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ABSTRACT. We consider a scattering problem for electric potentials that have
a component which is critically singular in the sense of Lebesgue spaces, and a
component given by a measure supported on a compact Lipschitz hypersurface.
We study direct and inverse point-source scattering under the assumptions that
the potentials are real-valued and compactly supported. To solve the direct
scattering problem, we introduce two functional spaces —sort of Bourgain type
spaces— that allow to refine the classical resolvent estimates of Agmon and
Hoérmander, and Kenig, Ruiz and Sogge. These spaces seem to be very useful
to deal with the critically-singular and J-shell components of the potentials at
the same time. Furthermore, these spaces and their corresponding resolvent
estimates turn out to have a strong connection with the estimates for the
conjugated Laplacian used in the context of the inverse Calderén problem. In
fact, we derive the classical estimates by Sylvester and Uhlmann, and the more
recent ones by Haberman and Tataru after some embedding properties of these
new spaces. Regarding the inverse scattering problem, we prove uniqueness
for the potentials from point-source scattering data at fix energy. To address
the question of uniqueness we combine some of the most advanced techniques
in the construction of complex geometrical optics solutions.

1. INTRODUCTION

In this paper we study a point-source scattering problem for electric potentials
that are a combination of critically-singular potentials and §-shell potentials. More
precisely, we are interested in real potentials of the form

(1) V=V"+ado

where V0 stands for the critically-singular component of the potential and a do is
its d-shell component. Here VO € L%2(R%R), ¢ denotes the surface measure of
I, @ € L*(I;R) and T is a compact hypersurface which is locally described by
the graphs of Lipschitz functions. Additionally, we assume the support of V' to be
contained in the ball By = {r € R? : |z| < Ry} with Ry > 1. For this class of
potentials, we study direct and inverse point-source scattering in dimension d > 3.
However, we carry out part of our analysis in dimension d > 2, emphasizing when
d > 3 is required.

1.1. Direct scattering. The direct scattering theory for potentials as V follows
the general scheme of more regular potentials. First, we consider an incident wave
Uin, Which solves the equation (A + A)ui, = 0 in R?\ {y} with |y| > Ro. Then, the
scattering solution wug. solves

(A4 X = V)uge = Vg, inR?,
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and satisfies the ingoing or outgoing Sommerfeld radiation condition (SRC for
short). There are at least two possible ways of showing the existence of the scat-
tering solution ug.. One based on a Neumann series argument, which consists of
solving the problem

@) {(A + Nup = Vaup_q inR?,

u,, satisfying SRC

for each n € N with ug = ujn, and showing that )\ u, makes sense. In this case,
the scattering solution is given by usc =,y un. The problem can be solved
using an appropriate inverse, denoted throughout the paper by (A+\4i0)~! —the
sign + accounts for the ingoing and outgoing radiation conditions. Thus,

Up = (A +X+00) V1) = [(A+X£i0)"" o V]"(ug),

and consequently, in order for )y u, to converge, we only have to see that the
linear operator (A+A+40)~'oV is bounded in certain Banach space and its norm is
strictly less than 1 —in short, it is a contraction. Here and throughout the article,
V' denotes not only the potential but also the operator multiplication by V.

Another possible way to prove the existence of the scattering solution is via
Fredholm theory, which consists in choosing us. as the solution of

) (I—(A+X£i0)" o V)uge = (A +A+40)"'(Vuy,)  inRY,
ugc satisfying SRC,

where I stands for the identity operator. In order to solve the problem using
the Fredholm alternative, one needs to ensure that (A + X +i0)~! o V' is compact
in the space where the solutions us. will belong to, and zero is the only solution to
the homogeneous counterpart of the problem .

To apply any of these two schemes one needs appropriate estimates for the re-
solvent (A + A £i0)~! according to the character or behaviour of V. For example,
the well-known resolvent estimate —due to Agmon [2]—

(4) A2[(A+X£30) 7 fllze-s S fllz2e,

with § > 1/2 and || f[|72 45gay = Jga(1+[2[*)*°|f(2)[? dz, makes possible to prove
that

[(A+X£i0)" o V| gp2-smay S A2
with V € L®(R?%) and compactly supported. An improved version of Agmon’s
inequality is the following one —due to Agmon and Hérmander [I]—

(5) AVZ sup (2772([(A + X £i0) 7 fllza,) S Y 272 fllz2py)s

j€Ng jEN,
where Ng = NU {0}, D; = {z e R?: 2771 < |2| < 27} for j € N and Dy = {z €
R? : |z| < 1}. Tt is very common to let the norm on the left-hand side be denoted
by ||+ ||« and the one on the right by || . ||. Thus,

IFlle = sup @721 fl2oy), I =D 2271 flle2o,)-
j€Ng jE€No
Another important and very celebrated resolvent estimate is the following —due to
Kenig, Ruiz and Sogge [17]—

1

(6) 1A+ x£i0) "l < AFGEH 17,

~

where 2/(d+1) <1/p' —1/p<2/d, 1/p+1/p' =1 and d > 3. The inequality (0]
can be used to show that, for the range 2/(d + 1) < 1/p < 2/d, the inequality

(A +X£00) "L 0 V| (o) S AT
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holds with 1/p’ + 1/p = 1 and V € L9(R?) compactly supported, where ¢ > d/2
and d > 3. The end-point case V € L¥2(R?) does not follow directly from either
the Neumann series argument —unless there is smallness for ||V 42— or the
Fredholm alternative. The Neumann series argument fails in the end-point because
we only have

A+ X+ iO)_l o V”[:(Lpd) S

where py is the index of the H'(R?) Hardy-Littlewood-Sobolev embedding, 1 /Dd =
1/2—1/d. The Fredholm theory does not seem to apply for the lack of the compact-
ness, specially because H'(By) is not compactly embedded in LP4(B,). However,
Lavine and Nachman managed to modify the procedure, with a formulation that
reminds the operator used to prove the Birman—Schwinger principle, in order to
reach the end-point. To make their argument work one needs to use the inequalit-
ies () and (6). We learnt it from [9]. Another improvement of Agmon’s inequality
is

-y —1 < \—(1/2=s)
(7) 1A+ A% 30) 7 flyes S A2 £y,
with 0 < s<1/2,0 >1/2 and
£l es = [ = A)=/2 | s,

where (A — A)*%/2 stands for the multiplier with symbol (A + [£[?)*%/2. This
inequality was proved in [5] to study scattering in the presence of a class of Gaussian
random potentials called microlocally isotropic. The realizations of such potentials
are compactly supported and belong to the potential Sobolev spaces L”  (R?) with
0<s<1/2and d/s < p < oo, almost surely. Recall that the potential Sobolev
space L2(RY) with 1 < p < oo and s € R is defined by (I — A)~*/2LP(R?) with
(I — A)~*/2 the Bessel potential with symbol (1 + [¢[2)=/2. From (), Caro, Helin
and Lassas showed in [5] that, for compactly supported potentials in L”  (R%) with
0<s<1/2and d/s <p < oo, one has

(A +X£00)" o V4 gm0 S o(A~(1/2=9).

The inequality can be easily extended to the range 0 < s < 1 and then used
to prove —by the Neumann series argument— the existence of scattering solution
for potentials as with V0 € L*°(R%R) and |||/ (r) small enough. Despite
the fact that we do not know any reference dealing with this problem for every
dimension d > 2, we believe that the truth challenge of the scattering theory arises
when considering potentials that are the combination of critically-singular and 6-
shell potentials. For such potentials, neither the inequality —for the full range
0<s<1—nor @ with no adjustment seem to be enough to develop the scattering
theory. On the other hand, because of the nature of the term «do, the Lavine—
Nachman argument might not be easily adapted for potentials of the form in .
In fact, in this article we develop an alternative path that we motivate in the next
lines and explain right after.

