opt.) for individual DSCs6, the robust optimization approach using the arithmetic

mean of the individual volumes for the objective function (Mean Opt.) and the robust optimization approach

using the weighted arithmetic mean of the individual volumes as the objective function with the weights chosen as

explained in Section 2.5.3 (Weighted Mean Opt.). The results for the DSC6, the design parameters, i.e. variables

x1, x2 and x3 and the objective value are highlighted in Table 5. In the single-set optimizations the dead volume

zone was reduced on average by 27.9% or 132.4m3, respectively. In the robust optimization approaches, the total

dead volumes were also reduced compared to the original cases. For the lower DSCs6 (3.95%-6.45%) the resulting

slow moving volume is much smaller than for the higher DSCs6(7.5-12.1%). For the arithmetic mean case the total

dead volume zone was reduced by 21.68% or 102.9m3 and for the weighted arithmetic mean case even by 23.21%

or 110.2m3.

As the dead volume zone is defined by the tank volume and not by an empirical value, the development of the

velocities below the threshold is investigated as well. For this purpose we divide the cells of the dead volume zone

into 5 areas, which are defined by their percental dependence on the individual velocity threshold. For example the

velocity threshold for 6.45% DSC6 corresponds to exactly 1.00ms−1 (see Table 3). Thus the volume of the area

with the lowest velocity in Fig. 7 corresponds to the summed up volume of all cells with a velocity of less than

0ms−1 to 0.2ms−1. The sum of all the five areas is equal to half the tank volume, i.e. 475m3 or the total dead

volumes resulting from the optimization approaches illustrated in Fig. 6. Figure 7 shows the deviating behavior of

the two highest DSCs6 (10.6% and 12.1%) from the other ones. For the lower DSCs6 the volumes decrease almost

linearly for the five velocity areas but for the two highest DSCs6 the velocity areas from 20% to 80% contribute

much more to the total dead volume zone. Figure 6 indicates that the single optimization approach results in the

smallest dead volume zone for all DSCs6. However, Fig. 7 shows that this is only the case for almost all areas.

The weighted arithmetic mean robust optimization results in a smaller total dead volume zone than the arithmetic

mean robust optimization but in Fig. 6 it becomes evident that the arithmetic mean outperforms the weighted one

for all DSCs6 which were given a low weight (e.g. the lowest and the highest ones).

The resulting dead volume zones for the different DSCs6 are illustrated in Fig. 8. For all cases a column of slow

velocity forms in the middle of the tank but with the different optimization approaches its volume can be reduced

by a significant amount. The single optimization outperforms the other optimization approaches with respect to

the resulting objective value. However, as already mentioned above, we can not adjust the design parameters of

the plant during the fermentation, such that the robust optimization approaches result in the most useful results in
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practice. Fig. 8 shows that with increasing DSC6 slow moving areas also form close to the tank wall for the original

configuration and for the two highest DSCs6 slow moving areas also form close to the surface. Those areas are the

ones that can be eliminated with all three optimization approaches by optimizing the design variables.

The original and optimal parameter configurations are described in Table 5. The outlet position varies a lot (θ1,

(0◦ to 360◦)) and results in differences of up to 174◦ from the inlet for the single optimizations (for DSC6 of 3.95%).

The solution for θ1 for the single optimizations from 6.45 to 9.1% DSC6 and for the weighted arithmetic mean

optimization is located more than 180◦ away from the inlet (in tangential flow direction). For all DSC6 apart from

the two lowest ones, the optimal outlet position is located between 80 and 120% away from the inlet (in and against

flow direction). The vertical angle of the inflow (θ2, (−45◦ to 45◦) does not show a trend with respect to variance

of the DSC6. For the lower DSC6 (up to 9.1%) pumping it in downwards up in an angle up to 15◦ is optimal. For

the higher DSC6 (10.6% and 12.1%) and the robust optimization approaches the result for θ2 is located around 0◦

(for 10.6% and 12.1% even slightly upwards). The result of the single optimization for the horizontal angle of the

inflow (θ3, (0
◦ to 70◦)) decreases continuously with increasing DSC6. The optimal value for lower DSCs6 is located

around 45◦ and for higher DSCs6 it is located around 25◦. For the robust optimization approaches, the optimal

value is located around 43◦ for the arithmetic mean case and around 35◦ for the weighted arithmetic mean case.

