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Abstract. We explore the applicability of a new adaptive stabilized dual-mixed
finite element method to a singularly-perturbed convection-diffusion equation with
mixed boundary conditions. We establish the rate of convergence when the flux
and the concentration are approximated, respectively, by Raviart-Thomas/Brezzi-
Douglas-Marini and continuous piecewise polynomials. We consider a simple a pos-
teriori error indicator and provide some numerical experiments that illustrate the
performance of the method.

1 Introduction

The numerical solution of convection-dominated convection-diffusion prob-
lems is difficult. We are interested in the simultaneous approximation of
the concentration and the flux in a singularly-perturbed convection-diffusion
equation with mixed boundary conditions. This type of mixed methods was
first proposed and analyzed by J.M. Thomas [12].

The use of augmented mixed finite element methods allows to use a wider
set of finite element subspaces in the discretization (see [9,5,1,6,2] and the
references therein). However, in [6,2] only homogeneous boundary conditions
of Dirichlet type were treated.

In this work we analyze the applicability of adaptive augmented mixed fi-
nite element methods to a singularly-perturbed convection-diffusion equation
with mixed boundary conditions. In Section 2 we describe the augmented
dual-mixed variational formulation. In Section 3 we present the stabilized
mixed finite element method. In Section 4, we introduce a new a posteriori
error indicator that is reliable and locally efficient. Finally, numerical exper-
iments are reported in Section 5.

2 Augmented dual-mixed variational formulation

Let Ω be a bounded domain of R2 with a Lipschitz-continuous boundary Γ .
We assume that Γ is decomposed into two disjoint open parts, ΓD and ΓN . Let
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b ∈ [L∞(Ω)]2 be solenoidal in Ω. Then, given f ∈ L2(Ω), g ∈ H1/2(ΓD) and
z ∈ H−1/2(ΓN ), we consider the problem: find σ : Ω → R2 and u : Ω → R
such that 

−div(σ) + b · ∇u = f in Ω ,

ε−1 σ − ∇u = 0 in Ω ,

u = g on ΓD ,

σ · n = z on ΓN ,

(1)

where ε > 0 is a parameter and n is the unit outward normal vector to Γ .
Given s ∈ H−1/2(ΓN ), we define the space Hs := {τ ∈ H(div;Ω) : τ ·n =

s on ΓN} and decompose σ as σ = σ0 + σz ∈ H0 + Hz. We consider the
bilinear forms a : H0 × H0 → R, b : H1(Ω) × H0 → R and c : H1(Ω) ×
H1(Ω)→ R defined by

a(ζ, τ) :=
1

ε

∫
Ω

ζ · τ , b(w, τ) :=

∫
Ω

w div(τ) , c(w, v) :=

∫
Ω

b · ∇w v (2)

for all ζ, τ ∈ H0 and w, v ∈ H1(Ω), and the linear functionals m : H0 → R
and l : H1(Ω)→ R defined by

m(τ) :=

∫
ΓD

g τ · n − 1

ε

∫
Ω

σz · τ , l(v) := −
∫
Ω

(f + div(σz)) v , (3)

for all τ ∈ H0 and v ∈ H1(Ω) .
We then consider the following augmented variational formulation of prob-

lem (1): find (σ0, u) ∈ H := H0 ×H1(Ω) such that

As((σ0, u), (τ, v)) = Fs(τ, v) , ∀ (τ, v) ∈ H, (4)

where H is endowed with the product norm and the bilinear form As : H×
H→ R and the linear functional Fs : H→ R are defined by

As((ζ, w), (τ, v)) := a(ζ, τ) + b(w, τ) − b(v, ζ) + c(w, v)

+κ1

∫
Ω

(div(ζ)− b · ∇w) (div(τ) + b · ∇v)

+κ2

∫
Ω

(∇w − ε−1 ζ) · (∇v + ε−1 τ) + κ3

∫
ΓD

w v

(5)

and

Fs(τ, v) := m(τ) − l(v) − κ1

∫
Ω

(f + div(σz)) (div(τ) + b · ∇v)

+
κ2

ε

∫
Ω

σz(∇v + ε−1τ) + κ3

∫
ΓD

g v
(6)

for all (ζ, w), (τ, v) ∈ H.
We have the following result concerning the well-posedness of problem

(4).
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Theorem 1. Assume that b ∈ [L∞(Ω)]2 is solenoidal in Ω and such that

b · n ≥ 0 on ΓN . (7)

Assume also that

0 < κ1 <
κ2

2 ‖b‖2[L∞(Ω)]2
, 0 < κ2 < ε and κ3 >

1

2
‖b · n‖L∞(ΓD) . (8)

Then, problem (4) has a unique solution, (σ0, u) ∈ H.

