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Abstract

Electrical Impedance Imaging would suffer a serious obstruction if
two different conductivities yielded the same measurements of poten-
tial and current at the boundary. The Calderén’s problem is to decide
whether the conductivity is indeed uniquely determined by the data at
the boundary. In R%, for d > 5, we show that uniqueness holds when
the conductivity is in Wit P(Q), for d < p < 0. This improves
on recent results of Haberman, and of Ham, Kwon and Lee. The main
novelty of the proof is an extension of Tao’s Bilinear Theorem.
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1 Introduction

Electrical Impedance Imaging is a technique that exploits the differences in
electrical conductivity inside a body to reconstruct its inner structure from
measurements of potential and current at the boundary. At least since the
30’, geophysicists have used this technique to identify different layers of earth
underground [25]. In pioneering work, Calderon [10] posed the problem of
deciding whether the conductivity is uniquely determined by the measure-
ments at the boundary. Calderén went on to show uniqueness when the
conductivity is infinitesimally close to one.

In a bounded domain < R?¢ with Lipschitz boundary the electrical
potential u solves the boundary value problem

Lu :=div(yVu) =0,

U|aQ=f,

(1)



where 7 is the conductivity and f is the potential at the boundary. We
assume that v € L*(Q) and that v > ¢ > 0. If f € H'?(692) then a solution
u e H'(Q) exists. The electrical current at the boundary is yd,u |50, where
v is the outward-pointing normal, and the operator A, : u|sq — Y0, u |aq is
called the Dirichlet-to-Neumann map. We can define the map A, rigorously
as an operator A, : HY/2(0Q) — H~Y2(0Q) given by

A fg) = L YVu - Vv, (2)

where u solves (1) and v € H'(2) is any extension of g € HY2(092). If we
choose v such that L,v = 0, then we see that A, is symmetric. Uniqueness
fails if two different conductivities v, and 7, satisfy A,, = A,,; this were the
case, for every fi, fo e H %(69) we would have

0= (A, — M) oo o) = Lm W)V Vi, 3)

where L., u; = 0 and L.,,us = 0 are extensions of f; and f; respectively. Most
proofs of uniqueness show that the linear span of the functions {Vu; - Vu,}
is dense, so 1 and 7, cannot be different.

Kohn and Vogelius [19] showed that for smooth conductivities v; and s,
uniqueness holds at the boundary to all orders, so Yy, = v at Q for
every integer N. In particular, if the conductivities are analytic then v; = 5
in €.

In [27], Sylvester and Uhlmann introduced the method that most proofs

1

follow nowadays. If u; solves (1) for ;, then the function w; := 72w, solves

11
the equation (—A + ¢;)w; = 0, where ¢; := 7; *Av;, and the relationship
(3) is to be replaced by

fRd(fh — @)uWo = 0. (4)

Then, Sylvester and Uhlmann proved that the linear span of the functions
{w1W,} is dense. The integral is evaluated over R? because the functions
~v1 and 7 are extended to the whole space, and they are arranged so that
1 = 72 = 1 outside a ball containing 2. Since ¢** is harmonic when ¢ € C¢
satisfies (-¢ = 0, then they used the ansatz w; = ¢%°®(1+1);), expecting that
1, is somehow negligible for ||, |(2] — 0. These highly oscillating solutions
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w; are called Complex Geometrical Optics (CGO) solutions. Sylvester and
Uhlmann selected ¢; and (, such that ¢; + Co = i€ for € € R? then, on the
assumed smallness of ¢; for |(1|, |¢2| — o0, equation (4) becomes ¢ — g2 = 0,
and this implies that v; = 7. The argument works well for conductivities in
C?(Q).

In R?, Astala and Péivérinta |3| proved that uniqueness holds in L (),
the best possible result. In higher dimensions Brown [6] proved uniqueness
for conductivities in C'2*+(€2), and this was improved to W 224+ () by Brown
and Torres [8]. By analogy with unique continuation, it is conjectured that
the lowest possible regularity is W1H?(Q).

The function ¢ in the CGO solution w = e%*(1+ 1) satisfies the equation

A= A +20- Vi = (1 + ). ()

Then, it is necessary to prove that a solution exists and is small. In [15],
Haberman and Tataru introduced the following Bourgain-type spaces adapted
to pe(€) = —|€]* + 2iC - €, the symbol of Ag:

Xt ful iy = [ Ine(@) 10 g < o).
Xoi={ul ulke = f (Ipc()] + o) (@ dg < 0}, for o >0, (©
e Rd
b.__ b
X¢ =X
It follows that [A;'| 3 3 =1, and that the dual of X¢ is X;*. If we

define the multiplication operator M, : u + qu, then the existence of

follows from [|[AZ' M| 1 1 < [[Mgll 3 < ¢ < 1, and the smallness of
X2 X2 XC2~>X

¢ X ¢
¢ follows from the smallness of ||q||X,% . Using these spaces Haberman and

1
2

Tataru proved uniqueness for Lipschi%z conductivities close to one.

Caro and Rogers [11] proved uniqueness for Lipschitz conductivities with-
out further restriction. They used Carleman estimates, in the spirit of
[9, 18, 12].

After an observation in [24], Haberman refined in [14] the method of
Bourgain spaces, and proved uniqueness for conductivities in the conjectured
spaces W14(Q), for d = 3,4, and for conductivities in WH%”’(Q), for p >
d and d = 5,6. He argued as follows: for «; and 7, he wanted to show
that || M, 1 and ||qj||X_% are small for some (; and (, that satisfy

Mg ;



(1 + (o = i€, so Haberman proved that there exist sequences {Clk} and {Cgk}

for which [| M, || o 1 and HqJH % tend to zero as
CJ [ ¢k
find the sequences, he proved that the average of both norms goes to zero as

C1l, [Ca| — o0

Theorem 1 (Haberman, Theorem 5.3 in [14]). Let us write {(U,T) :=
T(Uey —iUes) for T =1 and U € Oy a rotation. If v1 and vy are in Wh4(R?)

ford=3,4, orin Wt ’p(Rd) ford<p< oo and d =5, then

1 —
i f JHM ||p ., dUdr and — f f|lq]’| _y dudr M=o, .
Xom=Xe(@ X

M Oy U,T) UT)
The idea is that, when |(;| is large, the set of bad pairs (¢, (2) for which
(| M, H it HXC*% or ||g; ng% is large has a small measure, then it is possible to
ik Gk ok

extract sequences such that these norms are small and such that ¢; +C k2 =
i&; see Theorem 7.3 in [14].

The estimates of Haberman are very good, and most of the argument
works well just for v € W14(R?). In fact, the condition v € WH4(R?) suffices
to show that the average of ||g;|| ._; vanishes, and the bottle-neck to prove

<(U,T)
that the average of ||}, || .y vanishes, for vy € WH(R?), is to get
Xéwn=Xe@n
a strong upper bound of || Ma,y| . 1 R for f € L4(Q). Stronger upper
v~ Xedm

bounds were obtained by Ham, Kwon and Lee [16] using deep inequalities
from restriction theory, and they got the following Theorem.

Theorem 2 (Ham, Kwon and Lee, Proposition 5.13 in [16]). Let us write
CU,T):=7(Ue; —iUes) for T =1 and U € Oy a rotation. Suppose that f is
a function supported in the unit ball. If d = 5,6 and if
F W ’p(Rd) ford+1<p< o
€
WE B P (RY) ford <p<d+1,
then

[ Mall .1 L dUdr M=%, (7)
N

CUT
s W,m)

'For d > 6 the exponents change, but for brevity I omit them and focus only on the
cases d = 5, 6.




One of the main results of this paper, which we present in more detail in
Section 2, is the following Theorem.

Theorem 3 (Vanishing of the Average). Let us write ((U, 1) := 7(Uey;—iUes)
form =1 and U € Oy a rotation. Suppose that f is a function supported in

the unit ball. If f € WdT;s+’p(Rd) ford<p< oo and d =5, then

oM
i) e

| (iMofll . audr M=%, (8)
M Xwvn=Xedm

M Ogq

The main consequence of this Theorem is the following improvement on
Calderén’s problem.

Theorem 4. For d = 5,6 suppose that Q < R? is a bounded domain with
d—>5

Lipschitz boundary. If vi and vy are in W' 2 TP(Q)ALP(Q) ford < p < o,

and if y1,72 = ¢ > 0, then

A, =A,, wmplies v =7 inf.

We write v € WH%J“I’(Q) N L*(Q) to emphasize that v € L*(Q2), but
it follows from Sobolev embedding for domains with Lipschitz boundary.

We summarize the results as: there is uniqueness as long as the conduc-
tivities belong to

Whd(Q) for d = 3,4 Haberman [14]

WHdT_;’p(Q) for d < p < oo and for d = 5,6 Haberman [14]
1+ 24 p _

Wz 7P(Q) ford+ 1 < p<ooand for d=5,6 Ham et al. [16]
1440 delop _

W "2 Tw@ TP (Q) ford <p<d+1andfor d =056 Ham et al. [16]

W1+%+’p(9) for d < p < oo and for d = 5,6 Theorem 4

Theorem 3 holds for d > 5, so the hypothesis d = 5,6 in Theorem 4 seems
odd; in fact, we can state the following consequence of Theorem 3.

Theorem 5. For d > 7 suppose that @ < R? is a bounded domain with
d—>5

Lipschitz boundary. Ify, and vy are in W' 2 P2(Q)ALP(Q) ford < p < oo,

if 0,1 = 0y at 0S), and if y1,72 = ¢ > 0, then

A, = A, wmplies v =y inf.
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By the Trace Theorem the normal derivative 0,7 is well-defined. The
proofs of Theorem 4 and Theorem 5 have been already summarized in this
Section, and we provide more details in Section 2. We refer the reader to
the literature to reconstruct the whole argument, in particular to Haberman
[14].

We have added an appendix with an example that shows that it is nec-
essary to average.

Note Added in Proof: By a recent result of the author, in
Theorem 5 the condition d,7; = 0,7 at 0f2 is implied by the
other hypotheses of the Theorem. Therefore, Theorem 4 can be
extended to dimensions d > 5.

1.1 Restriction Theory

Ham, Kwon and Lee [16] applied deep estimates from restriction theory to
improve on Harberman’s results, and we will follow most of their arguments.
We give here a brief introduction to restriction theory and the way it comes
into Calder6n’s problem; a detailed exposition of restriction theory can be
found in [23, part IV].

We control the norm ||Mp,¢||

bound of

XC%_’XC_% by duality, so we need an upper

(oifyu,vy = | (@fyu dz for u,ve X2, 9)
R4

In general, it is very hard to control the contribution of frequencies around

the null set of pe(€) = —|€|* + 2i¢ - €, which we call the characteristic set

Y¢. The characteristic set 3. is a (d — 2)-sphere, so we have to understand

functions u and v whose Fourier transform are supported around .. This

is just the setting for which restriction theory has been developed; a few

classical examples of applications are [13, 17, 4, 5].

