
THESIS DOCTORAL/DOKTOREGO TESIA

High Performance Scientific Computing in
Applications with Direct Finite Element

Simulation

Autor/Egilea:
EZHILMATHI KRISHNASAMY

Supervisour/Ikuskatzaile:
JOHAN JANSSON

Bilbao, 2020



DOCTORAL THESIS

High Performance Scientific Computing in
Applications with Direct Finite Element

Simulation

Author:

EZHILMATHI KRISHNASAMY

Supervisour:

JOHAN JANSSON

Bilbao, 2020



iii

This research was carried out at the Basque Center for Applied Mathematics
(BCAM) within the CFD Computational Technology (CFDCT) and also at the
School of Electrical Engineering and Computer Science(Royal Institue of Technol-
ogy, Stockholm, Sweden). Which is suported by Fundacion Obra Social “la Caixa“,
Severo Ochoa Excellence research centre 2014-2018 SEV-2013-0323, Severo Ochoa
Excellence research centre 2018-2022 SEV-2017-0718, BERC program 2014-2017,
BERC program 2018-2021, MSO4SC European project, Elkartek. This work has
been performed using the computing infrastructure from SNIC (Swedish National
Infrastructure for Computing).



iv

Abstract

To predict separated flow including stall of a full aircraft with Computa-
tional Fluid Dynamics (CFD) is considered one of the problems of the grand
challenges to be solved by 2030, according to NASA [1]. The nonlinear Navier-
Stokes equations provide the mathematical formulation for fluid flow in 3-
dimensional spaces. However, classical solutions, existence, and uniqueness
are still missing. Since brute-force computation is intractable, to perform
predictive simulation for a full aircraft, one can use Direct Numerical Simu-
lation (DNS); however, it is prohibitively expensive as it needs to resolve the

turbulent scales of order Re
9

4 . Considering other methods such as statisti-
cal average Reynolds’s Average Navier Stokes (RANS), spatial average Large
Eddy Simulation (LES), and hybrid Detached Eddy Simulation (DES), which
require less number of degrees of freedom. All of these methods have to be
tuned to benchmark problems, and moreover, near the walls, the mesh has
to be very fine to resolve boundary layers (which means the computational
cost is very expensive). Above all, the results are sensitive to, e.g. explicit
parameters in the method, the mesh, etc.

As a resolution to the challenge, here we present the adaptive time-
resolved Direct FEM Solution (DFS) methodology with numerical tripping, as
a predictive, parameter-free family of methods for turbulent flow. We solved
the JAXA Standard Model (JSM) aircraft model at realistic Reynolds num-
ber, presented as part of the High Lift Prediction Workshop 3. We predicted
lift Cl within 5% error vs. experiment, drag Cd within 10% error and stall
1◦ within the angle of attack. The workshop identified a likely experimental
error of order 10% for the drag results. The simulation is 10 times faster
and cheaper when compared to traditional or existing CFD approaches. The
efficiency mainly comes from the slip boundary condition that allows coarse
meshes near walls, goal-oriented adaptive error control that refines the mesh
only where needed and large time steps using a Schur-type fixed-point itera-
tion method, without compromising the accuracy of the simulation results.

As a follow-up, we were invited to the Fifth High Order CFD Workshop,
where the approach was validated for a tandem sphere problem (low Reynolds
number turbulent flow) wherein a second sphere is placed a certain distance
downstream from a first sphere. The results capture the expected slipstream
phenomenon, with appx. 2% error. A comparison with the higher-order
frameworks Nek500 and PyFR was done. The PyFR framework has demon-
strated high effectiveness for GPUs with an unstructured mesh, which is a
hard problem in this field. This is achieved by an explicit time-stepping ap-
proach. Our study showed that our large time step approach enabled appx.
3 orders of magnitude larger time steps than the explicit time steps in PyFR,
which made our method more effective for solving the whole problem.

We also presented a generalization of DFS to variable density and vali-
dated against the well-established MARIN benchmark problem. The results
show good agreement with experimental results in the form of pressure sen-
sors. Later, we used this methodology to solve two applications in multiphase
flow problems. One has to do with a flash rainwater storage tank (Bilbao wa-
ter consortium), and the second is about designing a nozzle for 3D printing.



v

In the flash rainwater storage tank, we predicted that the water height in the
tank has a significant influence on how the flow behaves downstream of the
tank door (valve). For the 3D printing, we developed an efficient design with
the focused jet flow to prevent oxidation and heating at the tip of the nozzle
during a melting process.

Finally, we presented here the parallelism on multiple GPUs and the em-
bedded system Kalray architecture. Almost all supercomputers today have
heterogeneous architectures, such as CPU+GPU or other accelerators, and it
is, therefore, essential to develop computational frameworks to take advantage
of them.

For multiple GPUs, we developed a stencil computation, applied to ge-
ological folds simulation. We explored halo computation and used CUDA
streams to optimize computation and communication time. The resulting
performance gain was 23% for four GPUs with Fermi architecture, and the
corresponding improvement obtained on four Kepler GPUs were 47%.

The Kalray architecture is designed to have low energy consumption. Here
we tested the Jacobi method with different communication strategies.

Additionally, visualization is a crucial area when we do scientific simula-
tions. We developed an automated visualization framework, where we could
see that task parallelization is more than 10 times faster than data paralleliza-
tion. We have also used our DFS in the cloud computing setting to validate
the simulation against the local cluster simulation. Finally, we recommend
the easy pre-processing tool to support DFS simulation.



vi

Acknowledgement

I would like to thank my supervisor Johan Jansson for his guidance throughout my
thesis. And also would like to thank my co-supervisors Jose Antonio Lozano and
Arghir Dani Zarnescu. A special thanks go to Xing Cai, Johan Hoffman, and Leon
Kos for their valuable advice on a critical situation.

I would also like to thank the La Caixa foundation for my PhD scholarship,
which has helped me to stay 3 years at KTH, Sweden. On the other hand, BCAM
is very supportive and flexible, including directors and administrative staff. I am
really thankful for that. I would like to thank all my friends, co-authors, and
colleagues from BCAM and KTH.

I wish to thank all the industrial collaborators from Bilbao and Sweden, which
is also helped me to gain more knowledge in the applied field. Finally, I would like
to thank my mom and sister for their love and support, as always.

Ezhilmathi Krishnasamy
San Sebastian,
Basque Country, 2020



1. Resumen

Esta tesis describe una dinámica de fluidos computacional (CFD), que resuelve los
problemas de mecánica de fluidos utilizando los métodos numéricos y computaciona-
les; en concreto, muestra modelos matemáticos modernos eficientes y su simulación por
computadora. Las ecuaciones que rigen el flujo de fluido se describen mediante el impulso
de continuidad (masa) (segunda ley de Newton) y la ecuación de enerǵıa (primera ley
de la termodinámica). Antes de entrar en detalles sobre esta tesis, nos gustaŕıa ofrecer
una visión general del CFD genérico y su enfoque de arriba a abajo de manera genérica.
CFD resuelve las ecuaciones diferenciales parciales por medio de un sistema de ecuacio-
nes usando las computadoras. Mediante este método podŕıamos resolver toda la gama de
problemas (problemas del mundo real) que surgen en nuestra vida cotidiana, incluyendo
los siguientes:

Aerodinámica de aviones y automóviles (elevación y arrastre).

Ingenieŕıa marina para apoyar la estructura off-shore.

Diseño de turbinas eólicas (diseño de palas para producir la máxima enerǵıa de la
turbina).

Control de la contaminación del aire en ingenieŕıa ambiental.

Predicción del tiempo en meteoroloǵıa.

Ingenieŕıa biomédica en la simulación card́ıaca de los flujos sangúıneos a través de
arterias y venas.

Hidrodinámica del barco (por ejemplo, submarino).

Motores a reacción (diseño de turbomaquinaria).

Ahora viendo esos ejemplos, uno puede llegar a la conclusión de que CFD es esencial
e importante para la sociedad ecológica.

Solo en las últimas décadas, el CFD se ha utilizado ampliamente en ciencia e ingenieŕıa.
Por ejemplo, desde la década de 1960 en adelante, CFD se ha utilizado en las industrias
aeroespaciales para diseño e I + D. Anteriormente su uso no estaba extendido, debido
principalmente a la falta de disponibilidad de recursos computationales.

Es natural preguntarse lo siguiente: ¿cuál es el beneficio de usar el CFD en lugar de
los métodos tradicionales? Los métodos tradicionales han existido durante algún tiempo
con la disponibilidad de ecuaciones diferenciales y análisis numéricos. Por contra, el CFD
presenta la siguiente serie de ventajas:

Es más barato debido a que require menos mano de obra y tiempo.

Es más rápido al usar recursos computacionales.

El trabajo se puede hacer en paralelo.

El resultado de los resultados se puede utilizar para otros fines.

Todo el proceso es cuantitativo predictivo.

Se pueden analizar sistemas complejos (por ejemplo, estudios de seguridad y esce-
narios de accidentes).



Hasta ahora, hemos visto la importancia de CFD y sus aplicaciones. Ahora le brinda-
remos detalles genéricos sobre el flujo de trabajo del CFD. El proceso de CFD se puede
separar en tres áreas; son:

pre-procesamiento

Solver

Post-procesamiento

1.1. Pre-procesamiento

Se trata de convertir el modelo real en el modelo de computadora para la simulación
o de preparar el dominio de simulación del modelo del mundo real. En general, incluye
la preparación del dominio de fluidos computacional, la generación de mallas (células
o elementos). Este proceso debe ser muy cuidadoso para evitar cualquier problema de
simulación (podŕıa dar un error) en la siguiente fase de la etapa de resolución. También
define las condiciones de contorno y las propiedades del fluido. Este es el principal tra-
bajo que consume tiempo de mano de obra en el flujo de trabajo de CFD, casi 50% del
tiempo se consume en las industrias. Hay muchas herramientas comerciales y de prepro-
cesamiento de código abierto disponibles, y hemos elegido una herramienta eficiente para
hacer frente a nuestro trabajo de preprocesamiento, que se describe en el Caṕıtulo 5.

1.2. Solver

Esta área se centra en resolver las ecuaciones discretizadas (ecuaciones algebraicas)
en base a modelos matemáticos. En general, las ecuaciones diferenciales parciales se dis-
cretizan mediante el uso de diferentes modelos matemáticos, como la diferencia finita,
el volumen finito y los métodos de elementos finitos. Esos métodos incorporan las ecua-
ciones diferenciales parciales en un sistema de ecuaciones que se resolverá utilizando la
computadora con el algoritmo iterativo en general. Nuevamente, hay muchas herramien-
tas comerciales y de código abierto disponibles como solucionador (solver). Todos y cada
uno de los solucionadores tienen sus propias ventajas y desventajas. En esta tesis, hemos
descrito la simulación directa de elementos finitos (DFS), que es el método más avanzado
(elementos eficientes de potencia computacional, consumo de tiempo y precisión) hasta
ahora para resolver los problemas de turbulencia que se describe en detalle en esta tesis
.

1.3. Post-procesamiento

Esta fase se asegura de que los resultados de la simulación son razonables, en compa-
ración con los resultados experimentales, además de convocar a las personas de terceros
que tienen menos conocimiento de CFD. En general, incluye, por ejemplo, representación
de volumen, gráficos vectoriales y extracción de resultados de simulación (en términos
de valores numéricos). También hay herramientas comerciales y de código abierto dispo-
nibles para realizar esta tarea. En esta tesis, hemos utilizado la herramienta de código
abierto llamada Visita. A veces depende del volumen del archivo, puede tomar mucho
tiempo procesar los datos, mientras que hemos recomendado el método eficiente para
hacer este proceso usando VisIt.



2. Contenido central de la tesis

Ahora describiremos los contenidos centrales de esta tesis y sus resultados.

Validación matemática DFS contra el estándar y complejo problema de referencia

Comparación del DFS con otros métodos considerando el problema estándar de
referencia.

Aplicación del modelo matemático validado en el rpoblema del mundo real

Validación de los cálculos cient́ıficos en aceleradores como GPU

Y finalmente, recomendaciones de herramientas optimizadas para preprocesamiento
y postprocesamiento, y testeo del DFS en la plataforma Cloud.

2.1. FEniCS-HPC

En esta tesis, hemos utilizado el software FEniCS-HPC. Esta es una herramienta
CFD de código abierto con escalabilidad masiva paralela. Se basa en el método de ele-
mentos finitos. La principal ventaja de esta plataforma es que es muy fácil formular los
modelos matemáticos cercanos al formato escrito, lo que simplifica la configuración del
solucionador muy fácilmente. Y otra ventaja muy distintiva de utilizar la metodoloǵıa
DFS, que utiliza la condición de ĺımite de deslizamiento para el modelo de flujo de tur-
bulencia y la metodoloǵıa de malla adaptativa, que minimiza la potencia de cálculo en
comparación con otras herramientas CFD (tanto comerciales como de código abierto).
Además, tiene diferentes componentes para facilitar aún más el cálculo en solucionadores
iterativos, particiones de malla y herramientas para ayudar en el procesamiento previo y
posterior.

2.2. Conclusiones de esta tesis por sección

La predicción del flujo separado, incluida la pérdida de un avión completo mediante
la dinámica de fluidos computacional (CFD) se considera uno de los grandes desaf́ıos
que se resolverán en 2030, según NASA. Las ecuaciones no lineales de Navier-Stokes
proporcionan la formulación matemática para flujo de fluidos en espacios tridimensio-
nales. Sin embargo, todavia faltan soluciones clásicas, existencia y singularidad. Ya que
el cálculo de la fuerza bruta es intratable para realizar simulación predictiva para un
avión completo, uno puede usar la simulación numérica directa (DNS); sin embargo, es

prohibitivamente caro ya que necesita resolver la turbulencia a escala de magnitud Re
9

4 .
Considerando otros métodos como el estad́ıstico promedio Reynolds’s Average Navier
Stokes (RANS), spatial average Large Eddy Simulation (LES), y Hybrid Detached Eddy
Simulation (DES), que requieren menos cantidad de grados de libertad. Todos destos
métodos deben ajustarse a los problemas de referencia y, además, cerca las paredes, la
malla tiene que ser muy fina para resolver las capas ĺımite (lo cual significa que el costo
computacional es muy costoso). Por encima de todo, los resultados son sensibles a, por
ejemplo, parámetros expĺıcitos en el método, la malla, etc.

Como una solución al desaf́ıo, aqúı presentamos la adaptación Metodoloǵıa de solución
directa de FEM (DFS) con resolución numérica disparo, como una familia predictiva, libre
de parámetros de métodos para flujo turbulento. Resolvimos el modelo de avión JAXA
Standard Model (JSM) en número realista de Reynolds, presentado como parte del High
Lift Taller de predicción 3. Predijimos un aumento de Cl dentro de un error de 5% vs
experimento, arrastre Cd dentro de 10% error y detenga 1◦ dentro del ángulo de ataque.



El taller identificó un probable experimento error de pedido 10% para los resultados
de arrastre. La simulación es 10 veces más rápido y más barato en comparación con
CFD tradicional o existente enfoques. La eficiencia proviene principalmente del ĺımite
de deslizamiento condición que permite mallas gruesas cerca de las paredes, orientada
a objetivos control de error adaptativo que refina la malla solo donde es necesario y
grandes pasos de tiempo utilizando un método de iteración de punto fijo tipo Schur, sin
comprometer la precisión de los resultados de la simulación.

Como seguimiento, fuimos invitados al Quinto Taller CFD de Alto Orden, donde el
enfoque fue validado para un problema de esfera en tándem (bajo Número de Reynolds
flujo turbulento) en el que se coloca una segunda esfera cierta distancia aguas abajo
de una primera esfera. Los resultados capturan El fenómeno del slipstream esperado,
con appx. Error de 2%. UNA comparación con los marcos de orden superior Nek500 y
PyFR fue hecho. El marco PyFR ha demostrado una alta efectividad para las GPU con
una malla no estructurada, lo cual es un problema dif́ıcil en este campo. Esta se logra
mediante un enfoque expĺıcito de paso de tiempo. Nuestro estudio mostró que nuestro
enfoque de paso de tiempo grande permitió appx. 3 órdenes de magnitud pasos de tiempo
mayores que los pasos de tiempo expĺıcitos en PyFR, que hicieron que nuestro método
más efectivo para resolver todo el problema.

También presentamos una generalización de DFS a densidad variable y validado con-
tra el problema de referencia MARIN bien establecido. los Los resultados muestran un
buen acuerdo con los resultados experimentales en forma de sensores de presión. Más
tarde, usamos esta metodoloǵıa para resolver dos aplicaciones en problemas de flujo mul-
tifásico. Uno tiene que ver con un flash tanque de almacenamiento de agua de lluvia
(consorcio de agua de Bilbao), y el segundo es sobre el diseño de una boquilla para im-
presión 3D. En el agua de lluvia tanque de almacenamiento, predijimos que la altura del
agua en el tanque tiene un influencia significativa sobre cómo se comporta el flujo aguas
abajo de la puerta del tanque (válvula). Para la impresión 3D, desarrollamos un diseño
eficiente con El flujo de chorro enfocado para evitar la oxidación y el calentamiento en
la punta del boquilla durante un proceso de fusión.

Finalmente, presentamos aqúı el paralelismo en múltiples GPU y el incrustado sistema
de arquitectura Kalray. Casi todas las supercomputadoras de hoy tienen arquitecturas
heterogéneas, como CPU GPU u otros aceleradores, y, por lo tanto, es esencial desarrollar
marcos computacionales para aprovecha de ellos. Como lo hemos visto antes, se comienza
a desarrollar ese CFD más tarde en la década de 1060 cuando podemos tener poder
computacional, por lo tanto, Es esencial utilizar y probar estos aceleradores para los
cálculos de CFD. Las GPU tienen una arquitectura diferente en comparación con las
CPU tradicionales. Técnicamente, la GPU tiene muchos núcleos en comparación con las
CPU que hacen de la GPU una buena opción para el cómputo paralelo.

Para múltiples GPU, desarrollamos un cálculo de plantilla, aplicado a simulación de
pliegues geológicos. Exploramos la computación de halo y utilizamos Secuencias CUDA
para optimizar el tiempo de computación y comunicación. La ganancia de rendimiento
resultante fue de 23% para cuatro GPU con arquitectura Fermi, y la mejora correspon-
diente obtenida en cuatro Las GPU Kepler fueron de 47%.

La arquitectura Kalray está diseñada para tener poco consumo de enerǵıa. Aqúı pro-
bamos el método de Jacobi con diferentes estrategias de comunicación. La idea principal
es probar que la arquitectura Kalay es adecuada para los cálculos cient́ıficos. El cálculo
de CFD también debe abordar la eficiencia de los cálculos y el consumo de enerǵıa.

Además, la visualización es un área crucial cuando hacemos simulaciones cientificas.
Desarrollamos un marco de visualización automatizado, donde pudimos ver que la para-
lelización de tareas es más de 10 veces más rápido que la paralelización de datos. También
hemos usado nuestro DFS en el configuración de computación en la nube para validar



la simulación contra el clúster local de simulación. Dado que el DFS consume menos
potencia computacional, podemos concluir que está más optimizado para la plataforma
Cloud.

Como hemos mencionado anteriormente, el pre-procesamiento puede tomar gran parte
del tiempo durante el proceso de CFD. Para abordar este problema, hemos recomendado
la sencilla herramienta de preprocesamiento para Soporta simulación DFS. La plataforma
recomendada es un proceso eficiente y automatizado.



Contents

Contents vii

List of Figures x

1 Introduction 1
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Work organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 History and importance of CFD . . . . . . . . . . . . . . . . . . . . . 4
1.5 Components of FEniCS-HPC . . . . . . . . . . . . . . . . . . . . . . 4

2 Mathematical formulation and validation 7
2.1 Direct FEM Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The cG(1)cG(1) method . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The Adaptive Algorithm . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 A posteriori error estimate for cG(1)cG(1) . . . . . . . . . . . 9
2.1.4 The Do-nothing Error Estimate and Indicator . . . . . . . . . 10
2.1.5 Boundary layers: medium Reynolds number flow . . . . . . . 11
2.1.6 Boundary layers: higher Reynolds number flow . . . . . . . . 11

2.2 Time resolved adaptive direct FEM simulation . . . . . . . . . . . . 12
2.2.1 Problem description of JSM full aircraft . . . . . . . . . . . . 13
2.2.2 Numerical tripping . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Aerodynamic Forces . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Multi Phase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Direct FEM cG(1)cG(1) for variable-density . . . . . . . . . . 17
2.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Tandem sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 PyFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Validation: mesh convergence . . . . . . . . . . . . . . . . . . 24
2.4.3 Validation: PyFR vs DFS . . . . . . . . . . . . . . . . . . . . 25

vii



viii CONTENTS

3 Applications 33
3.1 Predicting aerodynamics forces for the full aircraft with realistic

Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Simulation methodology . . . . . . . . . . . . . . . . . . . . . 36
3.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.5 Aerodynamic Forces . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.6 Pressure coefficients . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.7 Flow and Adaptive Mesh Refinement Visualization . . . . . . 45
3.1.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Turbulent Multiphase Flow in Urban Water Systems and Marine
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 The Bilbao Water Consortium storm drain problem . . . . . 55
3.2.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 3D printing Nozzle design . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Initial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Optimized design . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Parallel visualization, cloud computing and pre-processing 73
4.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.2 Work flow of VisIt and Paraview . . . . . . . . . . . . . . . . 76
4.1.3 Visualization based on the task parallelization . . . . . . . . 79
4.1.4 Conclusion and future work . . . . . . . . . . . . . . . . . . . 81

4.2 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Cloud architecture . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Why Cloud Computing . . . . . . . . . . . . . . . . . . . . . 82
4.2.3 Google Compute Engine . . . . . . . . . . . . . . . . . . . . . 84
4.2.4 Compute Cluster Creation in the GCE . . . . . . . . . . . . . 84
4.2.5 FEniCS-HPC on the Google Cloud . . . . . . . . . . . . . . . 85
4.2.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . 85

4.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 Tools for the pre-processing . . . . . . . . . . . . . . . . . . . 87
4.3.2 Recommendation: pre-processing for DFS . . . . . . . . . . . 88



CONTENTS ix

5 High performance computing 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 CPU architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Parallel architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Control structure . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Memory organization . . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Network topology . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 GPU architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.1 Memory organization in GPU . . . . . . . . . . . . . . . . . . 95
5.4.2 Latest advancement in GPUs . . . . . . . . . . . . . . . . . . 96

5.5 Multiple GPU Implementation for Stencil Numerical Computation . 97
5.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.2 Mathematical background . . . . . . . . . . . . . . . . . . . . 98
5.5.3 Domain decomposition . . . . . . . . . . . . . . . . . . . . . . 100
5.5.4 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.5 CUDA implementations . . . . . . . . . . . . . . . . . . . . . 102
5.5.6 Experiments and measurements . . . . . . . . . . . . . . . . . 104
5.5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Towards HPC-embedded; case study-Kalray and message-passing on
NoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6.2 Kalray Arhietecture . . . . . . . . . . . . . . . . . . . . . . . 110
5.6.3 Jacobi Method Implementation on Kalray . . . . . . . . . . . 111
5.6.4 Performance Study . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 119

6 Outcomes and future work 121

Bibliography 123



List of Figures

1.1 FEniCS-HPC component dependency diagram. . . . . . . . . . . . . . . 6

2.1 Illustration of the difference between DNS, LES and RANS [source from
Nicoud Franck, dec 2007]. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Pressure sensor layout on JSM configuration. . . . . . . . . . . . . . . . 14

2.3 JSM aircraft model with starting mesh for the adaptive method. . . . . 15

2.4 Lift coefficient, Cl, and drag coefficient, Cd, versus the angle of attack,
α, for the different meshes from the iterative adaptive method. . . . . . 16

2.5 Layout of dam breaking benchmark settings [source from K.M.T. Kleef-
sman et al.,2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Density slice and isosurface for ρ = 0.5 at t = 0, 1, 2, 3, 4, 5s. . . . . . . . 18

2.7 Pressure over time for simulation and experiment for the sensors P1 and
P7 in the MARIN benchmark. . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Initial mesh for the DFS simulation with appx. 100k vertices. . . . . . . 20

2.9 M1P3 refined mesh at down stream side of sphere 1 and 2 and refined
mesh at upstream side of sphere 2. . . . . . . . . . . . . . . . . . . . . . 20

2.10 M1P3 boundary layer is refined manually. . . . . . . . . . . . . . . . . . 21

2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 Time evolution of the drag coefficient for various iterations of our adap-
tive procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 Mesh convergence of the drag coefficients of the two spheres. . . . . . . 27

2.14 PyFR: Q-criterion of mesh refinement 0 with P2 with different time step. 27

2.15 FEniCS-HPC: Q-criterion for the Tandem sphere with different timestep. 28

2.16 PyFR: Q-criterion of mesh refinement 1 with P2 with different time step. 28

2.17 Mesh refinement 0 with different element orders for PyFR. . . . . . . . 29

2.18 Mesh refinement 2 with different element orders for PyFR. . . . . . . . 30

2.19 Mesh refinement 2 with different element orders for PyFR. . . . . . . . 31

2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Overview of the JSM aircraft model and starting mesh for the adaptive
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

x



List of Figures xi

3.2 Lift coefficient, Cl, and drag coefficient, Cd, versus the angle of attack,
α, for the different meshes from the iterative adaptive method. . . . . . 40

3.3 Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table
of the value for the finest adaptive mesh with relative error compared
to the experimental results for α = 4.36 ◦. . . . . . . . . . . . . . . . . . 41

3.4 Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table
of the value for the finest adaptive mesh with relative error compared
to the experimental results for α = 18.58 ◦, untripped. . . . . . . . . . . 42

3.5 Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table
of the value for the finest adaptive mesh with relative error compared
to the experimental for α = 18.58 ◦ with numerical tripping. . . . . . . . 42

3.6 Diagram of the pressure sensor layout for the JSM configuration showing
where the pressure sensors are located and how they are denoted. . . . . 43

3.7 Pressure coefficients, Cp, versus normalized local chord, x/c, for the
angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦

(right) at locations A-A (top), D-D (middle) and G-G (bottom) for the
wing of JSM pylon on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Pressure coefficients, Cp, versus normalized local chord, x/c, for the
angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦

(right) at locations A-A (top), D-D (middle) and G-G (bottom) for the
flap of JSM pylon on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Pressure coefficients, Cp, versus normalized local chord, x/c, in the stall
regime for the angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle)
and α = 22.56 ◦ (right) at locations A-A (top), D-D (middle) and G-G
(bottom) for the slat of JSM pylon on. . . . . . . . . . . . . . . . . . . . 46

3.10 Pressure coefficients, Cp, versus normalized local chord, x/c, for the
angle of attack α = 22.56 ◦ untripped (left), the same angle α = 22.56 ◦

tripped (middle) and α = 21.57 ◦ tripped at locations A-A (top), D-D
(middle) and G-G (bottom) for the wing of JSM pylon on. . . . . . . . . 47

3.11 Comparison between experimental oil film visualization (left) and sur-
face rendering of the velocity magnitude (right). . . . . . . . . . . . . . 48

3.12 Instantaneous isosurface rendering at the final time of the Q-criterion
with value Q = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.13 Volume rendering of the time evolution of the magnitude of the adjoint
velocity ~ϕ magnitude, snapshots at t = (16, 18, 20). . . . . . . . . . . . 51

3.14 Crinkled slice aligned with the angle of attack, α = 10.48° . . . . . . . . 52
3.15 Schematic of the geometry of the tank, door and start of the tunnel

(top), and a 3D rendering (bottom). . . . . . . . . . . . . . . . . . . . . 56
3.16 Initial and boundary conditions set up. . . . . . . . . . . . . . . . . . . 57
3.17 Slice plot through the x-z plane (front view) of the mesh. . . . . . . . . 57
3.18 Density and velocity x-y and x-z at different height with different door

opening time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.19 Water isovolume at different height with different door opening time. . . 59
3.20 “Spending” flow rate through the door. . . . . . . . . . . . . . . . . . . 60



xii List of Figures

3.21 Average x-velocity in the door section. . . . . . . . . . . . . . . . . . . . 61
3.22 Average flushing x-velocity in the first 10m-section of the tunnel. . . . . 62
3.23 Schematic 3D printing nozzle design. . . . . . . . . . . . . . . . . . . . . 64
3.24 Nozzle length (section c)is 2.5mm and velocities ={0.1, 0.25} m/s . . . 65
3.25 Nozzle length (section c)is 5.0mm and velocities ={0.1, 0.25} m/s . . . 65
3.26 Schematic 3D printing sheath model . . . . . . . . . . . . . . . . . . . . 66
3.27 Adaptivity mesh for the single phase flow . . . . . . . . . . . . . . . . . 66
3.28 Schematic 3D printing sheath model . . . . . . . . . . . . . . . . . . . . 66
3.29 Adaptivity mesh for the single phase flow . . . . . . . . . . . . . . . . . 67
3.30 Plot line positions = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 mm . . . . . . . . . . 68
3.31 Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and

sheath inflow usheath = 3.75. . . . . . . . . . . . . . . . . . . . . . . . . 68
3.32 Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and

sheath inflow usheath = 4.75. . . . . . . . . . . . . . . . . . . . . . . . . 69
3.33 Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and

sheath inflow usheath = 5.75. . . . . . . . . . . . . . . . . . . . . . . . . 69
3.34 viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =

3.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.35 viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =

4.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.36 viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =

5.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Workflow of the VTK pipeline [2]. . . . . . . . . . . . . . . . . . . . . . 75
4.2 VisIt GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 VisIt events recording using the python script. . . . . . . . . . . . . . . 77
4.4 Paraview GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Paraview events recording starting. . . . . . . . . . . . . . . . . . . . . . 78
4.6 Paraview events recording finishing. . . . . . . . . . . . . . . . . . . . . 79
4.7 Client-server mode [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.8 Marin simulation with no phase separation. . . . . . . . . . . . . . . . . 81
4.9 Marin simulation with phase separation. . . . . . . . . . . . . . . . . . . 81
4.10 Task paralleization for the FEniCS-HPC simulation. . . . . . . . . . . . 82
4.11 Work flow diagram of cloud computing architecture [4]. . . . . . . . . . 83
4.12 Elasticluster created the cluter/supercomputer environment. . . . . . . 85
4.13 Probe model geometry and simulation at various timestep. . . . . . . . 86
4.14 Manually refined the mesh flow around the Ahmed body [5]. . . . . . . 88
4.15 Workflow of ANSYS [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.16 CAD model contains small detial [6]. . . . . . . . . . . . . . . . . . . . . 89
4.17 ANSYS meshing methodology for patch confronting and patch indepen-

dent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 The Von Neumann architecture. . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Standard multi core CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . 92



List of Figures xiii

5.3 SIMD model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Memory hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Shared memory architectures. . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 left:CUDA device memory spec.; right: Kepler’s read cache memory. . . 96
5.7 2D plane sub-sweeping (a) in Z-direction, (b) in Y-direction and (c) in

X-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.8 An example of data dependency associated with sub-sweeps along the

z-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.9 A partitioning of the 3D Cartesian grid that suits parallelization of sub-

sweeps in both x and z-directions. . . . . . . . . . . . . . . . . . . . . . 100
5.10 An example of volumetric data shuffle in connection with changing the

grid partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.11 Plain 2-GPU implementation: the default synchronous CUDA stream

per GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.12 Improved 2-GPU implementation version 1: two CUDA streams per

GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.13 Improved 2-GPU implementation version 2: two CUDA streams and

one OpenMP thread per GPU . . . . . . . . . . . . . . . . . . . . . . . 105
5.14 The initial surface Γ0 (left plot) and the simulation result of (1) after

running 8 sweeps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.15 Data re-partition for the Y direction sub-sweeps. . . . . . . . . . . . . . 108
5.16 Kalray MPPA many-core (left) and compute cluster (righ) architecture [7]110
5.17 Master (Global Memory) ↔ Slave (Local Memory) Communication. . . 115
5.18 Pipeline (Bus) Communication. . . . . . . . . . . . . . . . . . . . . . . . 117
5.19 Time consumption for the SM approach. . . . . . . . . . . . . . . . . . 117
5.20 Time consumption for the NoC approach. . . . . . . . . . . . . . . . . . 119
5.21 GFLOPS achieved by both approaches. . . . . . . . . . . . . . . . . . . 120





Chapter 1

Introduction

This thesis describes the mathematical prediction of turbulent incompressible Navier-
Stokes equations, a generalization formulation to multiphase flow, multiphase flow
with dynamics of the floating platform, benchmarking against the higher-order
methods and its computational implementation and real world applications in
FEniCS-HPC [8]. And also numerical simulation implementation on the paral-
lel architecture aiming at exascale computing. FEniCS-HPC is an open-source
framework for automated solution of partial differential equations (PDE) on mas-
sively parallel architectures, providing an automated evaluation of variational forms
with a high-level description in mathematical notation, duality-based adaptive er-
ror control, implicit parameter-free turbulence modeling by the use of stabilized
finite element methods (FEM) and strong linear scaling up to thousands of cores.
FEniCS-HPC is a branch of the FEniCS framework focusing on high performance
on massively parallel architectures.

The numerical analysis focuses on approximating solutions to mathematical
equations that arise in science and engineering. In general, these mathematical
equations are in the form of Partial Differential Equations (PDE), describing phys-
ical phenomena such as conservation, growth, etc. and quantities, such as pressure,
velocity, density, and force. Solving these PDE symbolically is seldom feasible, yet
it is a predictive numerical approximation.

Numerical approximation brings down the partial differential equations into
a system of algebraic equations with the finite number of unknowns by using a
discretization method that can be solved by numerical algebra methods. This can
be automatable and effectively done on computers. There are three well known
numerical methods that solve PDE: Finite Volume Method (FVM), Finite Element
Method (FEM) and Finite Difference Method (FDM).

FEniCS-HPC is based on FEM, which is based on a variational form of the PDE.
In the Navier-Stokes equations (NSE), if the method satisfies certain conditions on
stability and consistency, the FEM solutions converge towards a weak solution to
the NSE as the finite element mesh is refined [9]. Such methods are the General

1



2 CHAPTER 1. INTRODUCTION

Galerkin (G2) method or Direct Finite Element simulation (DFS), which is what
we use and develop in the thesis.

This thesis will explain and describe the basic structure and outline of FEniCS-
HPC, and the new mathematical formulations for incompressible flow and mul-
tiphase flow along with efficient parallel algorithms. We also describe how the
mathematical formulation is useful in real-world applications and also give compu-
tational proof of how our approach is efficient in terms of solution accuracy and
computational cost.

1.1 Motivation and Background

We will explain how one can predict the aerodynamic forces lift & drag and stall on
a full aircraft at realistic Reynolds number, posed as the grand challenge problem
in NASA Vision 2030, and multiphase flow simulations (for example, water dam
breaking and 3D printing applications). We will show validation cases for the NASA
HiLiftPW-3 full aircraft benchmark challenge, and the tandem sphere and MARIN
benchmark problem.

Within the CFD community, pre-processing and post-processing consume much
time. We show here, efficient post-processing technique and pre-processing tech-
nique, which can be done very quickly using the parallel processors.

As of now, we are entering into Cloud computing technology, so we will show
how to create a cluster (computing cluster from the local computer) and run the
simulation (FEniCS-HPC) on the Google Cloud. The simulation performance is
compared against the local cluster simulation.

Finally, we show the multiple GPU stencil computations and parallel algorithms
on the Kalray embedded architecture. It is quite common nowadays all the super-
computer have an accelerator such as GPUs and energy-efficient embedded hard-
ware such as FPGA. So this work will open up the future energy-efficient and
exascale computing in science and engineering for the numerical applications.

1.2 Objectives of the thesis

• The main hypothesis is that DFS for incompressible Navier-Stokes equations,
predicts general aerodynamic forces, in a particular stall prediction. The main
work has been focused development of the abstract methodology and FEniCS
formulations in an HPC setting, with benchmarking at the highest level.

• A secondary hypothesis is that a formulation of variable-density extension
in the DFS settings allows prediction in e.g. marine dam breaking, shallow
water, and coastal engineering modeling.

• One objective is to compare DFS with higher-order frameworks, for low
Reynolds number turbulent flow, especially to investigate the state-of-the-
art of HPC and GPU performance in unstructured meshes.



1.3. WORK ORGANIZATION 3

• Carry out numerical simulation using multiple GPU settings, and also on the
Kalray embedded architecture (energy-efficient accelerator). Thus opens up
the numerical simulation to be run on the exa-scale supercomputers.

• The applications related to the multiphase flow of rainwater flash tank opening
and 3D printing nozzle design.

• Recommend the parallel visualization using open-source visualization tools.
Especially the remote visualization that would avoid all unnecessary ad-
hoc GUI interface with remote machines. And recommend the suitable and
quicker pre-processing tool for the meshing.

• Run the FEniCS-HPC simulation on the cloud platform, for example, Google-
Cloud. The results will be compared against the local cluster simulation.

1.3 Work organization

This thesis work is organized as follows:

• Chapter 1 explains the introduction of the work, main thesis goals & objec-
tives, and introduction & outline of the FEniCS-HPC framework.

• Chapter 2 explains the mathematical formulation and its validation against
the experimental results. In particular, introducing the numerical tripping
for the time-resolved aerodynamics simulation, multiphase flow methodology,
benchmark against the higher-order methods for the low Reynolds number,
and validating the dynamics of renewable energy floating platform within the
multiphase flow settings.

• Chapter 3describes the real-world application based on validated mathemat-
ical modeling. It consists of aerodynamics lift and drag prediction of realistic
aircraft, rainwater flash tank door opening for the shallow water modeling
and 3D printing nozzle design.

• Chapter 4 recommends the tools and methodologies for pre-processing and
post-processing. In general, both pre-processing and post takes much time;
this Chapter 4 suggests an efficient and fast way to do that, and also explains
running the FEniCS-HPC simulation on the Cloud infrastructure.

• Chapter 5 gives an overview of the high-performance computing (CPU &
GPU architecture overview) and parallel programming methodologies. And
also, numerical simulation on the accelerator such as GPU and in the energy-
efficient computing hardware such as Kalray architecture aiming at exascale
computing.



4 CHAPTER 1. INTRODUCTION

1.4 History and importance of CFD

Fluid Mechanics (FM) is an everyday part of people’s lives; it can be blood flow
in the human body, passenger aircraft, etc. At the beginning of the 18th century,
FM started to get its formal mathematical definitions by scientists like Leonhard
Euler, Daniel Bernoulli, Claude-Louis Navier and Sir George Gabriel Stokes. But it
progresses was not very fast in the beginning and did not take off until the advent
of massive calculations with computers. In 1934 though, Leray proved the existence
of weak solutions, not many classical solutions such as uniqueness exit for nonlinear
Navier-Stokes equations in 3-dimensional spaces.

In the past few decades, the field of fluid mechanics has expanded dramatically.
With the pervasive penetration of software, a new subfield has emerged: Compu-
tational Fluid Dynamics (CFD). In recent years, CFD has considerably replaced
the experimental results; This has a significant influence on the reduced cost, re-
duced pollution, and efficient and innovative designs in cars, airplanes, renewable
and biomedical, etc.

1.5 Components of FEniCS-HPC

FEniCS-HPC [8] is an open-source framework for the automated solution of PDEs
on massively parallel architectures, providing an automated evaluation of vari-
ational forms whose description is given in a high-level mathematical notation,
duality-based adaptive error control, implicit turbulence modeling using stabilized
FEM and strong linear scaling up to thousands of cores [10,11]. FEniCS-HPC is a
branch of the FEniCS [12,13] framework focusing on high performance in massively
parallel architectures.

Unicorn is solver technology (models, methods, algorithms and software) with
the goal of automated high-performance simulation of realistic continuum mechan-
ics applications, such as drag or lift computation for fixed or flexible objects (FSI) in
turbulent incompressible or compressible flow. The basis for Unicorn is Unified Con-
tinuum (UC) modeling [14] formulated in Euler (laboratory) coordinates, together
with the General Galerkin (G2) adaptive stabilized finite element discretization
described above.

FEniCS-HPC is based on a component’s structure, which has many components.
DOLFIN [15], which supports both C++ and python programming languages,
provides the core problem solving environment to FEniCS, such as data structures,
algorithms for computational meshes, and finite element assembly.

FEniCS-HPC is a problem-solving environment (PSE) for automated solution
of PDE by the FEM with a high-level interface for the basic concepts of FEM: weak
forms, meshes, refinement, sparse linear algebra, and with HPC concepts such as
partitioning, load balancing abstracted away.

The framework is based on components with clearly defined responsibilities. A
compact description of the main components follows, with their dependencies as



1.5. COMPONENTS OF FENICS-HPC 5

shown in the dependency diagram in Figure 1.1:

FIAT: Automated generation of finite element spaces V and basis functions φ ∈ V
on the reference cell and numerical integration with FInite element Auto-
mated Tabulator (FIAT) [12,16]

e = (K,V,L)

where K is a cell in a mesh T , V is a finite-dimensional function space, L is
a set of degrees of freedom.

FFC+UFL: Automated evaluation of weak forms in mathematical notation on
one cell based on code generation with Unified Form Language (UFL) and
FEniCS Form Compiler (FFC) [12,17], using the basis functions φ ∈ V from
FIAT. For example, in the case of the Laplacian operator,

AK
ij = aK(φi, φj) =

∫

K

∇φi · ∇φjdx =

∫

K

lhs(r(φi, φj)dx)

where AK is the element stiffness matrix and r(·, ·) is the weak residual.

DOLFIN-HPC: Automated high performance assembly of weak forms and inter-
face to linear algebra of discrete systems and mesh refinement on a distributed
mesh TΩ [18].

A = 0
for all cells K ∈

TΩ

A += AK

Ax = b

Unicorn: Automated Unified Continuum modeling with Unicorn choosing a spe-
cific weak residual form for incompressible balance equations of mass and
momentum with example visualizations of aircraft simulation below left and
turbulent FSI in vocal folds below right [19].

rUC((v, q), (u, p)) = (v, ρ(∂tu+(u·∇)u)+∇·σ−g)+(q,∇·u)+LS((v, q), (u, p))

where LS is a least-squares stabilizing term described in [20].



6 CHAPTER 1. INTRODUCTION

Figure 1.1: FEniCS-HPC component dependency diagram.

A user of FEniCS-HPC writes the weak forms in the UFL language, compiles it
with FFC, and includes it in a high-level “solver” written in C++ in DOLFIN-HPC
to read in a mesh, assemble the forms, solve linear systems, refine the mesh, etc.
The Unicorn solver for adaptive computation of turbulent flow and FSI is developed
as part of FEniCS-HPC.

FEniCS-HPC solves the PDE in distributed memory architectures (at the mo-
ment only with MPI and PGAS), where users can define PDE at a higher level
mathematical notation of FEM in weak/variational form. This is compiled into
low-level assembly functions with the help of FEniCS components such as FEn-
iCS Form Compiler (FFC), The Unified Form Language (UFL) and FInite element
Automatic Tabulator (FIAT).

FEniCS-HPC focuses on two components: DOLFIN-HPC and Unicorn. DOLFIN-
HPC has specific development supporting good parallel scaling in the linear algebra
interface to PETSc, parallel mesh distribution, refinement, and load balancing on
the parallel computer architecture environment [21]. Unicorn provides a solving
environment for Unified Continuum modeling: Direct FEM Simulation for a gen-
eral continuum, e.g. incompressible NS equation or fluid-structure interaction with
goal-oriented error control estimation, robust stabilization, slip boundary condi-
tions, high-level mathematical abstraction for time-dependent PDE such as fluid-
structure interaction (FSI) problems. Figure 1.1 shows the typical workflow of the
FEniCS-HPC.



Chapter 2

Mathematical formulation and

validation

In this chapter, we will develop the mathematical formulations and validations.

2.1 Direct FEM Simulation

The Direct FEM Simulation (DFS) methodology is based on directly solving the
continuum model, e.g. Navier-Stokes equations, without an explicit turbulence
model, with a robust finite element method consisting of: residual-based FEM
with stabilization, a posteriori error estimation, and a goal-oriented adaptive error
control algorithm.

2.1.1 The cG(1)cG(1) method

As the basic model for incompressible Newtonian fluid flow, we consider the NSE
with constant kinematic viscosity ν > 0, enclosed in Ω ⊂ R

3, with boundary Γ,
over a time interval I = [0, T ]:











~̇u+ (~u · ∇)~u+ ∇p− 2ν∇ · ǫ(~u) = f, (~x, t) ∈ Ω × I,

∇ · ~u = 0, (~x, t) ∈ Ω × I,

~u(~x, 0) = ~u0(~x), ~x ∈ Ω,

(2.1)

with ~u(~x, t) the velocity vector, p(~x, t) the pressure, ~u0(~x) the initial data and
f(~x, t) a body force. Moreover, σij = 2νǫij(~u) − pδij is the stress tensor, with the
strain rate tensor ǫij(~u) = 1/2(∂ui/∂xj + ∂uj/∂xi), and δij the Kronecker delta.
The relative importance of viscous and inertial effects in the flow is determined by
the Reynolds number Re = ~UL/ν, where ~U and L are characteristic velocity and
length scales respectively.

The cG(1)cG(1) method is based on the continuous Galerkin method cG(1) in
space and time. With cG(1) in time, the trial functions are continuous, piecewise

7



8 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

linear and the test functions piecewise constant. cG(1) in space corresponds to
both test functions and trial functions are being continuous and piecewise linear.

Let 0 = t0 < t1 < ... < tN = T be a sequence of discrete time steps, with
associated time intervals In = (tn−1, tn) of length kn = tn − tn−1, and let W ⊂
H1(Ω) be a finite element space consisting of continuous, piecewise linear functions
on a tetrahedral mesh T = {K} of mesh size h(~x), with W~w the functions ~v ∈ W
satisfying the Dirichlet boundary condition ~v|Γ = ~w.

We seek ~̂U = (~U, P ), continuous piecewise linear in space and time, and the
cG(1)cG(1) method for the NSE with homogeneous Dirichlet boundary conditions

reads: for n = 1, ..., N find (~Un, Pn) ≡ (~U(tn), P (tn)), with ~Un ∈ V0 ≡ [W0]3 and
Pn ∈ W , such that:

((~Un − ~Un−1)k−1
n + ~̄Un · ∇ ~̄Un, ~v) + (2νǫ( ~̄Un), ǫ(~v)) − (Pn,∇ · ~v)

+ (∇ · ~̄Un, q) + SDn
δ ( ~̄Un, Pn;~v, q) = (f,~v), ∀~̂v = (~v, q) ∈ V0 ×W,

(2.2)

where ~̄Un = 1

2
(~Un+ ~Un−1) is piecewise constant in time over In, with the stabilizing

term

SDn
δ ( ~̄Un, Pn;~v, q) ≡ (2.3)

(δ1( ~̄Un · ∇ ~̄Un + ∇Pn − f), ~̄Un · ∇~v + ∇q) + (δ1∇ · ~̄Un,∇ · ~v),

and

(~v, ~w) =
∑

K∈T

∫

K

~v · ~w dx,

(ǫ(~v), ǫ(~w)) =

3
∑

i,j=1

(ǫij(~v), ǫij(~w)),

with the stabilization parameter δ1 = κ1h, where κ1 is a positive constant of unit
size. We chose a time step size kn = CCF L min~x∈Ω h/|~U

n−1|, with CCF L typically
in the range [0.5, 20]. The resulting non-linear algebraic equation system is solved
with a robust Schur-type fixed-point iteration method [22].

2.1.2 The Adaptive Algorithm

A simple description of the adaptive algorithm, starting from i = 0, reads:

1. For the mesh Ti: solve the primal and (linearized) dual problems for the

primal solution (~U, P ) and the dual solution (Φ,Θ).

2. Compute the quantity EK for any cell K of Ti. If
∑

K∈Ti
EK < TOL and then

stop, else:



2.1. DIRECT FEM SIMULATION 9

3. Mark 5% of the elements with highest EK for refinement.

4. Generate the refined mesh Ti+1, and go to 1.

Here, EK is the error indicator for each cell K, which we describe in Sec-
tion 2.1.3. For now, it suffices to say that EK is a function of the residual of
the NSE and the solution to a linearized dual problem. The formulation of the
dual problem includes the definition of a target functional for the refinement, which
usually enters the dual equations as a boundary condition or as a volume source
term. This functional should be chosen according to the problem we are solving.
In other words, one needs to ask the right question in order to obtain the correct
answer from the algorithm. In this chapter, our target functional is chosen to be
the mean value in time of the aerodynamic forces.

The dual problem can be written as (see [23] for more details):






















− ~̇ϕ− (~u · ∇)~ϕ+ ∇~U
⊤

~ϕ+ ∇θ − ν∆~ϕ = ψ1 (~x, t) ∈ Ω × I

∇ · ~ϕ = ψ2 (~x, t) ∈ Ω × I

~ϕ = ψ3 (~x, t) ∈ Γ × I

~ϕ(·, T ) = ψ4 ~x ∈ Ω,

(2.4)

where we find that the structure is similar to the primal NSE equations, except
that the adjoint problem is linear, the transport is backward in time, and that we

have a reaction term (∇~U
⊤

~ϕ)j = U,j · ~ϕ, that is not present in the primal NSE.
The only other input required from the user is an initial discretization of the

geometry, T0. Since our method is designed for tetrahedral meshes that do not
require any special treatment of the near-wall region (no need for a boundary-layer
mesh), the initial mesh can be easily created with any standard mesh generation
tool.

2.1.3 A posteriori error estimate for cG(1)cG(1)

The a posteriori error estimate is based on the following theorem (for a detailed
proof, see chapter 30 in [9]):

Theorem 1 If ~̂U = (~U, P ) solves (2.2), ~̂u = (~u, p) is a weak NSE solution, and
~̂ϕ = (~ϕ, θ) solves an associated dual problem with data M(·), then we have the

following a posteriori error estimate for the target functional M( ~̂U) with respect to
the reference functional M(~̂u):

|M(~̂u) −M( ~̂U)| ≤

N
∑

n=1

[

∫

In

∑

K∈Ti

|R1(~U, P )K | · ω1 dt

+

∫

In

∑

K∈Ti

|R2(~U)K | ω2 dt+

∫

In

∑

K∈Ti

|SDn
δ ( ~̂U ; ~̂ϕ)K | dt

]

=:
∑

K∈Ti

EK



10 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

with

R1(~U, P ) = ~̇U + (~U · ∇)~U + ∇P − 2ν∇ · ǫ(~u) − f,

R2(~U) = ∇ · ~U, (2.5)

where SDn
δ (·; ·)K is a local version of the stabilization form (2.3), and the stability

weights are given as

ω1 = C1hK |∇~ϕ|K ,

ω2 = C2hK |∇θ|K ,

where hK is the diameter of element K in the mesh Ti, and C1,2 represent in-
terpolation constants. Moreover, |w|K ≡ (‖w1‖K , ‖w2‖K , ‖w3‖K), with ‖w‖K =

(w,w)
1/2

K , and the dot denotes the scalar product in R
3.

For simplicity, here, we assumed that the time derivatives of the dual variables
ϕ̂ = (~ϕ, θ) can be bounded by their spatial derivatives. Using Theorem 1, we can
understand the adaptive algorithm. As mentioned above, the error indicator, EK , is
a function of the residual of the NSE and the solution of a linearized dual problem
(a detailed formulation of the dual problem is given in Chapter 14 in [9]). Thus, on

a given mesh, we must first solve the NSE to compute the residuals, R1(~U, P ) and

R2(~U), and then a linearized dual problem to compute the weights multiplying the
residuals, ω1 and ω2. With that information, we are able to compute

∑

K∈Ti
EK and

check it against the given stop criterion. This procedure of solving the forward and
backward problems for the NSE is closely related to an optimization loop and can
be understood as the problem of finding the “optimal mesh” for a given geometry
and boundary conditions, id est, the mesh with the least possible number of degrees
of freedom for computing M(~̂u) within a given degree of accuracy.

2.1.4 The Do-nothing Error Estimate and Indicator

To minimize the loss of sharpness, we also investigated an approach where the weak
form is used directly in a posteriori error estimates without integration by parts to
the strong form using the Cauchy-Schwarz inequality and interpolation estimates.
Here, we refer to this direct form of a posteriori error representation by duality as
the “do-nothing” approach.

In terms of the exact adjoint solution ~̂ϕ, the output error with respect to a weak
solution ~̂u can be represented as

|M(~̂u) −M( ~̂U)| = |(R( ~̂U), ~̂ϕ)| = |
∑

K∈Ti

(R( ~̂U), ~̂ϕ)K | (2.6)

This error representation involves no approximation or inequalities. We thus
refer to the following error indicator based on the representation as the do-nothing
error indicator :

eK ≡ (R( ~̂U), ~̂ϕ)K (2.7)



2.1. DIRECT FEM SIMULATION 11

A computable estimate and an error indicator are again based on the computed
approximation ~̂ϕh of the dual solution:

|M(~̂u) −M( ~̂U)| ≈ |(R( ~̂U), ~̂ϕh)| (2.8)

eK
h ≡ (R( ~̂U), ~̂ϕh)K (2.9)

where we may lose reliability of the global error estimate by the Galerkin orthogo-

nality property, which states that the (R( ~̂U), ~̂ϕh) vanishes for a standard Galerkin

finite element method if ~̂ϕh is chosen in the same space as the test functions. Al-
though, in the setting of a stabilised finite element method, this may not be the
case, see [24].

2.1.5 Boundary layers: medium Reynolds number flow

If the Reynolds number is less than Re = 105, then we choose a no-slip boundary
condition, since it’s tractable to resolve it with the mesh. This has been verified for
numerous cases, such as cube [25], rectangular cylinder [26], sphere [27] and circular
cylinder [28]. In all these cases, the solution converges towards the reference output
quantities such as drag, lift and pressure output with less degree of freedom when
compared to standard LES methods, which are based on manual meshing.

2.1.6 Boundary layers: higher Reynolds number flow

In our work on high Reynolds number turbulent flows [29–31] we chose a skin
friction stress as the wall layer model. That is, we appended the NSE with the
following boundary conditions:

~u · ~n = 0, (2.10)

β~u · τk + ~nTστk = 0, k = 1, 2, (2.11)

for (~x, t) ∈ Γsolid ×I, with ~n = ~n(~x) an outward unit normal vector, and τk = τk(~x)
orthogonal unit tangent vectors of the solid boundary Γsolid. We used matrix
notation with all vectors ~v being column vectors and the corresponding row vector
as denoted by ~vT .

With skin friction boundary conditions, the rate of kinetic energy dissipation in
cG(1)cG(1) makes a contribution to the form

2
∑

k=1

∫ T

0

∫

Γsolid

|β1/2 ~̄U · τk|2 ds dt, (2.12)

from the kinetic energy, which is dissipated as friction in the boundary layer. For
high Re, we modeled Re → ∞ by β → 0, so that the dissipative effect of the



12 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.1: Illustration of the difference between DNS, LES and RANS [source from
Nicoud Franck, dec 2007].

boundary layer vanishes with large Re. In particular, we found that a small β
does not influence the solution [29]. For the present simulations, we used the
approximation β = 0, which can be expected to be a good approximation for real
high-lift configurations, where Re is very high.

2.2 Time resolved adaptive direct FEM simulation

To predict separated flow, including the stall of a full aircraft with Computational
Fluid Dynamics (CFD) is of key importance to society, it is considered by NASA
as one of the grand challenges to be solved by 2030 [1]. This is a turbulent flow
problem. Brute-force computation is intractable, therefore, to do predictive sim-
ulation for a full aircraft, one can use Direct Numerical Simulation (DNS), but it
is prohibitively expensive as it needs to resolve the turbulent scales of order Re

9

4 .
The scales are extremely small when compared to the total length scale of the air-
craft, requires very small elements in an enormous domain. It is thus not feasible
to compute, even on the largest supercomputers today.

There are other methods that require less number of degrees of freedom, that
is, statistical average Reynolds’s Average Navier Stokes (RANS), spatial average
Large Eddy Simulation (LES) and hybrid Detached Eddy Simulation (DES). All of
these methods have to be tuned to benchmark problems, and, moreover, also near
the walls, the mesh has to be very fine to resolve boundary layers (which means the
computational cost is very expensive). Above all, the results are sensitive to, for
e.g. explicit parameters in the method, the mesh, etc. Figure 2.1 shows the basic
illustration of DNS, LES, and RANS.

In contrast to the statistical averages of RANS and the filtered solutions of
LES, our simulation method is based on the computational approximation of weak
solutions to the Navier-Stokes equations (NSE), that satisfy the NSE in variational
form integrated against a class of test functions.

Finite element methods (FEM) are based on a variational form of the NSE, and
if the method satisfies certain conditions on stability and consistency, the FEM
solutions converge towards a weak solution to the NSE as the finite element mesh
is refined [9]. We refer to such FEM as a General Galerkin (G2) method or a Direct
Finite Element simulation (DFS).