The approach we propose is inspired by the most recent works studying the
Calderén problem for dimension d > 3. This inverse problem consists in determ-
ining the electric conductivity of a medium from its corresponding Dirichlet-to-
Neumann map. The key ingredient in the resolution of this problem is a type of
solutions called complex geometrical optics (CGO for short), first constructed by
Sylvester and Uhlmann [25]. Most of the progresses related to this problem have
consisted in refining the construction of the CGO solutions, which boils down to
inverting the conjugated Laplacian A + 279,, + 72 for at least 7 > 79 > 0. In [12],
Haberman and Tataru introduced a family of Bourgain spaces —denoted here by
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YTS with s € R— adapted to this differential operato whose norms were of the
form

(8) 1£llye = larl* Fllze,

where ¢, (§) = —|¢|? +i27&;+ 72 stands for the symbol of the conjugated Laplacian.
This family of spaces is very convenient for several reasons: the first one is because
the inverse of the conjugated Laplacian is an isometry

9) 1A + 2700, +72) " fllye = [ fllye-r-

The regularity of V in make the index s = 1/2 play a relevant role. The second
reason is that, when functions are localized in space, the norm for s = 1/2 controls
the L? norm of such functions with a gain of 71/2. This fact was shown in [12):

(10) T2 llee S 1fllyae

where x € S(R?). Another reason that makes relevant this space is the following
embedding —due to Haberman [T1]—

(11) 1fllzra S 1 fllyre-
As a consequence of and @, one can derive the inequality
(12) (A + 2705, + 1) flloea SN0,

for d > 3 with 1/pg+1/p); = 1. The inequality was proved by Kenig, Ruiz and
Sogge [I7] as a consequence of @ for 1/p’ — 1/p = 2/d, however, this was written
in the form of a Carleman estimate.

Our strategy in this article is to introduce two spaces X and X} adapted to the
resolvent operator (A + A 4 i0)~! for which analogues of @D, and hold.
In fact, we will see the resolvent estimate

(13) 1A + X £30) 7 fllxs S 11F1lx
and the embedding

acrl __ 1
(14) A4+ 2273 £l S Ul Fllxs,

where p € [qq4, pa] with gq so that 2/q4 = (d—1)/(d+1) —the indexﬂ in the extension
form of the Tomas—Stein theorem. From the inequalities and , one can
prove that (A + X £i0)~! o V is a contraction on X} for A > Ay > 0 under a
smallness assumption on a. This would allow to construct the scattering solution
ugc by the Neumann series argument. In order to avoid assuming smallness for «,
we adopt a strategy that combines the Neumann series argument and the Fredholm
alternative. First, we use the Neumann series argument to construct the resolvent
(A +X=£i0— V9~ and prove its boundedness from X to X};. Then, we use the
Fredhlom theory to solve the problem

(I—(A+X£i0-V") o (ado))use = (A+A£i0— V)~ (Vu,) inRY,
ugc satisfying SRC.

Two ingredients are required to apply the Fredholm theory. The first one is the
compactness from X3} to X, of the operator multiplication by ado. The second
ingredient is a unique continuation property for an equation with a potential as in

1Actua11y, the differential operator that Haberman and Tataru considered was A + 2¢ -V with
¢ = RE+iI¢ € C% so that ¢ - ¢ = 0, and consequently the family of Bourgain spaces they
introduced, denoted in their work by X$, had similar norms to Y;* but with p¢ (£) = —|€|* +42¢ - €
instead of g,. Note that A 4 2¢ -V = e {SCE(A 4 2R¢ - V + |RC|?) 0 €5¢°® and consequently, if
R¢ = 7Teq with T € SO(d), then g-(§) = pc(T€ — IC).

2For some computations, it is useful to note that 1/gq = 1/2 — 1/(d + 1), that is ¢4 = pa+1
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(1). Here, we derive this unique continuation using a Carleman estimate that Caro
and Rogers proved in [6] for the Bourgain spaces.

Intuitively, the elements of X3 should be thought as functions with some integ-
rability whose weak (up to first order) derivatives have also certain (but different)
integrability properties. In fact,

X3 C Ly jpjpy RO NI = A)72B,
with p € [qa, pa, LS(l Jp—1 /pd)(Rd) the potential Sobolev space with differentiability
index d(1/p — 1/pq) and integrability index p, and B, the Banach space defined
by the norm » —this inclusion follows by changing slightly the proofs of the
lemmas and in the section 4] Contrarily, the elements of X, are actual
distributions, an example of them are elements of

¥, (RY) + (I — A)Y?B

(1/py—1/p")
with p’ and p/; the dual exponents of p and p4, and B the Banach space defined by
the norm . Actually, the latter space is included in X . Despite the nature of
the spaces X and X}, the inequality (L3) is somehow equivalent to a combination
of and (@ (see the remarks and in section . However, the inequality
is better adapted than and @ to deal with potentials V' as in , in this
sense our new estimate is a refinement of the classical ones. The ideal situation
would be to define the spaces X5 and X, through the L? norms in the frequency
side with the weights \/my and 1/\/my respectively, where my(§) = |X — [£]?|.
However, it is not as straightforward as this since 1/,/my is not in L} (R?) —see
how we overcome this issue in the definitions and 2.4] in the section

Our approach provides a suitable framework to construct the scattering solution
using a strategy that combines the Neumann series and the Fredholm alternative.
Given y € R?, consider ui(m, y) = @f\c(y — ) with

dF = (A + A +40)"1d,

where §g is the Dirac mass at 0.

Theorem 1. Consider d > 3. There exists a positive A\g = A\o(d, V", Ry) so that,
we can find uZ (.,y) € X} solving the problem

(A+ A= V)uZ(y) = VuE (. y) inR,
sup % Vit (2,y) FiN e (o) = 0,(R™7) R = Ry,
|z|=R

for every A > X\ and y € R?\ By. Moreover, uZ(.,y) is the only solution of the
previous problem.

Remark 1.1. For dimension d = 2, we could have used the Neumann series argument
and our estimates to state that there exist € = ¢(d,T', Rg) and A = A(d, V", Ry) so
that, if ||| (1) < €, then there exists a unique scattering solution u£ (., y) € X}
for every A > Xg. We have not combined the Neumann series argument and the
Fredholm alternative in this situation because we have not found an appropriate
unique continuation for a potential V as in for d = 2.

Remark 1.2. When comparing this theorem with the results of Mantile, Posilicano
and Sini [I8], one immediately feels that the assumption on « could be weaken to
belong to LP(I") with p > d — 1. We believe that a modification of our results in the
section [I.3] would be enough. We believe that this generalization is possible using
our approach because the space Yy provides control on the square integrability of
the first order derivatives, and consequently the restrictions of the functions in Yy to
T have derivatives of order 1/2. This 1/2 derivatives on I could trade g-integrability
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on I' with 2/¢ > 1 —1/(d — 1) using the compact Sobolev embedding (note that
the compactness required for our argument would be loss for 2/¢ =1 —1/(d — 1)).
This improved integrability of the restriction to I' of elements in Yy would allow
to weaken the integrability required for a, so it is enough to assume o € LP(T) to
p>d-—1.

1.2. Inverse scattering. The inverse point-source problem we study in this paper
consists in determining a potential V' as in from the knowledge of uk|ap,xom,
for a fixed energy A, where uL(.,y) is the scattering solution of the theorem
yielded by the incident wave ui (., ) = @f(y — ).

Theorem 2. Consider d > 3. Let V7 = Vl0 + oy do; and Vo = V20 + ag doy
be two electric potentials as in , where o; is the surface measure of I';. Let
Xo = Xo(d, V2, V@, Ro) be so that the scattering solutions u; ; (»,y) and uZ ,(s,y)

of the theorem (1| with potentials V; and V5 are available for every A > A\g. Then,

£ +
usc,l‘aBoxaBo = usc,2|6BoxBBo for a fixed A > g = V; = V5.
Remark 1.3. The identity ui}ﬂaBMaBO = ui’z‘aBoxaBo in this theorem is meant
to be understood as

. + o + —_ o —_
either usc,1|aBoxaBO - USC’Q‘(?BQXBBO or usc,l‘aBoxaBo - usc,2|3Bo><aBo'

Remark 1.4. Note that Vi = V5 implies that V10 = VQO, I't =15 and a1 = as.
Indeed, we can test Vi — V5 with a sequence of functions ¢, that concentrates
around Ty U Ty so that [o,(V? — V3')¢, vanishes as the functions concentrates
around this set of measure zero. This implies that I'y = I'y and consequently that
a1 = ag. At this point obviously V¥ = V3.