In restriction theory the goal is to prove the best possible bounds || f]s|| Lr(s) <
ClIfll a(rny, where S'is a set, usually a manifold. One of the earliest and most

important results is due to Tomas [30] and Stein (unpublished); for a proof
see e.g. [26, Ch. 9.

Theorem 6. (Tomas-Stein Inequality) Suppose that S < R"™ is a compact
manifold of dimension n— 1 with non-vanishing curvature. If f € LP(R™) for



+1
l<p<275, then

1f1sll 25y < CNF Lo ny: (10)

The operator dual to restriction is called the extension operator, and it is
the Fourier transform of a measure fdS supported on the set S. The function
(fdS)Y is the prototype of a function with frequencies highly concentrated
around S. In the dual side, the Tomas-Stein inequality is

1
n+1<p’<oo. (11)

[(fdS) || o @y < Cllf 125y, for 2 n—

Since the earliest days of restriction theory, a kind of stability of bilinear
estimates was observed. For example, the bound ||(fdS)" || 4gse) < C|f|, is
false, but the bound [|(f1dS1)" (f2dS52)" || p2rey < Cllfilloll f2ll5 is true when-
ever the lines S; and S5 are transversal; curvature is not required here. This
stability of bilinear estimates was clarified and refined by Tao, Vargas and
Vega [29], and they showed how to get linear bounds from bilinear bounds,
an strategy that we will follow in Section 3.2

We need strong bilinear estimates to exploit the bilinear strategy. For
example, we need inequalities like

1C1d51) " (f2dS2)" || o gy < Cllfll 2y [ Foll 1205, (12)

n+1
n—1

with positive curvature; the case p’ = Z—J_r} =1+ % follows by Holder
and Tomas-Stein inequalities. However, we have to impose a condition of
separation on the surfaces S; and S, to get strong bilinear estimates. For
example, if [[(f1dS1)Y (f2dS2)" || 122y < Cllfillollf2]l, were true in any case,
then just setting S7 = S5 would provide a linear estimate, a false one in this
case.

Klainerman and Machedon conjectured that the inequality (12) holds
true for every p’ > ”T” =1+ % when the surfaces S; and S5 are separated
subsets of a cone. Despite the intractability of the problem, Wolff proved the
conjecture in [33]. Subsequently, Tao refined the method and proved (12) for
p > ”T” when the surfaces are subsets of a surface with positive curvature
[28]. Vargas [32] and Lee [21] proved (12) for p’ > 2 when the surfaces are
subsets of the hyperboloid in R3, dealing with unusual obstructions.

Since we are interested in the sphere Y., we need to use the Bilinear

Theorem for this case. To avoid antipodal points in the bilinear inequality,

for some p’ < when 57 and S5 are, for example, subsets of a surface
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we restrict ourselves to the surface

S (€6 6= 1= y1- P and €] < 456} (19)

Following [29], we define also surfaces of elliptic type.

Definition 7. (Surfaces of Elliptic Type) A surface S is of e-elliptic type if:
e The surface is the graph of a C* function ® : B; <« R"! — R,
o ®(0) = 0 and V&(0) = 0.
e The eigenvalues of D*®(z) lie in [1 —&,1 + ] for every x € B;.

For every ¢ > 0 and for every point in a surface with positive curvature,
we can find a sufficiently small neighborhood U so that U is of e-elliptic type,
up to a linear transformation.

In (9) we do not deal with measures supported in a sphere, but with
two different functions with frequencies possibly highly concentrated around
a sphere. In Section 4 we prove the following extension of Tao’s Bilinear
Theorem, which will allow us to handle more precisely this situation.

Theorem 8 (Bilinear Theorem). Suppose that Si,Sy < R™ are two open
subsets of a surface of elliptic type or the hemisphere in (13), and suppose
that their diameter is < 1 and they lie at distance ~ 1 of each other. If f,
and g, are functions with Fourier transforms supported in a p-neighborhood
of S1 and a v-neighborhood of Sy respectively, for p < v < u% < 1, then for
every 0 > 0 it holds that

n
n—1

n_g§5 1_5§
1Fugolly < Cou2 vl fullyllgully, - for 1 <p' < (14)

For surfaces of e-elliptic type, the constant C's may depend on € and on the
semi-norms [0V ®|| . The inequalities are best possible in p and v, up to
0-losses.

Tao’s Bilinear Theorem holds under the same hypotheses of curvature and
separation of S and Ss, and it states that for any two functions f € L?(S;)
and g € L*(S,) the following inequality holds for every ¢ > 0:

1(£dS1)¥ (9dS2) || msz o < CoRN Il 2o 191 2 ss (15)
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In Theorem 8 the localization at a ball By is traded by delocalization in the
surfaces. Inequality (15) leads to further inequalities by interpolation with
the easier inequalities

[ fdS1)" (9dS2)" || 11 ()
[(fdS1)Y (gdS2)” || e

CRI|fl2llglly
CllANNally-

An averaging of the surfaces followed by an application of (15) leads to the

<
<

constant C’(g(uy)%_é in (14) for 1 < p/ < ™2 which is actually the constant
used in [16];? for details on the averaging see Lemma 2.4 in [20] or Theorem 12
below. It was surprising, at least to me, that this constant can be lowered to
C'(;piﬂsyifé when p < v, gaining so the regularity needed to get Theorem 4.

Another unexpected phenomenon appears: when p is much smaller than
v, i.e. when ;ﬁ < v, bilinearity does not play any role; moreover, the
curvature of the support of g, is of no importance, and the bounds that
Tomas-Stein yield cannot be improved.

The reader can consult the symbols and notations we use at the end of

the article.
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2 Outline of the Proof of Theorem 4

The proof that Theorem 3 implies Theorem 4 is long, and many steps are
already well described in the literature. The main source here is [14].

First, we extend carefully v, and 5 to the whole space, and for this we
need some results of uniqueness of the conductivity at the boundary. After

2Notice that the range of p’ is larger than that in (14) when n > 2.



the early result of Kohn and Vogelius, it is worth mentioning the works of
Alessandrini [1, 2| and Brown [7].
By the definition of W*?(£2), we can extend v, to a function in W*?(R?).

Since v; € WHd?;;J“p(Q), then by Brown’s Theorem in [7] we have that
7 = v at 0Q if A,, = A,,. The mechanism that allows us to extend the
conductivities is the following Theorem.

Theorem 9 (Marschall, Theorem 1 in [22]). Let Q2 be a domain with Lipschitz
boundary. Suppose that1 < p < o and thatlﬁ—% < s < k+1+%, fork =0 an

integer. If f € WP(Q) satisfies flog = -+ = 0¥ floa = 0 then f e WP(Q).

We define the function

_)r—m itQ
=0 if Q.

Since n is zero at &Qand% < 1+d2;p5+ < 1+%ford < 6, then n €
Wit (R%); this explains the condition d < 6 in Theorem 4. We can thus

define the extension vy := vy + 7 € Wit e (R%). Finally, we arrange the
extensions so that v; = 75 = 1 outside a ball containing €2. For d > 7 we
are in the case 1 +1 < 1 + dz;;’+ <2+ %, and we need additionally the
condition 0,7y = 0,72 at df2 to apply Theorem 9, which is the condition that
we included in Theorem 5. For further details see [8, Cor. 3.

For all wy,ws € HY (R?) that solve (—A + ¢;)w; = 0 with ¢; = 'yj_%Afyj%,
we want to show that the linear span of the functions {w W} is dense, which
implies that 7, = ~2; see |6, Prop. 8]. Notice that ¢; is compactly supported.

For (; - ¢; = 0, the functions w; = €%*(1 + 1);) are CGO solutions, and
the functions v; € H}. (RY) have to satisfy the equation

loc
(=A¢; + g); = —q;. (16)

If we choose (; and (, such that ¢; + (o = i€ and replace the CGO solutions
in (4), then we get

f (@ — g)e’™™ = Jeig'%lql - fe_iéx%cn +
R4

+ Jeif.xE2AC1wl _ feii-zE1A§2¢2, (17)
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We expect the functions 1; to be negligible, so if we ignore them, we could
conclude that g1(€) = G@(€) for every € € R, which implies v, = 7».
The space HL_(R?) does not seem to be the best suited space to solve

(16), so we use the spaces Xé’ and X! defined in (6). We need the following
Lemma.

Lemma 10 (Haberman and Tataru, Lemma 2.2 in [15]). Let ¢ be a Schwartz
function. Then the following inequalities hold

loul - <l - (18)
loul_y < llull 3. (19)
¢ é
where the implicit constants depend on .
1
By [[ull g1 < lJull 3 and (19) we get the inclusion X2 < Hy.(R?), so we

have that

D=

(—AC+Q)1X<§—>X§_ .

The goal is to find a pair of sequences {¢ix} and {Cox} that satisfy the
following conditions:

o {1k + Cop = i€ and [(jx| — 0 as k — oo,
1
e There exist solutions 1, € X2~ of the equation (16).

o Hz/Jj,kHX% — 0 as k — o0.
C.

3,k

To solve (16) we write it as (I — A;'q) = A7 'q and then we invert the
operator (I — Aleq), where M, : u — qu; for the latter it suffices to show

that HMqHX% 1 Sce< 1. We also have the upper bound
C b d

<

1
3 < 1_CHQHX;%-

—1 —1
913 < 10 =AMyl

Then, we can rewrite our goal as: to find a pair of sequences {(; x} and {(ox}

that satisfy the following conditions:

o (1 + Cop = i€ and [(jx| — 0 as k — 0.

11



o ||M || = < ¢ < 1 for sufficiently large k.

cj kT k
qu]H 1 —0ask — oo,
CJ k
For various technical reasons we have used X é’ instead of X é’ . To find the se-
quences {(1 1} and {Cz+}, Haberman proved that the averages of || M, HX%HX,%

¢
and of Hq]'HX, over |(| ~ M > 1 tend to zero as M — o0; see in [14, Thm.

1

2
¢

7.3] how to use Theorem 1 to select the sequences.

The selected sequences {(; .} and {2} allow us to show that each term
at the right of (17) goes to zero. For example, for fixed £ € R? we get

| et < Il 16550y < Calglfy 0
J.k CJ:

ik Cgk

here we applied Lemma 10 with eﬂf T, where ¢ = 1 in the support of g;.

The last two terms at the right of (17) are more difficult to control because
they mix (i, and Co; see the proof of Theorem 7.3 in [14].
The condition v; € W14(R?) suffices to prove that the average of ||g; ||X_ 1

vanishes, so we will not turn our attention to it; see [14, Sec. 5|. To control

_y we write
X

My

_1 1 2_1 . 1, .92
q= 2A10gfy+4\Vlog’y| = 2le(f)Jr 4’f| )

where the components of f = (f!,..., f") := Vlog~y belong to W*~1P(R%).