2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 13

The resolution in DFS is set by the mesh size, and no turbulence model is
introduced. The dissipation of turbulent kinetic energy in under-resolved parts of
the flow is provided by the numerical stabilization of G2 in the form of a weighted
least squares method based on the residual of NSE.

The mesh is adaptively constructed based on a posteriori estimation of the error
in the chosen goal or target functionals, such as drag and lift forces. The a posteriori
error estimates take the form of a residual weighted by the solution of an adjoint
problem, which is computed separately using a similar stabilized FEM method [9].
The adaptive algorithm starts from a coarse mesh, which is locally refined during
each iteration based on the a posteriori error estimates.

We used a free slip boundary condition as a model for high Reynolds number
turbulent boundary layers with small skin friction. This means that boundary
layers are left unresolved and that no boundary layer mesh is needed.

DFS is a unique approach as it does not require any explicit turbulence modeling
and boundary layer model. The computational mesh is refined based on the poste-
riori error estimation using an adjoint technique. There is no need for a boundary
layer mesh and no need to assume the flow behavior before the simulation and
refine the mesh manually in the fluid domain. The boundary layer is defined by
the wall stress in terms of skin friction. As the Reynolds number goes to infinity,
the skin friction goes to zero. The consequence is the free slip boundary condition,
which facilitates an enormous computational efficiency.

2.2.1 Problem description of JSM full aircraft

The HiLiftPW-3 workshop provides the CAD model of the JAXA Standard Model
(JSM). Figure 3.6 shows the pressure sensor locations on the JSM aircraft and
figure 2.3 shows the JSM model of curvature resolved mesh and volume mesh
(about 2 5M cells) as an adaptive mesh for the starting simulation.

2.2.2 Numerical tripping

Typically, in the field and our previous work, computations are noise-free, which
means boundaries are very smooth, and there are no vibrations. However, in reality,
for example, in an airplane this is not the case, there is noise in the air, vibrations
and rough surfaces.

Recently, the noise has been introduced in the DNS community, which has
shown more uniform results [32]. A similar approach is used in experiments, where
tripping is introduced for consistent results.

Inspired by this, we have introduced a similar approach in DFS, by introducing
a volume force on the bounding box of the aircraft. To prevent the noise from
dominating the solution, we choose the magnitude to 5% of pressure gradient as
white noise.

In the HiLiftPW-2, we could not predict stall with DFS. With the introduction
of numerical tripping [33] we were able to predict stall in HiLiftPW-3; this appears



14 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.2: Pressure sensor layout on JSM configuration.

to have been the missing ingredient. With stall prediction, we thus have the full
resolution of the NASA Vision 2030 challenge.

2.2.3 Aerodynamic Forces

The aerodynamic forces with unit velocity are computed as follows:

F =
1

|I|

∫

I

∫

Γa

p~n dsdt, (2.13)

with, Γa as left half-boundary of the aircraft. The drag and lift coefficients are
simply the x and y components of F .



2.2. TIME RESOLVED ADAPTIVE DIRECT FEM SIMULATION 15

(a) Surface mesh.
(b) Pylon.

(c) Volume mesh.
(d) Wing slice.

Figure 2.3: JSM aircraft model with starting mesh for the adaptive method.

2.2.4 Validation

HiLiftPW-3 provided us the aerodynamics forces for angles 4.36◦ , 10.58◦ , 18.58◦,
21.57◦ and 22.58◦. We compared all the angle results with simulation. In particular,
we compared the aerodynamic forces both with and without tripping for the angles
18.58◦ and 22.58◦. Figure 2.4 shows the comparison between experimental and
simulation. We used a "do-nothing" adaptive approach that refines the mesh based
on solving a primal and dual problem using the posteriori error estimation. So, in
figure 2.4, the results are compared to the optimal mesh solution (after the mesh
convergence).

We observed both Cl and Cd matches experimental results with 5% and 10%
error. We also closely predicted stall in the angles of 18.58◦, 21.57◦ and 22.58◦.
We also saw that stall is happening in 18.58◦, 21.57◦ within the 1◦ error. Our
tripping approach does not affect the solution at 18.58◦, which is the maximum lift
and maximum pre-stall angle. Whereas on 22.58◦, we observed that stall occurs
with large separation when compared to the non-tripped approach. This concludes
that DFS with tripping facilitates stall prediction for realistic aircraft at a realistic
Reynolds number.

More detail comparison (quantitative and qualitative) of lift and drag against
the experimental data is explained in the application Chapter 3.



16 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

10 20 30 40 50
angle of attack

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

C
l

sim (adapt. it. smaller)

sim tripped (adapt. it. smaller)

exp. pylon

10 20 30 40 50
angle of attack

0.1

0.2

0.3

0.4

0.5

0.6

C
d

HiLiftPW-3 JSM pylon-on Unicorn - Cl and Cd vs. angle of attack

Figure 2.4: Lift coefficient, Cl, and drag coefficient, Cd, versus the angle of attack, α,
for the different meshes from the iterative adaptive method.

2.3 Multi Phase Flow

In this section, we will describe multiphase flow formulation. Multiphase flow is
essential modeling in science and engineering, for example, chemical industries and
renewable marine engineering. We introduced a variable-density incompressible
Navier-Stokes formulation in the DFS methodology, where DFS is implemented in
FEniCS-HPC.

2.3.1 Mathematical model

We modeled the problem using the primitive incompressible Navier-Stokes equa-
tions with variable density ρ:



2.3. MULTI PHASE FLOW 17

R(û) =











ρ(∂tu+ (u · ∇)u) + ∇p− ν∆u− ρg = 0

∂tρ+ (u · ∇)ρ = 0

∇ · u = 0

û = (u, p, ρ)

By using a few parameter-free stabilized finite element method (FEM), we were
not introducing any explicit parameterization or modeling, aside from the slip model
of the boundary layer and we thus expected the simulations to be predictive if the
mesh is fine enough to control the computational error.

2.3.2 Direct FEM cG(1)cG(1) for variable-density

In a cG(1)cG(1) method [34], we sought an approximate space-time solution Û =
(D,U, P ) (with D the discrete density ρ) that is continuous piecewise linear in space
and time (equivalent to the implicit Crank-Nicolson method). With I a time inter-
val with sub intervals In = (tn−1, tn), Wn a standard spatial finite element space of
continuous piecewise linear functions, and Wn

0 the functions in Wn, which are zero
on the boundary Γ, the cG(1)cG(1) method for variable-density incompressible flow
with homogeneous Dirichlet boundary conditions for the velocity takes the following
form: for n = 1, ..., N , find (Dn, Un, Pn) ≡ (D(tn), U(tn), P (tn)) with Dn ∈ Wn,
Un ∈ V n

0 ≡ [Wn
0 ]3 and Pn ∈ Wn, such that

r(Û , v̂) = (D((Un − Un−1)k−1
n + (Ūn · ∇)Ūn), v) + (2νǫ(Ūn), ǫ(v))

− (P,∇ · v) − (Dg, v) + (∇ · Ūn, q) + (Dn −Dn−1)k−1
n + (Ūn · ∇)D̄n), v)

+ LS(Dn, Ūn, Pn) + SC(Dn, Ūn, Pn) = 0, ∀v̂ = (z, v, q) ∈ Wn × V n
0 ×Wn

(2.14)

where Ūn = 1/2(Un + Un−1) is piecewise constant in time over In and LS and SC
are least-squares and shock-capturing stabilizing term described in [34].

Here, we also add an experimental phase separation term for the form (ρair −
ρ)(ρwater − ρ).

2.3.3 Validation

Figure 2.5 shows a marine engineering dam breaking wave impact setup, which
is the MARIN benchmark [35] problem. Water is stored in a rectangular box; the
release of the water impacts the box. On the box, there are pressure sensors, which
are compared to the simulation results.

Since for the variable density method, we do not have an adaptive approach
yet; we use uniform refinement. We have approximately uniform mesh size and ca.
2 million vertices.

In Figure 2.6, we see water isosurface and contour of water density. Figure
2.7 shows the pressure comparison with simulation and experiment, and pressure



18 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.5: Layout of dam breaking benchmark settings [source from K.M.T. Kleefsman
et al.,2005].

Figure 2.6: Density slice and isosurface for ρ = 0.5 at t = 0, 1, 2, 3, 4, 5s.

values are compared at location P1 and P7. We notice that there is good agreement
between simulation and experimental values for the phase separation variant, and
worse agreement without the phase separation term. Later this approach is adapted
to two applications: one is a flash rainwater tank door opening and the second
application is 3D printing. These are well explained in Chapter 3.

2.4 Tandem sphere

In this section, we will describe tandem sphere simulations in the Fifth AIAA High
Order CFD Workshop and compare our DFS results with higher-order methods,
in particular, PyFR and Nek5000. Higher-order methods are defined as giving a
better order of accuracy than 2 for a smooth solution. Another possible advantage
of higher-order formulations are more compact computation, which can improve the
communication performance in an HPC setting. For further details of higher-order



2.4. TANDEM SPHERE 19

0 1 2 3 4 5 6 7 8
time (s)

2000
0

2000
4000
6000
8000

10000
12000
14000

pr
es

su
re

 (P
a)

Pressure sensor P1
exp
sim

0 2 4 6 8
time (s)

400
0

400
800

1200
1600
2000
2400
2800

pr
es

su
re

 (P
a)

Pressure sensor P7
exp
sim

Dam break pressure comparison Direct FEM sim. vs. MARIN exp.

Figure 2.7: Pressure over time for simulation and experiment for the sensors P1 and
P7 in the MARIN benchmark.

methods, please refer to [36–38].
The tandem sphere problem is a complex unsteady multi-scale flow under tur-

bulent low Reynolds and Mach number. Here, we validate Cd in the DFS setting.
The problem setup information is as follows:

• The diameter of the sphere is D and and another sphere is kept at 10D
distance, with the angle of attack is 0◦

• Reynolds number is ReD = 3900

• Free stream temperature is T∞ = 300K and density is ρ∞ = 1.225 kg
m3

We constructed the starting coarse tetrahedral mesh with appx. 100k vertices,
resolving the curvature of the sphere boundaries and we did not resolve any bound-
ary layer or locally refine the mesh in the fluid domain, that is, both in upstream
and downstream sides of the corresponding spheres. Figure 2.8 shows the initial
mesh for the DFS simulation. In contract Figures 2.9 and 2.10, show how the
higher-order CFD solvers manually refine the mesh at the boundary layer and refine
the mesh along the flow path upstream and downstream of the spheres.

For low Reynolds number, i.e. less than Re = 105, we use the no-slip boundary
condition. In this regime the skin friction is still significant, and boundary layers
can be resolved while still keeping the computational efficiency high.

2.4.1 PyFR

PyFR is an open-source Python-based software framework for solving advection-
diffusion type problems on parallel architectures using the Flux Reconstruction



20 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.8: Initial mesh for the DFS simulation with appx. 100k vertices.

Figure 2.9: M1P3 refined mesh at down stream side of sphere 1 and 2 and refined mesh
at upstream side of sphere 2.



2.4. TANDEM SPHERE 21

Figure 2.10: M1P3 boundary layer is refined manually.

Mesh order Points Elements hmin hmax
CPU

core hours
TandemSpheresTetMesh0.msh 16738 100516 0.19771 104.458 771.2
TandemSpheresTetMesh0P2.msh 133893 100516 0.19771/2 104.458 4958.8
TandemSpheresTetMesh0P3.msh 451792 100516 0.19771/3 104.458 9600
TandemSpheresTetMesh1.msh 41379 248707 0.12839 69.757 2320
TandemSpheresTetMesh1P2.msh 331084 248707 0.12839/2 69.757 8710.4
TandemSpheresTetMesh1P3.msh 1117069 248707 0.12839/3 69.757 14400

Table 2.1: PyFR mesh statistics and computational time.

approach of Huynh [39]. It solves the Euler and Navier Stokes equations using the
mixed unstructured grids (Triangles, Quadrilaterals, Hexahedra, Prisms, Tetrahe-
dra, Pyramids). It supports both 2D and 3D problems. Table 2.1 shows the few
mesh statistics and its computational time. Listing 2.4.1 shows the setting of the
PyFR for the computation. Although PyFR supports GPU, we have only tested
the PyFR with CPU, because at the moment, DFS runs only on the CPU. So we
thought it would be fair to compare with the CPUs.

%flow conditions :

%================

Mach number = 0.1

Raynolds number = 3900

Free stream temperature = 300 K

Density = 1.225 kg/m3

Angle of attach = 0 degree

% Boundary conditions :



22 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

%===================

%Far field : characterictic

% Sphere surface : adiabatic wall

% Naviour stokes equations :

Specific heats = 1.4

Prandel number = 0.72

% Reference

%=========

% https :// how5. cenaero .be/ sites /how5. cenaero .be/ files /

CS1_TandemSpheres_0 .pdf

% PyFR_BC

%=======

%1) Find the static pressure for the computation

%Pd -> Dynamic pressrue

%u -> Free stream velocity

%rho -> Density of the fluid

Pd = 0.5* rho*u*u

Pd = 0.5*1.225*1*1

Pd = 0.6125

Ps = Static pressure

Pd = ( density * velocity ^2) / 2 = ( specific_heat * Ps * Mach_number ^2)

/ 2

Pd = (1.225*1*1) /2

Pd = 0.6125

Ps = Pd /(0.5* specific_heat * Mach_number ^2)

Ps = Pd /(0.5*1.4*0.1*0.1)

Ps = 87.5 kg/m^3

% Reference

%=========

% https :// en. wikipedia .org/wiki/ Dynamic_pressure

% https :// www.grc.nasa.gov/www/BGH/ isentrop .html

%PyFR.ini

%========

[ constants ]

gamma = 1.4 ; specific heat

mu = 0.000314 ;1.225/3900.0 ; viscosity

Uin = 1.0 ; inlet velocity at x direction

Vin = 0.0 ; inlet velocity at y direction

Win = 0.0 ; inlet velocity at z direction



2.4. TANDEM SPHERE 23

Rho = 1.225 ; density

Pr = 0.72 ; prandle number

Pc = 87.5 ; pressure Pd = 0.6125 = 0.5* gamma *Pc *(0.1*0.1)

[solver -time - integrator ]

formulation = std

scheme = rk34 ; this works !!! and no time rejection , it choses the

best time and stays

% scheme = rk45 gives more time step rejection , it works and when it

tries to find a advanced time it crashes

% scheme = rk4 it crashes from the begining

controller = pi

tstart = 0.0

tend = 200.0

dt = 0.148282 ; hmin 0.19771 and dt = 0.75*( hmin/P); OPTION 3 time

step

atol = 1e -6

rtol = 1e -6

errest -norm = l2

safety -fact = 0.9

min -fact = 0.5

max -fact = 3.0

[solver - interfaces ]

riemann - solver = rusanov

ldg -beta = 0.5

ldg -tau = 0.1

[solver - interfaces ]

riemann - solver = rusanov

ldg -beta = 0.5

ldg -tau = 0.1

[solver -elements -tet]

soln -pts = shunn -ham

[solver - interfaces -tri]

flux -pts = williams - shunn

[soln -plugin - writer ]

dt -out = 1

basedir = .

basename = TandemSpheresTetMesh0P1 {t:.2f}

[soln -plugin - fluidforce - frontsphere ]

nsteps = 10

file = frontsphere - forces .csv

header = true

[soln -plugin - fluidforce - backsphere ]

nsteps = 10

file = backsphere - forces .csv

header = true

[soln -plugin - nancheck ]



24 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

nsteps = 10

[soln -plugin - dtstats ]

flushsteps = 10

file = dtstats .csv

header = true

2.4.1.1 Validation:Drag Cd over time with adaptive mesh

Figure 2.12 shows the drag Cd evaluation over time with the adaptive mesh of
tandem sphere. As we can see in Figure 2.12, we predicted drag Cd very close to
the experimental results for a single sphere (2 % error). For the second sphere, we
predicted a slightly reduced drag compared to the first sphere. We interpret this as
the "slipstream" effect, as the wake from the first sphere reduces the upstream pres-
sure on the second sphere. This is a well-known concept, and it is effectively being
applied in trucks, train, and smart driving to reduce the drag [40–43]. Figure 2.11
shows the adaptive mesh at 24th iteration. Here, we can see that the downstream
side of the second sphere is not as refined as the first sphere, consistent with the
error representation and adjoint solution.

2.4.2 Validation: mesh convergence

The workshop guidelines prescribe the computation and interpretation of the com-
putational results in a slightly different way than what is usual. In particular, the
main difference is that the convergence order is no longer specified via an infinites-
imal function of the minimum cell diameter h of a given mesh, as, for example,
the number α is the usual relation with err ≤ Chα, but rather as a function of
a redefined h = N

1

d where N is the total number of degrees of freedom used for
simulation and d is the geometrical dimension of the computational domain.

In our setting, this means that:

• Generalized length scale h = N
1

d

DOF

• Order of convergence e(h) = Chporlog(e(h)) = plog(Ch)

• Compute convergence sequence (ei, hi)

• Least-squares fit for p gives “effective order of convergence“.

Where, h is the minimum cell diameter, N is the number of degree of freedom and
d is the dimension of computational domain.

Figure 2.12 shows the convergence of the drag coefficients of the first and second
sphere by showing the approximation error as a function of the total number of
degrees of freedom used in a particular simulation. Now, the one thing that certainly
does not go unnoticed is that we have orders of convergence not only greater than
one, as we were expecting, but also greater than two. This very curious effect



2.4. TANDEM SPHERE 25

(a) FEniCS-HPC (DFS) refined mesh after
24 adaptive iterations (front view).

(b) FEniCS-HPC (DFS) refined mesh after
24 adaptive iterations (top view).

Figure 2.11

finds its roots in the way the mesh parameter h is defined as a metric of the made
efforts. Indeed, the convergence order is now a measure of how good are the results
we get are, as a function of the computational cost we paid to get them. Here,
our adaptive refinement procedure comes into play, and it does so by playing a
fundamental role. The effect of the adaptive procedure involves choosing the cells
where more resolution is needed and refining them in order to reduce the error
on the target cost functional. This is an equivalent formulation of the problem of
finding the optimal way to spend a fixed amount of computational power in order
to get the best possible approximation of our cost functional. The fact that we can
get a good convergence order is proof of the fact that the method is indeed effective.

2.4.3 Validation: PyFR vs DFS

Figure 2.13 shows that mesh convergence drag Cd over adaptive mesh vertices. This
also shows the mesh convergence is effective over more than 3. We also wanted to
investigate how the mesh convergence for the given mesh and using PyFR would
be. Figure 2.20 shows the DFS mesh convergence for the mesh 1 with 3-5 and
PyFR with mesh 1 with P1-3 (with orders of 1-3). Even though the mesh is pre-
refined, it does not converge for the DFS and is 10% away from the drag. Moreover,
a drag reduction in the second sphere. However in PyFR, there is no clear drag
(see Figure 2.17, 2.18 and 2.19) or mesh convergence, and moreover, PyFR has a
restriction with time step dt ≈ 10/4. This leads to higher cost when compared to
DFS, and this can be, for example, seen in table 2.1. Even with Nek5000 it is a
similar behavior as PyFR. Figure 2.15 shows the Q-criterion for the Tandem sphere
at various time step and Figure 2.14 shows the Q-criterion for the PyFR simulation
for the Tandem sphere.



26 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4

log10(vertices)

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

C
D

Mesh convergence of CD

CD sphere1

CD sphere2

CD sphere exp

−2.3−2.2−2.1−2.0−1.9

log10(h)

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g
1
0
(C

D
e
rr

)

CD err sphere1

CD err sphere2

O(h1.908256)

O(h3.120914)

Figure 2.12: Time evolution of the drag coefficient for various iterations of our adaptive
procedure.



2.4. TANDEM SPHERE 27

0 20 40 60 80 100 120 140 160
t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

CD sphere1

exp

sim iter 15

sim iter 16

sim iter 17

sim iter 18

sim iter 19

sim iter 20

0 20 40 60 80 100 120 140 160
t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

CD sphere2

exp

sim iter 15

sim iter 16

sim iter 17

sim iter 18

sim iter 19

sim iter 20

Figure 2.13: Mesh convergence of the drag coefficients of the two spheres.

Figure 2.14: PyFR: Q-criterion of mesh refinement 0 with P2 with different time step.



28 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

Figure 2.15: FEniCS-HPC: Q-criterion for the Tandem sphere with different timestep.

Figure 2.16: PyFR: Q-criterion of mesh refinement 1 with P2 with different time step.



2.4. TANDEM SPHERE 29

0 25 50 75 100 125 150 175 200
0.3

0.4

0.5

0.6

C d

PyFR-Frontsphere
Mesh0P1
Mesh0P2
Mesh0P3
exp

0 25 50 75 100 125 150 175 200
Time

0.3

0.4

0.5

0.6

C d

PyFR-Backsphere
Mesh0P1
Mesh0P2
Mesh0P3
exp

Figure 2.17: Mesh refinement 0 with different element orders for PyFR.



30 CHAPTER 2. MATHEMATICAL FORMULATION AND VALIDATION

0 25 50 75 100 125 150 175 200

0.30

0.35

0.40

0.45

C d

PyFR-Frontsphere
Mesh1P1
Mesh1P2
Mesh1P3
exp

0 25 50 75 100 125 150 175 200
Time

0.3

0.4

0.5

0.6

C d

PyFR-Backsphere
Mesh1P1
Mesh1P2
Mesh1P3
exp

Figure 2.18: Mesh refinement 2 with different element orders for PyFR.



2.4. TANDEM SPHERE 31

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

C d

PyFR-Frontsphere
Mesh2P1
exp

0 25 50 75 100 125 150 175 200
Time

0.2

0.3

0.4

C d

PyFR-Backsphere
Mesh2P1
exp

Figure 2.19: Mesh refinement 2 with different element orders for PyFR.

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

log10(Work units)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

FEniCS-HPC Tandem Spheres - Mesh convergence of CD

CD sphere1

CD sphere2

CD sphere exp

(a) FEniCS-HPC tandem sphere mesh for Cd

convergence with provided mesh (for meshes
3,4 and 5).

5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0

log10(Work units)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
D

PyFR Tandem Spheres - Mesh convergence of CD

CD sphere1

CD sphere2

CD sphere exp

(b) PyFR mesh convergence for Cd mesh 1
P1-3 (mesh refinement 1 with others 1-3).

Figure 2.20





Chapter 3

Applications

In this Chapter 3 we explain application related to predicting the aerodynamics
forces for the relalistic aircraft, finding the velocity & pressure at the flash tank
rain water storage tank and efficient design of 3D printing nozzle.

3.1 Predicting aerodynamics forces for the full aircraft

with realistic Reynolds number

3.1.1 Background

We present an adaptive finite element method for time-resolved simulation of aero-
dynamics without any turbulence model parameters, which is applied to a bench-
mark problem from the HiLiftPW-3 workshop on computing the flow past a JAXA
Standard Model (JSM) aircraft model at realistic Reynolds number. The mesh is
automatically constructed by the method as part of an adaptive algorithm based
on a posteriori error estimation using adjoint techniques. No explicit turbulence
model is used, and the effect of unresolved turbulent boundary layers are modeled
by a simple parametrization of the wall shear stress in terms of a skin friction. In
the case of very high Reynolds numbers, we approximate the small skin friction by
zero skin friction, corresponding to a free slip boundary condition, which results
in a computational model without any model parameter to be tuned, and without
the need for costly boundary layer resolution. We introduce a numerical tripping
noise term to act as a seed for the growth of perturbations, the results support that
this triggers the correct physical separation at stall and has no significant effect
pre-stall. We show that the methodology quantitatively and qualitatively captures
the main features of the JSM experiment - aerodynamic forces and the stall mech-
anism - with a much coarser mesh resolution and lower computational cost than
the state of the art methods in the field, with convergence under mesh refinement
by the adaptive method. Thus, the simulation methodology appears to be a pos-
sible answer to the challenge of reliably predicting turbulent-separated flows for a

33



34 CHAPTER 3. APPLICATIONS

complete air vehicle.

3.1.2 Introduction

The main challenge today in Computational Fluid Dynamics (CFD) for aerodynam-
ics is to reliably predict turbulent-separated flows [1,44], specifically for a complete
air vehicle. This is our focus in this chapter.

We present an adaptive finite element method without turbulence modeling pa-
rameters for time-resolved simulation of aerodynamics, together with results stem-
ming from the 3rd AIAA CFD High-Lift Prediction Workshop (HiLiftPW-3) which
was held in Denver, Colorado, on June 3rd–4th 2017. The benchmark was a high-lift
configuration of the JSM aircraft model shown in Figure 3.15 at a Reynolds number
realistic for flight conditions.

(a) Surface mesh (b) (Pylon)

(c) Volume mesh (d) Wing slice

Figure 3.1: Overview of the JSM aircraft model and starting mesh for the adaptive
method

The purpose of the workshop is to assess the capability of the state of the art
CFD codes and methods.

Turbulent flows present features on a range of scales, from the scale of the
aircraft down to the Kolmogorov dissipation scale. Direct numerical simulation
(DNS) is not feasible for a full aircraft at realistic Reynolds numbers, instead the
Reynolds Averaged Navier-Stokes equations (RANS) have long been the state of
the art in industry [45]. RANS methods do not provide a full resolution of the
flow field but simulate the mean field and introduce turbulence models to make it
up for the unresolved dynamics. In particular, standard RANS do not resolve the
transient flow field, but a statistical average of the turbulent flow.

In contrast, Large Eddy Simulations (LES) [46] resolve the dynamics of a filtered
flow field, at the cost of higher mesh resolution than RANS, with subgrid models



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 35

for unresolved scales. Both RANS and LES, and hybrids such as DES, introduce
model parameters that need to be tuned to the problem at hand, and the results
are highly sensitive to the design of the computational mesh [47–51]. In particular,
turbulent boundary layers cannot be resolved and must be modelled. Boundary
layer models require tailored boundary layer meshes, which are expensive in terms
of both mesh density and manual work. Witherden and Jameson in [44] state that
“as a community, we are still far away from LES of a complete air vehicle”.

The method we present is an adaptive finite element method without explicit
turbulence model and boundary layer model, thus without model parameters and
without the need for a boundary layer mesh. The mesh is automatically constructed
by the method as part of the computation through an adaptive procedure based
on a posteriori error estimation using adjoint techniques. Dissipation of turbulent
kinetic energy is provided by residual-based numerical stabilization. The method is
thus purely based on the Navier-Stokes equations, no other modeling assumptions
are made.

We model the effect of turbulent boundary layers by a parametrization of the
wall shear stress in terms of skin friction. For very high Reynolds numbers we
approximate the small skin friction by zero skin friction, corresponding to a free
slip boundary condition, which results in a computational method without any
model parameters that need to be tuned, and without the need for costly boundary
layer resolution.

In this chapter, we give the main components of the simulation methodology
and we present our results stemming from the HiLiftPW-3, where we highlight
the non-standard aspects of the methodology and discuss the results in relation to
the experiments. The HiLiftPW-3 specified two variants of the JSM, one without
pylon (or nacelle) and one with the pylon included in the geometry (“pylon on”).
The difference in the aerodynamic forces between the two variants measured in
experiments are small, typically less than 2 %. For this reason, we will focus only
on the “pylon on” variant with the aim of validating our methodology.

The workshop guidelines prescribed the study of these two variants either with
a fixed mesh or, more interestingly, using mesh adaptation techniques. Considering
the nature of our method, which intimately depends on its adaptive procedure,
we concentrated on the latter study. We did not use the provided computational
meshes, but instead generated more suitable ones for our methodology, starting
from the provided CAD files. We would like to point out that our adaptive method-
ology does not require any ad-hoc meshing procedure aimed at helping the solver
identify flow features that are qualitatively known before starting the computations.
Not only does this simplify the meshing procedure, which can now be carried out
by non-specialized software (and scientists), but it also makes it faster: the only
thing that we need is an initial mesh that captures the geometry of the object; this
is due to the fact that the generated mesh loses memory of the underlying CAD
model, and therefore the refinement of boundary triangles cannot correct a rough
initial approximation of the CAD geometry. We plan to get rid of this constraint
in the near future, implementing the functionality to refine boundary cells with the



36 CHAPTER 3. APPLICATIONS

new vertices projected on the CAD model. Once we have a sufficiently accurate
surface description, however, we can let the mesh be coarse in the volume part,
which will be refined iteratively by the adaptive algorithm.

This convenient approach allows us to perform computations starting with
rather coarse meshes, increasing the number of cells only where needed in order
to best utilize the available computational resources. Our initial mesh for the JSM
case have about 2 5M cells.