To address the question of uniqueness for this fixed-energy inverse scattering
problem, we adopt the approach that Hahner and Hohage followed in [I3] to prove
some stability estimates for a similar problem for the acoustic equation. We start
by proving an orthogonality relation in the spirit of Alessandrini’s identity for the
Calderén problem, that is,

(15) (Vi = Va)vr,v2) =0

for all v; solution of (A + A — V;)v; = 0 in By. Then, we construct CGO solutions
—as Sylvester and Uhlmann did in [25]— in the form

vj(z) = eCj"”(l + w;(x)),

where (; € C? so that (;-(; = —A and ¢; + (2 = —ik for an arbitrarily given x € R?
—which is possible in dimension d > 3—, and the correction term w; vanishes in a
specific sense when |(;| grows. Because of the d-shell components a1 doy and ap dos
of the potentials V7 and V3, we follow the ideas introduced by Haberman and Tataru
in [12] in order to ensure the asymptotic behaviour of w; when |(;| grows. However,
since no smallness is assumed for «;, we also require at this stage the Carleman
estimate proved by Caro and Rogers in [6]. The critically-singular components V;
and V) can be treated thanks to the embedding due to Haberman [I1]. Finally,
we plug in the CGO solutions to and make |¢1] and |(2| grow. Thus, we can
conclude that the Fourier transform of V3 — V5 is identically zero, that is,

F(Vi—=W)(k) =0, VrkeR™%

The injectivity of the Fourier transform allows us to conclude that V3 = Va.
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1.3. Some previous results. The spaces

D d - —1/2 p’
L1 jgg—1/pgy B NI = A)7/EB,and - LY 4y 0y /00y

are the spaces chosen by Ionescu and Schlag in [I6] to prove the limit absorption
principle for a large class of perturbations. It turns out that their basic estimate
—with an explicit control in A— can be derived from and the relation of these
spaces with X} and X. Another resolvent estimate that seems to follow from ours,
after an adjustment in the norm of X73, is the one due to Ruiz and Vega —Theorem
1.2 in [23]. See also the work of Goldberg and Schlag [10].

Regarding previous results on inverse scattering with d-shell potentials, see the
work of Mantile, Posilicano and Sini [I8] in dimension d = 3—in their case V° €
L?(R3) and o € LP(T') with p > 2. The point source-scattering have been previously
studied in [I3] by Hahner and Hohage in acoustic media, and by Ola and Somersalo
[21] for Maxwell equations.

The literature on inverse scattering is rather wide and we cite only a few works
where the measurements are assumed to be modelled by the far-field pattern.
Colton and Kirsch introduced in [7] the linear sampling method to determine the
support of an imperfect conductor. Uniqueness and reconstruction for the inverse
scatteing problem in an acoustic medium was proved by Nachman [I9], Novikov
[20], and Ramm [22]. The stability question was first addressed by Stefanov [24],
and then improved by Hahner and Hohage [13].

R + (I —A)/?B

1.4. The outline of the paper and notation. The section [2|is devoted to the
study of the direct scattering from a point source. We first pose rigorously the point-
source scattering problem. Then, we introduce the spaces X and X3, and state
rigorously the inequalities and . Afterwards, we construct the resolvent
(A+ X440 — V%~ by a Neumann series argument and then we use the Fredholm
alternative to prove the existence of the scattering solution. The inverse problem is
considered in the section[3] First, we prove a couple of lemmas that are required for
the orthogonality identity . Then, we construct the CGO solutions and show
the uniqueness of the potentials. In the section [d] we first state a couple of refined
resolvent estimates in the spirit of . There, we also provide a rather simple
proofs of and @ We find specially interesting the proof of @, where we do
not use Stein’s interpolation theorem and reach the endpoint in the case d = 2.
The last part of the section [4] contains some connections of our refined resolvent
estimates with the estimates that Sylvester and Uhlmann used to construct the
CGO solutions, as well as, the inequalities and proved by Haberman and
Tataru. The article finishes with an appendix where we address the most basic
questions of the functional spaces X} and X,.

The section [l may be read independently of the sections [ and [3] only some
notations and definitions from the previous sections would be required. However,
the sections [2] and [3] are full of references and calls to the section[d] Thus, if readers
choose to follow the order proposed by the authors, they would get a global picture
of the direct and inverse problems from the sections [2 and [3] postponing the details
for the section 4
Notation. The index of the H'(R%) Hardy-Littlewood-Sobolev embedding is

1/pa=1/2—-1/d.
The index in the extension form of the Tomas—Stein theorem is
2/qa = (d—=1)/(d+1).
The modulus of the symbol of A + A is
ma(€) = [A = [€%].
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2. SCATTERING THEORY

In point-source scattering theory, the incident wave is typically chosen as certain
fundamental solutions. More precisely, given y € R%, the incident wave is given by
+ + :
Uiy (2, y) = @X (y — ) with

¥ = (A + A £40)"dp,

where Jg is the Dirac mass at 0. The previous identity is understood as

1, 7€) o >
(@%.1) = Gryars | /m T i /S G NG

for every f € S(R?), where Sy = {¢ € R? : |¢| = A\Y/2} and dS, stands for the
volume form on S. One can check that @f is the fundamental solution solving the
problem

ADT + 2T =4 inRY,
% VOE(z) FiN 20 (2) = O(|z|~ %) for|z| > 1.
x

The last condition corresponds to either the ingoing or the outgoing SRC. Our goal

in this section is to construct the scattering solution uZ (., ) solving the problem

(A+X— V)usic(., y) = Vuiﬂfl(.7 y) inR?,
(16) sup |51 V(. 9) F N ()| = 0y (75 R21,
|lz|=R €T

with y € R?\ By and V as in ().

As we mention in the introduction, the scattering solution usc(s,y) will be con-
structed in a space X3. Ideally this space would be defined through the symbol
/M, with my(€) = |X — |€]?|, however, this is not possible. If X} were defined by
the symbol \/my, its pre-dual X, would have to be defined by the symbol 1/,/my,
which is not locally square-integrable around the critical hypersurface Sy. For that
reason, given A > 0, the integer ky so that 252~1 < A1/2 < 2Fx will play a special
role. Thus, to avoid the critical frequencies around Sy, we introduce the set

I={kx—2kx—1,kx,kx+1}

and use the Littlewood-Paley projectors P, and P<j. To define them, it is enough
to consider ¢ € S(RY) supported in {£ € R? : [¢] < 2} and ¢(¢) = 1 whenever
|€] < 1, and the function ¥ (§) = ¢(£) — ¢(2£). Then,

Pf(€) =v(&/2F(€),  P<if(§) = 0(6/25)F(€).
In this paper, the projector P<j,_3 will have a relevant importance, and will be
denoted for simplicity by P
The space X} will be introduced as the dual of X which in turn is defined as

the sum of two spaces Yy and Z,. These later spaces with their corresponding duals
Y\ and Z3 come forth to refine the estimates and @7 respectively.

Definition 2.1. Let Yy be the set of f € S'(R?) such that

lmy PP fl2e + Y ATV BIP S my PR |2e < oo,
kel k>ky+1
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where my (&) = |\ — |£]?|. For f € Y, define the norm
-1/2 5 % -1/275 7
112, = [lmy P Perf 3 + D ATV PfI2+ Y lmy 2 Pifl3..
kel k>kx+1

To introduce the space Zy, it is convenient to remember that g4 is 2/qq =
(d—1)/(d+1) for d > 2, while pg is 1/pq = 1/2—1/d if d > 3. In dimension d = 2,

we write ps = 00.
Definition 2.2. Let Zy , with p’ € [p}},q}] be the set of g € S'(R?) such that
—1/257 2 d(5r—2r) —1/25= 2
lmy " Pergliie + ) A ClNPegly + Y llmy P Prgllie < oo
kel ke>ka+1
where m(€) = |\ — [£]%|. For g € Zy,, define the norm

1/2 (or=2r) —1/25~
loll%, , = lmy 2 Porglze + AT T Bl + 2 my Y Bgle.
kel E>ka+1

Here ¢/, and p; are the dual exponents of qq and pq respectively, in particular,
ph = 1. For simplicity, we write Z instead of Iy,

Remark 2.3. By Bernstein’s inequality
lgllzy S llgllz,,, < llgliz,, »
and therefore,
Z)"pit C Z,\)p/ C Zy.
Now, we are in position to state the precise definitions of the spaces X and X3.

Definition 2.4. Let X be the set of h € S'(R?) such that h = f + g with f € Yy,
and g € Zy. For h € X, define the norm

1hllx, = nf{(|fllvs +llgllzy : h = f+ g}
Note that the infimum is taken over all representation h = f + g with f € Y, and
g€ Zy.
The Banach space (X3, ||+ [|x;) is defined as the dual space of (Xy, [ + [/ x,)-

To construct the solutions in this functional analytical framework, these spaces
have to satisfy some basic properties that are stated below and proved in the ap-

pendix [A]
Proposition 2.5. The Schwartz class S(R?) is dense in Y\ and Z with their
corresponding norms. In particular, S(R?) is also dense in X.

