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Abstract. We explore the applicability of a new adaptive stabilized dual-mixed
finite element method to a singularly-perturbed convection-diffusion equation with
mixed boundary conditions. We establish the rate of convergence when the flux
and the concentration are approximated, respectively, by Raviart-Thomas/Brezzi-
Douglas-Marini and continuous piecewise polynomials. We consider a simple a pos-
teriori error indicator and provide some numerical experiments that illustrate the
performance of the method.

1 Introduction

The numerical solution of convection-dominated convection-diffusion prob-
lems is difficult. We are interested in the simultaneous approximation of
the concentration and the flux in a singularly-perturbed convection-diffusion
equation with mixed boundary conditions. This type of mixed methods was
first proposed and analyzed by J.M. Thomas [12].

The use of augmented mixed finite element methods allows to use a wider
set of finite element subspaces in the discretization (see [9,5,1,6,2] and the
references therein). However, in [6,2] only homogeneous boundary conditions
of Dirichlet type were treated.

In this work we analyze the applicability of adaptive augmented mixed fi-
nite element methods to a singularly-perturbed convection-diffusion equation
with mixed boundary conditions. In Section 2 we describe the augmented
dual-mixed variational formulation. In Section 3 we present the stabilized
mixed finite element method. In Section 4, we introduce a new a posteriori
error indicator that is reliable and locally efficient. Finally, numerical exper-
iments are reported in Section 5.

2 Augmented dual-mixed variational formulation

Let £2 be a bounded domain of R? with a Lipschitz-continuous boundary I'.
We assume that I" is decomposed into two disjoint open parts, I'p and I'y. Let
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b € [L>=(2)]? be solenoidal in £2. Then, given f € L?*(£2), g € H/?(I'p) and
z € H-'/?(I'y), we consider the problem: find o : 2 — R? and u : 2 — R

such that
—div(e) + b-Vu=f in (2,

elo —Vu=0 in £,
(1)

u=g onlp,

c-n=z only,

where € > 0 is a parameter and n is the unit outward normal vector to I

Given s € H=Y/?(I'y), we define the space H, := {7 € H(div;2) : 7-n =
s on I'nv} and decompose o as 0 = 09 + 0, € Hy + H.. We consider the
bilinear forms a : Hy x Hy — R, b : H(2) x Hy — R and ¢ : H'(£2) x
H' () — R defined by

1
a(C,7) = f/ ¢-7, blw,7T) ::/ wdiv(T), c(w,v) ::/ b-Vwuv (2)
€Jo 7] o
for all ¢, 7 € Hy and w, v € H(£2), and the linear functionals m : Hy — R
and [ : H'(2) — R defined by
1
m(7) ::/ gT-n — 7/ o7, lv):= —/ (f+div(e.)v, (3)
I'p €Jn n

for all 7 € Hy and v € H(92).
We then consider the following augmented variational formulation of prob-
lem (1): find (09,u) € H := Hy x H*(£2) such that

As((og,u), (1,0)) = Fe(r,v), V(r,v) € H, (4)

where H is endowed with the product norm and the bilinear form A, : H x
H — R and the linear functional F : H — R are defined by

As((¢ w), (1,0)) == a(l, 1) + b(w,T) — b(v,() + c(w,v)
+ K1 /Q(div(g“) —b-Vw) (div(r) + b - Vv) (5)

—|—f$2/Q(Vw—e_1C) (Ve tr) + I€3/ wv

I'p

and

Fy(r,v) :=m(7) — l(v) — K1 /Q(f + div(o,)) (div(T) + b - Vv)

+ 22 / o.(Vo+etr) + 53/ guv
€ Jo I'p

for all (¢, w), (1,v) € H.
We have the following result concerning the well-posedness of problem

(4).

(6)
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Theorem 1. Assume that b € [L>°(£2)]? is solenoidal in 2 and such that
b-n>0 onlily. (7)

Assume also that

K2

2Bl (e

1
0< kK < , O0<ka<e and K/3>§||b'n||Loo([‘D). (8)

Then, problem (4) has a unique solution, (oo, u) € H.

Proof. 1t is a consequence of the Lax-Milgram Lemma.