Proof. It is a consequence of the Lax-Milgram Lemma.

3 Augmented mixed finite element method

In what follows, we let {Th}h>0 be a family of shape-regular meshes of Ω̄
made up of triangles; we denote by hT the diameter of an element T ∈ Th
and define h := maxT∈ThhT . Given T ∈ Th and an integer l ≥ 0, we denote
by Pl(T ) the space of polynomials of total degree at most l defined on T
and, given an integer r ≥ 0, we denote by RT r(T ) the local Raviart-Thomas
space of order r (cf. [11]). Then, we define Hh := RT r = {τh ∈ H0 :
τh
∣∣
T
∈ RT r(T ), ∀T ∈ Th}, or Hh := BDMr+1 = {τh ∈ H0 : τh

∣∣
T
∈

[Pr+1(T )]2, ∀T ∈ Th} (see [3]) . On the other hand, let m ≥ 1 and define
Vh := Lm = {vh ∈ C(Ω) : vh

∣∣
T
∈ Pm(T ), ∀T ∈ Th}. Then, the Galerkin

scheme associated to problem (4) reads: find (σ0,h, uh) ∈ Hh := Hh×Vh such
that

As((σ0,h, uh), (τh, vh)) = Fs(τh, vh) , ∀ (τh, vh) ∈ Hh × Vh . (9)

Under the hypotheses of Theorem 1, problem (9) has a unique solution
(σ0,h, uh) ∈ Hh × Vh. Moreover, there exists a constant C > 0, independent
of h, such that

||(σ0 − σ0,h, u− uh)||H ≤ C inf
(τh,vh)∈Hh×Vh

||(σ0 − τh, u− vh)||H . (10)

The corresponding rate of convergence is given in the next theorem.

Theorem 2. Assume σ0 ∈ [Ht(Ω)]d, div(σ0) ∈ Ht(Ω) and u ∈ Ht+1(Ω).
Then, under the assumptions of Theorem 1, there exists a positive constant
Cerr = O(‖b‖2/ε2), independent of h, such that

||(σ0 − σ0,h, u− uh)||H ≤

≤ Cerr h
min{t,m,r+1}

(
||σ0||[Ht(Ω)]d + ||div(σ0)||Ht(Ω) + ||u||Ht+1(Ω)

)
.

(11)

Proof. It follows straightforwardly from inequality (10) and the approxima-
tion properties of the corresponding finite element subspaces.
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4 A posteriori error indicator

Let (σ0,h, uh) ∈ Hh be the unique solution to problem (9). We denote by
EΓD the set of all the edges induced by the mesh Th that are contained in
ΓD. Moreover, for each edge e ∈ EΓD , we denote by he the length of e; we
also fix a unit normal vector, ne := (n1, n2)t, and let te := (−n2, n1)t be the
corresponding fixed unit tangential vector along e.

We consider the global a posteriori error indicator θ :=
(∑

T∈Th θ
2
T

)1/2

,

where

θ2
T := ||f + div(σz + σ0,h)− b · ∇uh||2L2(T ) + ||∇uh −

1

ε
(σz + σ0,h)||2[L2(T )]2

+
∑

e∈EΓD∩∂T

he

(
‖g − uh‖2L2(e) + ‖ ∂

∂te
(g − uh)‖2L2(e)

)
.

(12)
We remark that θT consists of two terms in interior elements and elements
with a side on the Neumann boundary, whereas it contains two additional
terms on elements with a side on the Dirichlet boundary.

In the next theorem we establish the reliability and local efficiency of θ.