We split M, into two terms M, ; and M‘ 2 Haberman proved that the

average of HM|f|2||X% 4 goes to zero if f € L4(R?) —this is the term h in
¢ T

the proof of Theorem 5.3 in [14], so we are left with ||M0¢f”X§ =
¢ T

Whether or not the condition f € L4(R?) suffices to prove that || M, f“X? o
C g

is small on average is unknown, and in this paper we make progress on this

problem. To prove Theorem 3 we need the following Theorem, which we

prove in the next Section.

Theorem 11. Suppose that f is supported in the unit ball. If f € W 2r ) TP (RY)
ford < p < oo, then

JlL)

<

Ly dUdr < Cfllesy, (20)

U,7) (U, T)
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Proof of Theorem 3. Since f is compactly supported, then by Lemma 10 we

get | byt S < | _1. We estimate M, by duality as
¢X¢ ¢

1
X<2~>X
1
[Kgu, v)| < llgllollullofv]ly < EHQHOOHUHXC% HUHXC%-

For some A < 1 to be fixed later we define g = P40, f, where Pcy is the
projection to frequencies < A. By Young inequality for convolutions we get

HMgIIX2 <7 gl < ] ||f||d

Using this and Theorem 11 we can control the average as

J[f y dUdr < HfHd J[J , dudr
O (UTPXc(U,r) (UTPX«UJ)

A?
S M la +I1P-afllesy

If we choose A = M1 and let M — oo, then we get (8). O

3 Proof of Theorem 11

In this Section we prove the upper bound (20). We estimate the norm of
| Mo, ¢l 1 _1 by duality as
chﬂ Xedm)

(0. )us v)| = !J (@i uvde] < CW, T, f)llull 3 ol 3 (21)
Rd Xiwn  Xiwm

where C(U, 7, f) is a constant that can be related to || ||}y ..,. In Section 3.1
we control the contribution of the frequencies of u and v away from the
characteristic set X¢, which is a (d — 2)-sphere, and then we use Tomas-Stein
Theorem to control frequencies around Y¢. In the next Section 3.2 we use the
Bilinear Theorem 8 to get additional refinements on contributions around X,
and we conclude that Section with Theorem 16, which contains the precise
form of C(U, 7, f). We end the proof of Theorem 11 in Section 3.3, where
1 . The linear estimates are

CUn) eWU)
based on the work of Haberman [14], and the bilinear estimates on the work

of Ham, Kwon and Lee [16].
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3.1 Linear Estimates

The characteristic set X of A¢, i.e. the null set of the symbol p.(§) =
—|€]> + 2iC - £, is a (d — 2)-sphere in the hyperplane {¢ | (Uey, &) = 0} with
center TUey and radius 7 = 1. If d(¢, ¥;) denotes the distance from & to X,
then

’ (5)’ N Td(f, ZC)’ for d(&? EC) < %07_7

b 24 |¢)?, for d(€,%¢) > &7

We break up the frequencies accordingly into characteristics and non-characteristics,
and define the corresponding projections as

(QuH)™ () == C(r1d(E,Z0) F(€)
(Quf)"(€) := (1 — C(T7Yd(E, 2))) F (),

where ¢ € C°(R) is supported in (—35, 75). It follows that

1Qnully < 77 Hull_y (22)
¢U,T)

10;@nully < [lull (23)

1
2
Xéwm

In Lemma 3.3 of [14] Haberman proved, using Tomas-Stein inequality,
that

< . 24
Jull 22 < HUHXZ%M (24)

With the help of inequalities (22), (23) and (24), we can control in (21) all
the terms involving non-characteristic frequencies. In fact,

<((9]f)u, U> = <(ajf)QhU7 th> + <(5Jf)Qhu, QZU>—|—
+ {(0; f)Quu, Qnv) + (0, f)Quu, Quv).

For the first term at the right, after integration by parts, we have

(05 F)@nw, Qropl < ([ F1l (110 @uull | Qnoll 2 +
+ [|Qnull 24 [10;Qnv]ly)

S A llallull 3 Aol 4 (25)

¢(U,T) ¢(U,T)

14



For the mixed terms we have

(05 1)@nu, Quo)| < (1 fla(10;Qnull | Quull 2 +
+ [[@null ]| Quo]] 24 )

S Illallull g Mol g (26)

C(UT) ¢(U,T)

2/\

where we used the localization of Q;v to frequencies < 57, so that ||0;Q;v|| 24 20
T|| Q|| 24 this follows from Young inequality. We are left then with the

characteristic frequencies.
We assume that the support of the Fourier transform of u and v lie in a
l—lo-neighborhood of ¥¢. We define the transformation

urp(z) = 7% (T U ), (27)

so that the frequencies of u,y; are supported in a 5 nelghborhood of the S4=2
sphere with center e,, radius 1 and that lies in the hyperplane normal to e;.

The Fourier transform of u.¢ is U,y (€) = u(7UE), and the X, é’(UT)—norm scales
as

= 75|y || o (28)

[l xo 2

(U,

We change variables in the pairing (21) to get

(@) = J(@f)( Wa)u(r Ua)olr V) da

2d+1 & f’T‘U UryUry dx
B,

(aUejfTU)uTU7 UTU>7 (29>

L2d+1
where we used the identity
(0N Ux) = fﬁjf(f)ei“_%)f d§ = 77 (e, fru) (@).

Therefore, we will assume that the characteristic sphere S¢=2 is centered at
€9, has radius 1 and lies in the normal plane to e;. We assume also that the
function f is supported in B, (0).

15



We apply the Hardy-Littlewood decomposition to f = >, _, P\f, and

decompose u and v into dyadic projections u, and v,, where 4, := ((u~'d(¢,3¢))a

and ¢ € CX(R) is supported in (3,2). Then, the pairing (21) gets into

(Cufluvy = > {(BuwPrsup(uw) [ty V)

L E O WIRZS |

Z <(awpz\,z/f)u,u7 Uu> + Z B (30>

Ry S| TI<As1
T’lsugysl T71SM>VS1

where 0,, is the derivative in some direction w, and P gp(y,.) is the projection
to frequencies €] ~ A and [&] < sup(p,v). By symmetry, we can assume
that pu <

We use Toma—Stem to control the low- frequency terms, A < I/% and the
terms with very different characteristic regions, /L2 <

Theorem 12 (Tomas-Stein Theorem). If f, and g, are functions in R",
and their Fourier transform are supported in a p- and v-neighborhood of
S respectively, where u < v, then

n+l n+1
||fu9u||p/ < w2 [ fullallgellys for1<p' < . (31)
Proof. We use Holder to get
190l < 1 ull oy j2—pry 190 - (32)

Since 1 < p/ < "TH , then 2 < 2p//(2 — p') < 2”*1, and the latter is the

Tomas-Stein exponent. To bound the term || f,|,., for 7 = %, we interpolate

between p’ = 2 and p’ = 2"—Jrl

The point p’ = 2 is immediate. For p’ = 2’1+ , we write fu as an average
over spheres

D= [ [ Rt ) doir = [ (778 () ar
Sn—1
We apply Minkowski, Tomas-Stein and Cauchy-Schwarz to find || f,||, il S
OM%H]EMH2; this leads to

n+1
n—1

nil(l 1
||qur ~M (27 ||fu||2a for2<r<2

16



We replace it in (32) to get

n+l
1 fuglly < w2 (| fullollgollys
which is what we wanted. O

By Hoélder, we can bound each term in (30) as

(0w Prw ), vl < M Pru vl (33)

To bound the bilinear term, we begin by writing it as

J|uuv,,| d:c—f \w, (21, Z)v, (21, T)|P " didx,. (34)

We fix z; as a parameter and define the function uj' (%) = w,(71,7); its
Fourier transform is the term in parentheses in

wlen ) = [ (2@ de)eraé = [ @i

The support of 47! lies in a p-neighborhood of the sphere S%2 < R*.
Hence, we can apply Theorem 12 with n = d — 1 to the inner integral at the
right of (34) to get

/ ’ d / /
[ el e < % [unGor, I oo, ) (35)

Since u,, is supported in the p-neighborhood of the hyperplane normal to
ey, then u, = u, # ¢,, where ¢,(t) := pp(ut) and ¢ : R — R is a smooth
function such that $(?7) = 1 in a neighborhood of the origin. Hence, by
Minkowski we have

1/2
Huu X, - ”2 f Juu — Y, T ¢/L Y1 dyl‘ d.l?)

< j (s — w1, )l (1) g
=l 1 9] (0)

This fact and the following Lemma allow us to bound the integral at the
right of (35).

17



Lemma 13. Let a and b be two functions in the real line, then
1
(@ * @bl < Curllallllblly, — forl<p' <2 (36)
The inequality is best possible in .
Proof. We use Holder and Young inequalities to get

(@ * @bl < lla* dullap o [1Bll2 < 1l llall2 10l

where [|¢,||, = ,u%ngSal,. The example a = b = 1(_,-1 ,-1) shows that the

constant /ﬁ is best possible. O]

With the aid of Lemma 13 and |u,|, < ,u_%HuHX% , we continue (35)

¢(1),1/7
as

a+2

dt2 _1
vl < w2 flupllplloslly < pze 2w

Hull g vl g (37)

SOV SOV
Furthermore, when we are restricted to low frequencies \ < V%, we can use
this bound and (33) in the pairing (30) to get, for p = d,

1 1
Cubruls (X M Bl g ol g+
<yt ¢V, 17 ¢, 17

rl<pu<rsl

1_1
(X RS ol

1

! doar X
(X ARSIy ol

—lea<l X X

1

(X 1)l lell

r1<A51 X Xys
SUflel g llell g e (38)

¢(1),1/7 ¢(1),1/7

On the other hand, when the characteristic frequencies are very different, i.e.
1
w2 < v, again by (37) and (33) in the pairing (30), we get

d+2_ 1 _ 1
@ufyuwl< (X AF PGl el g

1
2
e R L Y CORYA

-

r2 <ALl
T lgu<r?<sl

(39)

18



&3 &3

&2 &2

transversal— non-transversal

Figure 1: The decomposition of the p- and the v-neighborhoods of the sphere
S92 4 ey into caps o and f.

We are left thus with the case of high frequencies (A 2 1/%) and similar
characteristic frequencies (i < v < p2).

3.2 Bilinear Strategy

In this Section we assume that A = v2 and that w < v < u%, so that
the bilinear inequality in Theorem 8 gives us a small window of stability on
restriction estimates. To pass from bilinear to linear inequalities, we follow
the strategy in [29].