3 Augmented mixed finite element method

In what follows, we let {73 }r~0 be a family of shape-regular meshes of {2
made up of triangles; we denote by hr the diameter of an element T' € T},
and define h := maxype7;, hy. Given T € 7, and an integer [ > 0, we denote
by P;(T') the space of polynomials of total degree at most { defined on T
and, given an integer r > 0, we denote by RT (T the local Raviart-Thomas
space of order r (cf. [11]). Then, we define H, := RT, = {7 € Hp
Th|T € RT.(T), VYT € Tp}, or Hy := BDM,41 = {m, € Hp : Th}T €
[Pri1(T))?, VT € Tn} (see [3]) . On the other hand, let m > 1 and define
Vi i= Ly = {vp € C(2) : vp|, € Pu(T), VT € Tp}. Then, the Galerkin
scheme associated to problem (4) reads: find (o¢ 1, up) € Hy, 1= Hy, x V), such
that

As((oo,nsun), (Thyvn)) = Fo(Th, vn), YV (th,vp) € Hy x V. (9)

Under the hypotheses of Theorem 1, problem (9) has a unique solution
(0., un) € Hyp, x Vj,. Moreover, there exists a constant C' > 0, independent
of h, such that

[|(co — oon,u—up)|lu < C inf [|(c0 — Th,yu — vp)||a - (10)
(Th,vp)EHEL XV},

The corresponding rate of convergence is given in the next theorem.

Theorem 2. Assume oq € [H'(§2)]%, div(og) € HY(2) and u € H1(0).
Then, under the assumptions of Theorem 1, there exists a positive constant
Cerr = O(||b||?/€?), independent of h, such that

(o0 — o,n, u — up)|la <
S (1)
< Copr hmln{t7m,T+ }(||0'0H[Ht(_o)]d + ||diV(O’0)HHt(Q) + Hu||Hf,+1(Q)> .

Proof. Tt follows straightforwardly from inequality (10) and the approxima-
tion properties of the corresponding finite element subspaces.
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4 A posteriori error indicator

Let (oo,p,un) € Hy, be the unique solution to problem (9). We denote by
Er,, the set of all the edges induced by the mesh 7; that are contained in
I'p. Moreover, for each edge e € Er,,, we denote by h, the length of e; we
also fix a unit normal vector, n, := (n1,n2)*, and let t. := (—n2,n1)* be the
corresponding fixed unit tangential vector along e.

We consider the global a posteriori error indicator 8 := (ZTeTh 0%) / ,

where
. 1
0 = |If +div(o. +00) b VunlZacry + Ve = = (02 + 00l Bpacry

S S (TR A v o )
e€Er, NAT ¢
(12)
We remark that 7 consists of two terms in interior elements and elements
with a side on the Neumann boundary, whereas it contains two additional
terms on elements with a side on the Dirichlet boundary.
In the next theorem we establish the reliability and local efficiency of 6.

Theorem 3. Let (09,u) € H and (0on,ur) € Hy, be the unique solutions
to problems (4) and (9), respectively. Then, there exists a positive constant
Cre1, independent of h, such that

(oo — oo, u—up)|la < Cre1 0. (13)

Moreover, if g € HY(I'p) is a piecewise polynomial on I'p, then there exists
Cets > 0, independent of h, such that for all T € T, we have

07 < Oz (Ilu = unllip vy + loo = oonllF(aivr)) - (14)
Proof. See [7]. In the convection-dominated regime, Crey = O(||b||3/€) and

[
Ceff == 0(62).

5 Numerical experiments

In this section, we deal with the solution of the boundary value problem

—€eAu+b-Vu=0 1in2:=(0,1)x(0,1),
u=0 onx=0,
(15)

u=1 onx=1,

eVu-n=0 ony=0, y=1,
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where b = (1,0)* and ¢ ranges from 1072 to 10~%. The exact solution of
problem (15) is (see [4])

u(z,y) = —*1 (z.y) € 2. (16)

€e —

We remark that u has an exponential boundary layer around the line x = 1.
We present numerical results for the finite element pairs (Hj, V4,) given by
(RTo,L1), (RT1,Ls), (BDM;y,L1) and (BDMay, Ls) in R%. The numerical
experiments were performed using the finite element toolbox FEniCS [8]. We
compare the performance of the finite element method based on uniform
refinement with the adaptive method based on the a posteriori error indicator
6. For the selection of elements to be refined, we rely on the mazimum strategy
with a threshold v = 0.4. We choose k1 = §, ko = 5 and r3 = 1. We remark
that these values satisfy conditions (8). Finally, we define the total error

1/2
en(00,u) = (|00 — ool mva) + llu—unllm)>. A7)

In Figure 1, we report the total error and estimator for the uniform and
adaptive refinements. From these graphs, we conclude that the adaptive al-
gorithm is more competitive than the uniform procedure. Figure 2 shows the
efficiency indices for the different finite elements and the different values of
e considered here. We note that their values stay in the same range for all
values of € and all elements considered. In Figure 3 we show the initial, an
intermediary and final meshes for ¢ = 107%. We observe that the adaptive
algorithm is able to locate the boundary layer of the solution.

Finally, Figure 4 shows the final concentration and flux obtained in that
case with the adaptive procedure.
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Fig. 4. Final concentration (left) and flux (right) for e = 0.0001 when using
(RTo,L1) .
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