We find that the simulation results compare very well with experimental data
for all the angles of attack that we studied; moreover, we show mesh-convergence by
the adaptive method, while using a relatively low number of spatial degrees of free-
dom. The low computational cost also allows for a time-resolved simulation, which
provides additional results that cannot be obtained from a stationary simulation,
such as the ones based on Reynolds-averaged Navier-Stokes equations (RANS).

Thus, the simulation methodology appears to be a possible answer to the chal-
lenge of reliably predicting turbulent-separated flows for a complete air vehicle. We
specifically here present simulation results reproducing the physically correct stall
mechanism of large-scale separation at the wing-body juncture, which is promising
for our continuing work on validating the methodology.

3.1.3 Simulation methodology

In contrast to the statistical averages of RANS and the filtered solutions of LES,
our simulation method is based on computational approximation of weak solutions
to the Navier-Stokes equations (NSE), that satisfy the NSE in variational form
integrated against a class of test functions.

Finite element methods (FEM) are based on a variational form of the NSE, and
if the method satisfies certain conditions on stability and consistency, the FEM
solutions converge towards a weak solution to the NSE as the finite element mesh
is refined [9]. We refer to such FEM as a General Galerkin (G2) method or a Direct
Finite Element simulation (DFS).

The resolution in DFS is set by the mesh size, and no turbulence model is
introduced. The dissipation of turbulent kinetic energy in under-resolved parts of
the flow is provided by the numerical stabilization of G2 in the form of a weighted
least squares method based on the residual of NSE.

The mesh is adaptively constructed based on a posteriori estimation of the error
in the chosen goal or target functionals, such as drag and lift forces. The a posteriori
error estimates take the form of a residual weighted by the solution of an adjoint
problem, which is computed separately using a similar stabilized FEM method [9].
The adaptive algorithm starts from a coarse mesh, which is locally refined each
iteration based on the a posteriori error estimates.

We use a free slip boundary condition as a model for high Reynolds number
turbulent boundary layers with small skin friction. This means that boundary
layers are left unresolved and that no boundary layer mesh is needed.



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 37

This methodology has been validated on a number of standard benchmark prob-
lems in the literature [26–28,52], including for an aircraft model for the HiLiftPW-
2 [53] and we find that also for the benchmark considered in this chapter the method
is very efficient and provides results close to the experimental reference data.

We have used a low order finite element discretization on unstructured tetrahe-
dral meshes, which we refer to as cG(1)cG(1), id est, continuous piecewise linear
approximation in space and time.

3.1.3.1 The cG(1)cG(1) method

Please refer to Chapter 2.1.1 for further information.

3.1.3.2 The Adaptive Algorithm

Please refer to Chapter 2.1.2 for further information.

3.1.3.3 A posteriori error estimate for cG(1)cG(1)

Please refer to Chapter 2.1.3 for futher information.

3.1.3.4 The Do-nothing Error Estimate and Indicator

Please refer to Chapter 2.1.4 for further information.

3.1.3.5 Turbulent boundary layers

In our work on high Reynolds number turbulent flows [29–31] we have chosen to
apply a skin friction stress as wall layer model. That is, we append the NSE with
the following boundary conditions:

~u · ~n = 0, (3.1)

β~u · τk + ~nTστk = 0, k = 1, 2, (3.2)

for (~x, t) ∈ Γsolid × I, with ~n = ~n(~x) an outward unit normal vector, and τk =
τk(~x) orthogonal unit tangent vectors of the solid boundary Γsolid. We use matrix
notation with all vectors ~v being column vectors and the corresponding row vector
being denoted by ~vT .

With skin friction boundary conditions, the rate of kinetic energy dissipation in
cG(1)cG(1) has a contribution of the form

2
∑

k=1

∫ T

0

∫

Γsolid

|β1/2 ~̄U · τk|2 ds dt, (3.3)

from the kinetic energy which is dissipated as friction in the boundary layer. For
high Re, we model Re → ∞ by β → 0, so that the dissipative effect of the boundary



38 CHAPTER 3. APPLICATIONS

layer vanishes with large Re. In particular, we have found that a small β does not
influence the solution [29]. For the present simulations we used the approxima-
tion β = 0, which can be expected to be a good approximation for real high-lift
configurations, where Re is very high.

3.1.3.6 Numerical tripping

Please refer to Chapter 2.2.2 for further information.

3.1.3.7 The FEniCS-HPC finite element computational framework

The simulations in this article have been computed using the Unicorn solver in the
FEniCS-HPC automated FEM software framework.

FEniCS-HPC [8] is an open-source framework for the automated solution of
PDEs on massively parallel architectures, providing automated evaluation of vari-
ational forms whose description is given in a high-level mathematical notation,
duality-based adaptive error control, implicit turbulence modeling by the use of
stabilized FEM and strong linear scaling up to thousands of cores [10,11,18,54–57].
FEniCS-HPC is a branch of the FEniCS [12, 13] framework focusing on high per-
formance on massively parallel architectures.

Unicorn is solver technology (models, methods, algorithms and software) with
the goal of automated high performance simulation of realistic continuum mechan-
ics applications, such as drag or lift computation for fixed or flexible objects (FSI) in
turbulent incompressible or compressible flow. The basis for Unicorn is Unified Con-
tinuum (UC) modeling [14] formulated in Euler (laboratory) coordinates, together
with the General Galerkin (G2) adaptive stabilized finite element discretization
described above.

The simulations in this chapter were run on supercomputer resources described
in the Acknowledgments section, and took ca. 10h on the finest mesh for the whole
time interval using ca. 1000 cores.

3.1.4 Results

We have performed simulations with the adaptive DFS methodology using the
Unicorn/FEniCS-HPC framework for the JSM “pylon on” variant of the HiLiftPW-
3 benchmark for the angles 4.36°, 10.58°, 18.58°, 21.57° and 22.58°. All angles
except 22.58° have rich experimental data including forces, cp and oil film provided
by the workshop, which we will compare against below. The angle 22.58° only
has force data. The angles 21.57° and 22.58° exhibit stall in the experiment, e.g.
large-scale separation leading to loss of lift force. Capturing stall quantitatively
and with the correct stall mechanism is an open problem in aerodynamics, we
therefore investigate both the angle 21.57°, which is the highest angle with detailed
experimental data, as well as 22.58°,



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 39

The experiment is a semispan model at Re = 1.93M . However, “free air”
computations were requested, and to avoid possible modeling errors introduced by
a symmetry plane we model the entire aircraft. However, we choose the output
quantity as drag and lift of the left side of the aircraft only, to save computational
resources, where we expect the adaptive method to refine in the right half-volume
only when there is a significant error contribution to the drag and lift on the left
side.

The initial mesh in the adaptive method has ca. 2.5M vertices, and the mesh
is then iteratively refined with 5% of the cells in every iteration until we observe
mesh convergence in drag and lift, or as many times as we can afford. The finest
adapted meshes in our computations presented here have 5M to 10M vertices.

We solve the time-dependent Navier-Stokes equations (2.1) with a non-dimensional
unit inflow velocity over the time interval I = [0, 10]. For some of the cases close to
stall where we observe a longer startup, we extend the time interval to I = [0, 20].
To compute the aerodynamic coefficients we take the mean value in the last quarter
of the time interval, e.g. [7.5, 10] or [15, 20], respectively.

We have divided this section into three parts:

1. Detailed comparison of aerodynamic forces against the experiments including
convergence of the adaptive method and analysis of stall.

2. Detailed comparison of the pressure coefficients cp against the experimental
data, including analysis of cp in the stall regime.

3. Flow visualizations are presented, including dual quantities acting as weights
in the error estimates, and comparison of surface velocity against oil film
visualizations in the experiment.

3.1.5 Aerodynamic Forces

F =
1

|I|

∫

I

∫

Γa

p~n dsdt, (3.4)

with Γa the left half-boundary of the aircraft. The drag and lift coefficients are
then simply the x and y components of F since we have unit inflow.

We use the duality-based “do-nothing” adaptive method, which iteratively re-
fines the mesh by repeatedly solving the primal and dual problem based on the a
posteriori error estimate. This generates a sequence of adapted meshes, a procedure
that takes the role of the classical mesh study.

In Figure 3.2 we plot the lift coefficient, Cl, and drag coefficient, Cd, versus the
angle of attack, α, for the different meshes from the iterative adaptive method.

The size of the dots indicates the iteration number in the adaptive sequence,
with larger dots indicating a larger number, that is more refinement. We connect the
finest meshes with lines and also plot the experimental data as lines. For the angles



40 CHAPTER 3. APPLICATIONS

10 20 30 40 50
angle of attack

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

C
l

sim (adapt. it. smaller)

sim tripped (adapt. it. smaller)

exp. pylon

10 20 30 40 50
angle of attack

0.1

0.2

0.3

0.4

0.5

0.6

C
d

HiLiftPW-3 JSM pylon-on Unicorn - Cl and Cd vs. angle of attack

Figure 3.2: Lift coefficient, Cl, and drag coefficient, Cd, versus the angle of attack, α,
for the different meshes from the iterative adaptive method.

18.58◦ and 22.58◦ we compute the solution both with and without the “numerical
tripping” term described in Section tripping 3.1.3.6 to assess the dependence on
the angle of attack, the tripped cases are plotted in red, and the adaptive sequence
shifted somewhat to the right for clarity.

We observe mesh convergence to within 1 % to 2 % for all cases, a close match to
the experiments for Cl, within circa 5 %, and a small overprediction of circa 10 % for
Cd, which is consistent with the majority of the participants in HiLiftPW-3 across
a range of methods [58], suggesting a systematic error in the problem statement or
the experimental data.

For the stall regime angles 18.58◦, 21.57◦ and 22.58◦ we qualitatively reproduce
the stall phenomenon in the experiment – a decrease in Cl with increased angle
of attack past 21.57◦. We observe that the stall angle occurs somewhere between
18.58◦, 21.57◦ which is ca. 1◦ from the experimental stall angle.

Additionally, we verify that the “numerical tripping” functions as expected:
the term has no significant impact on the solution for an angle of 18.58◦, which
is the maximum lift angle and the maximum non-stalling angle, whereas for the



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 41

0 2 4 6 8 10 12

t

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

C
d

Time evolution of Cd

exp

sim iter 00

sim iter 01

sim iter 02

sim iter 03

sim iter 04

0 2 4 6 8 10 12

t

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

C
l

Time evolution of Cl

exp

sim iter 00

sim iter 01

sim iter 02

sim iter 03

sim iter 04

Figure 3.3: Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table of
the value for the finest adaptive mesh with relative error compared to the experimental
results for α = 4.36 ◦.

stalling angle 22.58◦ we observe that the tripping has the effect of triggering a
large-scale separation consistent with the stall phenomenon, whereas the untripped
case appears to contain too small perturbations for the separation to occur. We
analyze the stall mechanism in more detail in the surface velocity visualization
below.

To analyze the variability in time of Cd and Cl we plot the time evolution for
α = 4.36◦ in Figure 3.3, untripped with α = 18.58◦ in Figure 3.4 and tripped with
α = 18.58◦ in Figure 3.5.

For the pre-stall cases we observe an initial “startup phase” for t ∈ [0, 5] and
then an oscillation around a stable mean value. The effect of the numerical tripping
is noise in the Cd and Cl signals with amplitude of about 1 %.

3.1.6 Pressure coefficients

The pressure coefficients Cp from both simulation on the finest adaptive mesh and
experiments are plotted in Figures 3.7, 3.8 and 3.9, for the wing, flap and slat
respectively.

The pressure sensor locations corresponding to the plots are specified in the
diagram in Figure 3.6.

Since the aerodynamic force defined in (3.4) matches the experiment well, and
since it consists of integrals of the pressure weighed by the normal vector, the
Cp values also have to match the experiment on average. However, the Cp plots



42 CHAPTER 3. APPLICATIONS

0 2 4 6 8 10 12

t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
d

Time evolution of Cd

exp

sim iter 00

sim iter 01

sim iter 02

sim iter 03

sim iter 04

0 2 4 6 8 10 12

t

1.5

2.0

2.5

3.0

3.5

4.0

C
l

Time evolution of Cl

exp

sim iter 00

sim iter 01

sim iter 02

sim iter 03

sim iter 04

Figure 3.4: Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table of
the value for the finest adaptive mesh with relative error compared to the experimental
results for α = 18.58 ◦, untripped.

0 2 4 6 8 10 12

t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
d

Time evolution of Cd

exp

sim iter 00

sim iter 01

sim iter 02

sim iter 03

sim iter 04

sim iter 05

0 2 4 6 8 10 12

t

1.5

2.0

2.5

3.0

3.5

4.0

C
l

Time evolution of Cl

exp

sim iter 00

sim iter 01

sim iter 02

sim iter 03

sim iter 04

sim iter 05

Figure 3.5: Time evolution of lift coefficient, Cl, and drag coefficient, Cd, and a table of
the value for the finest adaptive mesh with relative error compared to the experimental
for α = 18.58 ◦ with numerical tripping.



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 43

Figure 3.6: Diagram of the pressure sensor layout for the JSM configuration showing
where the pressure sensors are located and how they are denoted.

can give insight into local mechanisms such as separation patterns, an important
example being the stall mechanism. These local mechanisms are what we will focus
on here.

First of all, we see that for the pre-stall angles α = 10.48 ◦ and α = 18.58 ◦ the
simulation and experiment match very well for the wing and slat, and generally
well for the flap, aside from local differences. The Cp for the simulation is lower on
the upper surface for the flap close to the body (the A-A station). Otherwise, the
curves generally match.

For the stall regime we analyze both 21.57 ◦ where experimental Cp are available
and 22.56 ◦ where experimental Cp plots are not available. We compare both against
the experimental Cp plots for 21.57 ◦ to have a margin for if we have stall at a higher
angle in the simulation. The simulation matches the experiment very well, there is a



44 CHAPTER 3. APPLICATIONS

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2
C

p

Cp

Cp sim.

Cp exp.

Figure 3.7: Pressure coefficients, Cp, versus normalized local chord, x/c, for the angles
of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦ (right) at locations A-A
(top), D-D (middle) and G-G (bottom) for the wing of JSM pylon on.

small discrepancy for the wing close to the body (the A-A station), but considering
that this is where the large-scale separation causing the stall is located, the results
match acceptably.

The matching Cp curves are consistent with matching Cd and Cl from the
aerodynamic force plots.

We now compare the tripped and untripped simulation with the experiment at
22.56 ◦, as well as 22.56 ◦ in Figure 3.10 for the wing.

We clearly see that the untripped simulation for 22.56 ◦ grossly misses the Cp on
the upper surface at station A-A, near the wing-body junction where the large-scale
separation mechanism causing stall is located, while the tripped simulation captures
the experimental Cp curve well, aside from a slightly lower Cp near the leading edge.
We conclude that the tripping acts to trigger the physically correct separation. At
the other stations, D-D and G-G, the tripped and untripped simulations are very
similar, indicating that the tripping does not have a significant effect aside from



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 45

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.0

−0.5

0.0

0.5

C
p

Cp

Cp sim.

Cp exp.

Figure 3.8: Pressure coefficients, Cp, versus normalized local chord, x/c, for the angles
of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦ (right) at locations A-A
(top), D-D (middle) and G-G (bottom) for the flap of JSM pylon on.

the triggering of the perturbations.

The α = 21.57 ◦ simulation is tripped and captures the experiment less well
than 22.56 ◦, but better than 22.56 ◦ untripped indicating that we may have a ca.
1 ◦ later stall angle in the simulation than in the experiment.

3.1.7 Flow and Adaptive Mesh Refinement Visualization

Here we concentrate on presenting effective visualization of the flow and the adap-
tive mesh refinement procedure. Our aim is to provide information on the properties
and features of the approximated solution and, more importantly, of the approxi-
mating procedure, most of which cannot be discerned from one dimensional plots of
the pressure coefficient and the aerodynamic forces. Sometimes these more complex
visualizations cannot be directly compared to experiments, but still, they constitute
a qualitative validation of the results.



46 CHAPTER 3. APPLICATIONS

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6
−5
−4
−3
−2
−1
0
1
2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−10

−8

−6

−4

−2

0

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−15

−10

−5

0

C
p

Cp

Cp sim.

Cp exp.

Figure 3.9: Pressure coefficients, Cp, versus normalized local chord, x/c, in the stall
regime for the angles of attack α = 10.48 ◦ (left), α = 18.58 ◦ (middle) and α = 22.56 ◦

(right) at locations A-A (top), D-D (middle) and G-G (bottom) for the slat of JSM pylon
on.

The first plots that we show are the surface plots of the velocity magnitude on
the upper side of the wing. Together with the velocity magnitude surface plots we
also report pictures of the oil film experiment that was provided by the organizers as
a validation tool. These serve as comparison tools, and we report such comparison
in Figure 3.11.

Some common features intrinsic of the geometry of the JSM aircraft is revealed
by the oil film experiment and reproduced by the velocity plots. A pattern of low
velocity streaks, alternating with areas of higher velocity is seen on the suction side
of the fixed wing for all angles of attack. This is caused by separation at the slat
tracks upstream, which is correctly captured by the numerical solution.

Another characteristic feature of the flow is the turbulent separation near the
tip of the wing. This is particularly evident in the case α = 18.59°.

Areas that exhibit this kind of flow behavior influence the aerodynamic forces on



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 47

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6
−5
−4
−3
−2
−1
0
1
2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−5

−4

−3

−2

−1

0

1

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.

Cp exp.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−6

−4

−2

0

2

C
p

Cp

Cp sim.

Cp exp.

Figure 3.10: Pressure coefficients, Cp, versus normalized local chord, x/c, for the angle
of attack α = 22.56 ◦ untripped (left), the same angle α = 22.56 ◦ tripped (middle) and
α = 21.57 ◦ tripped at locations A-A (top), D-D (middle) and G-G (bottom) for the wing
of JSM pylon on.

the aircraft, and indeed in our experimentation we found that computations done on
some meshes resulted in wrong predictions of the target functionals, usually yielding
lower lift coefficients than the experimental ones. We were able to overcome this
intermediate obstacle by refining the surface mesh was the original geometry had
a higher curvature. We later interpreted the effectiveness of this workaround as a
symptom that the original meshes were unable to capture the surface geometry to
a sufficient degree of accuracy, and were for this reason failing at reproducing these
complex patterns.

Another interesting visualization technique, which we are about to present is
more closely related to turbulence itself: the Q-criterion [59]. The Q-criterion was
widely used in the literature to visualize turbulent features of fluid flows. The main
idea is that it is possible to define a quantity, commonly denoted by the letter Q,
whose value is related to the vorticity and thus the visualization of the isocontours



48 CHAPTER 3. APPLICATIONS

Figure 3.11: Comparison between experimental oil film visualization (left) and surface
rendering of the velocity magnitude (right).

of Q is claimed to give visual information on the presence and location of vortexes
within the flow field.

The Q-criterion for the case of the airplane with pylon is displayed in Figure 3.12
for three different angles of attack.

Once again, the visualization technique highlights the same pattern as in the
previous case: the isosurfaces assume a characteristic V shape along the interfaces
between the fast and slow velocity regions on the suction side of the wing. Not
only that, but we can also clearly distinguish a clustering of these isosurfaces near
the tip of the wing, matching the position of the turbulent separation zone that
we mentioned above. The Q-criterion visualizations are consistent with the surface
velocity plots, and this internal coherence increases our trust in the computational
results.



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 49

Figure 3.12: Instantaneous isosurface rendering at the final time of the Q-criterion with
value Q = 100.



50 CHAPTER 3. APPLICATIONS

Let us now turn our attention to the adaptive procedure which produces the
successive approximations of the fluid flow. As we described above, the mesh re-
finement solution is driven by the residual of the Navier-Stokes equations and the
solution of the dual Navier-Stokes equations. We begin by showing a plot of a
volume rendering of the dual solution, see Figure 3.13.

What is worth noting here is that the adjoint velocity flows backward in time
and, consequently, it appears to be flowing in the opposite direction of the primal
velocity. We observe that the part of the mesh where the dual velocity has higher
values are upstream to the airplane. Because of the way the do-nothing error
estimator is designed, we expect that the refinement will happen where both the
residual and the dual solution are large. Indeed, this has the important implication
that the mesh refinement will not only happen on the wing, where the forces are
computed but also upstream, splitting cells that, a priori, are unrelated to the
computation of the aerodynamic forces.

This feature is unique for our methodology: while other methods tend to refine
the mesh in zones where intuitively higher accuracy would yield better approxi-
mation of the aerodynamic forces, namely around the body and downstream, the
adaptive algorithm provides an automatic procedure that knows nothing about the
features of the flow but only takes into account the residual of the equations of
motion and the solution of the dual problem.

In our numerical experimentation we found that this is exactly what happens,
as we are about to show. Consider Figure 3.14, showing a crinkled slice of the mesh
for the initial and the finest meshes for a given angle of attack. It is clear that the
mesh refinement procedure is concentrating both on the area around the surface
where the aerodynamic forces are computed and in the upstream region. Some cells
are refined downstream due to the large residual.

3.1.8 Conclusions

This chapter presents an adaptive finite element method without turbulence model
parameters for time-dependent aerodynamics, and we validate the method by simu-
lation results of a full aircraft model originating from the 3rd AIAA CFD High-Lift
Prediction Workshop (HiLiftPW-3) which was held in Denver, Colorado, on June
3rd-4th 2017. The mesh is automatically constructed by the method as part of the
computation through duality-based a posterori error control and no explicit turbu-
lence model is used. Dissipation of turbulent kinetic energy in under-resolved parts
of the flow is provided by the numerical stabilization in the form of a weighted least
squares method based on the residual of the NSE. Thus, the method is purely based
on the NSE mathematical model and no other modeling assumptions are made.

The DFS method and these simulations are thus parameter-free, where no a
priori knowledge of the flow is needed during the problem formulation stage, nor
during the mesh generation process. Additionally, the computational cost is drasti-
cally reduced by modeling turbulent boundary layers in the form of a slip boundary
condition, and thus no boundary layer mesh is needed.



3.1. PREDICTING AERODYNAMICS FORCES FOR THE FULL AIRCRAFT

WITH REALISTIC REYNOLDS NUMBER 51

Figure 3.13: Volume rendering of the time evolution of the magnitude of the adjoint
velocity ~ϕ magnitude, snapshots at t = (16, 18, 20).



52 CHAPTER 3. APPLICATIONS

Figure 3.14: Crinkled slice aligned with the angle of attack, α = 10.48°



3.2. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS

AND MARINE ENERGY 53

The computed aerodynamic coefficients are very close to the experimental values
for all the angles of attack that we studied. In particular, Cl is within circa 5 % of
the experiments, Cd has a small overprediction of circa 10 %, which is consistent
with the majority of the participants in HiLiftPW-3 across a range of methods [58],
suggesting a systematic error in the problem statement or the experimental data.

The fact that the error is automatically estimated by the method is itself a
critical feature missing in most (if not all) other computational frameworks for
CFD.

Moreover, the adaptive procedure in DFS is seen to converge to a mean value
with oscillations of the order of 1 % to 2 %. This contributes to increase the confi-
dence in the numerical method.

The point of adaptive computations is all about saving on the computational
cost. During the workshop, we had the chance to compare our performance with
that of the other participating groups. In terms of the number of degrees of freedom,
DFS is about ten times cheaper than the leading RANS and Lattice Boltzmann
Methods.

To capture stall, we applied a tripping noise term that turned out to have the
effect of triggering the physically correct stall separation pattern. A similar idea
with a noise term is employed in the DNS community as well, and the addition
of this term seems to have no effect on non-stalling configurations, which is an
important validation.

We observed that DFS was able to capture the stall mechanism of the proposed
configuration, namely the large scale separation pattern that occurs at the wing-
body juncture. The same mechanism is observed in the experiments. The stall
angle is also captured within ca. 1 ◦.

3.2 Turbulent Multiphase Flow in Urban Water Systems

and Marine Energy

High-Reynolds number turbulent incompressible multiphase flow represents a large
class of engineering problems of key relevance to society. Here we describe our work
on The Consorcio de Aguas Bilbao Bizkaia is constructing a new storm tank system
with an automatic cleaning system, based on periodically flushing tank water out
in a tunnel. Here we study the MARIN benchmark modeling breaking waves over
objects in marine environments. Both of these problems are modeled in the Direct
FEM/General Galerkin methodology for turbulent incompressible variable-density
flow [60,61].

3.2.1 Overview

The present world is facing global warming by anthropogenic activities and natural
disasters (e.g. earthquake, tsunami, and volcano), which are causing ozone layer
depletion, loss of biodiversity, water quality, and climate change. Among these,



54 CHAPTER 3. APPLICATIONS

climate change causes extreme weather phenomena across the world, resulting in
either severe flood or drought. In 20th century, about 1000000 people were killed
and 1.4 billion people were affected by the floods [62]. Floods not only kills and
affects the people and also it affects the eco-system, agriculture production, infras-
tructure and creates economical instability. According to The International Disaster
Database [63], from January 1975 to June 2002, flash floods (due to heavy rain) in
Europe has 5.6 % morality (rate of killed verses affected people) [62]. Especially,
in Spain from 1900 to 2016, flash flood killed 987 people, 1350 people were affected
and it caused damage of 642000000 US$ [63]. And it is predicted that the weather
instability (more flash floods) going to be happen frequently in coming years [64].

Bilbao is located northern part of Spain, and it has Oceanic/Atlantic climate;
its annual precipitation is from 1200 to 2000 millimeter (mm) [65]. Consorcio de
Aguas Bilbao Bizkaia (BWC) is constructing a new storm tank (detention tank)
system with an automatic cleaning system based on a periodically flushing tank
out in a tunnel in Galindo. This would prevent rainwater goes into a river and also
minimize the hydraulic load on the existing sewer infrastructure. Later this water
can be treated in a wastewater treatment plant (WWTP) in Galindo for portable
or other purposes.

The excessive water from the detention tank overflows through the tunnel, where
the sediments and floating objects might permanently settle down on the surface of
the tunnel, which will eventually give the foul smell, and in a frequent run, it will
also affect the downstream flow in the tunnel. It is not a feasible solution to send
men to clean the tunnel. Instead, BWC wants to clean the tunnel with periodic
flushing using water from the detention tank.

Our work in the research is to predict the velocity, pressure and flow rate in
the down stream side of the tunnel. Where this velocity, pressure and flow rate
values will be used as an input parameter for the shallow water modelling; and
also, velocity at the door section will be used to design the stronger gate to open
a water from the detention tank. We used the Finite Element Method (FEM)
for the simulation calculation; the problem is modelled as a 3D computations of
the primitive equations (variable-density incompressible Navier-Stokes) in FEniCS-
HPC.

For the simulation, we have investigated the 4 options, they are: TD=5s,10s and
H=6m,10m, with TD the time for the door to fully open and H the initial water
height in the tank. We compute the time interval I=[0s, 6s] for TD=5s, and I=[0s,
11s] for TD=10s.

3.2.2 Mathematical modelling

Please refer to the Chapter 2 for the multiphase mathematical modelling.



3.2. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS

AND MARINE ENERGY 55

3.2.3 The Bilbao Water Consortium storm drain problem

The problem consists of an initial water volume stored in a tank with a gate opening
toward a storm drain tunnel. To clean the tunnel, the gate is opened, and water
flows out throughout the tunnel. Here we investigate a range of gate opening speeds
and initial water height in the tank.

The geometry of the tank, door, and start of the tunnel is presented in Figure
3.15. The mesh is refined close to the door of the tank, and in the region with x
coordinate [30m, 40m] at the start of the tunnel, giving ca. 800k mesh points. The
door height is 1m and breadth is 6m. A slice of the mesh is presented in Figure
3.17 demonstrating the distribution of the cell size.



56 CHAPTER 3. APPLICATIONS

00

0

R

Front View

Top View

Side View From Tunnel

Figure 3.15: Schematic of the geometry of the tank, door and start of the tunnel (top),
and a 3D rendering (bottom).

Gravitational force g=9.81 m s−1 is set at top of the tank and P=0 Pa is set at
the end of the tunnel. Walls in the geometry at the upstream & downstream side
considered as a free-slip boundary condition. The rest of the space in the geometry
(tank and tunnel) were set to air density at ambient temperature as well as water
density is set to the water in the tank. We set time interval as 0.02s, for example,
in TD=5s, we get 250 time interval samples. The door opening mechanism is based
on the time interval (0.02s). In this case, for each time sample, the door is moving
(flow region space is gradually increasing) 0.004m (total length for gate opening is
1m) towards the upward vertical direction. Figure 3.16 shows the boundary and



3.2. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS

AND MARINE ENERGY 57

initial conditions set up in the simulation.