Using smooth partitions of unity {¢,}. and {¢s}s we decompose, respec-
tively, the - and the v-neighborhoods of the sphere S%=2 + ¢, into caps «
and [ of radius py « 1; see Figure 1. If the angle between the normal vectors
to two caps a and B is = pg, then we call them transversal and denote it
by a ~ (; otherwise the caps are not transversal, a % . For the transver-
sal caps we will use the Bilinear Theorem 8 for the sphere. We define the
projections Uy, 1= pall, and v, g := g0, and write so the bilinear term as

,U’NEV = ZU,LL,O/I_JU,B = Z u“’aﬂyzﬁ + Z uﬂaaq_}llfﬁ'
B a~f axf

Since we cannot apply the Bilinear Theorem to non-transversal caps a +# f3,
we decompose them again into caps of radius p; = %po, and we still denote
the smaller caps as a and (. If the angle between the normal vectors to
two caps a and [ is ~ pp, then we call them transversal and denote it again
by a ~ [3; otherwise the caps are not transversal, a % (. For transversal

19



Figure 2: Two neighboring, transversal caps.

caps we will use a rescaled version of the Bilinear Theorem 8 for surfaces of
elliptic type, after choosing pg sufficiently small. We continue the process of
subdivision of non-transversal caps until the radius of the caps is p ~ Ve,
and write

ubywy = 35 | 3 CuPrf ot
vi<a<1 vY*<psi

a~p

1
pSY<p?2

+ D (CuPra f Yl v | -+, (40)

axf

where the sum over non-transversal terms is at scale p* ~ v3. The superscript
in uf, , is to keep track of the radius of the caps a.

The support of the inverse Fourier transform of uf, ,v 5 has some special
properties, and they determine when the pairing {(0,, P, f)u”, u w U 5> either

vanishes or not. Recall that the support of the convolution al, o, UM s lies
in the Minkowski sum of the sets —a > supp Uua and [ D supp @%; see
Figure 2. The reader will find easier to evaluate the Minkowski sum of
—a + eg and 5 — es.

When the caps o and § have radius py and are transversal, then we have
that

~ 2
—atpef@d | <ld<2- T jal <)

20



—a+B | h =2sinf ~ p

S RN w ~ cos p — cos(2p) ~ p?

,
N .
~ ’
N S .
~ . 3 -

Figure 3: The Minkowski sum of two neighboring, transversal caps at scale
.

Hence, all the terms {(y Py, f)ul’,, v)%) vanish for A < cpy; Figure 3 may
help.

When the caps have radius p < py we have to distinguish between neigh-
boring and antipodal caps. Two caps are neighboring if there exists a ball
of radius 2py that contains both of them, and two caps are antipodal if they
lie in different and opposite balls of radius 2py,. We refer to neighboring and
antipodal, transversal caps as a ~,, 5 and a ~, ( respectively.

If two caps of radius Vi < p < po are neighboring and transversal, then
for the Minkwoski sum we get

—a+ B {E.9) € ~p &l <2wh

see Figure 3. Hence, only the terms ((0yPx, f)uf, ., v, ) for which A ~
p survive. When the caps are non-transversal, the Minkowski sum lies in
{|€] < w2}, but we already considered the low frequency terms A < v2 in
the previous Section, so {(0y P, f )uﬁfa, 1)5:;> always vanishes.

If two caps of radius Ve < p < po are antipodal and transversal, then for
the Minkwoski sum we get

—a+ B8, ={(E8) | 2-[€] ~ 0% 16l <2vk; (41)
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—a trer p— e

.
pio

r N 2'"' 2—r=2—2cosf
," Np2

Figure 4: The Minkowski sum of two antipodal, transversal caps at scale p.

see Figure 4. Only the terms (0, Py, f)uf, o, v} 5) for which A ~ 1 survive,
but now we need more detailed information about —a 4+ 5. We can see that
—a + (3 forms a cap of radius ~ p lying in the p*-neighborhood of the sphere
with radius 2 — p? centered at zero, which we called S, ,. Fixing p, the
collection of all the the caps {—a + £}, where a ~, 3, is an almost disjoint
covering of S, ,. In fact, let  be a point in S, ,, ¢, be the center of o and cg
be the center of 3; if x and —c, + e; make an angle = p, since a ~, [ then
the sum —a+ (8 necessarily lies away from z. Hence, only the caps —a+ (3 for
which o and § make an angle < p with x can cover it. For future reference
let us write it down as a Lemma.

Lemma 14. For fixed p, v and Vi < p < po, let o and (B denote caps at
scale p, then

Z 17Q+IB < Cdﬂsu,pv <42>

a~qf3

where S, , is defined in (41), and Cy does not depend either on p, on v or
on p.
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A similar statement holds for non-transversal caps at scale 1/%, but the
caps —a + 3 lie now in a v-neighborhood of 25972,

We will follow the argument of the previous Section to bound the terms
{(OwPruf)uf, o, vy, 5). However, the Bilinear Theorem 8 is only stated for
transversal caps at scale ~ 1 ~ py. To remedy this situation, we use parabolic
rescaling.

Theorem 15. Let f,, and g,p be two functions with Fourier transform
supported in a p- and v-neighborhood of ST, where p < v < u%. If the caps
a and B are transversal at scale p < pg, then for 1 < p' < ”TH it holds that

n_o 1_g

_1 _
[fiagvslly < Cepmrpze“ve = fualallgnslly — forp>wvu™2,
n+1

ntl 1
[ fnaguslly < Cpu 2 [l fuallallgwsll forv: <p<uwvp

[N

(43)

N

Proof. The case pg ~ 1 = V,U,_% is Theorem 8 for the sphere, so we assume
that p < pp. By conjugation, rotation and modulation of f,, and of g, 3 we
assume further that both caps lie in the surface given by the graph of

1
o) =1 =~T=n[* = 5"+ Oln'"),

where n = (1/,n,) € R™; we also assume that the centers of the caps are
symmetrically placed along the axis 1;. Since the caps are at distance ~ p of
each other, after applying the scaling £ — (p~'7, p~?14) the support of the
new functions }?’(n) = fma(pn', p*n,) and G = Gvs(pn', p*n,) lie at distance
~ 1 of each other, and the surface transforms accordingly to the graph of

B B 1
o) = p2p(pn) = p> —/p~t = |p~ 17> = §|77’|2 + O(pg|n'[*).

If p < po is sufficiently small, then the semi-norms |0V ¢,|,, are uniformly
bounded, and the Bilinear Theorem holds uniformly. The rescaled functions
F and G are

F(z) = p " fualp™'a' p72a)
G(z) = p " gup(p™'a' pwy).

Since the Fourier transforms of ' and G are supported now in sets of width

p~2p and p~2v respectively, then we should apply the Bilinear Theorem 8
1

whenever p~2v < (p~2u)2, and Tomas-Stein otherwise.
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If p> I/p,_%, then we apply the Bilinear Theorem to F' and G to find

2(n+1)—ntl
| fuaguslly = " | FGY,

(n+1)_n+l_n+2 n

nt2 n 1_
<C.p° T e || FILIIG,

_1 n_ 1_
= Cep p,u;; L €Hfu,a||2HgVﬂH2;

if we use Tomas-Stein instead, then we get the result for p < Vu_% m
If we define the quantity
Kf, ()= sup | fuagusll,y (44)
||fu,a||2:1
llgv,slla=1

where the supremum runs over functions f, . and g, g with Fourier transform
supported in caps at scale p, then we can restate Theorem 15 as

kP () < C’Ep_%u%_aui_a for p> vu~z
¥ N ,u%l for v3 < p < V,u_%

By Lemma 13 and Theorem 15 for n = d — 1, we get

1
Dl ol slly < n KL, D luallslloslly

a~f3 o~
1
< WKLl o, (45)
11 1
< pr 2y 2K£,VHU|| 1 ||U||X%
¢(1),1/7 ¢(1),1/7

Now let us consider only transversal, neighboring caps at scale p. By the
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decomposition (40) we get

[K(Cwf)u, v)| < }: D0 K(OwPrwf )l o vh )| + -

1 a~np
p<r<p?
11 1 )
O APl D Kl g el
N 2= X X
M<V<N%

dt2_1 1
< (X I P

M<I/<lu,%
1 d#l_ 1 1_1_
DTS A e oW )HuHX% ol
v %<A<1 ¢(1),1/7 ¢(1),1/7
,U«<I/<M%
(46)

The operator P, , is the projection to frequencies |[£| ~ A and |& | < v.

When the caps a and  are antipodal, we have to refine the projection
P, ,, so we project also to the cap —a + [ and denote this projection as
Py 13- We argue as above to get

Kool 3 (3 K@uPrf )t th )| + (G P Pl i)

A~1 y1/2 <
% a"aﬁ
11
Z Nar 23 3 KE, sup [ Paaasf Il g ol
V12<) a~af ¢(1),1/7
uS u%
(47)

We have already bounded all the contributions, and we can say that for
some functional A(f) we got an upper bound

[K(@uwflu, vl < ([ flla + Al 5 ol

%
e X

¢(1),1/7

If we return to the original variables, and replace u and v by u,y and vy,

25
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and w by Ue;, then by (27), (28) and (29) we get
<(6jf)uvv> ::72d+1<(awj;U)uTU7UTU>
S T W rolla + Ao lurollye | lloro s

¢(V),1/7
d—1
= (Il + T Al e [l

If my s is the multiplier of Py, g, then

(P)\7I/,Oé,/3fTU)< ) = (m)\uaﬁ() (TU))( )
=T d(Pikfmaﬂjj(Tgl[]x%

where the multiplier of PV is m(U~1¢). Hence,

1Pvasfrill, = 7 7 P a1,

We collect all the estimates (25), (26), (38), (39), (46) and (47) to conclude
this Section with the following Theorem.

1
Theorem 16 Ford < p < 0, the norm of the operator Ma ¢ : u € XE(UT) —
(0jf)ue X ) has the upper bound

HMaijXI/ 0—X (1/2) <e ||fHd+Tp (7-7 U7 f)= (48>

¢

r2 <A<l
I<p<g
+ 2: AME ZV 2 }: SupH Aruaﬂjﬂ . (49>
A1 vi2<p
HSv<p?

The constant K, , is defined in (44), and

NA

11 d¥1 1 1 1 1 1

A Trpze 2y 2 for A\>vu=2 and v < p2
Q(A,M,V) = at+2 1 1 .

W2 2y otherwise.
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3.3 End of the Proof

In this Section we average the norm || M, f“X1/2 Lx-12
)R
follow the ideas in Haberman [14], and in Ham Kwon and Lee [16].