Theorem 3. Let (σ0, u) ∈ H and (σ0,h, uh) ∈ Hh be the unique solutions
to problems (4) and (9), respectively. Then, there exists a positive constant
Crel, independent of h, such that

‖(σ0 − σ0,h, u− uh)‖H ≤ Crel θ . (13)

Moreover, if g ∈ H1(ΓD) is a piecewise polynomial on ΓD, then there exists
Ceff > 0, independent of h, such that for all T ∈ Th we have

θ2
T ≤ C−1

eff

(
‖u− uh‖2H1(T ) + ‖σ0 − σ0,h‖2H(div,T )

)
. (14)

Proof. See [7]. In the convection-dominated regime, Crel = O(‖b‖3/ε) and
Ceff = O(ε2).

5 Numerical experiments

In this section, we deal with the solution of the boundary value problem

− ε∆u + b · ∇u = 0 in Ω := (0, 1)× (0, 1) ,

u = 0 on x = 0 ,

u = 1 on x = 1 ,

ε∇u · n = 0 on y = 0, y = 1 ,

(15)
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where b = (1, 0)t and ε ranges from 10−2 to 10−4. The exact solution of
problem (15) is (see [4])

u(x, y) =
e
x
ε − 1

e
1
ε − 1

, (x, y) ∈ Ω . (16)

We remark that u has an exponential boundary layer around the line x = 1.
We present numerical results for the finite element pairs (Hh, Vh) given by

(RT 0,L1), (RT 1,L2), (BDM1,L1) and (BDM2,L2) in R2. The numerical
experiments were performed using the finite element toolbox FEniCS [8]. We
compare the performance of the finite element method based on uniform
refinement with the adaptive method based on the a posteriori error indicator
θ. For the selection of elements to be refined, we rely on the maximum strategy
with a threshold γ = 0.4. We choose κ1 = ε

8 , κ2 = ε
2 and κ3 = 1. We remark

that these values satisfy conditions (8). Finally, we define the total error

eh(σ0, u) :=
(
‖σ0 − σ0,h‖H(div;Ω) + ‖u− uh‖H1(Ω)

)1/2
. (17)

In Figure 1, we report the total error and estimator for the uniform and
adaptive refinements. From these graphs, we conclude that the adaptive al-
gorithm is more competitive than the uniform procedure. Figure 2 shows the
efficiency indices for the different finite elements and the different values of
ε considered here. We note that their values stay in the same range for all
values of ε and all elements considered. In Figure 3 we show the initial, an
intermediary and final meshes for ε = 10−4. We observe that the adaptive
algorithm is able to locate the boundary layer of the solution.

Finally, Figure 4 shows the final concentration and flux obtained in that
case with the adaptive procedure.
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Fig. 1. Decay of error (left) and estimator (right) vs. number of degrees of freedom
for three values of ε and different elements.
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Fig. 2. Efficiency indices for different finite elements.

Fig. 3. Initial, intermediary (after 5) and final (after 15 iterations) mesh for ε =
0.0001 when using (RT 0,L1) .



8 M. González, M. Strugaru

Fig. 4. Final concentration (left) and flux (right) for ε = 0.0001 when using
(RT 0,L1) .
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7. M. González and M. Strugaru, Stabilization and a posteriori error anal-
ysis of a mixed FEM for convection-diffusion problems with mixed boundary
conditions, in preparation.

8. A. Logg, K.-A. Mardal and G.N. Wells Ed., Automated Solution of Dif-
ferential Equations by the Finite Element Method. The FEniCS Book, Springer,
2012.

9. A. Masud and T.J.R. Hughes, A stabilized mixed finite element method for
Darcy flow, Comput. Methods Appl. Mech. Engrg. 191 (2002) 4341–4370.

10. A. Plaza and G.F. Carey, Local refinement of simplicial grids based on the
skeleton, Appl. Numer. Math. 32 (2000) 195–218.

11. J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods, in Handbook
of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions, vol. II, Finite
Element Methods (Part 1). North-Holland, Amsterdam (1991).

12. J.-M. Thomas, Mixed finite elements methods for convection-diffusion prob-
lems, Numerical Approximation of Partial Differential Equations, Elsevier
(1987) 241–250.