Design / Optimization DSC6 Variable θ1 Variable θ2 Variable θ3 Objective Value
(in %) (0◦ to 360◦) (−45◦ to 45◦) (0◦ to 70◦) (in m3)

Original Configuration 2.5 to 12.1 0.00 0.00 60.00 475.00
Single Opt. 2.5 158.56 −3.33 45.75 415.32
Single Opt. 3.95 173.58 −4.49 45.37 408.60
Single Opt. 5.4 85.74 −12.78 41.29 401.82
Single Opt. 6.45 263.85 −1.65 37.29 383.04
Single Opt. 7.5 265.00 −14.77 39.03 362.04
Single Opt. 8.3 253.26 −13.31 35.00 353.92
Single Opt. 9.1 245.07 −11.56 34.90 347.10
Single Opt. 10.6 119.72 4.07 26.65 205.01
Single Opt. 12.1 112.29 0.69 24.36 207.85
Mean Opt. 2.5 to 12.1 116.29 −2.22 42.99 372.00

Weighted Mean Opt. 3.95 to 12.1 273.28 −1.66 34.57 344.60

Table 5: Optimized designs for minimization of the slow-moving zone in the biogas plant

The computation times are presented in Table 6 where the mean optimization was the most computationally

expensive. As mentioned above, the weighted mean optimization was run on a cluster at Hochschule Geisenheim

University. All other computations were performed on a cluster at Trier University. The weighted mean case

converged to a solution after 9.7 days where the mean case only converged to a solution after 26.5 days. The

last column in Table 6 illustrated the number of evaluations which represent the number of different parameter

configurations that were evaluated by the DIRECT5 method before the optimal configuration was determined.

Apart from the simulation for 10.6% DSC6, which took 461 evaluations, an average of 250.9 evaluations were made.

The simulation for 5.4% DSC6 took way longer (8.8 days) than the other ones with an average of 2.94 days.
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Computation Time

Optimization DSC6 in s in days Evaluations

Single 2.5% 303 228 3.5 271
Single 3.95% 140 064 1.6 237
Single 5.4% 757 291 8.8 313
Single 6.45% 212 714 2.5 211
Single 7.5% 202 758 2.3 234
Single 8.3% 190 107 2.2 209
Single 9.1% 220 509 2.5 289
Single 10.6% 484 580 5.6 461
Single 12.1% 275 053 3.2 225
Mean 2.5% to 12.1% 2 293 030 26.5 299
Weighted Mean 3.95% to 12.1% 840 743 9.7 221

Table 6: Computation times of the CFD-based optimization for minimization of the slow-moving zone in the biogas plant (all except
the weighted mean optimization computed in parallel on 18 cores)

4. Conclusions

To determine the optimal configuration of an external mixer in an industrial biogas fermenter, a CFD1 simulation

(OpenFOAM7) was coupled with an optimization procedure (DAKOTA4). To determine the optimal external mixer

installation parameters the CFD1 model was derived and the optimization problem was formulated. It was applied

to an actual biogas fermenter comprising 950m3. As the viscosity properties of the non-Newtonian substrate

change continuously inside the fermenter, a problem formulation that has the capability of finding the optimal

configuration with respect to these changing viscosity properties was required. The problem was formulated using

a robust optimization approach taking the dry substance content as uncertainty into account. Two objectives were

investigated, the arithmetic mean and the weighted arithmetic mean of the volume of the corresponding dead volume

zones. The weights for the weighted objective were determined by a calculation from a measured distribution. The

underlying simulations were solved in parallel. The implemented solution strategy resulted in a configuration that

is optimal on average throughout the production process. For comparison purposes, the single-set problems for

each individual DSC6 were also optimized. The results from the three optimization approaches were compared to

the original configuration. The results approved the hypothesis of a forming zone in the middle of the tank in

the shape of a column. The CFD1 optimization showed that the dead volume zone, defined by a relative velocity

threshold, can be reduced by more than 20% with respect to the different DSCs6. In the original configuration the

outlet was directly located above the inlet. However, the optimal configuration parameters show that this is not the

best location where the optimal values range from 85.75◦ to 273.28◦ compared to 0◦ in the original configuration.

Moreover, the substrate should be pumped in less tangentially than in the original configuration. More precisely the

values for the horizontal inflow angle range from 24.36◦ to 45.75◦. Furthermore, the value of the vertical angle of the

inflow of the original configuration lies in the resulting optimal range. Thus, the original setup for that parameter

was already fairly good. All of the software used for the scope of this study is open-source. The outcomes of this

work can be very useful in particular for mixer placements in large tanks or for installations of industrial fermenters.
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Thus, plant manufacturers and operators can benefit from these results.
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