By Theorem 16 we have

1

over 7 and U. We

1/2 X 1/2 dUdr < Hf“d—l-

vE<asgt
M~l<pu<v
d_q 1_1 1
+ MY A sup|| Bomasl L, dUdr. (50)
A~1 1/2<p

The first average at the right has been already bounded by Haberman.

Lemma 17. (Haberman, Lemma 5.1 in [14]) Let PY, , be the projection to

frequencies €| ~ TX and to frequencies |[(Uey, &)| < 27v. If f € LP(R?), then

([, 1heitar)” <c(3)151,  for2<pse G

The second average at the right of (50) has been already bounded by
Ham, Kwon and Lee.

Lemma 18. (Ham, Kwon and Lee, Lemma 4.3 in [16]) For fited 772 < vz <

p<poand 771 < X\ <1, let a and B denote all the transversal, antipodal
1

caps at scale p, or all the non transversal, antipodal caps at scale ~ vz, as

described in Section 3.2. If PY, _, ., 5 is the projection to frequencies |£] ~ T,
|KUey, )| <21v and {£ | £ e TU(—a + B)}, then

1 1
D V\p 2
(f, | swlPhastipavar)” <o(5) o, forz<p<o
' 52)
52

Sketch of the proof. The proof is by interpolation. Since —« + (3 forms a cap
of dimensions p x -+ x p x p?, then for the point p = o0 we get

Sllp H )\ﬂ/a,BfHoo ~ Hf”

o,B,U,
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Let us denote by mY, _, , 5 the multiplier of PY _, 5. For p = 2 we get

Jf f S8 FI2 dUdr =

Od o8
J17©P], [, Simossnst*(ele) irac

By Lemma 14 we have that Zaﬁ Mrrrvapl? < 1:s,,, where S, , is defined
n (41). The set 75, is a (d — 2)-sphere of radius 7(2 — p?), width 27v in
the direction ey, and width 7p? in {£; = 0}. For fixed ¢ we get

4 _
f |3 o eke) dudr < 1ggean3otigar
B a~af3

which leads to

[ Sithsfibavar < 5o [ i

Od o3 {I€I~}
v 2
S
and then (52) follows. O
We use Lemma 17, Lemma 18 and Hélder in (50) to get

Mo, S dUdT <
J[fodn ajf||Xclf3,U>*’X<<IT{2U) 7 Se 1/ llat

S S R,

~e [Ifllq + A + A (53)
To bound A; we use the definition of Q(A, i, v) in Theorem 16:

1 d+1_ 1 1 1 1

AN g 2 27 for A>wvpT2and v < p
Q()Vﬂ? V) = { 1 .
W 2 otherwise.

N
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We sum first in v, then in g and finally in A to get

K2 =<y ususu% M@/SM%
11 d+2_1 11
:(Z)\ R vr 24
i 2
i< w2 <v<A
1_1 di2_1 1_1
+ Z A e 2 Z ve 24
1 1
12 <\ Ap2 <v<min(A2,42)

1—2 d+il_ 1 1 d_q
AT YL v M Pl
1

u2 <A HSv<ApZ
1_1 d+3_3 1 d+3_3
(N NS S N
M~1<A At MTz<n o kSA
1-4£5 4 1-2 d_q
+ MUY AT MY P /],

A

During the summation we used the condition p > d > 5. At the end we get

-5 1
A <CM =z~ Z )\2||PM)\f”p < Cgl‘fHWdT;fuﬁp.

M~2<A51
We bound now A,, recalling that:

Cp op's v f > yu~s
P P P P or Vi~ 2
K2, 0) < pr p > v

N

Cuzre for vz < p<vu~

We sum first in p, then in v, in p and finally in A to get

d_q 11 d+1_1 1_1/ 1 2 1_ 1
Ap < Mo™h 30 NTvpm TR (pe Y prws Y pr)[|Panfll,
A~1 1 - -
I<p<vp” 2 2<p<l
uévéu% VZLpSrp Vi p
11 d+i_1 2_1_
AP S TE T ve 2 [Panafll,
A~1 <w<ud

n<
d—5
e M= Y 1P Sl
A~1
<e Il

d—>5 .
WWJMP
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The statement of Theorem 11 follows.

We conclude this Section with some informal remarks. Haberman’s method
could settle the conjectured regularity v € L%(Q) for Calderén’s problem only
if we are able to prove the inequality

2
L L sup (D] fro)up v dUdT < C(uv)2||f [l (54)

a lupllg=llvell=1

where f,p(x) := 70 f(r"'Ux), and (|D|f)*() := |€|f(€). T do not know of
any example that shows that (54) is false; see the Appendix for a discussion
on the non-averaged estimate. It is intriguing that Haberman’s method only
works for d = 3, 4.

The strategy that we have followed, as in previous works, is to apply
Hélder inequality to the inner term and to bound the product ||u,v, || _a_, for

which the following bounds were morally obtained:

pzta by Tomas-Stein; see (37),
HW”’/H% YL prapstaaya by Theorem 8; see (45),
papitiayitia by Tao’s Theorem.

Recall that we set ||u,||, = [|v.]|, = 1 in (54), and that p is the parameter of
transversality.

Tomas-Stein Theorem gives us the term ,u% and an additional term ;ﬁ,
which does not suffice to offset the term v unless [t < v, but the averaging
in Lemma 17 gives us an additional term 1/5, with which the total gain is
(/w)% < va; hence, Tomas-Stein suffices to get (54) for d = 3,4. The Bilinear
Theorem gives us the term ,u% and an additional gain of ,ui V%, plus vi after
averaging to get Mftzy%, which improves on Tomas-Stein as long as v < u%,
but not as much as to get vz for d > 5. In high dimensions we only get (54)
when 1 « v, and the Bilinear Theorem falls short of getting (54) unless p is
very small.

The term p_é is almost irrelevant when we control non-antipodal caps,
in which case p ~ A\ can be absorbed into the term A; see (46) or the term
A; in (53). On the other hand, the term p~4 is especially troublesome when
we control antipodal caps, in which case A ~ 1; see the term A, in (53). We
would get again Haberman’s result, were not by the efficient averaging in

Lemma 18, due to the smallness of the supports of (uﬁjoﬁ 5’B)V.
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Even though it is sensible to try to place the exponent d in f when using
Holder to get || f];, this is not the only possibility. The projection PY _ is

TN, TV

o 18 a tube

roughly equal to the operator f — 71y f « Ly | where TY,
of length (7v)~! and radius (7A)~! pointing in the direction Uey. It is worth
noting that Lemma 17 for p = 2 is reminiscent of the smoothing estimate
|HD\%XfH2 < |Iflly, where X is the X-ray transform f — X f(y,w) :=

Sl(y ) f; the last integral is over the line I(y, w) = R? with direction w € S4*

passing through the point y € R¥1 =~ RY/wR. The strongest conjectured

smoothing effect for the X-ray transform is, up to e-losses, | X f{| pa(yp0) <
Yy

|| fI|;» which is the famous Kakeya conjecture; for more information see |23,
Ch. 22|. To exploit this conjecture we begin with

KDL frr)u, vo)l S [P frullollwnvnlly < 1B frull oo lupllallow -

Since the projection satisfies
|P, fru(2', xq)| < VJ|frU($'7$d)| drg = vX|f|(Uz’, Ueq),

we get by replacing it in (54) that

f sup |<<|D|fTU>uwvu>|dU<uf 1X1f2) (- Uea)ll o dU
O Oy

a o=l =1
svifllas

the last inequality follows from Holder and Kakeya conjecture. Hence, the
Kakeya conjecture would allow us to control the terms p ~ v, but it would
not imply yet the full inequality (54). Since Haberman got this inequality for
d = 3,4 without resorting to the full smoothing of Kakeya conjecture, then
either (54) is false in general or we are overlooking a better method to bound
the left side of (54), a method which would allow us to cover seamlessly every
dimension d > 3

4 The Bilinear Theorem

In this Section we prove the Bilinear Theorem 8 for two open subsets of
the paraboloid. The paraboloid is technically simpler, so the exposition runs
more smoothly. After concluding the proof, we explain how we should modify
the proof to get Theorem 8. The proof follows closely the ideas presented by
Tao in 28], and we include here the argument for the sake of completeness.
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Theorem 8’. Suppose that Sy and Sy are two open subsets of the paraboloid
in R™ with diameter < 1 and at distance ~ 1 of each other. If f,, and g, are
functions with Fourier transforms supported in a p-neighborhood of Sy and a
v-neighborhood of Sy respectively, for p < v < ,u% < 1, then for every e > 0
it holds that

n
n—1

n_ . 1_
1fugull,y < Cop> ™ ve || fullollgully,  for 1<p' < (55)

The inequalities are best possible, up to e-losses, in pu and v.

We can restate the Theorem in terms of the quantity

K,LL,I/(Z),) = Sup ||f#gll”p"
I Fullz=llgvll2=1

We will bound K, ,(p’) by an argument of induction in scales. In the exam-

ples below we will show that the upper bound K, (p") < Cgugl?fsuifs is the
best possible, up to e-losses.

When ,u% < v, the separation between supports does not yield any im-
provement on Theorem 12, at least in the range 1 < p’ < ”TH

Example 19 (Case 2 < v). Let N,(S1) and N, (S;) be neighborhoods of
two open subsets of the paraboloid with diameter ~ 1 and at distance ~ 1 of
each other; see Figure 5. In N,(51) let C; be a cap of radius u% and width p.
In N, (55) let Cy := C1 +a < N,(Ss) for some vector a; this is possible owing

to the hypothesis /ﬁ < v. After replacing for u, = 1¢, and for v, = 1, in
n+1

the bilinear inequality, we get K, ,(p") = cp 2 .

Theorem 8 holds in R? without e-losses. The proof is by averaging over
translations of the parabola; see for example Lemma 2.4 in [20].

Example 20 (Case R? and p < v < p2). Let N,(S1) and N,(S2) be sepa-
rated in the parabola as in Theorem 8. In N, (5;) let Cy be a cap of radius v
and width g. In N, (Sz) let Cy := Cy + a = N,(S,) for some vector a. After
replacing for @, = 1¢, and for v, = 1¢, in the bilinear inequality, we get
Kuo(pf) = cpivvs.

In higher dimensions we consider as example a modification of the squashed
caps in Section 2.7 of [29].
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Figure 5: The case ,u% < v in Example 19.

Example 21 (Case n > 3 and p < v < p2). Let N,(S1) and N,(S3) be
separated in the paraboloid as in Theorem 8. Let L, < R"™! be a /ﬁ—
neighborhood of the plane {z1 = --- = z,,_5 = 0}. In L, choose a box C~’1 of
dimensions v x u% X+ X u%, so that its lift to the paraboloid lies in S7, and
thicken it in NV,,(S;) creating so a cap C; of dimensions v x L2 X - X B X
see Figure 6. Now, let Cy := C] + a < N,(Ss) for some vector a. After
replacing for @, = 1¢, and for v, = 1¢, in the bilinear inequality, we get

Kuu(p) = cpbovr.