00

Air density at ambient temperature

Outlet 
Water Density at ambient temperature

Door gradually opens 

      as time goes

All the walls set to free-slip 

6
m

Figure 3.16: Initial and boundary conditions set up.

Figure 3.17: Slice plot through the x-z plane (front view) of the mesh.

3.2.4 Simulation results

The simulations are carried out by running on the Beskow supercomputer at KTH
(Sweden). The output is a piecewise linear density field representing the density of
air and water, and a velocity field for the entire continuum. An average time step
of ca. k = 5 × 10−4 is chosen, giving ca. 10k time steps for TD=5s and 20k time
steps for TD=10s. We used 1024 cores on the Beskow Cray XC40 system at KTH
for each simulation, giving ca. 1s per time step of computation time.

In this section, we plot slice plots of the density (showing the evolution of the
water surface), the velocity, 3D plots of the isovolume of the density (showing the
evolution of the water surface). Additionally, we plot the flow rate through the
door over time, and the average velocity in the door section and in the first 10m
section of the tunnel.



58 CHAPTER 3. APPLICATIONS

(a) Density and velocity x-y and x-z slice
TD={5s,10s}, H=6m, t=0.

(b) Density and velocity x-y and x-z
slice TD=5s, H=6m, t=5s.

(c) Density and velocity x-y and x-z slice
TD=10s, H=6m, t=10s.

(d) Density and velocity x-y and x-z
slice TD={5s,10s}, H=10m, t=0.

(e) Density and velocity x-y and x-z slice
TD=5s, H=10m, t=5s.

(f) Density and velocity x-y and x-z slice
TD=10s, H=10m, t=10s.

Figure 3.18: Density and velocity x-y and x-z at different height with different door
opening time.



3.2. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS

AND MARINE ENERGY 59

For example, Figure 3.18 shows the density and velocity at different time and
height setting. As we can see in Figure 3.18 (b) and (e), the turbulence behaviour
is slightly higher for Figure 3.18 (e); as well as the velocity at the bottom of the
tunnel is also higher in both cases (TD={5s and 10s}) for H=10m.

(a) Water isovolume TD={5s,10s},
H=6m, t=0s

(b) Water isovolume TD=5s, H=6m,
t=5s

(c) Water isovolume TD=10s, H=6m,
t=10s

(d) Water isovolume TD={5s,10s},
H=10m, t=0s

(e) Water isovolume TD=5s, H=10m,
t=5s

(f) Water isovolume TD=10s, H=10m,
t=10s

Figure 3.19: Water isovolume at different height with different door opening time.

Figure 3.20 shows the flow rate through the gate. As we can see here, gate
opening time and water height do have an influence over the water flow rate through
the opening gate. The volumetric flow rate depends on the area and the velocity.
For example, in case H=10m, when TD=10s, the area of the flow through the



60 CHAPTER 3. APPLICATIONS

gate is increasing slowly compare to TD=5s, this shows, TD=5s reaches volumetric
flow rate 50 m3 s−1 at 5th second, whereas TD=10s reaches volumetric flow rate
50 m3 s−1 at 10th second. In general, if the H is same (for 5s and 10s) then the
flow rate depends on the area of the opening gate and if the TD is the same (for
6m and 10m) then flow rate depends on the velocity.

0 1 2 3 4 5 6 7 8 9
time (s)

0
5

10
15
20
25
30
35
40
45

flo
w

 ra
te

 (m
^

3 
s^

-1
)

Flow rate for TD=5s H=6m

0 1 2 3 4 5 6 7 8 9
time (s)

0

10

20

30

40

50

60

70

flo
w

 ra
te

 (m
^

3 
s^

-1
)

Flow rate for TD=5s H=10m

0 2 4 6 8 10 12
time (s)

0
5

10
15
20
25
30
35
40

flo
w

 ra
te

 (m
^

3 
s^

-1
)

Flow rate for TD=10s H=6m

0 2 4 6 8 10 12
time (s)

0

10

20

30

40

50

60

flo
w

 ra
te

 (m
^

3 
s^

-1
)

Flow rate for TD=10s H=10m

Figure 3.20: “Spending” flow rate through the door.

Figure 3.21 shows the average velocity at the door section. It is clearly seen
that, velocity will be higher at the door section for H=10m compare to H=6m (for
the same opening time TD=5s). From Pascal’s Law, we can calculate the static
pressure at the gate, but in the real case as the gate opens we need to calculate the
dynamic pressure, from this we can calculate the force acting on the door section.

For example, static pressure can be expressed as P = ρghPa, considering
H=10m, we get P=98.100Pa. Similarly, the dynamic pressure at a fully opened
door can be calculated as P = 1

2
ρv2Pa. The velocity is around 10 m s−1 when the

door is fully opened for TD=5s and H=10m, from this the dynamic pressure will
be P=490.500Pa. A force can be calculated from F = pa N. The area of the door
opening is 6 m2 and P=490.500Pa, then the maximum acting force at the door will
be F=2943 N.



3.2. TURBULENT MULTIPHASE FLOW IN URBAN WATER SYSTEMS

AND MARINE ENERGY 61

The average velocity at the downstream side of the tunnel is plotted in Figure
3.22. It shows, for example, when TD=5s and H=6m, the velocity is increasing
gradually up to 6 m s−1 until the time reaches 4s, after that the velocity is started
to reduce. But on the other hand, if the TD=6s and H=10m, it reaches higher
velocity upto about 6 m s−1. This behaviour is similar to if TD=10s, thus concludes,
water height influences average velocity at the bottom of the tunnel.

0 2 4 6 8 10 12 14
time (s)

0

1

2

3

4

5

6

7

8

ve
lo

ci
ty

 (
m

 s
^

-1
)

Avg. velocity for TD=5s H=6m

0 2 4 6 8 10 12 14
time (s)

0

2

4

6

8

10

12

ve
lo

ci
ty

 (
m

 s
^

-1
)

Avg. velocity for TD=5s H=10m

Figure 3.21: Average x-velocity in the door section.



62 CHAPTER 3. APPLICATIONS

1 2 3 4 5 6 7 8 9
time (s)

2

3

4

5

6

7

8

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=5s H=6m

1 2 3 4 5 6 7 8 9
time (s)

2

4

6

8

10

12

14

16

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=5s H=10m

0 2 4 6 8 10 12
time (s)

1
2
3
4
5
6
7
8
9

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=10s H=6m

0 2 4 6 8 10 12
time (s)

2

4

6

8

10

12

14

ve
lo

ci
ty

 (m
 s

^
-1

)

Avg. velocity for TD=10s H=10m

Figure 3.22: Average flushing x-velocity in the first 10m-section of the tunnel.

3.2.5 Conclusions

In this report, we provide computational results for Direct FEM simulations of the
primitive 3D variable-density incompressible Navier-Stokes equations. The density
and velocity fields have a 3D structure, a triangular jet shape, at the exit of the
door. The door opening time does not appear to have a a significant influence on
the structure or magnitude of the velocity. The water height in the tank has a
significant influence on the magnitude of the velocity in the flushing section at the
beginning of the tunnel.

3.3 3D printing Nozzle design

In this section, we present a nozzle design of the 3D printing using FEniCS-HPC
as mathematical and simulation tool. In recent years 3D printing or Additive
Manufacturing (AM) has become an emerging technology and it has been already
in use for many industries. 3D printing considered as a sustainable production
or eco-friendly production, where one can minimize the wastage of the material
during production. Many industries are replacing their traditional parts or product



3.3. 3D PRINTING NOZZLE DESIGN 63

manufacturing into optimized or smart 3D printing technology. In order to have
3D printing to be efficient, this should have an optimized nozzle design. Here we
design the nozzle for the titanium material. Since it is a metal during the process,
it has to be preserved by the inert gas. All this makes this problem comes under
the multiphase flow. FEniCS-HPC is high level mathematical tool, where one can
easily modify mathematical equations according to physics and has good scalability
on massively super computer architecture. And this problem modelled as Direct
FEM/General Galerkin methodology for turbulent incompressible variable-density
flow in FEniCS-HPC.

3.3.1 Objective

The overall goal of the FRACTAL project led by Etxe-Tar is to design a 3D printing
nozzle for a selective laser melting method, where a fiber laser will be used as an
energy source to melt an inter gas and powder mixture jet ejected by the nozzle.
Where the entire metal melting process is confined by the inert gas (argon) to ensure
minimizing oxygen interaction and hydrogen pick up. 3D printing, also know as
additive manufacturing (AM), has gained popularity in recent years, especially in
the medicine industries, where to make orthopedic components such as the knee,
hip, jaw replacements [66, 67]; and also it uses increases in consumer products
and mechanical industries. For example, General Electronics (GE) produces a 3D
printing spare parts for its next generation LEAP jet engines [68]. And in medicine
(bio-mechanical), each and every patient has a unique structure, to replace their
body parts in a quick way, 3D printing is a good option. It is estimated that to
produce a knee implant component with a traditional method produces up to 80%
metal waste chips [69].

In order to design efficient 3D printing nozzle, we have conducted 3 stages of
research for the nozzle, they are:

• Initial design

• Optimized design

• Compare the simulation results with experimental results

A efficient 3D printing nozzle should have this properties, which are as follows:

1. Minimize a wastage of the titanium powder (titanium is expensive)

2. Avoid oxidation during a melting process (might decrease the melting effi-
ciency, nitrogen and oxygen pickup)

3. Minimize heating of tip of a nozzle (during the melting temperature might
rise around 1,668 ◦C)

We consider a continuum multiphase model of the three phases, they are:



64 CHAPTER 3. APPLICATIONS

Section B
Section C Section E

Pipe Nozzle

Length of the target surface

S
e
c
ti

o
n
 D

S
e
c
ti

o
n
 A

X mm Y mm

10-15 mm

Z
 m

m

Angle of nozzle changes 

as Y changes 

Figure 3.23: Schematic 3D printing nozzle design.

• Inert gas ans particle mixture

• Inert gas

• Air

In the presented simulations we omit the air phase for simplicity, but the model
has the capability for including this third phase without significant extra complex-
ity.The model is discretized by the Direct FEM Simulation (DFS) methodology in
the FEniCS-HPC framework.

3.3.2 Mathematical modelling

Please refer to the Chapter 2 for the multiphase mathematical modelling.

3.3.3 Initial Design

First, we would like to see how the jet of flow will be look like in reality and how far
it can be steady before it breaks; to do this, we have come up with a simple cone
shape model. Figure 3.23 shows the initial design of the 3D printing prototype.
FEniCS-HPC does not have adaptivity for the multiphase flow; in this case, we ran
a couple of adaptive simulations for one-phase flow, and we took that mesh as an
initial mesh for the multiphase flow, for example, this mesh can be seen in Figure
3.27. During the design phase the following items should be considered, they are,
the laser beam diameter is 150 µm, and distance from a nozzle tip to the target
surface should be between 10 mm to 15 mm

Figure 3.24 and 3.25 show a multiphase flow with velocities profiles and differ-
ent section of cone size. As we can see in here, higher velocity seems to be stable
compare to the lower velocity.

3.3.4 Optimized design

In this design phase we introduce a sheath flow [70], which will make the flow
steady and narrow down a jet flow, this concept of geometry can seen in Figure
3.26. Sheath flow has a real benefit which can be seen in the Figures 3.28 and 3.29



3.3. 3D PRINTING NOZZLE DESIGN 65

Figure 3.24: Nozzle length (section c)is 2.5mm and velocities ={0.1, 0.25} m/s

Figure 3.25: Nozzle length (section c)is 5.0mm and velocities ={0.1, 0.25} m/s



66 CHAPTER 3. APPLICATIONS

Figure 3.26: Schematic 3D printing sheath model

Figure 3.27: Adaptivity mesh for the single phase flow

Figure 3.28: Schematic 3D printing sheath model



3.3. 3D PRINTING NOZZLE DESIGN 67

Figure 3.29: Adaptivity mesh for the single phase flow

3.3.5 Validation

In this stage, we got experimental results 3D printing nozzle, which is almost similar
to the sheath modeling, which we discussed above. Figure 3.30 shows the design
of the model and reference sample points location.

3.3.6 Results

The equation (2.3.1) can be scaled arbitrarily keeping the Reynolds number fixed,
using the formula for the Reynolds number Re = ρūL

ν with ū the freestream velocity,
L the characteristic length and ν the viscosity.

In the presented simulations, we choose the physical geometrical dimensions,
where L can be chosen as the diameter of the inner channel, L = 0.8mm. We choose
ρmixture = 1, and ρinert = 1e− 3. The inner inflow is chosen as uinner = 0.75. We
then study a range of sheath inflow velocities and viscosities to study the different
flow regimes and the focusing effect of the sheath flow.

We give a schematic of plot lines in Figure 3.30, used for studying the density
distribution in subsequent plots. The density field in a slice through the center of
the domain is given in Figures 3.31, 3.32, 3.33 for a range of sheath inflow speeds
indicated in the plots. In Figures 3.34, 3.35, and 3.36 the density along the specified
plot lines.

We use the same mesh for all the simulations, which has been constructed by
adaptive one-phase simulations, where we make the coarse approximation that the
velocity field for one-phase flow will be similar to the multi-phase case in the present
simulations.



68 CHAPTER 3. APPLICATIONS

Figure 3.30: Plot line positions = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 mm

Figure 3.31: Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 3.75.



3.3. 3D PRINTING NOZZLE DESIGN 69

Figure 3.32: Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 4.75.

Figure 3.33: Pseu.Col.:Density; viscosity ν = 1e-04, inner inflow uinner = 0.75 and
sheath inflow usheath = 5.75.



70 CHAPTER 3. APPLICATIONS

Figure 3.34: viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
3.75.



3.3. 3D PRINTING NOZZLE DESIGN 71

Figure 3.35: viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
4.75.



72 CHAPTER 3. APPLICATIONS

Figure 3.36: viscosity ν = 1e-04, inner inflow uinner = 0.75 and sheath inflow usheath =
5.75.

3.3.7 Conclusions

From our simulation results, we see that the dominant parameter, aside from the
viscosity, is the sheath velocity. The geometry of the nozzle appears to have less
importance. We have thus focused on studying the sheath inflow speed in this
report.

In the figures 3.34, 3.35, and 3.36 we see that as the speed of the sheath flow
is increased, the width of the inert gas and particle mixture jet is decreased. The
parameters corresponding to 3.36 appear to give the best results among the studied
cases.



Chapter 4

Parallel visualization, cloud

computing and pre-processing

Chapter 4 explains the parallel visualization for the DFS simulation, running the
DFS simulation on the cloud computing platform and recommends a suitable tool
for pre-processing.

4.1 Visualization

Post-processing is important to visualize the output data from the scientific simula-
tions, and it converts scientific data into visual form. Visualization can be described
as a pipeline with a dataflow network in which computations are executed as mod-
ules that are connected in a directed graph, which describes how the data moves
between the modules. There are three types of modules; they are sources, filters,
and sinks [71]. Visualization helps to understand the 1D/2D data and multidimen-
sional data set (for example, 3D data set).

4.1.1 Introduction

We will discuss here the Open Source visualization tool VisIt [3] and Paraview [72],
which is an interactive, scalable, visualization, animation, and analysis tool. There
are also other proprietary tools are available, but they could be expensive or could
have limitations with machines or computational cores, for example, tecplot [73].
Both VisIt and Paraview are based on the Visualization ToolKit (VTK) [2] is an
open-source software for 3D graphics, image processing, and visualization. VTK
does not have a GUI interface, but VisIt and Paraview have a GUI to act as end
user friendly for the Visualization. Figure 4.1 shows the typical workflow of the
data processing in VTK; this is what is happening when someone uses the VisIt or
Paraview.

The functionality of the VTK is as follows:

73



74
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

• VTK has many filters that manipulate the data.

• Can support any kind of data structure.

• Visualization for the 2D plots and charts.

• Good scalability with support of parallel processing (both CPU and GPU).

• Full framework is written in C++ with libraries.

VisIt and Paraview are having the following characteristics:

• Handling the scalar and vector data.

• Support for the structured and unstructured mesh for the 2D and 3D data.

• Allow visualizing the data up to Terabytes (TBs).

• Massive scalability with supercomputers.

• Interactive manipulation(GUI).

• Parallel I/O.

• Availability of the scripting language/(Python and Java).

• Support generic data format (NetCDF, GADGET, CGNS, msh, Silo, BOV,
HDF5/XDMF. VTK, etc.).

• Lots of visualization features (isosurface, isovolume, clip, slice, etc.).

• Extract quantitative information.

• Support for the expressions (math, logical, relational, etc.)

• Create movies and animation with high resolution.

Apart from VisIt and Paraview, there are also other open source tools available
such as follows (only a few of them listed below):

• Mayavi [74]:

– able to visualize the scalar, vector, and tensor data in 2D and 3D format.

– support different data format.

– python scripting.

• VMD [75]: analyzing large biomolecular simulation data in 2D and 3D format.

• Gnuplot: can plot the 2D and 3D data set.



4.1. VISUALIZATION 75

Figure 4.1: Workflow of the VTK pipeline [2].



76
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

4.1.2 Work flow of VisIt and Paraview

A typical workflow of VisIt and Paraview consists as follows:

1. Manual visualization of the local workstation.

2. Remote visualization through Graphical User Interface (GUI) from host to a
remote computer.

4.1.2.1 Visualization in using local workstation

Once the simulation is done in a supercomputer or in a cluster, output of a scientific
data can be downloaded to a local computer for a scientific data visualization. This
data transfer can be done through either using the GUI interface between local a
computer or with Secure Copy Protocol (SCP).

• Using the GUI and analyze the data and produce images and videos. Figure
4.2 and 4.4 show the GUI interface for both VisIt and Paraview, how data
can be analyzed interactively.

• Figure 4.3 shows the recording the python script of the action that we do
while using the GUI for the VisIt. Same goes for the paraview as well, Figure
4.5 and 4.6 show events recording and finishing. Recorded events will be
documented and executed next time from the command line without opening
the GUI.

• visit -cli -s scriptname.py for VisIt from command line.

• pvparaview scriptname.py for the Paraview from command line.

The above mentioned method is quite useful for the small data set and also for
recording some events. But if the data is going to be large, we might need to have
lots of time to visualize the data. Or sometimes, our local computer will not even
have enough memory, and transferring the data from remote to local will take lots
of time. Above all, we can not do parallel visualization. The next Subsection 4.1.3
explains the solution to this problem.

4.1.2.2 Client-server mode

In this method, the simulated output scientific data does not need to be transferred
to the local computer (the end user who wants to visualize the scientific data).
Figure 4.7, shows the typical work flow of client server mode for the VisIt. Here
the local computer is connected to the remote machine (in this case supercomputer)
where the computed data is stored. Once the visualization result is obtained, that
will be transferred into the local machine.

We can also choose here the parallel visualization, which is also can be seen
in Figure 4.7; this means that we can process the data parallelly by using the



4.1. VISUALIZATION 77

Figure 4.2: VisIt GUI.

Figure 4.3: VisIt events recording using the python script.



78
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

Figure 4.4: Paraview GUI.

Figure 4.5: Paraview events recording starting.



4.1. VISUALIZATION 79

Figure 4.6: Paraview events recording finishing.

supercomputer. Once the results are obtained, it will appear on the local machine.
Depends on the data size, one can choose the MPI cores. Both Visit and Paraview
support this client-server model approach.

This seems to be handing larger data and parallel data processing. But still,
it depends on network connectivity and cumbersome actions. The next Subsection
4.1.3 explains the solution for this problem.

4.1.3 Visualization based on the task parallelization

There is an alternative approach to the above mentioned two methods. That is
called the visualization based on the task parallelization. We specifically say here
the task parallelization because of the FEniCS-HPC simulation output files. Since
our methodology based on the adaptivity (and mesh refinement is done only where
it is necessary based on the force quantity marker), thus we do not need to do
the mesh refinement manually. Basically, the mesh refinement is done where it is
needed; in this case, each and every time step file will not be large. Basically, each
and every MPI cores can process the single time step files.

Whereas, if your file is very large, you can still do that data parallelization.
That means, VisIt or Paraview decompose the data automatically and process it
across the MI cores, depends on how much the MPI core allocated during the
batch job launcher. Figure 4.10 shows the data parallelization (approach 1) and
task parallelization (for FEniCS-HPC) (approach 2).

The following steps describe the process:



80
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

Figure 4.7: Client-server mode [3].



4.1. VISUALIZATION 81

• Record the events for the test case at the local computer.

• Launch the batch scripts across the MPI (or accelerators such as GPUs) cores
in the super computer.

(a) sim. on 120 sec. (b) sim. on 350 sec.

Figure 4.8: Marin simulation with no phase separation.

(a) sim. on 120 sec. (b) sim. on 350 sec.

Figure 4.9: Marin simulation with phase separation.

As an example, one time sample file of the Marin simulation is ≈ 170M and
the PDC/KTH Tegner single node memory size is 512 GB RAM. This shows the
feasibility of task parallelism with one sample per core. Figure 4.10 shows the
difference between the task and data parallelism. Approach 1 shows the data par-
allelism with MPI, and approach 2 is distributing each time sample to one core.
Approach 2 is much faster than approach 1. Figures 4.8 and 4.9 show the volume
rendering of the multiphase flow with approach 2. For task parallelism, 54 cores
take ≈ 2 hours for 800 time sample files, whereas for data parallelism, 54 cores take
≈ 20 hours to process the 800 time sample files.

4.1.4 Conclusion and future work

In this visualization section, we have described the gentle introduction of the vi-
sualization, tools, and methodology. And as of our methodology so called task
parallelization seems to be an excellent solution to process the data parallelly and
efficiently. Another approach can be useful, which is called the In-situ visualiza-
tion [76], where each and every time step files can be easily visualized before next



82
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

Single time step file, 01

ex,54 MPI CPU cores

01 02 03

1
 C

P
U

 c
o
re

2
 C

P
U

 c
o
re

3
 C

P
U

 c
o
re

Single time step file, 01

ex,54 MPI CPU cores

01 02 03

1
 C

P
U

 c
o
re

2
 C

P
U

 c
o
re

3
 C

P
U

 c
o
re

Approach 1 Approach 2

Figure 4.10: Task paralleization for the FEniCS-HPC simulation.

time step is being computed in the simulation. But it might also slow down the
pure computational part for simulation. So, in the end, it depends on what we
want and what is our interest.

4.2 Cloud computing

Cloud computing means any one can do their computation on remote machine via
internet; typically these machines are located in many places and connected to each
other. Basically, this service is maintained by the IT expertise of that organiza-
tion. There are many companies provide cloud service, for example, Amazon Web
Services (AWS) [77], Google Cloud [78], Microsoft Azure [79] and IBM Cloud [80].

4.2.1 Cloud architecture

A Cloud computing architecture is organized as follows, (i) Software as a Service
(SaaS) (ii) Platform as a Service (PaaS) (iii) Infrastructure as a Service (IaaS), see
in Figure 4.11. Among these, IaaS is quite useful for the small firm or companies
who does not want to invest large money for the hardware that they needed. The
others such as SaaS and PaaS useful for companies such as Yahoo, Hotmail, Gmail,
and software maintenance or software provider companies.

4.2.2 Why Cloud Computing

The following points describe the importance of the cloud computing.



4.2. CLOUD COMPUTING 83

Figure 4.11: Work flow diagram of cloud computing architecture [4].

• Since the hardware is maintained by the firm or company who owns it, as an
end user we do not need to pay any money for the maintenance. Of course,
this cost will be indirectly included in the IaaS. But many not be much, since
we use the resources from time to time.

• Amazon HPC promises scalable architecture. This means that, more scalable
computational cores with a good network connection.

• There is no queue time compared to a traditional supercomputer. Basically
on the traditional supercomputer, one should remain in the queue for some
time before the computation starts.

• And we get to access the latest GPU accelerators in the cloud such as Nvidia
Pascal and Volta GPUs [81]. Not only just latest GPUs plus also latest
powerful CPUs as well.

• For example, High-performance computing (HPC), low communication la-
tency required (FEM, applications in CFD and weather forecasting) [82].

• Another example, High-throughput computing (HTC), high communication
latency acceptable (for example, media rendering, transcoding and genomics)
[82].

• Amazon network appears competitive to Cray architecture: in-house ethernet-
type, 100Gb. Avoid noisy neighbor and dedicated network links [83].



84
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

4.2.3 Google Compute Engine

Here, we will focus on launching the Google Compute Engine from the users local
computer.

• There are a number of commercial and open-source tools that can be used
to launch or create compute nodes in the Google Cloud from the users local
computer.

• We would like to list out two well known open-source software can be used to
create a compute node on the Google Cloud. One is called Kubernetes [84]
which is within the Google framework. And another one is called Elasticluster
[85].

• Here, we will focus on the Elasticluster, because it can be used for both
Amazon and Google Cloud.

• FEniCS-HPC is a good candidate for the cloud solution, since our simulation
relies on the adaptivity, the computation can be done using limited compu-
tational power. And also the accuracy and goal oriented functions are set by
the user, that makes computation even faster or optimized.

As we have mentioned above that we will focus on the Elasticluster, the following
steps describe the functionality of the Elasticluster.

• Using the Elasticluster we can easily create a cluster/supercomputer environ-
ment in the Google Compute Engine (GCE).

• Instance creation, launching the computation, monitoring job can be done via
terminal from users local computer.

• Only few steps needed to install Elasticluster on end users local computer.

• Create a familiar working environment for the end users as they work in the
supercomputer.

• Both computation and post-processing can be done in GCE via Elasticluster.

4.2.4 Compute Cluster Creation in the GCE

The following steps provide how one can create compute cluster in the GCE using
the Elasticluster.

• Install the elasticluster on the local computer [86].

• Allow the Elsticluster to access your CCP project [87].

• Generate an SSH key pair [87].



4.2. CLOUD COMPUTING 85

Figure 4.12: Elasticluster created the cluter/supercomputer environment.

• Configure Elasticluster (specify the login and compute node processors, mem-
ory, and operating system.

• Elasticluster start myslurmcluster (this will create the clustering environment
in the cloud [88].

• Figure 4.12 shows the 5 compute node with 1 front end node of cluster in
GCE from the local computer using the Elasticluster.

4.2.5 FEniCS-HPC on the Google Cloud

We have tested a simple test case for the flow through the nozzle. Which is a small
project connected to the GENTALVE project from Bilbao, Spain. The idea here is
that the probe will be placed at the tip of the nozzle. But before that, we would
like to see how the flow field in the fluid domain would look like. Figure 4.13 shows
the probe geometry and simulation at various time steps. And also, table 4.1 shows
the simulation time comparison between the Beskow and Google cloud.

4.2.6 Conclusion and future work

As we can see in here (see table 4.1) that Google cloud is a bit slower than the
Beskow. Both simulations tested on the single node with MPI processor at both



86
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

(a) Probe Geometry.
(b) Simulation at 0.04 sec.

(c) Simulation at 1.6 sec. (d) Simulation at 2 sec.

Figure 4.13: Probe model geometry and simulation at various timestep.



4.3. PRE-PROCESSING 87

Adapt.iterations Vertices Elements

CPU core

hours
(Beskow KTH)

CPU core

hours (Google

Cloud)
Adapt.iteration 0 16612 88862 4 4.15
Adapt.iteration 1 24123 12750 6 6.10
Adapt.iteration 2 31641 169154 8 8.20
Adapt.iteration 3 41210 220966 10 10.05
Adapt.iteration 4 52881 285231 12 12.35

Table 4.1: Performance comparison between Beskow and Google cloud.

platform. Whereas, we know that for sure, the single node at Beskow processors
within the node, so the communication here is very fast on the other hand, it is
hard to see how processors are connected in the google cloud. But still, it is very
hard to come to a conclusion at the moment. For the clean comparison, more tested
is needed with bigger simulation and using more MPI processors.

4.3 Pre-processing

In the CFD community, pre-processing is a time consuming work, and one should
needs to have special knowledge and lots of practice to create structured or un-
structured mesh for the simulation, especially for the RANS/LES simulation. The
standard procedure in the CFD community is that manually refine the mesh around
the surface of the domain and downstream side of the flow to capture the drag, tur-
bulence, and wake. Most of the cases, we do not know where it will appear in the
simulation, so to avoid the numerical error, people usually do most of the time,
complete mesh refinement in the downstream up to some extent in the computa-
tional domain. And boundary layer refinement around the object. Figure 4.14
shows the typical example of manual mesh refinement in the simulation domain.
As we can see here, the boudary layer around the Ahmed body is finely refined,
and also downstream of the flow is refined.