Proposition 2.6. The pair (Xy,| . |/x,) is a Banach space. Its norm can be
computed testing on duals elements as follows:

(17) flxs = sup Y

weX;\{0} HU”XA

Proposition 2.7. The space X3 is isomorphic to the space of u € S'(R%) so that
d(L— L
Imy/® Perullfe+y " M Peul| 2425 7 | Peallfa ]+ Y (Imy*Peul7 < oo,
kel E>ky+1
endowed with the norm
d(Lt — L
<Z N2 P2+ A7 ™70 || Pl |3 0,

kel
(18)

1/2
1/2 5 — 1/2
IS e o ||m/Pku||L2) |
k>kx+1
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Finally, S(R?) is dense in X3.
These spaces have been constructed to make the following theorems hold.
Theorem 2.8. There exists a constant C' > 0 only depending on d so that
(A +A£i0)7" fllx; < Cllfllx,
for all f € X,.

Proof. A standard density argument together with the proposition reduces the
theorem to prove the inequality for every f € S(R?). Now, by the proposition
and the lemmas B2 and [£.6] —in the section .1 we obtain that

1A +X£i0)7" fllx; < Ifllva + 11£llz
for all f € S(R?). Since for f € Y\ N Zy we have that ||f||x, = (|| fllvy + | fllzy)/2
we conclude that
1A+ X£i0)"" fllx; S I1flx,
for all f € S(RY). -

Theorem 2.9. Consider p € [qq,pa]. There exists a constant C > 0 only depending
on d and p so that

1

dcl_ 1
Al 4+ 22T ul| o < Ol x;
for every u € S(R?).

Proof. This theorem is a consequence of the lemmas and —in the section
and the proposition O

Next, we use the previous embedding to estimate the norm of the operator
multiplication by V°.

Corollary 2.10. There exists a constant C' > 0 that only depends on d and Ry so
that
IVOlleexzixn < CATV 4 15V Lar2),

where F = {z € R : [VO(z)| > A'/4}.
Proof. We use in the proposition W to estimate ||V0||£(X;;XA). Start by
writing

(19) Vfa) = [ V't

with f and g in S(R?). Since the support of V is contained in By, the support of
V0 is also contained in By. Then, f and g in can be replaced by xf and xg
with x a smooth cut-off function supported in 2By and so that x(z) = 1 for all
x € By. Thus,

VOfg =/ 15V xfxg +/ 17V°fg,
R R R
where E = {z € R%: |[V(x)| < M}, F = R4\ E, and 1 and 1 stand for the

characteristic functions of E and F. Using Holder’s inequality, we obtain

| [ voxsxa] < MIxflielngllee + 16Vl el Flerslol s
R

20
(20) S M| Fll gl + 1LVl sz | £l oa gl oa
< MAY2| fllxclgllxs + eV parellfllx gl xs

In the last inequality we have used the theorem [2.9, From the inequalities
together with the density of S(RY) in X} provided by the proposition we
conclude the statement of the corollary by choosing M = A/, O
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As a direct consequence of the theorem [2.8|and the corollary we can estimate
[(A+X+i0)"to VOH[:(X;)~

Corollary 2.11. There exists a positive \g = A\o(d, V", Ry) so that
1A+ A +i0) " o VO gxp <1
for all A > Ag.

Proof. Applying the theorem and the corollary and noting that |1V 0| ,4/2
tends to 0 as A grows, we check that the statement holds. 0

This corollary is the basic ingredient to perform the Neumann series argument
sketched in the introduction. In fact, by the corollary 2.11] we have that the series

(21) DA +A£i0)7 o VO (w)
neN

converges in X7y, for every u € X3. Thus, we can construct the resolvent
(A4+X£i0—-V9H~!

and prove its boundedness from X, to X73.

Proposition 2.12. The operator defined by

(A+A£i0—VO)THfF =D [(A+X£i0)" o VO ((A+ X £1i0)71f),

neN

for every f € Xy, is bounded from X to X3. Moreover, ut = (A+A£i0-VO)~Lf

solves the equation

(22) (A+ A=Vt = finRY,

and, if f is compactly supported in By, then u™ satisfies the Sommerfeld radiation
condition -
d—1
sup ‘— - Vut(z) F i/\l/zui(x)’ =o(R™ 7))
|z|=R ||

for all R > Ry.

Proof. The fact that (A + X +i0 — V?)~1 is well-defined in X follows from the
convergence of the series 7 which is consequence of the corollary The
boundedness from X, to X3 follows from the theorem and the fact that the
series defines a bounded operator in X3. To check that u® solves we just
need to note that

u® = (A4 A £i0) T F+ D [(A+A£i0) o VO ((A+ A £i0)7'f)
(23) neN

= (A+A£i0)7 f + (A +A£i0)"H(VOu®).

Last identity holds by the corollary 2.11] Thus, testing the differential operator
A + X\ with u* and using the identity 7 we obtain that

(A+ A=Vt = finRY
To finish the proof of this proposition, we need to check that u* satisfies the
corresponding radiation condition. Start by noting that
ut = (A+A£i0)7 Y V0o (A+A£i0) ().
neN
To justify this identity, we use the boundedness of (A + X £40)~! from X to X}
and that, for every A > A,

[VOo (A+A£i0)" | gxy < L.
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The contraction of V0o (A + X =+i0)~! in X, is a consequence of the corollary
and the theorem Note that u* = (A + A £i0)~lg, with

g= Z[vo o (A+X£140)"1"1(f) € X,
neN

and compactly supported in By. Since g € Xy, one can check that u® satisfies the
equation (A +\)u* = g. By Theorem 11.1.1 in [I5], we have that the restriction of
ut to R%\ supp g is smooth. On the other hand, since g is compactly supported and
the function y — @f\t(z — y) is smooth in any open neighbourhood Ny, of suppg,
for every x € R?\ N, then,

Wt o) = (o, [ B3 = ola)da) = [ (0.95(@ = )ota) da
for all ¢ € S(R?) with supp ¢ C R?\ supp g. Then, the representation formula
ut(z) = (9,93 (z —.)), VzeR?\suppg

holds. To check the radiation condition, we proceed as follows

X . xT .
V@ F A @) < gl (- Ve F X2 @5 )

)
*
X)\

where x is a smooth cut-off such that x(y) = 1 for all y € supp g, the subindex x in
V. indicates that the gradient is acting on the function = — @f (x —y). It remains
to prove that

B R o W

To do so, the first point we should notice is that

NCRATISICTENIN

(25) < Z =l
NI

A

X(% V. T Ml/?) (0% (x — -)]\

L2
al<1
where a = (a4, ...,a4) € Nd denotes a multi-index and |a| = oy + - -+ + a4. This
inequality follows from the inequality
(26) lullxg S AVl + 1A= 2)ull 2

where (A — A)'/2 denotes the multiplier with symbol (A + |€|>)1/2. The inequality
is a consequence of a combination of three facts. The first one is the bounded-
ness of Py, with respect to the norm || . ||.. The second one is the inequality

)\d/Z(l/Qd—l/pd)||PkuHqu < Qk”PkUHL?

for k € I —which follows from Bernstein’s inequality and the equivalence 2% ~
2kx ~ A1/2 when k € I. The third fact is that

mA(€)?| P<ru(€)] = N2 | P<ru()],
and - -
ma ()2 [Pru(€)] = 2°| Pru(©)|
if £k > k) + 1. Combining these three facts, one can derive the inequality .
Finally, the condition follows from the inequality and the identity

@) s )% V(05 () F N (0505 (2 — y)| = 0y (RTF)

which holds uniformly for y in compact subsets. The identity for « = 0 is
the standard radiation condition. The case |a| = 1 is known but might not be so
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standard. It is consequence of a tedious computation, that is actually, the exactly
same computation used to show that

e, ‘ % V(v Vy®5 (= y)) FiNT2(vy - V05 (¢ — y))‘ =0y (R™°7),
where v denotes the unitary exterior vector normal to the boundary of a smooth
bounded domain. The last identity is rather standard and is the basic ingredient
to show that, if a solution of the homogeneous equation (A + A)u = 0 in a exterior
smooth bounded domain Q = R?\ D satisfies an integral representation in €2,
in terms of its values and those of @f(x —.) on 09, then u has to satisfies the
corresponding SRC. This shows that holds and consequently the proof of this
proposition is over. O

+

The next step will be to construct the scattering solution ug;

the equation

(28) (I-(A+X£i0-V o (ado))uL(sy) = f5(,,y) nR?

e

with f£(,,y) = (A + A £i0 — V)~ (VuZ(.,y)). Assume for a moment that we
have solved , then testing the operator (A + A — V) with both sides of the
identity , and applying the proposition we would have that uZ (., y) solves
the equation

(.,y) as solution of

(A +A=V)uk(y) = Vu () in R
Moreover, since

(29) uZ (o y) = (A +X£i0 - VO H(ado)ui(.y) + Vui"i(.7 y)]

SC

we would also have, by the proposition and the fact that (ado)uL(.,y) +
Vui(., y) € X, and is compactly supported, that uZ (., ) satisfies the Sommerfeld
radiation condition:

(30) sup |-Vl (a,9) F N Pul(0,9)] = o0y (R,
|z|=R X
Thus, in order to prove the theorem [1|is enough to solve the equation .
To invert the operator (I — (A + A +i0 — V%' o (ado)) in X5 we use the
Fredholm alternative. The first point to be checked is the injectivity in X3 of the
operator

(31) (I—(A+X£i0-V") "o (ads)).