The rest of this Section is devoted to the proof of the inequality (55) in
Theorem 8. We do first some reductions.
By Galilean and rotational symmetry, we can assume that

S =€ 51EP 1€ - rerl < 2}
1
92 = {(¢, §|§/|2) | 1€+ crea] < eafs

the constant C. in (55) depends on ¢; and cs.
It suffices to prove the local inequality
L—g

1_
1 Fugoll o, oy < Cen® " ve [ fullollgvlls- (56)

In fact, cover R" with balls B,-1 and choose a bump function ¢ Bt ™ 1in
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I3
o)

L1

Figure 6: The construction of the cap C; in Example 21.
B,,-1 so that supp 23;1 c B,(0). Then,
||fugu||p/ < Z ”fugVHLP’(Bu_l)

B, 1
< SN 8o G o) v
B, 1

The width of the supports of J?u * 6 B! and g, * 5 prl are essentially p and v
respectively. Hence, we can apply the local bilinear inequality (56) to get

n o 1
1fugully < Cen® w2 ™" Y || fulo, 1l ll9Ca, 1 Il
Bu,l

1 1

n_ . 1_ 2 2

< Oy ( 3 ||fMCBH_1H§> ( > ||gVCBM_1||§)
B;Fl B;Fl

n . 1
< Cop ™ v fulloll 9wl

which is what we wanted to prove.
At scale g~ ! the function f, looks like (fdS)¥ for some function f in the
paraboloid, so it suffices to prove the following Theorem.
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Theorem 22. Suppose that Sy and Sy are two open subsets of the paraboloid
in R™ with diameter ~ 1 and at distance ~ 1 of each other. If fdS is a
measure supported in S and g, a function with Fourier transform supported
in a v-neighborhood of So, then for 1 < R <v' <R and for every e > 0
it holds

g _nyy 1 ¢
[(£dS)Y gull oy < CeRZ O 00 fll o)l o (57)

where 1 < p' < .

In fact, after a change of variables & — (¢, %|§'|2 + t) we can write f, as
I
2o L2 1ot Lo
fule) = [ ([ R 316" + D6t € + e ) dE) ety
—p
PN
_ J (F409)" e(wat) dt, (58)
—p

where ﬁ,t is a parabolic slice of ]/C;L To bound the local bilinear inequality
(56) we use Minkowski to get

H ~
Vutollives ) < f 1(FosdS) ol
w 7

—h
Then, writing u=! = R, we can use Theorem 22 and Cauchy-Schwarz in-
equality to get

N|=

n_1y_g L1_ a
(2-1)e, b f 1 fuelly dt gl

—p

n_ o 1_
< Cepi ™ v full N9l

[ fugully < Cepr

Therefore, we must prove now Theorem 22.
The point p’ = 1 of Theorem 22 can be proven readily. By Cauchy-
1
Schwarz and by the trace inequality [|(fdS)"[l, < CR2|[fl| 25 We get

1
I(fdS)” gull 11 (g < CR2[£loMlgo -

Hence, it suffices to prove the inequality (57) at the point p' = .

We begin the proof in the next Section with the wave packet decomposi-
tion. This decomposition is nowadays a classical change of basis, so we only
outline it.
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4.1 Wave Packet Decomposition

Let f be a function in R*!, and decompose the space into caps o of radius
R~z and center ¢, € R**. Choose a smooth partition of unity {¢,} adapted
to the caps « so that >, (2 = 1. Use Fourier series adapted to each a to
expand f(, into frequencies w, and develop f as

£€) =1al™7 Y. ala,w)Ca(€)e((w, € — ),

a,w

where w = R2Z"!. The coefficients a satisfy the next properties:

a0, w) = j f FCae(— (w0, € — ca)) dE. (59)
Slata,w)? = £ (60)

By the linearity of the extension operator, we can write (fdS)" as

(de)v(iL‘) = Z CL(Oé, w)¢T(a,w)7

a,w

where ¢ is a function essentially supported in a tube T of dimensions
1 1 . .

Rz x .-+ x R2 x R; the angle and position of T" are determined by a and w

respectively. Furthermore,

1
(R™2 (2 + w + xpca)Y™

lbr(z)] < CyR™ T for |z,| < R;

so ¢r is concentrated in a tube T of direction (—¢,,1) whose main axis
passes through (—w,0). We deduce also that for § > 0, for ¢ R°T, and for
|z,| < R it holds

|7 ()] < CsR™M, (61)

where possibly Cs — o as § — 0.

The function g, can be written similarly. We decompose N, (Ss) into
rectangles [ of dimensions v x R™% x --- x R™> and center cg € R", where
cp is now a point in Sy. Arguing as before we have

3,(6) = 18172 D b(er, w)Cs(E)e(w, € — c)),
Bw
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where w belongs to some rotation of the grid v=17Z x R37Zn 1, Again, we get

1
bﬁaw = 1 Allge_wag_c df 62
(b0 = 7 [ tae( 6 =) (62
21608, 0) = llgo 3. (63)

Bw

By the linearity of the Fourier transform, we can write g, as

gv = 2 b(ﬁv w)¢T(5,W)7
B,w

. : _ 1 1 .
where T are now tubes of dimensions v~! x Rz x --- x R2. Again, we get

n—1 1
T < CyvR 2 1 ;
[or(z)] " (R72 |2 + W' + zncy| + v]w, + wy Y
|pr(2)| < CsvR™'" for 2 ¢ R°T and for 6 > 0. (64)

We replace the wave packet decomposition into the bilinear inequality
(57), so we must prove that for ||al|, = 1 and [|b]|, = 1 we have

1_
1 Z aT1bT2¢T1¢T2||L%(BR) < C.Rvn®.

T, T

Since |¢r, | and |¢7,| decay strongly outside the tubes, then we can ignore all
the tubes that do not intersect the ball 10Bg, so the number of tubes in each
group is < R™; recall that v~ > R3.

Now, for all the terms that satisfy |ar,| or |bp,| < R~ the contribution
to the bilinear inequality is negligible, so we can ignore all these terms and do
pigeonholing in |ar, | and |bp,|; here, we introduce logarithmic losses. Hence,
for two collections of tubes T; and Ty that intersect the ball 10Bg we must
prove that

1. 1 1
I Y onoml gy, < C-RV 7 T2, (65)

TleTl,TQETQ

The proof of this inequality begins with an induction on scales in the next
Section.
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4.2 Induction on Scales

We want to control the quantity

Ky(R):= sup  [|(fdS)" gull 1o (-

||f||2=ng||2=1

Rough estimates show that K, (R) is finite, thus well defined, and we want
to prove that K,(R) < C.Rvw =,

The induction on scales consists in controlling K, (R) in terms of K, (R~?)
for some ¢ > 0, which we keep fixed in what follows, so we lower scales and
stop at scale ~ 71, when Tao’s Bilinear Theorem provides the best possible
upper bound, up to e-losses. From now on, we write R’ instead of R'~°.

We begin the induction by breaking up the ball Bg into balls Bg/. Now,
we define a relationship between balls and tubes, so that a tube is related to
a ball if the contribution of ¢r to the bilinear term is large in that ball. We
need first decompose By into balls ¢ of radius R%, and now we introduce the
following set of definitions for a dyadic number ps:

To(q) := {To e Ty | R°Ty nq # &} (66)
q(p2) :== {q = Bgr | p2 < |T2(q)| < 22} (67)
MT, pio, Bry) = |{qg € q(p2) | ¢ € Br and R°Ty n q # O} (68)

Definition 23 (Relation between tubes and balls). For every number p5 and
every tube T7 € Ty choose a ball Bj, (12, T1), if it exists, such that

)\(Tl,,ug,B]*%/) = r%ax )\(Tl,,ug, BR’) > 0.
R/

We say that a tube T € T; is related to a ball Br < Bg, or 1T} ~ Bp, if
Br < 10Bj,(pe,T1) for some po. The negation of Ty ~ Bg is Ty # Bp.
Symmetrically, we can define a relation between tubes 75 € Ty and balls Bp.

Every tube in T; intersects a number < RO of balls By © Bp, but each
tube is related only to < log R balls. The latter follows from the fact that
po is dyadic and that 1 < py < R*z +¢9.
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Now, we bound the bilinear term as

” Z ¢T1¢T2||LP,(BR) < Z H Z ¢T1¢T2||LP/(BR/)

T1€T1 BR/CBR T1,T2

TQETQ
< X (Y entnle,t

BR/CBR T1~BR/,T2~BR/

+ || Z ¢T1¢T2||LP,(BR,) + || 2 ¢T1¢T2||LP'(BR/)>'

T17CBR/,T2 T1~BR/,T27CBR/
=1+ 11+ 1II (69)

For the first term I at the right we use the inductive hypothesis, Cauchy-
Schwarz, and the bound [{Bg | T; ~ Br/}| < log R to get

2 Y endnllwe,, < KR) Y, WL~ Be}P{Tz ~ Br}l?

BR/CBR T1~BR/ BR,CBR
To~Bpgr
1 1
QK(R/)( Z ]I{T1~BR/}> < Z ]l{TQ’“BR’})
BRMTl BR/7T2
1 1
< C(log R)K (R')|Ty|?|Ts|2. (70)

We have bounded so the main contribution with an acceptable logarithmic
loss.

We turn now to II in (69); the term III can be similarly controlled, so we
will not describe it. We bound the L7 T-norm by interpolation between the
points p’ = 1 and p’ = 2. For p’ = 1 we use Cauchy-Schwarz and the trace
inequality to get

1 1 1
I Y, énénllie,, s R2ITi?|T,)?; (71)

Tl%BR/,TQ

recall that .. By ¢, = (fdS)" for some function f in S, and >, o1, = g,
for some function g,, so we only applied the Trace Theorem to (fdS)", and
used (60) and (63). We are left with the point p’ = 2.

If we are to prove (65) by interpolation, we must get the upper bound

1 n 1 1 1
I D0 ononliem,) Ss B2 DT O0R|T 2| Ty 2.

Ty %BR/ T
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This inequality is in general false, if we do not put some constrains over the
tubes. The simple example f =1 and g, = 1 in N, (S3) is enough, and worst
examples can be given. Hence, we have to exploit the special structure of
the tubes T1 * BR/.