4.3.1 Tools for the pre-processing

There are a number of commercial and open-source meshing tools are available.
Most of the cases, the open-source tools are useful for simple geometry. The Sa-
lome [89] and Gmsh [90] are widely used open-source meshing tool in the CFD com-
munity; and Pointwise [91] and ANSA [92] are popular commercial pre-processing
tools. When it comes to complex geometry, it is better to go with commercial tools.
In this thesis, we have used the commercial meshing tool called ANSYS [6].



88
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

Figure 4.14: Manually refined the mesh flow around the Ahmed body [5].

4.3.2 Recommendation: pre-processing for DFS

ANSYS has a quick and smart algorithm for the tetrahedron elements. It has a
two algorithm are as follows:

• Patch confronting.

– Meshing is starting from the edges, faces, and finally to the volume.

– If the CAD is clean, the meshing will be good.

– Meshing size can be defined globally and locally.

• Path independent.

– First, volume mesh is created, then to surface and edges. Completely
opposite to patch confronting method.

– Good for bad quality CAD.

– Method has sizing details.

In this thesis, all the CAD model and meshing is done by using the ANSYS
CAD/Meshing with patch confronting. Which is quite easy to use with minimal
effort to get good mesh for DFS. Where we need to refine the mesh to capture the
CAD detail.



4.3. PRE-PROCESSING 89

Figure 4.15: Workflow of ANSYS [6].

Figure 4.16: CAD model contains small detial [6].



90
CHAPTER 4. PARALLEL VISUALIZATION, CLOUD COMPUTING AND

PRE-PROCESSING

(a) Patch confronting: all geometric details
are captured [6].

(b) Patch independent: ignores the geometry
detial [6].

(c) Patch confronting slice: delaunay mesh-
smooth growth rate [6].

(d) Patch independent slice: octree mesh
with approximate growth rate [6].

Figure 4.17: ANSYS meshing methodology for patch confronting and patch independent.



Chapter 5

High performance computing

This Chapter 5 starts with explaining the architecture of CPU and GPU. Later,
it shows the numerical stencil implementation on multiple GPU and Jacobi imple-
mentation on the Kalray architecture aiming at exascale computing.

5.1 Introduction

The concept of parallel computing was discussed even in the 19th century when
there were no electronic machines available, as Babbageet al. [93] tried to perform
multiplication of two numbers using their Difference Machine.

The beginning of the high performance computing era, the Von Neumann ar-
chitecture, attempts to illustrate the concept of sequential computing shown in
Figure 5.1. Although the computation can be done fast the I/O has a problem
with the memory, which is called Von Neumann bottleneck [94]. In recent years,
this problem has been reduced drastically using memory banks that provide parallel
I/O memory. Today, efficient parallelization is achieved by vectorization, multiple
processors, and accelerators (for example, GPU and CPU co-processors). The ef-
ficiency of a computer can be measured by FLoating point Operations Per Second
(FLOPS). Supercomputers are ranked based on how fast they can solve the LIN-
PACK benchmark, which consists of dense linear algebra.

5.2 CPU architecture

Today, all CPUs have multiple cores. For example, Intel Xeon Gold has 16 CPU
cores and Figure 5.2 shows the standard multi-core CPU concept. This trend
might increase gradually, which means the more production of CPU cores would
take place over the years as technology evolves. In Figure 5.2, L1 cache is private to
the cores, and L2 cache is shared among the cores, whereas the last level memory is
shared between all the cores by memory interface. Evidently, to achieve maximum
performance of multicore, one needs to do multi-threading or multi-processing.

91



92 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Memory

I/
O

 d
e
v
ic

e
s
 

CPU

control, arithmetic

  and logical unit 

Figure 5.1: The Von Neumann architecture.

core 1 core 2 core 3 core 4

L1

cache 

      
      

L1

cache 
L1

cache 

L1

cache 

L2 cache L2 cache 

Memoryinterface/Interconnect

Main memory

Figure 5.2: Standard multi core CPU.



5.3. PARALLEL ARCHITECTURE 93

5.3 Parallel architecture

Parallel architectures are classified into three components, which are, control struc-
ture, memory organization, and network connection topology.

5.3.1 Control structure

Michael J. Flynn divided computer architectures into four categories [95,96]. They
are as follows:

• Single instruction stream single data stream (SISD): which is based on the
Von Neumann architecture, i.e., simple, sequential, and uniprocessor.

• Single instruction stream, multiple data streams (SIMD): only one single
stream of instruction can be executed, and, moreover, as a single instruc-
tion can be used to process multiple data, this leads to data parallelization.
Figure 5.3 shows the SIMD concept of simultaneous instructions and single
instruction with multiple data.

• Multiple instruction streams, single data stream (MISD): in reality, it is not
useful since there is no program that can readily map into MISD organization.

• Multiple instruction streams, multiple data streams (MIMD): multiple in-
structions can be executed on multiple data streams. For example, on multi-
core CPUs, a processor can execute the same code or different branches of the
same code. This is typically done by thread level parallelization on multicore
CPUs. It can be hard to debug the code.

A1 B1+ = C1

A2 B2+ = C2

A3 B3+ = C3

A4 B4+ = C4

A1 B1 C1

A3 B3 C3

A2 B2 C2

A4 B4 C4

= +

SIMDScalar

Figure 5.3: SIMD model.

5.3.2 Memory organization

Memory hierarchy is a key concept in standard and parallel architectures. Figure
5.4 shows a basic memory hierarchy of computer. Cache is the fastest access memory
compared to off-chip memory. Cache holds the temporal information from the main
or secondary memory, which might be currently used by the processor [97].



94 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Smaller, faster 

Bigger, slower 
Secondary Memory

Primary Memory

Cache Memory 

Registers

Figure 5.4: Memory hierarchy.

• Shared memory: all the processors have the same address space, which can
share and access the data from the main memory. Shared memory architec-
ture is classified into three variants, based on how the bus network connects
the memory and processor. Figure 5.4 shows 3 different types of shared
memory architecture.

• Distributed memory: each processor has it’s own local memory, which means
no global memory shared by the processors. The local memory is accessed by
the physical network to transfer data to and from another processor.

• Hybrid memory system: A distributed memory with a shared memory ap-
proach in each cluster. This typically consists of multicore CPUs with/with-
out an accelerator such as GPUs.

P1 Pp

M

Network

Cache 1 Cache P

P1 Pp

Network

M1 Mm

Cache 1 Cace P

P1 Pp

Netwrok

M1 Mm

UMA- single shared 
Memory 

SMP with caches 
NUMA

Figure 5.5: Shared memory architectures.

5.3.3 Network topology

Many variants can be used to organize the processors in an the efficient way how
the processors are connected to each other. For example, bus, linear array, ring, 2D
grid, torus, 3D grid, 3D torus, tree, and aeries. Each of these network topologies
has uts advantages and disadvantages; for example, tree network has a higher cost
but reduces the bandwidth bottleneck.



5.4. GPU ARCHITECTURE 95

5.4 GPU architecture

A key difference between GPU and CPU is that a GPU has a large number of cores,
for example, the latest Nvidia Volta GPU has 2560 (FP64 Cores) cores [98]. On
the other hand, a CPU has a higher clock speed than a GPU.

GPUs are one of the main accelerators in the HPC field, and almost all su-
percomputers in the world have a GPU accelerator. In order to achieve exascale
computations, GPUs appear to be a good option. Today, there are also PDE frame-
works with unstructured meshes that demonstrate good performance with GPUs,
such as high-order PyFR.

Processing elements in the GPU are grouped together and called Streaming
Multiprocessor (SM). Multiple threads can be executed concurrently on each and
every SMs, and this is based on Single Instruction Multiple Thread (SIMT) archi-
tecture. These threads are grouped (e.g. into groups of 32), and executed across
the SMs. These grouped threads are called "warps" and they have their own regis-
ters and instructions. GPUs allow scalable multi thread arrays, which means grid
and thread blocks can be in 1D, 2D, and 3D. On CUDA, this thread block is called
a cooperative thread array (CTA) [99]. The Performance of the GPU can be im-
proved if the "latency" is reduced [100]. Here, latency refers to the number of clock
cycles needed to execute the warps in the SMs [101].

5.4.1 Memory organization in GPU

A GPU has a similar memory organization as a CPU, but with some key differences
as follows.

Register: is the fastest memory; each thread owns registers.

Local: holds the register spelling and is cached in typically the next level of mem-
ory hierarchy such as L1 and L2 cache.

Shared Memory: for both Fermi and Kepler, shared memory is configurable by the
programmer, and the usual size is 64 KB. However, with the latest Pascal and Volta
architecture, L1 and shared memory are merged and each of them then share 64KB
each. Each and every SM has its own shared memory.

L2 cache: a normal GPU has a single L2 cache is shared by all the SMs in the
GPU. The Volta GPU has 6144 KB in size.

Figure 5.6 (left) shows the generic memory access on the CUDA device and
(right) shows the thread memory access in the Kepler architecture. Figure 5.1
shows threads, access to memory.



96 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Thread

L1

Cache

Shared 

Memory
Read - Only 

Data Cache

L2 

Cache

DRAM

Constant

Global

Texture

Local

DRAM

Device

GPU
SM

SM

SM
Registers, 

Shared Memory

 / L1 Cache

Constant and 

Texture Cache

To
 H

o
s
t

Figure 5.6: left:CUDA device memory spec.; right: Kepler’s read cache memory.

Table 5.1: CUDA threads memory access in the device.

Memory Location Cached Device Access Scope Life Time

Register On-chip N/A R/W one thread thread

Local DRAM yes** R/W one thread thread

Shared On-chip N/A R/W all threads in block thread block

Global DRAM * R/W all threads in host Application

Constant DRAM Yes R all threads in host Application

Texture DRAM Yes R all threads in host Application

* cached L2 by default by latest compute capabilities
** cached L2 by default only on compute capabilities 5.x

5.4.2 Latest advancement in GPUs

CUDA is a programming language used to program Nvidia GPUs. CUDA has
compute capabilities, that controls the hardware programming capabilities on the
respective Nivida GPU microarchitecture. We would like to point out some ad-
vanced technologies that are available at present, as follows:

• NVLINK: the memory transfer between the CPU-GPU was a major bottle-
neck in the early stage of GPUs, that is before Tesla P100. NVLINK has
minimized this bottle gradually, which means that the data transfer between
CPU and GPU and among the different GPUs and the bandwidth can achieve
up to 300 Gigabytes/second on the second generation of NVLINK with Volta
architecture GPU.



5.5. MULTIPLE GPU IMPLEMENTATION FOR STENCIL NUMERICAL

COMPUTATION 97

• Unified Memory: this is available as a virtual memory whose, CPU and GPU
share the same address space. This allows simpler implementation, and it
facilitates the fast porting of complex data structure programming models.

• Tensor Cores: Typically AI applications deal with huge data, and most of
the times it will be dealing with linear algebra operations. The latest micro
architecture GPUs have Tensor cores, with half precision compute capabili-
ties, and the normal cores in the SMs have both single precision and double
precision.

• New Concepts: on the Volta and Pascal, SMs are grouped as multiple GPU
Processing Clusters (GPC), which means that each and every GPC has one
set of SMs and tensor cores.

5.5 Multiple GPU Implementation for Stencil Numerical

Computation

To explore the possible performance of multi-GPU computation on a single compute
node, we considered a stencil computation, with application in geological folding
simulations. Geological folding simulations are carried out to find oil in the ground.
A specific reason for focusing on this problem is also so that it requires large com-
puting resources.

Here we show the CUDA programming challenges with using multiple GPUs
inside a single machine to carry out plane-by-plane updates in parallel 3D sweep-
ing algorithms. In particular, care must be taken to mask the overhead of various
data movements between the GPUs. Multiple OpenMP threads on the CPU side
should be combined multiple CUDA streams per GPU to hide the data transfer
cost related to the halo computation on each 2D plane. Moreover, the technique of
peer-to-peer data motion can be used to reduce the impact of 3D volumetric data
shuffles that have to be done between mandatory changes of the grid partitioning.
We have investigated the performance improvement of 2- and 4-GPU implementa-
tions that are applicable to 3D anisotropic front propagation computations related
to geological folding. In comparison with a straightforward multi-GPU implemen-
tation, the overall performance improvement due to masking of data movements
on four GPUs of the Fermi architecture was 23%. The corresponding improvement
obtained on four Kepler GPUs was 47%.

5.5.1 Background

Motivated by higher energy efficiency, a new trend with high-end computing plat-
forms is the adoption of multiple hardware accelerators such as general-purpose
GPUs and many-integrated-core coprocessors per compute node. The most promi-
nent example is Tianhe-2, which is the current No. 1 system on the TOP500
list [102]. Three Xeon Phi coprocessors can be found in each of Tianhe-2ś 16,000



98 CHAPTER 5. HIGH PERFORMANCE COMPUTING

compute nodes. With respect to clusters that have multi-GPU nodes, the TSUB-
AME 2.5 system is known for having three NVIDIA Tesla K20x GPUs per compute
node. Together with this new hardware configuration trend, there comes the chal-
lenge of programming. In addition to properly offloading portions of a computation
to the individual accelerators to achieve higher computing speed, a new issue arises
regarding accelerator-to- accelerator data transfers. Although MPI communication
should be used between accelerators residing on different compute nodes, intra-
node data transfers between cohabitant accelerators have the possibility of using
low-level APIs that incur less overhead than the MPI counterpart. The hardware
context of this paper is using multiple NVIDIA GPUs within the same com- pute
node. As the computational domain, we choose to study parallel 3D sweeping algo-
rithms, which have a causality constraint in that 2D planes have to updated one by
one in sequence, where parallelism exists between mesh points lying on the same 2D
plane. Following our previous work in the simpler scenario of 3D stencil computa-
tions [103], we want to investigate how to apply multiple CUDA streams, multiple
OpenMP threads and NVIDIA GPUDirect [104] to 3D sweeping algorithms for
masking the overhead of GPU-to-GPU data transfers. Another objective of this
paper is to quantify the actual performance gain of using multiple GPUs for simu-
lating 3D anisotropic front propagation, compared with using a single GPU [105].
To our knowledge, previous work on using GPUs to simulate anisotropic front prop-
agation all targeted single-GPU platforms, such as [106–108]. Therefore, this paper
is also novel with respect to using multiple GPUs for this particular computational
problem.

5.5.2 Mathematical background

In this paper, we consider parallel 3D sweeping algorithms that use a Cartesian
grid, which is of dimension (nx + 2) × (ny + 2) × (nz + 2). The mesh point values,
denoted by Ti,j,k, are iteratively updated by sweeps each being made up of six sub-
sweeps that alternate between the positive and negative x, y and z-directions. Each
sub-sweep consists of plane-by-plane updates that move consecutively through the
3D mesh. Computations of the mesh points that lie on a 2D update plane are
independent of each other, thus parallelizable. The following pseudocode shows
one sub-sweep along the positive x-direction and another sub-sweep in the opposite
direction, see Fig 5.7.

for i = 2 → nx do
for all j ∈ [1, ny] and k ∈ [1, nz] do

Update Ti,j,k using values Ti−1,j±a,k±b,a ∈ 0, 1, b ∈ 0, 1
end for

end for
for i = nx − 1 → 1 do

for all j ∈ [1, ny] and k ∈ [1, nz] do
Update Ti,j,k using values Ti+1,j±a,k±b,a ∈ 0, 1, b ∈ 0, 1

end for



5.5. MULTIPLE GPU IMPLEMENTATION FOR STENCIL NUMERICAL

COMPUTATION 99

(a)

Z-d
irec

tion

swe
ep

X

Y

Z

1
2
n-1

(b)
Y
di
re
ct
io
n

sw
ee

p

X

Y

Z

1

2

n-1

(c)
X direction
sweep

X

Y

Z

1 2 n-1

Figure 5.7: 2D plane sub-sweeping (a) in Z-direction, (b) in Y-direction and (c) in
X-direction.

end for

The four other sub-sweeps (two in the y-direction and two in the z-directions)
are similar. We also remark that the sub-sweeps update only the interior mesh
points, i.e., 1 ≤ i ≤ nx , 1 ≤ j ≤ ny , 1 ≤ k ≤ nz . The boundary points assume
known solution values. In the above pseudocode, updating a mesh point relies on 9
mesh points that lie on the preceding plane, see figure 5.8 for an example. A con-
crete application of such a sweeping algorithm can be to simulate anisotropic front
propagation that is described by the following static Hamilton-Jacobi equation:

F (x)
∥

∥∇T (x)
∥

∥ + Ψ(a · ∇T (x)) = 1,

T = t0onΓ0,
(5.1)

where T (x) can model the first-arrival time of a propagating front that originates
from the initial surface Γ0. When the viscosity solution of 5.1 is used to model
geological folding, vector a marks the axial direction of the fold, with F and Ψ being
nonzero constants. For details about the mathematical model and the derivation of
sweeping-based numerical schemes, we refer the reader to [108] and the references
therein.



100 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Figure 5.8: An example of data dependency associated with sub-sweeps along the z-
direction.

Z

Y

X

Block 1

Block 2

Block 3

Block 4

Z directio
n

sub-sw
eeps

X direction 
sub-sweeps

Figure 5.9: A partitioning of the 3D Cartesian grid that suits parallelization of sub-
sweeps in both x and z-directions.

5.5.3 Domain decomposition

Parallelism within parallel 3D sweeping algorithms exists among mesh points that
lie on the same 2D update plane, but not across the planes. That is, parallelization
can be realized by dividing each 2D plane among multiple computing hardware
units, such as GPUs. Due to the rectangular shape of a 2D plane, it is natural
to assign each GPU with a rectangular subdomain. Moreover, since each sub-
sweep moves along a given spatial direction, from the top (or bottom) 2D plane
to the bottom (or top) plane, all the 2D planes associated with one sub-sweep
can use the same partitioning. This means that, for sub-sweeps along a specific
spatial direction, the 3D Cartesian grid should be partitioned by cutting surfaces
parallel with the sub-sweeping direction. However, we recall that the sub-sweeps



5.5. MULTIPLE GPU IMPLEMENTATION FOR STENCIL NUMERICAL

COMPUTATION 101

(1,1)

Y 
- D

ire
ct

io
n 

su
b-

sw
ee

ps

Data block 1

Data block 2

Data block 3

Data block n

X - Direction sub-sweeps

Z - D
irectio

n

 su
b-sw

eeps

(1,1) (1,2) (1,3) (1,n)

(2,1)

(3,1)

(n,1)

(2,2)

(3,3)

(n,n)

(2,1) (3,1) (n,1)

(2,2)

(3,3)

(n,n)

Data block 1

Data block 2

Data block 3

Data block n

X
Z

Z

Y Y

X

(1,2)

(1,3)

(1,n)

Figure 5.10: An example of volumetric data shuffle in connection with changing the grid
partitioning.

alternate between the three spatial directions, thus there does not exist a universal
partitioning that works for all x, y and z-directions. The best partitioning strategy
is to let sub-sweeps of two spatial directions share one partitioning, switching to
another partitioning for the third spatial direction. Figure 5.9 shows a partitioning
of the 3D Cartesian grid that can be used to parallelize sub-sweeps in both x and
z-directions.

5.5.4 Data transfer

There are two types of data transfers that must be carried out between the GPUs.
The first type of data movement happens on each 2D (yz or xz or xy) plane,
for the purpose of communicating results of the halo computation (i.e., on mesh
points that lie immediately beside a neighbor) from one subdomain to another.
Consider for example the partitioning shown in figure 5.9, which can be shared by
sub-sweeps in the x and z-directions. Then parallel computing on each yz-plane
(inside ax-directional sub-sweep) will require one subdomain to send (and receive)
nz point values to (and from) each of its two neighbors. When updating each xy-
plane (inside a z-directional sub-sweep), nx point values are exchanged between a
pair of neighboring subdomains. It should be noted that this halo-induced type of
communication happens once per 2D plane.

The second type of data transfer is due to the need of switching the grid par-
titioning between some of the sub-sweeps. For example, the partitioning shown
in figure 5.9 cannot be used for sub-sweeps along the y-direction. In connection
with switching the grid partitioning, a 3D volumetric data shuffle among all GPUs
is necessary. A concrete example of data shuffle involving four GPUs is shown in
figure 5.10. There, each GPU can keep one fourth of its data, but has to exchange
one fourth of its data wdith each of the other three GPUs. This volumetric data
shuffle happens only twice per sweep (every six sub-sweeps). In other words, the



102 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Listing 5.1: Basic

for (i=2; i <= nx; i++)

{

cudaSetDevice (0);

compute - kernel : update all points on GPU0 part of a yz - plane

pack - kernel : fill a buffer containing halo values needed by GPU1

cudaSetDevice (1);

compute - kernel : update all points on GPU1 part of a yz - plane

pack - kernel : fill a buffer containing halo values needed by GPU0

cudaMemcpy (GPU0 buffer to host buffer H0)

cudaMemcpy (GPU1 buffer to host buffer H1)

cudaMemcpy (host buffer H0 to GPU1 buffer )

cudaMemcpy (host buffer H1 to GPU0 buffer )

cudaSetDevice (0);

unpack - kernel : handle the incoming H1 data from host

cudaSetDevice (1);

unpack - kernel : handle the incoming H0 data from host

}

second type of communication is considerably less frequent than the first type of
halo-induced communication.

5.5.5 CUDA implementations

5.5.5.1 Plain multi-GPU implementation

If there already exists a single-GPU CUDA implementation of a 3D sweep algo-
rithm, it is a relatively simple programming task to write a plain implementation
that uses multiple GPUs residing on the same compute node. Of the existing
single-GPU code, its six kernels associated with the six different sub-sweeps can
be reused by each GPU to work within its assigned subdomain of a 2D plane.
Additional kernels have to be implemented to support the two types of data trans-
fers: halo-induced communication and 3D volumetric data shuffle. The following
pseudocode segment shows one sub-sweep in the positive x-direction for the case of
using two GPUs:

There are two problems with the plain implementation above. First, due to the
default synchronous CUDA stream on each GPU, the halo-induced communication
will not start until all the mesh points on the subdomain 2D plane are updated.
There is thus no possibility of hiding the overhead of this communication, as shown
in figure 5.11. The second problem is the use of synchronous data copies (cud-
aMemcpy for both device-host and host-device transfers), meaning that only one
data transfer can happen at a time. The same problem also applies to the second
type of communication: 3D volumetric data shuffles (not shown in the above code



5.5. MULTIPLE GPU IMPLEMENTATION FOR STENCIL NUMERICAL

COMPUTATION 103

Listing 5.2: Improvement 1

for (i=2; i <= nx; i++)

{

cudaSetDevice (0);

halo - kernel using halo_stream (0)

compute - kernel over interior points using compute_stream (0)

cudaMemcpyAsync (GPU0 ->H0) using halo_stream (0)

cudaSetDevice (1);

halo - kernel using halo_stream (1)

compute - kernel over interior points using compute_stream (1)

cudaMemcpyAsync (GPU1 ->H1) using halo_stream (1)

cudaStreamSynchronize halo_stream (0)

cudaStreamSynchronize halo_stream (1)

cudaSetDevice (0);

cudaMemcpyAsync (H0 ->GPU1) using halo_stream (1)

unpack - kernel using halo_stream (1)

cudaSetDevice (1);

cudaMemcpyAsync (H1 ->GPU0) using halo_stream (0)

unpack - kernel using halo_stream (0)

cudaSetDevice (0);

cudaStreamSynchronize compute_stream (0);

cudaSetDevice (1);

cudaStreamSynchronize compute_stream (1);

}

segment).

5.5.5.2 Improvement 1

The key to hiding the overhead of halo-induced communications is to overlap this
type of data transfers with computations of the interior points (i.e., non-halo points)
on each GPU. For this purpose, every data-packing kernel from the plain imple-
mentation is extended (as a halo-kernel) to compute its line of “halo points” as
well as packing. Moreover, each GPU adopts at least two CUDA streams, one
being responsible for updating its interior mesh points, the other (“halo stream”)
for independently executing the data-packing kernels. Consequently, asynchronous
device-host and host-device data transfers (by calling cudaMemcpyAsync) can be
enabled by using the halo streams. The following pseudocode implements this
improvement, and the effect can be seen in figure 5.12 for the case of two GPUs.



104 CHAPTER 5. HIGH PERFORMANCE COMPUTING

5.5.5.3 Improvement 2

The situation can be improved further. We note from figure 5.12 that the start of
the kernels on GPU1 has a delay with respect to those on GPU0. This is because
both GPUs are controlled by the same host CPU thread, which first initiates the
kernels on GPU0 and then those on GPU1. This delay will become more severe
when more GPUs are involved. To solve the above problems, we adopt the strategy
of using multiple OpenMP threads on the CPU side, as proposed in [103]. That is,
one controlling OpenMP thread is now in charge of each GPU. The entire code will
thus be wrapped into an OpenMP parallel region, and the thread ID will dictate
the responsibility of an OpenMP thread. The effect of this improvement is clearly
visible in figure 5.13.

5.5.5.4 Improvement 3

As can be seen in figure 5.13, the combination of multiple CUDA streams and one
controlling OpenMP thread per GPU can result in halo-induced data exchanges
being carried out while computations on the interior mesh points proceed. The
overhead of this type of communication can therefore be effectively hidden, even
though the communication is relayed through the CPU host. For the second type of
communication, i.e., 3D volumetric data shuffles between switches of the grid parti-
tioning, relaying data via CPU is unnecessarily costly if there is hardware support
for direct peer-to-peer (P2P) communication [104] between the GPUs. Specifically,
to draw benefit from P2P and enable bi-directional data transfers, the cudaMem-
cpyPeerAsync function should be simultaneously called by the controlling OpenMP
threads. Afterwards, the CUDA streams that execute the asynchronous P2P com-
munication must be properly synchronized, via cudaStreamSynchronize called by
the multiple controlling CPU threads, to make sure that the shuffled data has ar-
rived. Finally, we remark that the above three improvements were first discussed
in [109]. However, the multi-GPU implementations used in this paper have made
substantial adjustments (and corrections) of those in [109].

5.5.6 Experiments and measurements

5.5.6.1 Hardware platforms

We tested our multi-GPU implementations on two GPU clusters, Erik [110] and
Zorn [111], for running 3D simulations of anisotropic front propagation. In par-
ticular, one 4-GPU node on the Erik cluster was used, where each GPU is of type
NVIDIA Tesla K20m. The CPU host has dual-socket 8-core Intel Xeon E5-2650
2.0 GHz processors. It is important to notice that the four GPUs are organized as
two PCIe “islands” meaning that the GPU0-GPU1 and GPU2-GPU3 pairs have a
direct PCIe connection in between, whereas across-pair traffic is subject to a slower
speed. On the Zorn cluster, we used one of its 4-GPU nodes where each GPU is of
type Tesla C2050 and the CPU host consists of dual-socket 4-core Intel Xeon E5620



5.5. MULTIPLE GPU IMPLEMENTATION FOR STENCIL NUMERICAL

COMPUTATION 105

Figure 5.11: Plain 2-GPU implementation: the default synchronous CUDA stream per
GPU

Figure 5.12: Improved 2-GPU implementation version 1: two CUDA streams per GPU

Figure 5.13: Improved 2-GPU implementation version 2: two CUDA streams and one
OpenMP thread per GPU



106 CHAPTER 5. HIGH PERFORMANCE COMPUTING

2.4 GHz processors. The four GPUs are also organized as two pairs with intra-pair
PCIe connection. CUDA v5.5 was used on both platforms.

5.5.6.2 An example of geological folding

To compare with the single-GPU implementation from [105], we have chosen to
simulate the same example of geological folding. More specifically, F = 1.1, ψ =
1.0 and a = (-0.34, 0.4, 0.7) were used in 5.1. The 3D spatial domain has length 10
in all three directions. The initial surface Γ0 is shown in the left plot of figure 5.14,
whereas the simulation result is depicted in the right plot. (The numerical results
from the multi-GPU implementations were all verified by those produced by the
original single-GPU implementation.)