The second point is to verify that (A 4+ X +i0 — V%)~ o (ado) is compact in X3.

Start by proving the compactness. By the proposition [2.12]it is sufficient to show
that the multiplication by ado is compact from X7} to X . Note that multiplication
by ado is defined by

(f(ado),g) = {ado, fg) = / afgdo.

Considering x € S(R?) so that it does not vanish on I', we can write

(f(ado), g) = / % (xf)gdo

which means that the operator multiplication by ado can be factorized as a com-
position of three operators, multiplication by y, restriction to I' —trace operator—
and multiplication by a/x do. Multiplication by a/x do is bounded from L?(T) to
X. This is a straightforward consequence of the Cauchy—Schwarz inequality, the
theorem [£.15] and the definition [£.1]—in the sections[4.3]and respectively— and
the proposition On the other hand, the trace on I' is a bounded operator from



14 PEDRO CARO AND ANDONI GARCIA

3217/12(11@) to L?(I') —this is a Besov-space form of Theorem 14.1.1 in [15]. Recall

that the semi-norm of the homogeneous Besov space 3217/12 (R9) is given by

171l g2 = D 272 Pif o
' leZ

Finally, multiplication by x is a compact operator from X3 to B;’/f (R%) at least
when y is defined by

1 ,
x(r) = @) /Rd e/ For€g(¢) g

with ¢ € S(R?) be a [0, 1]-valued function supported in {¢& € R? : [¢| < 1} and it is
not identically zero, and ¢ € (0, 1] chosen so that

[ emcoerag] = 5 [ o@ae>0

whenever |z| < 6. The compactness is a consequence of the lemma and the
definition [.1] —in the sections [£.3] and respectively— and the proposition
Therefore, the operator multiplication by ado is a compact operator from X3 to
X. This conclude the proof of the compactness of (A +A+i0— V%) ~1o(ado) in
X3.

Continue by proving the injectivity. Let v*(.,y) € X5 be in the kernel of
and note that it satisfies that

(32) vE(ny) = (A + X £i0 — VO H(ado)vt (., ).

Hence, by the proposition v* (., y) satisfies the Sommerfeld radiation condition
(30). Furthermore, testing (A + A —V°) with v*(.,y), and using the identities
and the proposition we obtain that v¥ (., %) is solution of the equation

(A+X=V)vt(,y) =0inR™L

A direct application of the lemma below will show that v*(.,y) has to be
identically zero. For that will need to show that v* belongs to HL _(R?), which is
a consequence of the inclusion X5 C HL _(R?) proved in the lemma below as
well. Thus, we can use the Fredholm alternative to invert the operator , and
construct uZ (., y) solving the equation . As we have already explained, this is
the scattering solution we wanted, which ends the proof of the existence part of the

theorem The uniqueness part is again a direct application of the lemmas [2.13

and 2141

Lemma 2.13. Consider d > 3. If u* € H} (R?) is a solution of
(A+X=V)ut =0inR?

that satisfies the radiation condition

sup . Vut(z) F i ?uE(z)| = O(R_%)
|z|=R |l’|

for all R > Ry, then u* has to be identically zero.

Proof. The restriction of u* to R? \ supp V is solution of (A + \)u* = 0 in R? \
supp V. By Theorem 11.1.1 in [I5] this restriction is smooth, and we have that

(33) / 0,0t F X 2ut [ ds = / 10, ut 2+ NuF|? F 201230, utu®) dS
0B 0B

where 0, = v - V with v the exterior unit normal vector to 9B —the boundary of
B = {z € R?: |z| < R}— and $ denotes the imaginary part. Extending v to be



SCATTERING WITH CRITICALLY-SINGULAR AND ¢-SHELL POTENTIALS 15

the exterior unit normal vector to d(B\ By) and integrating by parts in B\ By, we
have that
2 / I(OuFut)dS = —i [ duTut —duTut dS
OB oB
=4 dutTut — 9, ututds = —2/ (9, utut)ds.
830 aBO
Thus, taking limit, when R goes to infinity, in the identity yields
im [ 0,uE]? + Ajut[2dS = $2012 / S(0,utuT) ds,
R—oo Jop 8By
by the corresponding SRC. Since we assumed V° and « to be real-valued, we have
integrating by parts now in By that fBBO 3(0,utuE)dS = 0, which implies that
limR_mo f(’)B |ui|2
and u* € H'(R?).
It remains to prove that u® also vanishes in By, we do it using a Carleman

estimate that Caro and Rogers proved in [6]. This estimate holds for a modified
family of Bourgain-type spaces whose norms were

(34) lullyz,, = (7% + M~ gr [*)*/ %l 2

dS = 0, and consequently, by Rellich’s lemma, suppu®™ C By

with M, 7 € [1,00), s € R and ¢, (&) = —[£|? + i27&; + 72. The estimate, stated in
Theorem 2.1 from [6], reads as follows. Set ¢(x) = 724+ M2%/2 and R > 1. There
exists an absolute constant C' > 0, such that, if M > CR2, then

(35) lully1/2 < CRIS A u) -

for all u € S(R?) with suppu C {z € R? : |z| < R} and 7 > 8M R. This inequality
can be perturbed to consider the operator A + A — V tested in any function in
H'(RY) with support in By. Indeed, start by estimating (A — V)u in YTT;VI/Q, by

duality, with v € S(R?) supported in By:

(36) (= V), 0) = /\/

R

The first term on the right-hand side of can be easily bounded by the Cauchy—
Schwarz inequality

uv + Vouw +/auv do.
d R r

A [ wo] < Malzzlvlle < AN ullyags ol
Rd T, M T, M

To estimate the second term on the right-hand side of , we do as in the corollary

2.10
Vouw :/ 15V %w —|—/ 1FV0uv7
Rd Rd Rd

where E = {z € R?: |VO(z)| < N}, F = R?\ E and N to be chosen. Thus, we
have by the Cauchy—Schwarz and Hélder’s inequalities

| / V| < Nl zelollzs + 110Vl para ful poa 0] oo
R
-1/2_-1 0
< NMY2 ey ollyase + LRV e ull e [0]y72-

In the last inelity we have used Haberman’s embedding —see the corollary

in the section [4.4] By the definition of the norm of the space le, ﬁ we have that

‘/ Voun| < (NMV277 0 MYV gar)lfuly iz ol e
Rd M M
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Finally, we estimate the third term on the right-hand side of the identity . To
do so, we use the Besov-space form of Theorem 14.1.1 in [I5] and see that

‘/auvda’ §Ha||Loo(p)( Z 212 || Prul| 2 Z 2k/2|| Pyol| 2
r

k<ir+1 I<iz+1

+ ) 222 Pl > 27| Pl
k<l +1 I>1+1

+ > 2 Pllze >0 22 Pz,

k>1:+1 IeZ

where I, € Z satisfies that 2--=' < 7 < 2. If k > I + 1, we have that
2812 Pou(€)] =~ 27F/2|q (€)' /2| Pou(€)| for all ¢ € R Hence, for the high fre-
quencies we have

Y 2Pl = Y 272 lgr [V Pl e
E>l+1 E>l,+1
g ,7_71/2Hu||YT1/2 < 7_71/2M1/4Hu||y:§3[-
On the other hand, for the low frequencies we have that
S 2Pl S 7 ullze < M7V ully
k<l,+1 m

Combining the previous inequalities for the high and low frequencies we obtain that
there exists an absolute constant C’ > 0 such that

‘/auv da’ < C’Ha||Loo(p)(M_1/2 + 772 +T_1M1/2)||u||yl/2 [vlly1/2-
T M M

We now choose M so that CRoC’||c|| ()M ~1/2 < 1/4, then we choose N such
that CRoM'/2||[1pV 0| a2 < 1/4, and finally, we consider 7 to have

CRo[(A+ N)]\4_1/27'_1 + C/HCYHLoo(F)(T_l/Q + T_lMl/Q)] <1/4.