We use the decomposition of By into cubes ¢ of radius R> and the defi-
nition (67) to write the L?-norm as

I ononlizm, =2, 2 I D, ¢nénlli,

T1%Bpi T H2 geq(pz) Ti#Bp T2

By pigeonholing, it suffices to control the norm for a fixed p,. We introduce
now the definitions

MTh, p2) = g € q(u2) | BTy 0 g # B} (72)
Ty [p2, M) o= {Th € Ty | Ay < A(Th, pi2) < 2\ ). (73)

Since 1 < A\ < R%+C‘5, by pigeonholing again it suffices to prove

Z I Z ¢T1¢T2Hiz’(q) <5 R 20T || Ty (74)
qEq(/Lz) T17CBR/,T,11_‘€T1[,LLQ,)\1]
2

The case A\(T1, u2) = 0 is handled with (61). In the next Section we use the
special nature of the L?-norm to decouple the frequencies.

4.3 Decoupling at Scale R2

We need first a L? upper bound of the bilinear operator. Recall that the
extension operator is defined as

(FaS) (@) = | FOU €D + anpl€) e
where p(¢') = ]£’| and £ = (¢/,¢,). For an open subset S; of the paraboloid,

we denote by W(Sl) its projection to R™~1.
We need also the Radon transform of a function, and we define it as

RO = | £+ m)d((0.0)) d

the Radon transform Rf(£’, 0) is the integral over the hyperplane with normal
0 that passes through &'.
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Lemma 24. Let S and Sy be two open subsets of the paraboloid with radius
~ 1 and at distance ~ 1 of each other. Suppose that fdS and gdS are
measures with support in S1 and Sy respectively. Then, it holds that

. . , é‘/ _ é'//
1(£dS)” (9dS)"[l; < ClIfll, sup RIFIE, =g lgllillgll. — (75)
§’€7r((51)) |£ g |
{”Eﬂ' So

Proof. We compute the square of the extension operator as

(s @l = | re+giE)
R2(n—1)
(el €0+ alp(€] + €3) — 9() del e
- [ ([ 716+ &7 @itetes + &) - o) - 1 des el ) e
= F(x),
where F'is the function in parentheses. Thus, we get

I(fdS)" (9dS)" |5 = J(F* G)Y (x) de = (F «G)*(0).

We develop the convolution and change variables, so that
I(£a5)"(9a5)" 3 = [ &) (€)

f?(fé%i)g( 5 +81)0(0(85) — (&1 + &) +E10)0(0(61 +85) —0(£5) — &1,n) d&
dyd&.

We can use Fubini to put inside the integral with respect to &; ,,, so that after
the change of variables &1, — &1, + (&) + &) — @(&5) we get

I:= f5(g0(§§) — (&1 + &) + &n)d(0(81 + &) — 0(&5) — &1n) déin
= 0((€1, & — &3))-

Then, the L? norm gets into

1(fdS)" (9dS)" |2 < f Il f I + E)1gl(€L + E)6((E,, & — €0) deldebdey
< Iflollolesup [17166 + €35 € - ) e

(76)
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Finally, by the identity d(at) = a~'(t), and the condition of separation
between S; and Ss, we get

J151tes+ €t & — ) aes < RIS =),

which concludes the proof. O

We use now Lemma 24 to bound each term at the left side of the inequality
(74). To simplify, let us define T} := {T} # Bgr'} n Ty[p2, \1]. By (59) and
(62) we can neglect the contribution from tubes such that R°T nq = &. We
define so the functions

fa(€) 7Y GalO)e(w, €~ ca)

Tle'JI‘ (q)

Ga© = 1877 D) GaO)e((w, € — cp)).

TQETQ (q)

We write g,, as an average over paraboloids as in (58), and by Minkowski
and Cauchy-Schwarz we get

| Z ¢T1¢T2||i2(q) < H(fqu)vguq”g

T1€T! (q),T2€T2(q)

< 7dS)" [ (@S)elant) ]
< {145 @, d9)" | d
We apply Lemma 24 to the integrand, using the inequalities

4l < < R™"T|T)(q)|

1380 < v R, (16, ], < v RIS,
to get
2 -1 é'/ g//
D ononliag < CvR™T YOIT()|[Tag)| sup RIf (€, 5—)-
TieT (q) gen(s)) g = ¢
TQETQ(q) 3 EW(SZ)

(77)
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Let T} (q) (&', & —£") denote the collection of tubes in T (¢) such that the
corresponding cap « intersects the hyperplane with normal (£ —&”)/[¢" — £”|
that passes through £'. Then,

5/ - 5// a1
s RIS ) S B07 swp [Tig)(€¢ -~ &)
£'er(S1) £'em(S1)

5//671'(52) f”Eﬂ'(Sz)

= R_%+%V(q7 H2y A1);

in the last definition we use the same notation as Tao in [28]. We replace in
(77) to find

I ). ondnlliag < CvR™3 Pu(g, 1, A1) T (q)| | T2(q)],

T1 E’H"l (q) ,TQ ETQ (q)

where T := {11 # Br} n T1[u2, A1]. Summing over all the cubes ¢ € q(u2)
we get

S Y tnonliag < OvRTECS wlgm, \)ITH (@) Ta(o).

aeq(p2) TieT(q),T2€T2(q) q€q(p2)

(78)
The term at the right does not involve oscillations, so we achieved a decou-
pling of the oscillating tubes at the left. To conclude the proof of (74), we
must get an upper bound of v(q, u12, A1), which we do in the next Section.

4.4 A Kakeya-type Estimate

In this Section we aim to prove the inequality

T
V(Q0>M2> )\1) g RC&%a (79)

for some fixed gy € q(p2), po and A\y. For any &' € m(5;) and & € 7(Ss) we
consider then the following bilinear expression

B = f Z Lypsm, Z 1ogsr,.
QEq(‘UJg) Tleql‘ll(qo)(glvé/_gl/) T2€T2
Bgr\10Bp/
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By the definition of g(us) we get

B Z H2 Z JQEQ(MQ) ]12R5T1'
T1€T’(q0)(€',€'—€") ~ BR\10Bp,

Since for T1 S {Tl % BR/} M Tl[ﬂg,)\l] it holds that |{q € q(ﬂg) ‘ R6T1 Nq #
T} ~ A1, we see that

I{q € q(u2) | ¢ =€ BR\10Br and R°Ty nq # &}| = R™°\,.
Then,
Bz R2™“\pus|Ti(qo) (€, € — &) (80)

To get an upper bound of B, we re-order the summations so that

B< Z f ]]-2R5T2 Z ]]-2R5T1'
ToeTy Bgr\10B g/ TleTll(l]O)(flfl—f,/)

Since all the tubes intersect ¢y € Bpr/, we see that

Z ]].QR(STI (.flf) § RC(S for x € BR\lOBR/.
T1€T) (q0)(&',€'—€")

The tubes in T (qo) (£, & — £") have directions (—c,, 1), where ¢, lies at dis-
tance < R~z from a hyperplane with normal direction £ — &” that passes
through ¢’. Then, the main axis of all the tubes in T} (go)(¢’, & — &”) make
an angle < R™% with a hyperplane with normal direction (¢ — &”, (¢, ¢ —
¢”)) that passes through ¢o. It amounts to saying that the support of
ZTleT’l(qo)(ﬁ’,é’—ﬁ”) Logs, lies inside the R%M—neighborhood of a hyperplane
that passes through ¢y. Furthermore, every tube from T, intersects the hy-
perplane transversally, making an angle > ¢ uniformly. Then,

B < R>T9°|T,|. (81)
We use (80) and (81) to conclude that

T
T} (q0) (€, € =€) < R“—l d ;
1H42

which is what we wanted to prove.
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4.5 End of the Proof

In this Section we reap the fruits of all the bounds we have obtained. We
plug (79) into (78) to get

201D ondnlliag < vRTETT Y A Tale, Ml(a)]

qeq(p2) Ti€T)(q) q€q(p2)
TQETQ (q)
S VRI_%+C6‘T2| Z )\1_1 Z ]l{TlﬂRéq#@}
T1€T1[A1,p2] qeq(p2)

< VR'TEYOIT|Tel,

This concludes the proof of (74).
We interpolate the bilinear norm between the points p’ = 1 in (71) and
P =2in (74) to get

” Z ¢T1¢T2”Lﬁ(BR/) < Cé(logR)CRC6V%|T1P’T2P'
T17CBR/,T2
This bound joins the inequalities (69) and (70) to yield
1 1 1
|25 on0ml,wm p,, < Collog R)E(KL(R) + R7wn)[T|? [Ty

Tl GTl
TQETQ

in other words,
K,(R) < Cs(log R)C (K, (R'™%) + R%yx).
When we iterate, we get at the N-th step
K,(R) < CY(log R)NC (K, (RVO") + NRyw).
We stop when R-9" < =1 < RA=9""" the number of steps is

1

——— + 1< 20N
log(1 —0) - g

N <

If » < v 1, then we can average over translations of the paraboloid and apply
1

Tao’s Bilinear Theorem to get K, (r) < Carlf%zﬁw. We have thus that
1 1

K,(R) < CsRO (v "*"2° %2 4 yu) < CsR v,

This concludes the proof of Theorem 22, which implies Theorem 8.
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4.5.1 Additional Remarks

We indicate here the changes we need to do for surfaces of elliptic type or
the hemisphere. The argument is sufficiently robust to admit perturbations.
For surfaces of e-elliptic type, the semi-norms ||[0"®||_, enter in the con-
stants Cs of (61) and (64). Since the eigenvalues of D*® are close to one,
then the tubes have approximately the same length.
The delta function in (76) gets into

0(P(&5) — (& + &) + P& + &) — D(&)) = (A& — &), €1)

for some matrix A with eigenvalues in [1 —¢,1+¢]. Then [(A(&) —&5), &) —
& — &5 &) < Cé, and instead of an integral over the hyperplane H with
normal direction & — &) that passes through &}, we integrate over a (n — 2)-
surface H that lies in a e-neighborhood of H and passes through &,

A tube associated with a cap with center ¢, has velocity (—V®(c,), 1).
fPcR'isa (n — 1)-cone with center in a cube ¢ generated by all the lines
with directions (—V®(7),1) for n € H, then we must verify that all the tubes
coming from the separated set S, are transversal to P. In fact, notice that
for any point &, + &) € H, a vector v tangent to H satisfies the equation

(VO + &) = VO(§ + &),v) =0

hence, (A(&y — &;),v) = 0 for some matrix A close to I. Then, the vectors
normal to P have the form (A(&) — &), (VP& + &), A(&Eh —&))). If we take
the inner product of these vectors with (—=V®(1,), 1) for 1y € 7(Ss), then we
get

(A& = &), V(& + &) = VO(n2)) = (A& — &), A(& + & — m2));

hence, the inner product is basically equal to {(n; — n2, 1] — n,) for all the
pairs 71,7y € 7(S1) and 7z, 75 € w(Ss), and {1 — 92,7y — n5)| = ¢ > 0, then
P is uniformly transversal to all the tubes coming from S,. The estimates
hold uniformly in € « 1.