Figure 5.14: The initial surface Γ0 (left plot) and the simulation result of (1) after
running 8 sweeps

5.5.6.3 Time measurements

Table 1 summarizes the time measurements that were obtained on the Erik and Zorn
systems. Two problem sizes were tested: nx = ny = nz = 512 and nx = ny = nz =
640. Each simulation ran 8 sweeps, i.e., 48 sub-sweeps in total. All computations
used double precision. Recall from Section 4 that the first improvement to the plain
multi-GPU implementation is to let each GPU use multiple CUDA streams. That
is, the number of CUDA streams per GPU equals the

number of neighbors plus one. Halo computations are thus carried out as early
as possible, and the data transfers (type 1 communication) between neighboring
GPUs can be carried out while computations on the interior mesh points proceed.
As can be seen in Table 1, the benefit of the first improvement is more obvious
for the 4-GPU cases. Likely, the second improvement (assigning one controlling
OpenMP thread per GPU) also has a clearer advantage for the 4-GPU cases. For
the third improvement, using P2P data communication for the 3D volumetric data
shuffles (type 2 communication) instead of relaying data via the CPU, the benefit
is more profound for the 2-GPU cases. This is due to the fact that GPU0 and



5.5. MULTIPLE GPU IMPLEMENTATION FOR STENCIL NUMERICAL

COMPUTATION 107

Grid size nx = ny = nz = 512 nx = ny = nz = 640
Time on Erik Time on Zorn Time on Erik Time on Zorn

Single-GPU 31.71 64.95 59.54 123.34
2-GPU plain impl. 24.75 44.50 45.05 82.14
2-GPU improved v1 24.35 41.40 44.73 81.36
2-GPU improved v2 22.39 40.38 39.58 75.42
2-GPU improved v3 19.37 37.40 35.34 69.64
4-GPU plain impl. 23.28 30.77 41.03 54.61
4-GPU improved v1 20.68 28.54 38.65 51.56
4-GPU improved v2 14.31 25.54 25.18 46.83
4-GPU improved v3 12.48 23.57 21.91 43.02

Table 1: Time measurements (in seconds) of running eight sweeps of various multi-GPU imple-
mentations.

GPU1 have a direct PCIe connection that provides hardware support for P2P.
When four GPUs are used, although GPU2 and GPU3 also form a pair with direct
PCIe connection, data transfers across the two pairs (e.g. GPU0-GPU2) still have
to relay through the CPU, thus not fully enjoying the performance benefit of P2P
data communication.

5.5.7 Conclusions

In comparison with single-GPU implementations of parallel 3D sweeping algo-
rithms, the use of multiple GPUs introduces the complicating issue of having to
switch between two grid par- titionings and the resulting 3D volumetric data shuf-
fles among all the GPUs. These come on top of the conventional halo-induced data
exchanges between neighboring GPUs. In other words, parallelizing a 3D sweeping
algorithm is more difficult than parallelizing a regular 3D finite difference method.
The achievable parallel efficiency will consequently be lower due to the costly 3D
volumetric data shuffles. Nevertheless, our time measurements have shown that
with a proper use of multiple multiple CUDA streams per GPU, in combination
with adopting one controlling OpenMP thread per GPU and P2P data communica-
tion offered by NVIDIA GPUDirect, we can secure satisfactory parallel efficiency.
This means that using multiple GPUs for performing parallel 3D sweeps is a viable
technical solution, especially considering the ben- efit of aggregating the device
memory of the GPUs to solve larger problems that exceed the memory limit of a
single GPU.

As future work, the current work can be extended to the scenario of multiple
compute nodes, each with one or several GPUs. Asynchronous CUDA memory
copies have to be replaced with suitable non-blocking MPI calls. Then, really huge-
scale simulations can be made possible.



108 CHAPTER 5. HIGH PERFORMANCE COMPUTING

(1,1)

Y 
- D

ire
ct

io
n 

su
b-

sw
ee

ps

Data block 1

Data block 2

Data block 3

Data block n

X - Direction sub-sweeps

Z - D
irectio

n

 su
b-sw

eeps

(1,1) (1,2) (1,3) (1,n)

(2,1)

(3,1)

(n,1)

(2,2)

(3,3)

(n,n)

(2,1) (3,1) (n,1)

(2,2)

(3,3)

(n,n)

Data block 1

Data block 2

Data block 3

Data block n

X
Z

Z

Y Y

X

(1,2)

(1,3)

(1,n)

Figure 5.15: Data re-partition for the Y direction sub-sweeps.

5.5.8 Future work

A natural future extension is to investigate the FEniCS-HPC on GPU architectures,
for example with new GPU sparse linear algebra backends, and with the Omega_h
[112]library for general parallel mesh operations.

5.6 Towards HPC-embedded; case study-Kalray and

message-passing on NoC

Today one of the most important challenges in HPC is the development of comput-
ers with low power consumption. In this context, recently, new embedded many-
core systems have emerged. One of them is Kalray. Unlike other many-core ar-
chitectures, Kalray is not a co-processor (self-hosted). One interesting feature of
the Kalray architecture is the Network on Chip (NoC) connection. Habitually,
the communication in many-core architectures is carried out via shared memory.
However, in Kalray, the communication among processing elements can also be
via Message-Passing on the NoC. One of the main motivations of this work is to
present the main constraints to deal with the Kalray architecture. In particular,
we focused on memory management and communication. We assess the use of
NoC and shared memory on Kalray. Unlike shared memory, the implementation of
Message-Passing on NoC is not transparent from programmer point of view. The
synchronization among processing elements and NoC is another of the challenges
to deal with in the Karlay processor. Although the synchronization using Message-
Passing is more complex and consuming time than using shared memory, we obtain
an overall speedup close to 6 when using Message-Passing on NoC with respect to
the use of shared memory. Additionally, we have measured the power consumption
of both approaches. Despite being faster, the use of NoC presents a higher power
consumption with respect to the approach that exploits shared memory. This ad-



5.6. TOWARDS HPC-EMBEDDED; CASE STUDY-KALRAY AND

MESSAGE-PASSING ON NOC 109

ditional consumption in Watts is about a 50%. However, the reduction in time by
using NoC has an important impact on the overall power consumption as well.

5.6.1 Background

Advanced strategies for the efficient implementation of computationally intensive
numerical methods have a strong interest in industrial and academic community.
In the last decade, we have lived a spectacular growth in the use of many-core
architectures for HPC applications [113–117]. However, the appearance of other
(low-power consumption) embedded many-core architectures such as Kalray [118]
has created new challenges and opportunities for performance optimization in mul-
tiple applications. In this work, we have explored some of these new opportunities
towards supercomputing on a chip era.

Kalray integrates its own OS and is not in need of a co-processor as in the
case of other many-core processors [118, 119]. In Karlay, highly expensive memory
transfers from host main memory to co-processor memory are not necessary, as in
other architectures, such as NVIDIA GPUs [120] or Inel MIC [121]. Besides, this
architecture offers the possibility to communicate each of the processing elements
via a Network on Chip (NoC) connection composed by links and routers [118,119].
Kalray has been previously used for video encoding and Monte Carlo applications
[7]. However, these works lack information of how to implement these applications
and what are the most efficient programming strategies and architectonic features
to deal with our embedded processor. The NoCs have been recently used as a
level in-between the computing cores and shared memory [122–124]. The NoCs
in these systems can be configurable, depending on the particular needs of the
applications. However, the NoC in Kalray is completely different. In Kalray, there
are two different and independent inter-connectors, one bus which connects each
of the processing elements to shared memory and one NoC, which connects the
different processing elements (clusters) among them.

We have chosen as a test case a widely known and extended problem, which
is Jacobi method [125]. The main motivation of this work is twofold. While, on
the one hand, this work presents the main challenges to deal with the Kalray ar-
chitecture. On the other hand, we present two different approaches to implement
the communication among the different processing elements of our Kalray proces-
sor, one based on using shared memory and other based on using a Network on
Chip, which works as interconnection among the set of processing cores. We detail
and analyze deeply each of the approaches, presenting theirs advantages and dis-
advantages. Moreover, we include measurements for power consumption in both
approaches.

This section is structured as follows. Subsection 5.6.2 briefly introduces the
main features of the architecture at hand, Kalray. Then, we detail the techniques
performed for an efficient implementation of the Jacobi method on Kalray processor
in Subsection 5.6.3. Finally, In Section 5.6.4, it is carried out the performance
analysis of the proposed techniques in terms of consuming time, speed-up, and



110 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Figure 5.16: Kalray MPPA many-core (left) and compute cluster (righ) architecture [7]

power consumption. At the end of this work in subsection 5.6.5, we outline some
conclusions.

5.6.2 Kalray Arhietecture

Kalray architecture [7] is an embedded many-core processor. It integrates 288
cores on a single 28 nm CMOS chip with a low power consumption per operation.
We have 256 cores divided into 16 clusters, which are composed by 16+1 cores
each. 4 quad-core I/O subsystems (1 core per cluster) are located at the periphery
of the processing array (Figure 5.16-left). They are used as a DDR controller
for accessing up to 64GB of external DDR3-1600. These subsystems control a 8-
lane Gen3 PCI Express for a total peak throughput of 16GB/s full duplex. The
16 compute clusters and the 4 I/O subsystems are connected by two explicitly
addressed Network on Chip (NoC) with bi-directional links, one for data and the
other for control [7, 126]. NoC traffic does not interfere with the memory buses
of the underlying I/O subsystem or compute cluster. The NoC is implemented
following a 2-D torus topology.

The compute cluster (Figure 5.16 right) is the basic processing unit of our
architecture [7]. Each cluster contains 16 processing cores (C0, C1, C2, . . . ,
C15 in Figure 5.16-right) and one resource management (Syst. Core in Figure
5.16-right) core, a shared memory, a direct memory access (DMA) controller, a
Debug & System Unit (DSU), and two routers, one for data (D-NoC) and one
for control (C-NoC). The DMA is responsible for transfer data among shared and
the NoC with a total throughput of 3.2GB/s in full duplex. The shared memory
compromises 2MB organized in 16 parallel banks, and with a bandwidth of 38.4
GB/s. The DSU supports the debug and diagnosis of the compute cluster.

Each processing or resource management core is a 5-way VLIW processor with
two arithmetic and logic units, a multiply-accumulate & floating point unit, a
load/store unit, and a branch & control unit [7]. It enables up to 800MFLOPS at
400MHz, which supposes almost 13 GFLOPS per cluster and almost 205 GFLOPS



5.6. TOWARDS HPC-EMBEDDED; CASE STUDY-KALRAY AND

MESSAGE-PASSING ON NOC 111

in total by using the 16 clusters. These five execution units are connected to a
shared register file, which allows 11 reads and 4 writes per cycle. Each core is
connected to two (data & instruction) separate 2-way associate caches (8KB each).

Kalray provides a software development kit, a GNU C/C++ & GDB devel-
opment tool for compilation, and debugging. Two programming models are cur-
rently supported. A high level programming model based on data-flow C language
called

∑

C [127], where programmers do not care about communication, only data
dependencies must be expressed. The other programming model supported is a
POSIX-Level programming model [118, 119]. It distributes on I/O subsystems the
sub-processes to be executed on the compute clusters and pass arguments through
the traditional argc, argv, and environ variables. Inside compute clusters, classic
shared memory programming models such as POSIX threads or OpenMP pragmas
are supported to exploit more than one processing core. Specific IPC takes advan-
tage of the NoC connection. Unlike

∑

C, the POSIX-Level programming model
presents more important challenges from programmer side, however, it allows us to
have more control over hardware and optimize both communication and computa-
tion. In the present work, the authors have followed the programming model based
on POSIX.

Algorithm 1 Jacobi OpenMP Algorithm.

1: jacobi(A, Anew, N X, N Y )
2: float err;
3: #pragma omp parallel for
4: for int i = 1 → NY − 1 do
5: for intj = 1 → NX − 1 do
6: Anew[i ∗NX + j] = 0.25 ∗ (A[i ∗NX + (j − 1)] +A[i ∗NX + (j + 1)] +
A[(i−1)∗NX+j]+A[(i+1)∗NX+j]); err = maxf(err, fabs(Anew[i∗NX+
j] −A[i ∗NX + j]));

7: end for
8: end for
9: #pragma omp parallel for

10: for inti = 1 → NY − 1 do
11: for intj = 1 → NX − 1 do
12: end for
13: end for

5.6.3 Jacobi Method Implementation on Kalray

We have chosen as a test case the Jacobi method [125]. This is a good example,
which allows us to study and evaluate different strategies for communication. The
parallelization is implemented following a coarse-grained distribution of (adjacent)
rows across all cores. This implementation is relatively straightforward using a



112 CHAPTER 5. HIGH PERFORMANCE COMPUTING

few OpenMP pragmas on the loops that iterate over the rows of our matrix (see
Algorithm 1).

One of the most important challenges in Kalray is communication and memory
management. To address the particular features of Kalray architecture, we use the
Operating System called NodeOs [118], provided by Kalray. NodeOs implements
the Asymmetric Multi-Processing (AMP) model. AMP takes advantage of the
asymmetry found in the clusters between the Resource Management Core (RMC)
and the Processing Element Cores (PEC). RMC runs the operating system (kernel
and NoC routines) on the set of RM (single-core). PEC is dedicated to run user
threads, one thread per PEC. PEC can also call functions, such as syscall, that
need OS support, which is received and compute by RMC. When a PEC executes
a syscall call, it sends an event, and it is locked until it receives an event from
the RMC. This process is necessary to know that the syscall has been processed.
Data and parameters are exchanged using shared memory. We have two codes,
one executed by RMC (IO code) and other (cluster code) executed by PECs. The
work is distributed following a master/slave model that is well suited to Kalray
architecture. The IO code is the master. It is in charge of launching the code and
sending data to be computed by slaves. Finally, they wait for the final results.
Otherwise, the cluster code are the slaves. They wait for data to be computed and
send results to IO cluster.

The POSIX-Level programming model of Kalray (NodeOs) allows us to imple-
ment communication among different clusters in two different ways. While shared
memory (accessible by all clusters) is used for the communication in the first ap-
proach (SM ), in the second approach (NoC ), we use channels (links) and routers.
For the sake of clarifying, we include several algorithms in which we detail the main
steps of each of the approaches. Algorithms 2 and 3 illustrate the IO and cluster
pseudocodes for the SM approach and Algorithms 4 and 5 for the NoC approach
respectively.

The communication is implemented by using some specific objects and functions
provided by NodeOs. Next, we explain each of these objects and functions. The
transfers from/to global/local memory are implemented via portals. These portals
must be initialized using specific paths (one path per cluster) as A_portal in Algo-
rithm 2. Then, they must be opened (mppa_open) and synchronized (mppa_ioctl)
before transferring (mppa_pwrite in Algorithm 2 and mppa_aio_read in Algo-
rithm 3) data from/to global/local memory. The slaves are launched from master
via mppa_spawn which include parameters and name of the function/s to be com-
puted by cluster/s.

The communication among cluster via links (NoC ) is implemented by using of
channel. Similar to the use of portals, channels must be initialized using one path
per channel (see C0_to_C1 channel in Algorithm 2).

On the other hand, the synchronization is implemented by using of sync. They
are used to guarantee that some resources are ready to be used or cluster are ready
to start computing (for instance, see mppa_ioctl in Algorithm 2,3,4 and 5).

In order to minimize the number of transfers among main and local memory



5.6. TOWARDS HPC-EMBEDDED; CASE STUDY-KALRAY AND

MESSAGE-PASSING ON NOC 113

Algorithm 2 Shared Memory I/O pseudocode.

1: const char * cluster executable = “mainCLUSTER”;
2: static f loat A[SIZE]; static f loat Anew[SIZE];
3: int mainIO(int argc , char * argv[] )
4: long long dummy = 0; long long match = -(1 « CLUSTER_COUNT);
5: const char * root sync = “/mppa/sync/128 : 1”;
6: const char * A portal = “/mppa/portal/“CLUSTER_RANGE” : 1”;
7: const char * Anew portal = “/mppa/portal/128 : 3”;
8: //–OPENING FILES–//
9: int root_sync_fd = mppa_open(root_sync, O_RDONLY );

10: int A_portal_fd = mppa_open(A_portal, O_W RONLY );
11: int A_new_portal_fd = mppa_open(Anew_portal, O_RDONLY );
12: //–PREPARE_FOR_RESULT–//
13: status| = mppa_ioctl(root_sync_fd, MPPA_RX_SET_ MATCH, match);
14: mppa_aicob_t Anew_portal_aiocb[1] = {MPPA_AIOCB_INITIALIZER

(Anew_portal_fd, Anew, sizeof (Anew[0]) * SIZE)};
15: mppa_aiocb_set_trigger(Anew_portal_aiocb, CLUSTER_COUNT);
16: status| = mppa_aio_read(Anew_portal_aiocb);
17: //–LAUNCHING SLAVES–//
18: char arg0[10], arg1[10];
19: const char * argv[] = arg0, root_sync, A_portal, Anew_portal, 0;
20: for int rank = 1 → CLUSTERCOUNT do
21: sprintf (arg0, “%d”, rank);
22: status| = mppa_spawn(rank, NULL, cluster_executable, argv, 0);
23: end for
24: //Wait for the cluster portals to be initialized.
25: status| = mppa_read(root_sync_fd,& dummy, sizeof(dummy));
26: // Distribute slices of array A over the clusters.
27: for int rank = 0 → CLUSTERCOUNT do
28: status| = mppa_ioctl(A_portal_fd, MPPA_TX_SET_RX_RANK,

rank);
29: status| = mppa_pwrite(A_ portal_fd, (A + rank * SIZE_ LOCAL) -

(NX_ LOCAL * 2),sizeof (float) * SIZE_LOCAL, 0);
30: end for
31: // Wait for the cluster contributions to arrive in array |Anew|.
32: status| = mppa_aio_ wait(Anew_portal_aiocb);
33: return status < 0;



114 CHAPTER 5. HIGH PERFORMANCE COMPUTING

(SM approach) as well as among clusters through links (NoC approach), the matrix
is divided into rectangular sub-blocks (Figures 5.17 and 5.18). In particular, the
distribution of the workload and communication implemented in the NoC approach
avoid multi-level routing, connecting each of the cluster with its adjacent clusters
via a direct link.

Although the ghost cell strategy is usually used for communication in distributed
memory systems [128], we have used this strategy in Kalray processor to avoid race
conditions among each of the sub-blocks assigned to each clusters. The use of
ghost cells consists of replicating the borders of all immediate neighbor blocks.
These ghost cells are not updated locally but provide stencil values when updating
the borders of local blocks. Every ghost cell is a duplicate of a piece of memory
located in neighbors nodes. To clarify, Figures 5.17 and 5.18 illustrate a simple
scheme for our interpretation of the ghost cell strategy applied to both approaches,
SM and NoC, respectively.

Algorithm 3 Shared Memory CLUSTER Pseudocode.

1: int mainCLUSTER(int argc, chjar *argv[])
2: int i, j, k, status, rank = atoi(argv[0]);
3: const char * root_sync = argv[1],*A_portal = argv[2],*Anew_portal = argv[3];
4: float A[SIZE_LOCAL], Anew[SIZE_LOCAL]; long long slice_offset;
5: slice_offset = sizeof(float)*(CHUNK * NX _LOCAL+((rank-1)*(CHUNK-

1)*NX _LOCAL));
6: Each clster contributes a different bit to the root_sync mask
7: long long mask = (long long)1 rank;
8: //–OPENING_PORTAL–//
9: int root_sync_fd = mppa_open(root_sync, O_W RONLY);

10: int A_portal_fd = mppa_open(A_portal, O_RDONLY);
11: int Anew_portal_fd = mppa_open(Anew_portal, O_W RONLY);
12: //–PREPARE_FOR_INPUT–//
13: mppa_aiocb_t A_portal_aiocb[1] = MPPA_AIOCB_INITIALIZER(A_portal_fd,

A, sizeof(A));
14: status| = mppa_aio_read(A_portal_aiocb);
15: –UNLOCK_MASTER–//
16: status| = mppa write(root_sync_fd, & mask, sizeof (mask));
17: // Wait for notification of remote writes to local arrays |A|.
18: status| = mppa_aio wait(A_portal_aiocb);
19: //–JACOBIANCOMPUTE–//
20: jacobi(A, Anew, NX _LOCAL, NY _LOCAL);
21: //Contribute back local array Anew into the portal of master array

Anew.
22: status| = mppa pwrite(Anew_portal_fd, & Anew[NX _LOCAL], sizeof

(Anew) - sizeof (float) âĹŮ 2 âĹŮ NX _LOCAL, slice_offset);
23: mppa exit((status < 0)); return 0;



5.6. TOWARDS HPC-EMBEDDED; CASE STUDY-KALRAY AND

MESSAGE-PASSING ON NOC 115

Figure 5.17 graphically illustrates the strategy followed by the SM approach. It
consists of dividing the matrix into equal blocks which are sent from main memory
to local memory. To avoid race condition, each of the blocks includes 2 additional
rows (gray and white rows in Figure 5.17) which correspond to the upper and lower
adjacent rows of the block. These additional rows work as ghost-cell, which are
only used in local memory. The blocks transferred from local memory to global
memory (Figure 5.17-right) do not include these additional rows (ghost rows).

Figure 5.17: Master (Global Memory) ↔ Slave (Local Memory) Communication.

Otherwise the communication among global and local memory is not necessary
in the NoC approach. The master (IO code) is only used for synchronizing. The
synchronization is necessary at the beginning and at the end of each Master code.
I/O core and the rest of cores in each of the clusters must be also synchronized. In
particular the synchronization between IO core and computing cores (I/O− > C1
sync section in Algorithm 5) is necessary to guarantee that there are no cluster
reading into channels before the corresponding cluster has opened the channel.
After computing the Jacobi method in each of the clusters, some rows of the local
blocks must be transferred to/from adjacent clusters. The first row computed
(white upper row C1 in Figure 5.18) must be transferred to the upper adjacent
cluster (C0) to be stored in the last row. Also, the last row computed (gray lower
row C1 in Figure 5.18) must be transfered to the lower adjacent cluster (C2) to be
stored in the first row. This pattern must be carried out in all clusters except the
first and last clusters where a lower number of data-transfers is necessary.

5.6.4 Performance Study

In this section, we analyze deeply both approaches, SM and NoC, focusing on
communication, synchronization and computing separately. In order to find/focus
on the performance of both approaches, we have used a relatively small problem
which can be fully stored in local memory.



116 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Algorithm 4 NoC I/O pseudocode.

1: const char * global_sync = “/mppa/sync/128:1”;
2: const char * IO_to_CO_sync = “/mppa/sync/0:2”;...
3: const char * C0_to_C1_channel = “/mppa/channel/1:1/0:1”;...
4: static const char *exe[CLUSTER_COUNT] = {“mainCLUS-

TER0”,“mainCLUSTER1”,...};
5: int mainIO(int argc, const char * argv[])
6: //Global sync
7: int ret, global_sync_fd = mppa_open(global_sync,O_RDONLY
8: long long match = -1 « CLUSTER_COUNT
9: mppa_ioctl(global_sync_fd, MPPA_RT_SET_MATCH, match);

10: //–IO_TO_C # _SYNC–//
11: int IO_to_C0_sync_fd = mppa_open(IO_to_C0_sync, O_W RONLY);
12: int IO_to_C1_sync_fd = mppa_open(IO_to_C1_sync, O_W RONLY);
13: //–LAUNCHING_SLAVES–//
14: for inti =→ CLUSTER_COUNT do
15: mppa_spawn(i,NULL,exe[i],argv,0);
16: end for
17: //Wait for other clusters to be ready.
18: mppa_read(global_sync_fd, NULL, 8);
19: Write into I/O -> C # sync to unlock C # cluster.
20: mask = 1; mppa_write(IO_to_C0_sync_fd, &mask, sizeof(mask));
21: mppa_write(IO_to_C1_sync_fd, &mask, sizeof(mask));...
22: //–WAITING TO THE END OF CLUSTERS EXECUTION–//
23: for inti = 0 → CLUSTER_COUNT do
24: red = mppa_waitpid(i,&status,0);mppa_exit(ret);
25: end for

Next we present the commands used to compile and launch both approaches:
Compiling lines:
k1 − gcc −O3 −std = c99 −mos = rtems io.c −o io_app −lmppaipc
k1 − gcc −O3 −std = c99 −fopenmp −mos = nodeos cluster.c −o cluster
−lmppaipc
k1 − create−multibinary − − cluster cluster − − boot = io_app −T multibin
Launching line:
k1 − jtag − runner − −multibinary multibin − − exec−multibin = IODDR0 :
io_app

The communication among I/O and computing cores in the NoC approach is
more complex and it is in need of a higher number of synchronizations. This causes
a higher execution time with respect to the SM approach, being almost 2.5× bigger
(Figures 5.19 and 5.20). Note that we use a different vertical scaling in each of the



5.6. TOWARDS HPC-EMBEDDED; CASE STUDY-KALRAY AND

MESSAGE-PASSING ON NOC 117

C0

C1

C2

C2(White)−>C1(Black)

C0(Black)−>C1(White)

C1(Black)−>C2(White)

C1(White)−>C0(Black)

Figure 5.18: Pipeline (Bus) Communication.

graphics illustrated in Figures 5.19 and 5.20 .Despite of the overhead caused by a
higher number of synchronizations, the use of the NoC interconnection makes the
NoC approach (Figure 5.20) about 55× faster than the SM approach.

As expected the time consumed for computing the Jacobi method is equivalent
in both approaches. The time consumed by synchronization, communication and
computing in the NoC approach is more balanced than in the SM approach. This
can be beneficial for future improvements, such as asynchronous communication.

Finally, we analyse the performance in terms of GFLOPS. First, we compute
the theoretical FLOPS for the Jacobi computation. The variant used in this study
performs six flops per update (Algorithm 1). Therefore, the theoretical FLOPS is
equal to the elements of our matrix multiplied by six.

 0

 5

 10

 15

 20

 25

Jacobian

G
lobal->Local

Local->G
lobal

Sync.

Total

 T
im

e
 (

m
s
) 

Figure 5.19: Time consumption for the SM approach.



118 CHAPTER 5. HIGH PERFORMANCE COMPUTING

Algorithm 5 NoC CLUSTER pseudocode

1: intmainCLUST ER1(intargc, char ∗ argv[])
2: floatA[SIZE_LOCAL], Anew[SIZE_LOCAL];
3: //Openalltheresourcesneededfortransfers.
4: //Globalsync.
5: intglobal_sync_fd = mppa_open(global_sync, O_W RONLY );
6: //C1− > C2channel.
7: intchannel0_fd = mppa_open(C1_to_C2_channel, O_W RONLY );
8: //C2− > C1channel.
9: intchannel1_fd = mppa_open(C2_to_C1_channel, O_RDONLY );

10: //C1− > C0channel.
11: intchannel2_fd = mppa_open(C1_to_C0_channel, O_W RONLY );
12: //C0− > C1channel.
13: intchannel3_fd = mppa_open(C0_to_C1_channel, O_RDONLY );
14: //I/O − C1sync.
15: intIO_to_C1_sync_fd = mppa_open(IO_to_C1_sync, O_RDONLY );
16: longlongmatch = −(1 << 1/ ∗ W esynconlywithI/Ocluster ∗ /);
17: mppa_ioctl(IO_to_C1_sync_fd, MP P A_RX_SET _MAT CH, match)
18: //W riteintoglobalsynctounlockI/Ocluster.
19: longlongmask = 1 << mppa_getpid();
20: mppa_write(global_sync_fd, &mask, sizeof(mask))
21: // − −W AIT _F OR_IO_T O_C1_SY NC − −//
22: mppa_read(IO_to_C1_sync_fd, NULL, 8);
23: // − −CLUST ERSCOMMUNICAT ION − −//
24: //W ritedataforcluster0.
25: mppa_write(channel0_fd, &A[NX_LOCAL ∗ (NY _LOCAL − 2)], sizeof(float) ∗

NX_LOCAL);
26: //ReaddatafromC0.
27: mppa_read(channel1_fd, A, sizeof(float) ∗ NX_LOCAL);
28: //ReaddatafromC2.
29: mppa_write(channel2_fd, &A[NX_LOCAL], sizeof(float) ∗ NX_LOCAL);
30: //W ritedataforcluster2.
31: mppa_read(channel3_fd, &A[NX_LOCAL ∗ (NY _LOCAL − 1)], sizeof(float) ∗

NX_LOCAL);
32: mppa_exit(0);

In order to evaluate the overhead of each of the strategies, first, we show the
GFLOPS achieved by the Jacobi computation without the influence of the synchro-
nization and communication (see Jacobian in Figure 5.21). It achieves almost the
peak of performance of our platform (GFLOPS-Peak in Figure 5.21). The com-
putation of the Jacobian method is exactly the same in both approaches (SM and
NoC ). Next, we include the overhead of the communication. Although both ap-
proaches present a fall in performance when taking into account the time consumed
by the communication, the fall shown by the NoC approach is not so dramatic as
the overhead suffered by the SM approach (Figure 5.21).



5.6. TOWARDS HPC-EMBEDDED; CASE STUDY-KALRAY AND

MESSAGE-PASSING ON NOC 119

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Jacobian

1x-C
om

m
.

4x-C
om

m
.

1x-Sync.

4x-Sync.

Total

 T
im

e
 (

m
s
) 

Figure 5.20: Time consumption for the NoC approach.