Therefore, we can conclude that there exists a 70 = 7o(Ro, ||| £ (), V?,A) such
that

< %) _ - _
(37) Hully;ﬁ_4030||€ (A+A=V)(e “)”yﬁ;f

for all u € S(RY) with suppu C By and 7 > 75. One can check that Y:ﬁ and

H'(RY) are equal as sets, and that, for every u € H'(R?) with suppu C By, we
have e (A + X — V) (e ?u) € YTTAIJ/Q. Thus , by a density argument

(38) ||e‘9uHY1/A3 < 4CRo|le? (A + X — V)u||Y_il/z

for all u € H'(R?) with suppu C By and 7 > 7. Since u® is supported in By,
belongs to H!(R?) and solves (A + A — V)ut = 0 in R% we have that u® is

identically zero by applying the inequality . O
Lemma 2.14. Every u € X} belongs to H}_(R?).

Proof. Consider u € Xy and set ur = ), .; Pru and ugz\; = u — uy. Let us show
that u; belongs to HY_(R?) and ugz, ; is in H'(R?). Let K be a compact subset of R?
and @ = (v, ..., aq) € Ng denote a multi-index such that |a| = a3 + -+ +aq < 1,
we have that
10 wr|| 2 rey < Y110 Pra]| 2 xc) -
kel
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By Holder’s inequality, Bernstein’s inequality for 0%, and the fact that I only
contains four elements, we have

1

2

10%urll ey S S 10% Prllzas € 30 2 Pl s 5 (3222 1Pyl )
kel kel kel

Thus,

1
0% urll ey S A5G0 (Y X5 Pl )
kel

which shows that u; belongs to Hlloc(Rd). Next we prove that uz ; belongs to
H'(R%). Let (A — A)Y/? denote the multiplier with symbol (A + |¢|>)'/2. By
Plancherel’s identity and the finite overlapping of the supports of { Pyu : k > kx+1},
we have

I = A) 2 |20 = / O+ 6P aza () de
Rd

= [ oriPiPu@Pac s Y[ o B P

k>kx+1

= [ Pu@Rass S 2 [ Bk

k>kx+1

Note that \/2|P_ju(€)| ~ mx(€)Y/2|Peru(€)| for all € € RY. While, if k > ky + 1,
we have that 27| Pyu(€)| =~ my(€)Y/?| Pyu(¢)|. Hence,

—

1/25 — 1/2
IO = A 2up f|20 = my*Pepull2e + Y my* Prul2e,
k>kx+1

which proves that uz\; belongs to H L(R%). This ends the proof of this lemma. [

We finish this section by stating an inequality which will be essential to address
the inverse scattering problem.

Lemma 2.15. Consider d > 3 and ¢(z) = Txq + Mx?3/2. There exist positive
constants M = M (R, ||&||p(r)), C = C(Ry) and 79 = 7o(Ro, || 1), VO, A)
such that

Il < Clle? (34X =TV) -y

for all u € S(R?) with suppu C By and 7 > 9. Here T*V denotes the following
potential

v = [

where T € SO(d), T*V°(x) = VO(Tx), T*a(z) = a(Tz), T'T = {T'z : x € '} and
T*0(E) = o(TE) with TE = {Tx : = € E}.

T*V%¢ —|—/ T a¢pdT™o,
Ttr

Recall that the norms of the spaces Y:j\; and YTT;[/ ? were given in .

Proof. We start from the inequality —due to Caro and Rogers [6]— and per-
turb it to include the potential 7*V. This procedure is exactly the same as the one
used in proof of the lemma to derive the inequality and we will not repeat
it. O
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3. INVERSE SCATTERING

In this section we adapt to our framework the approach we learnt from [13] by
Hahner and Hohage. The first step is to obtain the orthogonality identity .
In order to prove it, we need two lemmas regarding the single layer potential S*
whose kernel is given by the total wave

Uig|oBox 0By = UinloBoxoB, + U|oBox0B,-

For f continuous on 0By, we define the single layer potential as

S*f(x) = / ugo(,4) f dS,
BBO
for x € 0By where dS denotes the volume form on 9By.

Lemma 3.1. The scattering solution of the theorem [| satisfies the following reci-
procity relation

ui(z,y) = ui(y,z), Ya,y € R\ suppV.

In particular, the single layer potential S* is symmetric, that is,
/ S*fgdS = f8*gds
BB[) 8BO

for all f and g continuous on 0By.

Proof. Given z,y € R?\ suppV, there exists a bounded domain D containing
supp V so that x,y € R?\ D and its boundary is locally described by the graphs of
twice continuously differentiable functions. The restrictions of uZ (., z) and uZ (., )
to R? \ supp V are solutions of the equation (A + A\)u = 0 in R? \ suppV. By
Theorem 11.1.1 in [I5] these restrictions are smooth. Thus, integrating by parts in
a B\ D, with B = {x € R?: |2| < R}, and making R go to infinity we have that

(39) /a O ) = 0 )0 )] 4 = 0

where dS denotes the volume form on 0D and v stands for the unit exterior normal
vector on dD. In order to make the integration on 9B vanish when R goes to
infinity, we just need to use the corresponding SRC. On the other hand, since the
restrictions of uZ (., #) and uZ (., y) to D are solutions of the equation (A + \)u =0
in D, we have, integrating by parts in D, that

(40) /8 D ) = )0 )] 4 =0,

Finally, it is well-known that smooth solutions of (A + A\)u = 0 in R? \ supp V' can
be represented by a boundary integral expression. In particular, since ui(, z) =

@ (2 —.) the functions uZ (»,y) and uZ (., #) can be represented respectively by

(41) usic(z,y) = / [&,ufc(.,y)ui(., z) — usic(.,y)&,ui(., z)] ds, VzeR? \ D,

oD

and

(42) u;tc(z, x) = / [8yu$(.,x)u;—;(., z) — usic(, z)ayuiin(., z)] dS, VzeR? \ D.
oD

Note that evaluating at z =z and at z = y, we can compute uZ (x,y) —
uL (y,z). Now, using the identities and we have

U;E(J},y) - Ug:c(y,l‘) = /6D [auui(ﬁy)utio(" .73) - utio('? y)aVutio(Hxﬂ ds.



SCATTERING WITH CRITICALLY-SINGULAR AND ¢-SHELL POTENTIALS 19

Integrating by parts the right-had side of last identity in D and using that ui(, Y)
and u (., z) are solutions of (A + A — V)u =0 in D, we get that

u;tc<x7y) - u;tc(yvx) = <V’U,i(-,y),ui(.,l‘)> - (Vui(.,x),ui(.,y» = 0.

This finishes the proof of the first part of this lemma. The second part is a direct
consequence of first one since

+ + +
uto|aBo><aBo = uin|630 x8By T usc|6Bo><aBo

is the kernel of the single layer potential and ui(w, y) = <I>f (y —x) with @f radially
symmetric. 0

Lemma 3.2. Consider d > 3. Let f be continuous on 0By. Then, the function
™ (x) = / Ui (2,2 f S
BBU

is the unique solution in H} (R?) of the problem
(A+XA=V)ut =0 inR?\ 9By,
(43) 8,,uﬂE|Rd\Bf0 — 8Vui|B[J =7f ondBy,
sup % Vut(z) F i/\1/2ui(x)’ = O(R_%) for R > Ry.
lz|=R
Here v is the unit exterior normal vector on 0By.