The case of the hemi-sphere is similar. The term (76) is almost as simple
as for the paraboloid. By symmetry, we can assume that &, = —ae; and
5 = ae;y for some 0 < a < \% + 5. Then, the (n — 2)-surface H is again
a hyperplane H with normal direction e; that passes through &). The cone
P is a translation of a portion of the quadratic cone {€ | €2 = a2|¢]*}. Tt is
intuitively clear that the portion of the cone generated by direction from 5y

is uniformly transversal to tubes from S5.
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Appendix: Non-averaged Upper Bounds

We may wonder whether it is really necessary to average, or we just have not
pushed as much as possible the estimates for ||M,, f||X b We show that
C e

averaging is indeed necessary.

Theorem 25. If f € W%’p(R"), ford < p < o0, is a function with support
mn By, then

||Maif\|X§ﬁX;% < Cllfll a2, (82)
where C' does not depend on (. The inequality is best possible, in the sense

that it is not possible to lower the reqularity of f.

Proof. Tt is not necessary to use bilinear theory to get (82), the computations
of Haberman in Section 4 of [14] are enough. To see that the result is best
possible, we fix ¢ = 7(e; — ies) and consider the 7 2-neighborhood of a
2-plane of side-length 1 lying in the plane (z1,x2), and denote this set by
F. We define f(x) := e2™(@N%2p5(2), where ¢p is a smooth cut-off function

of ' —see Figure 7(a), and we have that | f[[, , ~ "% . To estimate the

operator norm of ds f we consider the box B of dimensions 1 x 1 x TEIX XT3
centered at zero, and take & = pp and 0 = pp(- — 27ey), for which [|ul]

1
X2
¢
HUHX% — 71; see Figure 7(b). The duality pairing gives |(dsfu,v)| = 72. If
¢
K is the best constant in (82), then we get

d _d=2 4
T2 S K7°%7 % 72

if K is to be uniformly bounded in (, then necessarily s > %. O
P

If we did not need bilinearity to get the sharp upper bound (82), then what
would it happen if we tried to use bilinearity? We can answer this question
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L1 wave-length = (27)7!

&s

Figure 7: (a) Representation of the function f, and (b) of the Fourier trans-
forms of u and v.

with the aid of Theorem 16. The contribution A’ from non-antipodal caps is

Al = 2 QA 1, 1/)75_1||PT/\f||p

(X Y Y )eOmnr P,

1
vp~ 2<A<]
1
2

nZsv u@su% p<v<p
(XX AT Y n[Y e
micn  HSM N
_1 d+3 _ d_q_
D NP D7 el T EVIR
‘r*%g)\ psA?
S A as -

This bound is actually better than (82). Now let us see what happens with
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the antipodal caps

W 7 B (e )2
Z Mp v Z urT? || 7’>\f||p

1/2<p
M<1/<M§

< ¥ wE A Y e o) TIPS,

S 11 ooz
This bound is, up to e-losses, equal to (82); in fact, the example in The-
orem 25 corresponds to antipodal caps. The reader may want to compare
these computations with those for A; and A, in (53) and thereafter. As we
cannot get a linear estimate stronger than Tomas-Stein by using Tao’s Bilin-
ear Theorem, so we cannot expect that bilinearity necessarily will improve

n (82).

Notations

e Relations: AL, BifA<CB,A~BifA<B<A A«1if A<
where ¢ is chosen sufficiently small.

e Miscellaneous: e(z) := €2, (x) = (1 + |z|*)2. B,(z) a ball of radius
r with center at z. §, dr = & S]QWM dr. a+ :=a+ecfore « 1. If E
is a set, then 1 is the characteristic function of the set, and |F] is its
measure, where the measure can be deduced from the context. If T is
a tube with main axis [, then AT is a dilation of T" by a factor A > 0
and same main axis [.

e Multipliers: m(D)f = (mf)v, where m stands for multiplier; Pf =
m(D)f, where m is a smooth cut-off for a set of frequencies where we
want to project to.

e The operator Ay := A + ¢ -V has symbol p¢(&) := ]§| + 2i¢ - £ and
characteristic X := {£ | pc(§) = 0}.
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C(U, 1) :=71(Uey —iUey), where {e;} is the canonical basis, 7 > 1 and
U € O, is a rotation.

lull%s = Slpe (€)1 la(e)” de.

2 2
lullxe = §(Ipc(&) + o) [a(©)] dE for o > 0; [lullxp = [lullxs -

Sobolev-Slobodeckij spaces: For 1 < p < oo, W*P(R?) is the space of
distributions f such that

||f||s,p = Z ||Daf||p < o for s integer.

la|<s

1
If1,, = [P<fll, + (2 28kp||Pkf||;;) P <0 for 0 < s # integer.

k>0

For a domain Q) = RY, we define W*P(Q) := {f|q | f € W*P(RY)}. The
space WP(€2) is the completion in W*P(R?) of test functions D(Q) :=
{o e C*(Q) | supp ¢ € Q}. For further details, see e.g. [31, 22].

o (fds)v = (g J(©e(a, &) + xnp(€)) dE, where S is the graph of
¢ and (x $n) e R™.

References

[1] G. Alessandrini. Stable determination of conductivity by boundary mea-

2]

3]

4]

surements. Appl. Anal., 27(1-3):153-172, 1988.

G. Alessandrini. Singular solutions of elliptic equations and the deter-
mination of conductivity by boundary measurements. J. Differential
Equations, 84(2):252-272, 1990.

K. Astala and L. Piivérinta. Calderon’s inverse conductivity problem
in the plane. Ann. of Math. (2), 163(1):265-299, 2006.

J. Bourgain. Refinements of Strichartz’ inequality and applications to
2D-NLS with critical nonlinearity. Internat. Math. Res. Notices, (5):253—
283, 1998.

50



[5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Bourgain, C. Demeter, and L. Guth. Proof of the main conjecture in
Vinogradov’s mean value theorem for degrees higher than three. Ann.
of Math. (2), 184(2):633-682, 2016.

R. Brown. Global uniqueness in the impedance-imaging problem for less
regular conductivities. SIAM J. Math. Anal., 27(4):1049-1056, 1996.

R. Brown. Recovering the conductivity at the boundary from the Dirich-
let to Neumann map: a pointwise result. J. Inverse Ill-Posed Probl.,
9(6):567-574, 2001.

R. Brown and R. Torres. Uniqueness in the inverse conductivity problem
for conductivities with 3/2 derivatives in L?, p > 2n. J. Fourier Anal.
Appl., 9(6):563-574, 2003.

A. L. Bukhgeim and G. Uhlmann. Recovering a potential from partial
Cauchy data. Comm. Partial Differential Equations, 27(3-4):653-668,
2002.

A. Calderén. On an inverse boundary value problem. In Seminar on
Numerical Analysis and its Applications to Continuum Physics (Rio de
Janeiro, 1980), pages 65-73. Soc. Brasil. Mat., Rio de Janeiro, 1980.

P. Caro and K. Rogers. Global uniqueness for the Calderén problem
with Lipschitz conductivities. Forum Math. Pi, 4:e2, 28, 2016.

D. Dos Santos Ferreira, C. Kenig, M. Salo, and G. Uhlmann. Limit-
ing Carleman weights and anisotropic inverse problems. Invent. Math.,
178(1):119-171, 2009.

C. Fefferman. A note on spherical summation multipliers. Israel J.
Math., 15:44-52, 1973.

B. Haberman. Uniqueness in Calderén’s problem for conductivities with
unbounded gradient. Comm. Math. Phys., 340(2):639-659, 2015.

B. Haberman and D. Tataru. Uniqueness in Calderén’s problem with
Lipschitz conductivities. Duke Math. J., 162(3):496-516, 2013.

S. Ham, Y. Kwon, and S. Lee. Uniqueness in the Calderén problem and
bilinear restriction estimates. arXiv:1903.09382v2 [math.AP], 2019.

o1



[17] C. Kenig, A. Ruiz, and C. Sogge. Uniform Sobolev inequalities and
unique continuation for second order constant coefficient differential op-
erators. Duke Math. J., 55(2):329-347, 1987.

[18] C. Kenig, J. Sjostrand, and G. Uhlmann. The Calderén problem with
partial data. Ann. of Math. (2), 165(2):567-591, 2007.

[19] R. Kohn and M. Vogelius. Determining conductivity by boundary mea-
surements. Comm. Pure Appl. Math., 37(3):289-298, 1984.

[20] S. Lee. Improved bounds for Bochner-Riesz and maximal Bochner-Riesz
operators. Duke Math. J., 122(1):205-232, 2004.

[21] S. Lee. Bilinear restriction estimates for surfaces with curvatures of
different signs. Trans. Amer. Math. Soc., 358(8):3511-3533, 2006.

[22] J. Marschall. The trace of Sobolev-Slobodeckij spaces on Lipschitz do-
mains. Manuscripta Math., 58(1-2):47-65, 1987.

[23] P. Mattila. Fourier analysis and Hausdorff dimension, volume 150 of
Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 2015.

[24] H. Nguyen and D. Spirn. Recovering a potential from Cauchy data
via complex geometrical optics solutions. arXiv:1403.2255v2 [math.AP],
2014.

[25] A. Seagar, D. Barber, and B. Brown. Electrical impedance imaging.
IEE Proceedings, 134(2):201-210, 1987.

[26] E. Stein. Harmonic analysis: real-variable methods, orthogonality,
and oscillatory integrals, volume 43 of Princeton Mathematical Series.
Princeton University Press, Princeton, NJ, 1993. With the assistance of
Timothy S. Murphy, Monographs in Harmonic Analysis, I1I.

[27] J. Sylvester and G. Uhlmann. A global uniqueness theorem for an inverse
boundary value problem. Ann. of Math. (2), 125(1):153-169, 1987.

[28] T. Tao. A sharp bilinear restrictions estimate for paraboloids. Geom.
Funct. Anal., 13(6):1359-1384, 2003.

92



[29] T. Tao, A. Vargas, and L. Vega. A bilinear approach to the restriction
and Kakeya conjectures. J. Amer. Math. Soc., 11(4):967-1000, 1998.

[30] P. Tomas. A restriction theorem for the Fourier transform. Bull. Amer.

Math. Soc., 81:477-478, 1975.

[31] H. Triebel. Theory of function spaces, volume 78 of Monographs in
Mathematics. Birkhaduser Verlag, Basel, 1983.

[32] A. Vargas. Restriction theorems for a surface with negative curvature.
Math. Z., 249(1):97-111, 2005.

[33] T. Wolff. A sharp bilinear cone restriction estimate. Ann. of Math. (2),
153(3):661 698, 2001.

Address: BCAM - Basque Center for Applied Mathematics,
Mazarredo, 14 E48009 Bilbao, Basque Country — Spain.

e-mail: fponce@bcamath.org

93