The software development kit provided by Kalray allow us to measure the power
consumption of our applications. This is done via this command:

k1 − power − − k1 − jtag − runner − − multibinary multibin − − exec −
multibin = IODDR0 : io_app

Executing our binary using k1-power we obtain the power achieved in terms of
Watts. The average power achieved by the NoC approach is about 8.508W , while
the SM approach achieves an average of 5.778W in every execution. This is almost
a 50% more power when executing the NoC approach. However, the reduction in
execution time obtained by the NoC approach has an important impact on the
overall power consumed. Joules are computed by following the next expression:

Joules = Watts× Time

obtaining an overall consumption about 0.0047J and 0.16J for the NoC and
the SM approaches respectively. This is a 96% less of power consumed by the NoC
approach.

5.6.5 Conclusions and Future Work

Embedded many-core architectures such as Kalray have emerged as a new HPC
platform to deal with the problem of the excessive power consumption.

In this work, we have presented two different approaches to implement the
communication among the processing elements of the Kalray architecture. Both
approaches implement a ghost-cell strategy to avoid race conditions among the
different blocks assigned to each of the processing elements (clusters). This strat-



120 CHAPTER 5. HIGH PERFORMANCE COMPUTING

 0

 50

 100

 150

 200

 250

G
F
L
O
P
S
-P

e
a
k

Ja
co

b
ia
n

N
o
C

S
M

 G
F

L
O

P
S

 

Figure 5.21: GFLOPS achieved by both approaches.

egy has been adapted to the particular features of our embedded processor and
approaches, SM and NoC, to minimize the number of transfers.

Although the communication via shared memory is more habitual and easier
to implement on many-core architectures, the particular features of the Kalray
architecture, in particular the communication via Message- Passing on NoC con-
nection, offers a much faster alternative. Although, the use of NoC consumes more
power, the reduction in time makes this approach more efficient in terms of power
consumption.

We plan to investigate other problems and more efficient strategies for memory
management and data distribution, such as the overlapping of communication and
computing via asynchronous transfers. In particular, the NoC approach could take
advantage of the asynchronous communication as the time consumed by its major
steps is balanced.



Chapter 6

Outcomes and future work

We have shown that with our DFS methodology and open-source Unicorn/FEniCS-
HPC automated software framework, we can predict the stall of a realistic aircraft
at realistic Reynolds number, which is considered by NASA as one of the grand
challenges problems to be solved by 2030 [1]. We not only predict aerodynamic
forces close to experimental results but also 10 times cheaper and faster when
compared to existing CFD methodologies. Our work in this direction has been
highlighted by NASA, a Fields Medalist former, KVA Royal Swedish Academy of
Engineering Sciences and at the highest echelon of the aerodynamics industry. In
order to promote this technology as an open-source scientific platform in the CFD
community and industry, we have started an open-source spin-off called "Icarus
Digital Math", supported by KTH Innovation, Vinnova and KVA Royal Swedish
Academy of Engineering Sciences. Our aim is to transform the industry to Digital
Math - science as open-source, which is verifiable and can be used by anyone at an
affordable cost.

Our variable density approach does not yet include an adaptive algorithm, which
means we do not have any posteriori error estimation. Including adaptivity would
be beneficial in terms of computational cost and reliability. HarshLab dynamics in
the multiphase setting can be used for the further related application. And also,
it is good to focus on Cloud technology as well since DFS does not need so much
computational power for smaller problems plus cloud platforms have the latest
hardware (CPU and GPU) to be used, especially on the Amazon cloud platform.

One of the grand challenges in CFD to be solved by 2030, according to NASA
is for CFD solvers to attain exascale computing using massively parallel and het-
erogeneous architectures. At present, FEniCS-HPC runs only on homogeneous
architectures. This is due to a bottleneck of data transfer in FEM between CPU
and GPU, studies with FEniCS on early stage GPU architectures have not been
able to attain competitive speedup. In the past few years, GPU technology has at-
tained tremendous technological advancement in terms of a number of cores, data
transfer (through NVlink), and unified memory. FEniCS-HPC on heterogeneous

121



122 CHAPTER 6. OUTCOMES AND FUTURE WORK

architectures would be beneficial, especially since most new supercomputers have
a heterogeneous architecture.

In our adaptive methodology in DFS and FEniCS-HPC, we refine the mesh in
parallel based on goal-oriented duality-based error control. One additional key step
in FEniCS-HPC is to allow parallel mesh coarsening and general mesh operations.
We identified the Open Source library Omega_h as providing this key technology
that would unlock general adaptivity.



Bibliography

[1] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and
D. Mavriplis, “Cfd vision 2030 study: a path to revolutionary computational
aerosciences,” 2014.

[2] “Vtk.” [Online]. Available: https://vtk.org/

[3] Visit. [Online]. Available: https://wci.llnl.gov/simulation/computer-codes/
visit

[4] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of internet services and applications, vol. 1,
no. 1, pp. 7–18, 2010.

[5] “Aerodynamics: Flow around the ahmed body.” [Online]. Available:
https://www.simscale.com/aerodynamics-flow-around-the-ahmed-body/

[6] “Ansys meshing.” [Online]. Available: https://www.ansys.com/products/
platform/ansys-meshing

[7] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss et al., “A
clustered manycore processor architecture for embedded and accelerated ap-
plications,” in 2013 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2013, pp. 1–6.

[8] J. Hoffman, J. Jansson, and N. Jansson, “Fenics-hpc: Automated predictive
high-performance finite element computing with applications in aerodynam-
ics,” Proceedings of the 11th International Conference on Parallel Processing
and Applied Mathematics, PPAM 2015. Lecture Notes in Computer Science,
2015.

[9] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow,
ser. Applied Mathematics: Body and Soul. Springer, 2007, vol. 4.

[10] J. Hoffman, J. Jansson, R. V. de Abreu, N. C. Degirmenci, N. Jansson,
K. Müller, M. Nazarov, and J. H. Spühler, “Unicorn: Parallel adaptive fi-
nite element simulation of turbulent flow and fluid-structure interaction for

123



124 BIBLIOGRAPHY

deforming domains and complex geometry,” Comput. Fluids, vol. 80, no. 0,
pp. 310 – 319, 2013.

[11] J. Hoffman, J. Jansson, C. Degirmenci, N. Jansson, and M. Nazarov, Unicorn:
a Unified Continuum Mechanics Solver. Springer, 2012, ch. 18.

[12] A. Logg, K.-A. Mardal, G. N. Wells et al., Automated Solution of Differential
Equations by the Finite Element Method. Springer, 2012.

[13] FEniCS, “Fenics project,” http://www.fenicsproject.org, 2003.

[14] J. Hoffman, J. Jansson, and M. Stöckli, “Unified continuum modeling of fluid-
structure interaction,” Mathematical Models and Methods in Applied Sciences,
2011.

[15] A. Logg, G. N. Wells, and J. Hake, “Dolfin: A c++/python finite element li-
brary,” in Automated Solution of Differential Equations by the Finite Element
Method. Springer, 2012, pp. 173–225.

[16] R. C. Kirby, “Algorithm 839: Fiat, a new paradigm for computing fi-
nite element basis functions,” ACM Transactions on Mathematical Software
(TOMS), 2004.

[17] R. C. Kirby and A. Logg, “A compiler for variational forms,” ACM Transac-
tions on Mathematical Software, vol. 32, no. 3, pp. 417–444, 2006.

[18] N. Jansson, J. Hoffman, and J. Jansson, “Framework for Massively Paral-
lel Adaptive Finite Element Computational Fluid Dynamics on Tetrahedral
Meshes,” SIAM J. Sci. Comput., vol. 34, no. 1, pp. C24–C41, 2012.

[19] J. Hoffman, J. Jansson, R. V. de Abreu, N. C. Degirmenci, N. Jansson,
K. Müller, M. Nazarov, and J. H. Spühler, “Unicorn: Parallel adaptive fi-
nite element simulation of turbulent flow and fluid-structure interaction for
deforming domains and complex geometry,” Comput. Fluids, vol. 80, no. 0,
pp. 310 – 319, 2013.

[20] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow,
ser. Applied Mathematics: Body and Soul. Springer, 2007, vol. 4.

[21] N. Jansson, “High performance adaptive finite element methods for turbulent
fluid flow,” Ph.D. dissertation, KTH Royal Institute of Technology, 2011.

[22] G. Houzeaux, M. Vázquez, R. Aubry, and J. Cela, “A massively parallel
fractional step solver for incompressible flows,” Journal of Computational
Physics, vol. 228, no. 17, pp. 6316–6332, 2009.

[23] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow:
Applied Mathematics Body and Soul Vol 4. Springer-Verlag Publishing, 2006.



BIBLIOGRAPHY 125

[24] J. Hoffman, J. Jansson, N. Jansson, R. Vilela De Abreu, and C. Johnson,
“Computability and adaptivity in cfd. encyclopedia of computational me-
chanics, stein, e., de horz, r. and hughes, tjr eds,” 2016.

[25] J. Hoffman and C. Johnson, Adaptive finite element methods for incompress-
ible fluid flow. Heidelberg: Error Estimation and Solution Adaptive Dis-
cretization in Computational Fluid Dynamics (Ed. T. J. Barth and H. De-
coninck), Lecture Notes in Computational Science and Engineering, Springer-
Verlag Publishing, 2002, pp. 97–158.

[26] ——, “A new approach to computational turbulence modeling,” Comput.
Methods Appl. Mech. Engrg., vol. 195, pp. 2865–2880, 2006.

[27] J. Hoffman, “Adaptive simulation of the turbulent flow past a sphere,” J.
Fluid Mech., vol. 568, pp. 77–88, 2006.

[28] ——, “Efficient computation of mean drag for the subcritical flow past a
circular cylinder using general galerkin g2,” Int. J. Numer. Meth. Fluids, vol.
59(11), pp. 1241–1258, 2009.

[29] J. Hoffman and N. Jansson, A computational study of turbulent flow separa-
tion for a circular cylinder using skin friction boundary conditions. Ercoftac,
series Vol.16, Springer, 2010.

[30] J. Hoffman and C. Johnson, “Resolution of d’alembert’s paradox,” J. Math.
Fluid Mech., Published Online First at www.springerlink.com: 10 December
2008.

[31] R. Vilela de Abreu, N. Jansson, and J. Hoffman, “Adaptive computation
of aeroacoustic sources for a rudimentary landing gear,” Int. J. Numer.
Meth. Fluids, vol. 74, no. 6, pp. 406–421, 2014. [Online]. Available:
http://dx.doi.org/10.1002/fld.3856

[32] P. Schlatter and R. Örlü, “Turbulent boundary layers at moderate reynolds
numbers: inflow length and tripping effects,” Journal of Fluid Mechanics, vol.
710, pp. 5–34, 2012.

[33] FEniCS-HPC, “Fenics-hpc project,” https://bitbucket.org/fenics-hpc/.

[34] J. Hoffman and C. Johnson, Computational turbulent incompressible flow:
Applied mathematics: Body and soul 4. Springer Science & Business Media,
2007, vol. 4.

[35] K. Kleefsman, G. Fekken, A. Veldman, B. Iwanowski, and B. Buchner, “A
volume-of-fluid based simulation method for wave impact problems,” Journal
of Computational Physics, vol. 206, no. 1, pp. 363–393, 2005.



126 BIBLIOGRAPHY

[36] X. Deng, M. Mao, G. Tu, H. Zhang, and Y. Zhang, “High-order and high ac-
curate cfd methods and their applications for complex grid problems,” Com-
munications in Computational Physics, vol. 11, no. 4, pp. 1081–1102, 2012.

[37] J. A. Ekaterinaris, “High-order accurate, low numerical diffusion methods for
aerodynamics,” Progress in Aerospace Sciences, vol. 41, no. 3-4, pp. 192–300,
2005.

[38] Z. Wang, “High-order methods for the euler and navier–stokes equations on
unstructured grids,” Progress in Aerospace Sciences, vol. 43, no. 1-3, pp. 1–41,
2007.

[39] F. D. Witherden, A. M. Farrington, and P. E. Vincent, “Pyfr: An open
source framework for solving advection–diffusion type problems on stream-
ing architectures using the flux reconstruction approach,” Computer Physics
Communications, vol. 185, no. 11, pp. 3028–3040, 2014.

[40] A. Stuermer, “Unsteady cfd simulations of propeller installation effects,”
in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
2006, p. 4969.

[41] R. Mustak, M. H. U. Khan, M. M. Rahman, and M. Mashud, “Investigation
of slipstreaming effect between a semi trailer-truck and a sedan car,” Inter-
national Journal of Scientific & Engineering Research (IJSER), vol. 8, no. 2,
pp. 676–678, 2017.

[42] L. Pii, E. Vanoli, F. Polidoro, S. Gautier, and A. Tabbal, “A full scale
simulation of a high speed train for slipstream prediction,” in Trans-
port Research Arena (TRA) 5th Conference: Transport Solutions from Re-
search to DeploymentEuropean CommissionConference of European Direc-
tors of Roads (CEDR) European Road Transport Research Advisory Council
(ERTRAC) WATERBORNEáţĂáť¿European Rail Research Advisory Coun-
cil (ERRAC) Institut Francais des Sciences et Technologies des Transports,
de l’Aménagement et des Réseaux (IFSTTAR) Ministère de l’Écologie, du
Développement Durable et de l’Énergie, 2014.

[43] C. Baker, S. Dalley, T. Johnson, A. Quinn, and N. Wright, “The slipstream
and wake of a high-speed train,” Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit, vol. 215, no. 2, pp.
83–99, 2001.

[44] F. D. Witherden and A. Jameson, “Future directions of computational fluid
dynamics,” in 23rd AIAA Computational Fluid Dynamics Conference, 2017,
p. 3791.

[45] H. Shan, L. Jiang, and C. Liu, “Direct numerical simulation of flow separation
around a naca 0012 airfoil,” Computers and Fluids, vol. 34, p. 1096ï¿Ř1114,
2005.



BIBLIOGRAPHY 127

[46] P. Sagaut, Large Eddy Simulation for Incompressible Flows (3rd Ed.).
Springer-Verlag, Berlin, Heidelberg, New York, 2005.

[47] P. Moin and D. You, “Active control of flow separation over an airfoil using
synthetic jets,” Journal of Fluids and Structures, vol. 24, no. 8, pp. 1349–1357,
2008.

[48] L. Huang, P. G. Huang, and R. P. LeBeau, “Numerical study of blowing and
suction control mechanism on naca 0012 airfoil,” AIAA Journal of aircraft,
vol. 41, no. 1, 2004.

[49] P. R. Spalart, “Detached-eddy simulation,” Annu Rev. Fluid Mech., vol. 41,
pp. 181–202, 2009.

[50] U. Piomelli and E. Balaras, “Wall-layer models for large-eddy simulation,”
Annu. Rev. Fluid Mech., vol. 34, pp. 349–374, 2002.

[51] C. P. Mellen, J. Frölich, and W. Rodi, “Lessons from lesfoil project on large-
eddy simulation of flow around an airfoil,” AIAA journal, vol. 41, pp. 573–581,
2003.

[52] J. Hoffman, “Computation of mean drag for bluff body problems using adap-
tive dns/les,” SIAM J. Sci. Comput., vol. 27(1), pp. 184–207, 2005.

[53] J. Hoffman, J. Jansson, N. Jansson, and R. V. D. Abreu, “Towards a
parameter-free method for high reynolds number turbulent flow simulation
based on adaptive finite element approximation,” Computer Methods in
Applied Mechanics and Engineering, vol. 288, no. 0, pp. 60 – 74,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0045782514004836

[54] R. C. Kirby, FIAT: Numerical Construction of Finite Element Basis Func-
tions,. Springer, 2012, ch. 13.

[55] A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, FFC: the FEniCS
Form Compiler. Springer, 2012, ch. 11.

[56] J. Hoffman, J. Jansson, N. Jansson, and M. Nazarov, “Unicorn: A
unified continuum mechanics solver,” in Automated Solutions of Differential
Equations by the Finite Element Method. Springer, 2011. [Online]. Available:
http://www.fenicsproject.org/pub/documents/book/

[57] J. Hoffman, J. Jansson, N. Jansson, C. Johnson, and R. V. de Abreu,
“Turbulent flow and fluid-structure interaction,” in Automated Solutions
of Differential Equations by the Finite Element Method. Springer, 2011.
[Online]. Available: http://www.fenicsproject.org/pub/documents/book/



128 BIBLIOGRAPHY

[58] C. Rumsey, “3rd AIAA CFD High Lift Prediction Workshop (HiLiftPW-
2) (http://hiliftpw.larc.nasa.gov/),” 2017. [Online]. Available: http:
//hiliftpw.larc.nasa.gov/

[59] J. C. Hunt, A. A. Wray, and P. Moin, “Eddies, streams, and convergence
zones in turbulent flows,” 1988.

[60] J. Hoffman, J. Jansson, R. V. de Abreu, N. C. Degirmenci, N. Jansson,
K. Müller, M. Nazarov, and J. H. Spühler, “Unicorn: Parallel adaptive fi-
nite element simulation of turbulent flow and fluid–structure interaction for
deforming domains and complex geometry,” Computers & Fluids, vol. 80, pp.
310–319, 2013.

[61] J. Hoffman, J. Jansson, and N. Jansson, “Fenics-hpc: Automated predictive
high-performance finite element computing with applications in aerodynam-
ics,” in International Conference on Parallel Processing and Applied Mathe-
matics. Springer, 2015, pp. 356–365.

[62] S. N. Jonkman, “Global perspectives on loss of human life caused by floods,”
Natural hazards, vol. 34, no. 2, pp. 151–175, 2005.

[63] The international disaster database. [Online]. Available: http://www.emdat.
be/country{_}profile/index.html

[64] H.-M. Füssel, A. Jol et al., “Climate change, impacts and vulnerability in
europe 2012 an indicator-based report,” 2012.

[65] A. Ezcurra, J. Areitio, and I. Herrero, “Relationships between cloud-to-
ground lightning and surface rainfall during 1992–1996 in the spanish basque
country area,” Atmospheric research, vol. 61, no. 3, pp. 239–250, 2002.

[66] J. W. Choi and N. Kim, “Clinical application of three-dimensional printing
technology in craniofacial plastic surgery,” Archives of plastic surgery, vol. 42,
no. 3, pp. 267–277, 2015.

[67] S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, “Laser and electron-beam
powder-bed additive manufacturing of metallic implants: A review on pro-
cesses, materials and designs,” Journal of Orthopaedic Research, 2015.

[68] S. C. Joshi and A. A. Sheikh, “3d printing in aerospace and its long-term
sustainability,” Virtual and Physical Prototyping, pp. 1–11, 2015.

[69] L. Murr, S. Quinones, S. Gaytan, M. Lopez, A. Rodela, E. Martinez, D. Her-
nandez, E. Martinez, F. Medina, and R. Wicker, “Microstructure and me-
chanical behavior of ti–6al–4v produced by rapid-layer manufacturing, for
biomedical applications,” Journal of the mechanical behavior of biomedical
materials, vol. 2, no. 1, pp. 20–32, 2009.



BIBLIOGRAPHY 129

[70] Y.-L. Pan, J. Bowersett, S. C. Hill, R. G. Pinnick, and R. K. Chang, “Noz-
zles for focusing aerosol particles,” ARMY RESEARCH LAB ADELPHI MD
COMPUTATIONAL AND INFORMATION SCIENCES DIRECTORATE,
Tech. Rep., 2009.

[71] K. Moreland, B. Geveci, K.-L. Ma, and R. Maynard, “A classification of
scientific visualization algorithms for massive threading,” in Proceedings of
the 8th International Workshop on Ultrascale Visualization, 2013, pp. 1–10.

[72] “Paraview.” [Online]. Available: https://www.paraview.org/

[73] “tecplot.” [Online]. Available: https://www.tecplot.com/

[74] “Mayavi.” [Online]. Available: https://docs.enthought.com/mayavi/mayavi/
overview.html

[75] “Vmd.” [Online]. Available: https://www.ks.uiuc.edu/Research/vmd/

[76] M. Rivi, L. Calori, G. Muscianisi, and V. Slavnic, “In-situ visualization:
State-of-the-art and some use cases,” PRACE White Paper, pp. 1–18, 2012.

[77] “Amazon web service (aws) - cloud computing service.” [Online]. Available:
https://aws.amazon.com/

[78] “Google cloud.” [Online]. Available: https://cloud.google.com/

[79] “Microsoft azure.” [Online]. Available: https://azure.microsoft.com/sv-se/

[80] “Ibm cloud.” [Online]. Available: https://www.ibm.com/cloud

[81] “Nvidia gpu in google cloud.” [Online]. Available: https://cloud.google.com/
nvidia/

[82] “Using clusters for large-scale technical computing in the
cloud.” [Online]. Available: https://cloud.google.com/solutions/
using-clusters-for-large-scale-technical-computing

[83] “Introducing amazon ec2 c5n instances featuring 100 gbps of network band-
width.” [Online]. Available: https://aws.amazon.com/about-aws/whats-new/
2018/11/introducing-amazon-ec2-c5n-instances/

[84] “Kubernetes.” [Online]. Available: https://kubernetes.io/

[85] “Elasticluster.” [Online]. Available: https://elasticluster.readthedocs.io/en/
latest/

[86] “Create a grid engine cluster on compute engine.” [Online]. Avail-
able: https://googlegenomics.readthedocs.io/en/latest/use_cases/setup_
gridengine_cluster_on_compute_engine/



130 BIBLIOGRAPHY

[87] “Elasticluster to access your gcp project and generate an ssh
key pair.” [Online]. Available: https://cloud.google.com/genomics/docs/
tutorials/grid-engine-cluster

[88] “My slurm cluster.” [Online]. Available: https://cloud.google.com/solutions/
running-r-at-scale

[89] “Salome.” [Online]. Available: https://www.salome-platform.org/
user-section/about/mesh

[90] “Gmsh.” [Online]. Available: http://gmsh.info/

[91] “Pointwise, the choice for cfd meshing.” [Online]. Available: https:
//www.pointwise.com/

[92] “Ansa-the advanced cae pre-processing software for complete model build
up.” [Online]. Available: https://www.beta-cae.com/ansa.htm

[93] H. P. Babbage, “Babbage analytical engine,” in The Origins of Digital Com-
puters. Springer, 1982, pp. 67–70.

[94] A. Huang, “Architectural considerations involved in the design of an optical
digital computer,” Proceedings of the IEEE, vol. 72, no. 7, pp. 780–786, 1984.

[95] M. J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE,
vol. 54, no. 12, pp. 1901–1909, 1966.

[96] ——, “Some computer organizations and their effectiveness,” IEEE transac-
tions on computers, vol. 100, no. 9, pp. 948–960, 1972.

[97] A. J. Smith, “Cache memories,” ACM Computing Surveys (CSUR), vol. 14,
no. 3, pp. 473–530, 1982.

[98] NVIDIA, Volta Architecture, https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[99] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A
unified graphics and computing architecture,” IEEE Micro, vol. 28, no. 2, pp.
39–55, 2008.

[100] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, “Optimization principles and application performance eval-
uation of a multithreaded gpu using cuda,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming.
ACM, 2008, pp. 73–82.

[101] J. A. Jablin, T. B. Jablin, O. Mutlu, and M. Herlihy, “Warp-aware trace
scheduling for GPUs,” in Proceedings of the 23rd international conference on
Parallel architectures and compilation. ACM, 2014, pp. 163–174.



BIBLIOGRAPHY 131

[102] Top500 supercomputing sites. [Online]. Available: https://www.top500.org/
lists/2014/11/

[103] M. Sourouri, T. Gillberg, S. B. Baden, and X. Cai, “Effective multi-gpu com-
munication using multiple cuda streams and threads,” in 2014 20th IEEE
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, 2014, pp. 981–986.

[104] Gpudirect. [Online]. Available: https://developer.nvidia.com/gpudirect

[105] T. Gillberg, M. Sourouri, and X. Cai, “A new parallel 3d front propagation
algorithm for fast simulation of geological folds,” Procedia Computer Science,
vol. 9, pp. 947–955, 2012.

[106] W.-K. Jeong and R. T. Whitaker, “A fast iterative method for eikonal equa-
tions,” SIAM Journal on Scientific Computing, vol. 30, no. 5, pp. 2512–2534,
2008.

[107] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and R. Kimmel,
“Parallel algorithms for approximation of distance maps on parametric sur-
faces,” ACM Transactions on Graphics (TOG), vol. 27, no. 4, p. 104, 2008.

[108] T. Gillberg, “Fast and accurate front propagation for simulation of geological
folds,” 2013.

[109] E. Krishnasamy, “Hybrid cpu-gpu parallel simulations of 3d front propaga-
tion,” 2014.

[110] The erik gpu cluster at lunarc. [Online]. Available: URLhttp://www.lunarc.
lu.se/Systems/ErikDetails

[111] An overview of zorn, pdcâĂŹs gpu cluster. [Online]. Available: URLhttps:
//www.pdc.kth.se/resources/computers/zorn

[112] D. A. Ibanez, “Conformal mesh adaptation on heterogeneous supercomput-
ers,” Ph. D. thesis, Rensselaer Polytechnic Institute, 2016.

[113] P. Valero, J. L. Sánchez, D. Cazorla, and E. Arias, “A gpu-based implemen-
tation of the mrf algorithm in itk package,” The Journal of Supercomputing,
vol. 58, no. 3, pp. 403–410, 2011.

[114] P. Valero-Lara, A. Pinelli, J. Favier, and M. P. Matias, “Block tridiagonal
solvers on heterogeneous architectures,” in 2012 IEEE 10th International
Symposium on Parallel and Distributed Processing with Applications. IEEE,
2012, pp. 609–616.

[115] P. Valero-Lara, A. Pinelli, and M. Prieto-Matias, “Fast finite difference pois-
son solvers on heterogeneous architectures,” Computer Physics Communica-
tions, vol. 185, no. 4, pp. 1265–1272, 2014.



132 BIBLIOGRAPHY

[116] P. Valero-Lara, “Accelerating solid–fluid interaction based on the immersed
boundary method on multicore and gpu architectures,” The Journal of Su-
percomputing, vol. 70, no. 2, pp. 799–815, 2014.

[117] P. Valero-Lara, F. D. Igual, M. Prieto-Matías, A. Pinelli, and J. Favier, “Ac-
celerating fluid–solid simulations (lattice-boltzmann & immersed-boundary)
on heterogeneous architectures,” Journal of Computational Science, vol. 10,
pp. 249–261, 2015.

[118] S. A. Kalray, “Mppa accesscore posix progamming reference manual,” 2013.

[119] B. D. De Dinechin, D. Van Amstel, M. Poulhiès, and G. Lager, “Time-critical
computing on a single-chip massively parallel processor,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2014, pp. 1–6.

[120] P. Valero-Lara and F. L. Pelayo, “Full-overlapped concurrent kernels,” in
ARCS 2015-The 28th International Conference on Architecture of Computing
Systems. Proceedings. VDE, 2015, pp. 1–8.

[121] P. Valero-Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos, and
I. Raicu, “Many-task computing on many-core architectures,” Scalable Com-
puting: Practice and Experience, vol. 17, no. 1, pp. 32–46, 2016.

[122] M. D. Gomony, B. Akesson, and K. Goossens, “Coupling tdm noc and dram
controller for cost and performance optimization of real-time systems,” in
2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2014, pp. 1–6.

[123] H. Zhao, O. Jang, W. Ding, Y. Zhang, M. Kandemir, and M. J. Irwin, “A
hybrid noc design for cache coherence optimization for chip multiprocessors,”
in Proceedings of the 49th Annual Design Automation Conference. ACM,
2012, pp. 834–842.

[124] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Exploration of dis-
tributed shared memory architectures for noc-based multiprocessors,” Jour-
nal of Systems Architecture, vol. 53, no. 10, pp. 719–732, 2007.

[125] D. M. Young, Iterative solution of large linear systems. Elsevier, 2014.

[126] B. D. de Dinechin, Y. Durand, D. Van Amstel, and A. Ghiti, “Guaranteed
services of the noc of a manycore processor,” in Proceedings of the 2014 In-
ternational Workshop on Network on Chip Architectures. ACM, 2014, pp.
11–16.

[127] T. Goubier, R. Sirdey, S. Louise, and V. David, “σc: A programming model
and language for embedded manycores,” in International Conference on Al-
gorithms and Architectures for Parallel Processing. Springer, 2011, pp. 385–
394.



BIBLIOGRAPHY 133

[128] P. Valero-Lara and J. Jansson, “Lbm-hpc-an open-source tool for fluid simu-
lations. case study: unified parallel c (upc-pgas),” in 2015 IEEE International
Conference on Cluster Computing. IEEE, 2015, pp. 318–321.