Proof. Start by showing that the problem has a unique solution in H{ _(R?).
Note that it is enough to show that if u* is a solution for f = 0, then u®™ = 0.
The restrictions of u® to By \ suppV and R?\ By are solutions of the equation
(A + Nu* =0in By \ supp V and R?\ By respectively. By Theorem 11.1.1 in [I5]
these restrictions are smooth and can be extended by continuity up to the boundary
of By. Since u* € HL_(R?), the extensions from both sides of the boundary must
coincide. The facts that f = 0 and u® is continuous across 0By make u* be a
solution of (A + X — V)u® = 0 in R% Since it satisfies the SRC and belongs to
H} _(R%), it has to vanish everywhere by the lemma

Now we show that u* is solution of . The function u* belongs to H:

loc
because uZ (., y) is in X} (recall the lemma [2.14) and the function
vE(z) = / ut(x,.)fdS
0Bg

is continuous in R? and smooth in R? \ 9By —recall that u (s, y = & (y — .)).
Moreover, u® solves the problem because uZ (., y) is smooth in R%\ supp V for

SC

y € R4\ By (Theorem 11.1.1 in [15]) and solves the problem (6], and v* solves
the problem

(A+MwE=0 inR*\ 9By,

6vvi|Rd\BT - 3uvi|Bo =f ondBy,

(RY)

sup |1 £ 90%0) 3 020 )] = o RF) Bor R R
|z|=R

—again the fact that v* solves this problem is classical (see for example [§]). O

Proposition 3.3. Consider d > 3. Let Vi and V5 be two electric potentials as
in the theorem @ Let ufcﬁl(., y) and usicg(.,y) with y € R%\ By be the scattering
solutions of the theorem [l] associated to Vy and V,. If

+ +
Use,1 |830 x8By = Ugc 2 |aBo x9Bo >
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then
(V1 = Va)ug,u2) =0

for all v and vo in H'(By) such that (A + X — V;)v; = 0 in By.
Proof. By Theorem 11.1.1 in [15], we know that the restriction of v; to By \ supp V;
is smooth. We extend v; up to 0By by continuity. Let wjjE be the solution of
(A + )\)w;-—L = 0 in R?\ By satisfying the corresponding SRC and the Dirichlet
boundary condition wﬂa Bo = Vjlap,- The solution w]i is continuous in R?\ By
and smooth in R?\ By (see Theorem 3.11 in [§]). Then, the function

’LLJlL = ]_Bfol}j —+ le\Bfowji S Llloc (Rd)

—15; and 1pa g, stand for the characteristic functions of By and its complement—
and, by the lemma [3.2] satisfies that

uji(x) = / utio’j(x, . (ayij — dyv;) dS,
dBg

where v is the unit exterior normal vector on 0By. In particular,
(44) viloB, = Sji (ayij — ij).
Note that, integrating by parts in By we have that
(Vi = Va)vi,v9) = / (v20,v1 — 110, v2)dS;
9By

while integrating by parts in B\ By, where B = {x € R¢ : |2| < R}, and making R
go to infinity we have that

(45) / (20w — 0,0,wF)dS = 0
8By
by the SRC. Then, by the identity (45]) first and then by (44)), we have that

(Vi — Va)vg, ) = f/ [vg (6,,101jE — 3,1)1) — v ((?uwQi — (%vg)]dS

OBo
_ /a [5F @uuF ~ 0,02) (0 — 1)

— S (0w — 011 (Bywy — Byv2)]dS.
By the symmetry of Sji stated in the lemma m we have

(Vi = Va)un, va) = / [SF — 5] (0,wF — Byva) (BwE — 8,01)dS.
8Bo

Thus, if U;tc71|6Bo><6Bo = ui)ﬂaBoxaBo the kernel of the operator S — S is zero,

and consequently, ((V; — Va)vy,v) = 0. 0

As we mentioned in the introduction, we will test the identity of the proposition
with a family of CGO solutions of the form

(46) vj(z) = €97 (1 + w;(2)),

where (; € C? so that ¢; - ¢; = —\ and (1 + (2 = —ir for an arbitrarily given
x € R% and the correction term w; vanishing in a specific sense when |(;| grows.
In order to state the existence of this type of solutions, we will need to introduce
some spaces in the spirit of Haberman and Tataru in [I2], and Caro and Rogers in
[6]. First we introduce the non-homogeneous Bourgain space X ¢ with s € R, which

consists of u € §’(R?) so that u € L2 (R?) and

loc

lull % =/ (Il + [pc ()N *[a()* dg < oo,
Rd
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endowed with the norm || . ”XZ" Here p¢(€) = —[€]? +i2¢ - € for € € RY. Then, for
s > 0, we introduce the space

XZ(Bo) = {ulp, : v € X7}
endowed with the norm
lullxz (o) = mf{[lvllxs : vlB, = u}.

For us, the only relevant indices will be s = 1/2 and s = —1/2. In addition to these
spaces, there is another family of spaces that will be useful for us. This is given,
for s € R, by the set

X¢ (Bo) = {u € X :suppu C By},

endowed with the same norm || . [[x;. As it was stated in [6], X (Bo) can be
identified with dual space of X¢(Bo) for s > 0.

Proposition 3.4. Consider d > 3 and 7y as in the lemma |2.15, For every ( =
RC 4 iS¢ € C? such that |RC| = 7, |S¢| = (72 + M) V/? and R¢ - S¢ = 0 with T > 7,
we have that there exists w¢ € Xcl/2(Bo) so that ve = e“%(1 + w¢) is solution of
the equation (A + XA — V)ve =0 in By and

HwC”Xé/z(BO) ,S Hvllxc—l/z

Proof. The lemma is the analogue of Lemma 2.1 in [6]. Then, considering
T € SO(d) so that R = 7Tey and arguing as in Lemma 2.2, Lemma 2.3 and
Proposition 2.4 in [6] we can derive the following inequality:

lllire S 1A +2¢-¥ = Vyul /o

for all u € S(RY) with suppu C By and 7 > 79. The implicit constant in the
previous inequality depends on Ry and ||a|| e (ry, while 7g is as in the lemma

Y2 This fact is derived from the lemma

Here we are implicitly using that V € X g
proved at the end of this section.
This inequality is the analogue of the one stated in Proposition 2.4 from [6], and
it represents the key ingredient to perform the method of a priori estimates which
yields the existence of w; and its corresponding bound by the norm of V. For the

details, see the pages 11 and 12, and Proposition 2.5 in [6]. O

The proposition yields directly pairs of solutions as in , however, we also
need that these pairs satisfy ¢; + (o = —ik for an arbitrarily given x € R?. Thus, let
x € R9 be given and choose 17, € R? so that |n| = |#| = 1 and -0 =n-x = 0-k = 0.
Then, for 7 such that 72 > |k|?/4 — X we set

21/2
G=rn+i| — o+ I Ll 0],
2 4

|k 2 |r[? ) 1/2 }
= — —_ = — )\ - T 0 .
G=-mtil =g (A
Since (1 and (s satisfy the conditions of the proposition there exists solutions vy
and vy as in solving the equation (A+X—V;)v; = 0in By with w; € Xclj/Q(Bo)
such that

(47)

(48) 3l x2/2 5y S Vil 17
J J

for j = 1,2 and 72 > max{73, |k|>/4 — A\}. Considering any extension of w; in
X éj/ 2(Bo) to X 41]/ 2, one can check that this extension is in H!(R?) and consequently,
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w; belongs to H'(By) and so does v;. Therefore, the solutions v; and vy can be
plugged in to the identity of the proposition [3.3] and obtain that

(Vi=Va,e” %) = —(Vi—Va, e " Pw )= (Vi—Va, e~ " Pwy) —(Vi—Va)wr, e " Pwy).
The first two terms on the right-hand side can be bounded as follows

(Vi = Vo, e ™ ;)| < [V = Vall g aelle™

KT
W
G ]HXZ;2(BO)7

since supp(V; — Vo) C By and because of the duality between X G 10/ %(By) and
Xéj/z(Bo). One can check that

(19) eyl vy S 0 D sl

and consequently, by and , one obtains

(50) (Vi = Vo, e™™ ;)| S (1+ |K)V2 = ‘éllxgjuz “‘/}||ng1/2'
On the other hand, the third term can be bounded, by duality, as follows

(Vi = Va)wr, e ™ Twa)| < [|(Vi — V2)“’1||X51/2||€7m'ww2||x<1/2(30)
2 2

since again (V7 — Va)w; is supported in By. We will show that the operator mul-
tiplication by V3 — V4 is a bounded from X;l/z (Bo) to XC_;/Q. For the time being,
let us assume that such boundedness holds. Then, we have by and that

(51) ‘<(Vl - ‘/2)11}17 e—in~xw2>| 5 (1 + |I€|)Hw1HXZI/Q(BO)”U)QHX;Q/Z(BO)
S (&Pl -2 ([Vall =172
<1 62
Gathering the inequalities and , one obtains the following bound
2 2
62 i Vae I S W) 3 Wil 3 IVl

jk=1 © Lm=1

Before going on, prove the boundedness of the operator multiplication by V3 — V5
from X;{Q(Bo) to X<_21/2. To do so, let V denote a potential of the form , consider

w e X;1/2(Bo), and show that there exists a positive C' = C(d, T, a, V°) such that
(53) IVl < Cllwl gz,

We will prove this boundedness by duality. Let u € Xcll/ % denote an arbitrary
extension of w € Xgll/2 (Bo) and note that

(Vw, p) :/Rd VOug +/Fau¢da.

The first of these terms on the right-hand side can be easily bounded using Holder’s
inequality and Haberman’s embedding (see[I1])

| [ Vous| < IOl ludaralolira S 1V Nzsrll cyallo] e
1 2

The second term, can be rewritten as follows

/au¢da :/ QG +¢ UG P dT*o
T Tt
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with
g, 46 (y) = e ST Ty (Ty),
ug, (y) = €5 Tu(Ty),
be, (y) = 5= TVe(Ty),

where T € SO(d) is so that R¢; = 7Teq = —R¢o, T'T = {T'z : x € T} and
T*0(E) = o(TE) with TE = {Tx : € E}. Thus, the Cauchy—Schwarz inequality,
the theorem [£.15] and the lemma [£.I8]—in the sections [£.3] and £.4}— imply that

| [ auodo] S laclluiremlluclyallcly e
T

Since g, (€) = W(TE — 1), ¢¢,(€) = G(TE — S¢2) and |g. ()] = |pe, (T€ — S¢))|
with j = 1,2, we have that

‘/Foéwbdff‘ S llall ey e, |72l 2 llpe, | /2Bl 2 < ol zoe oy llull /21191 /2
Gathering the inequalities for V? and o do, we obtain that
Va,8) S IVl + ol 16l
and, consequently that
Vel e S IVl a2 + (P ONLIPNE

where u is an arbitrary extension of w. Taking the infimum, between the norm of
all the possible extensions of w, we get the inequality .

We now go back to the inequality . Our aim is to show that its right-hand
side tends to zero in some sense as 7 in goes to infinity. Due to the J-shell
parts of V7 and V3, this decay will be possible in average as Haberman and Tataru
showed for the Calderdén problem in [12].

Lemma 3.5. Let V be a potential of the form of and T € SO(d). If ¢ =
C(1,T) € C% is so that ¢ - = —\ with R¢ = 7Tey, then for every s < 1/2, we have
that

_1 _
: /2M/ WVIE s du(@)ar < 4 HVOLa2 + M llollfery d=3
ar -1/2 ~ _ _
M Jy Jso@ e MV ae + M™%l ooy d>4

where the implicit constant depends on Ry, I' and d. The measure j denotes the
Haar measure on SO(d).

Proof. Start by estimating the critically singular part of V. If d > 4,

VOl < T V2V S 7 VO e

since supp VY C By and d/2 > 2 for d > 4. In the case d = 3, by the dual inequality
to Haberman’s embedding (see [I1]),

’ ’
IIVOIIX&U;) S 7 APINVO L S TV e
T,

since supp V° C By and d/2 > q), for d = 3. This proves the part of the estimate

corresponding to the critically singular component of V°. We focus now on the
d-shell component. By Lemma 5.2 in [I1] we have that

1 2M
L / / ladol? . du(T)dr < MY |Lado)|? ., + | H(ado)[?
M v Jsoqa Xem
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where FH(ado) = 1jg>omF(ado) and L(ado) = ado — H(ado). Thus, for
every € € (0,1/2), we have

1 2M _
Ty e 0y A7 S M o

Since supp(ado) C By, we have
ladolly 1. S ladol g

Using the dual of the usual trace theorem for Sobolev spaces we have that the right-
hand side of last inequality is bounded by [|a|z2(ry. Since T' is compact, we have
that ||a|z2(ry S llel|ee(ry, which proves the part of the inequality corresponding
to the d-shell component of the potential. O

We will apply this lemma to show that (V3 — Vo, e~ %) = (. For that, consider
(1 and {5 as in with k/|k| = Trxeq, n = T;Se; and 6 = T,,Ses, where S € SO(d)
such that Se; = e4. Identifying the set {S € SO(d) : Seq = eq} with SO(d — 1),
we have that

) 1 2M )
|V = Voo™ = — / / (Vi = Va, e~ dp(S) dr
M Jso(-1)

2 2M
1
<1+ g — Vill v - Vil y=1/2 d d
N( |K’|) n[/M Lo(dl) || jHXCkl/2|| lHXCri/i’ ,LL(S) T,

jiklm=1

where (; = (;(7,5). Applying Cauchy—Schwarz in the integration with respect to
S and 7, and the lemma |3.5] we obtain that

(Vi = Va,e”™%) =0, VkeR?

after making M tend to infinity. By the injectivity of the Fourier transform, we
know that Vi = V5. This proves the theorem

4. WELL-SUITED ESTIMATES FOR THE RESOLVENT

In this section we prove the lemmas that we used in the section[2]to derive the re-
solvent estimates in the spaces X} and X,. Additionally, we derive as a consequence
the classical resolvent estimates and @, together with some inequalities for the
conjugated Laplacian —including and .

4.1. The refined estimates. We start by stating a modification of that turns
out to be better adapted for our goal. To do so, we need to introduce the spaces
Yy", and to call the definition of Y given in the section

Definition 4.1. Let Yy be the set of u € §'(R?) so that

1/25 = 1/9 ——
Imy*Porul3s + 3" N2 P2+ Y (lmy/* Peulf3s < oo,
kel k>kx+1

where m(§) = |X — [£|%|. For u € Yy, define the norm

1/2175 — 1/27/
lul3, = Imy*Porulfe + S AV Bl + 3 lmy/ 2 Praulf3a.
kel k>ka+1

We now state the inequality, and prove it later.
Lemma 4.2. There exists a constant C' > 0 only depending on d so that
1A +A£30)" fllyy < Cllfllv,
for all f € S(RY).
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Remark 4.3. The resolvent estimate in the lemma is equivalent to , the fact
that the latter inequality implies the former one is straightforward. The converse
implication is proved in the Corollary [4.14] in the section [£.2}

We continue with our next refined estimate, which consists of a well-suited ver-
sion of @ Again, we start by introducing the space Z%, and calling the definition
of Zy in the section [1:2}

Definition 4.4. Let Z3 , with p € [qa,pa] be the set of u € S'(R%) so that

1_ 1
lmy*Perul2e + 3" X070 | Peull2, + > [[m) 2 Peu)?s < oo,
kel k>kx+1

where m (&) = |\ — |¢|?|. Foru € Z3, , we define the norm

1/2 d 1/2
lulig; = lmy*Perull + SN2 [Pl + D0 (Imy* Pl 3

kel k>kx+1

For simplicity, we write Z3 instead of Z3 , .

Remark 4.5. By Bernstein’s inequality

lullzs, < llullzg, < llullz.

and therefore
73 CZ3, CZ

Lemma 4.6. There exists a constant C > 0 only depending on d so that
(A +X£i0)" fllz; < Cllfl2,

for all f € S(R?).

Remark 4.7. The resolvent estimate in the lemma is equivalent to @, the fact
that the latter inequality implies the former one is straightforward. The converse
implication is proved in the Corollary in the section

Proof of the lemma[{.6l The inequality to be proved follows from @ for d > 3.
The case d = 2 was not considered in [I7]. We include here an argument that does
not require Stein’s interpolation theorem, which was the approach followed in [17],
and works for dimension d = 2.

Start by providing an explicit formula of (A + X\ 4 i0)~*

50 (@+rz0 g - [ T T Fogeasie,

e—0 — |€]?
where dS) stands for the volume form on Sy. If £ > k) + 1,
TG
s+ g = [ TOTE g
R A—[¢]
—1/2 57

and consequently, ||m}\/2]-'Pk(A+)\:I:iO)71f||Lz lmy " Py f| 12, where F denotes
the Fourier transform. The same holds with the projector P.;. For the critical
frequencies k € I, the identity does not become simpler. Start by the second
term. Re-scaling the integral to bring Sy back to S?~!, and then applying Cauchy—
Schwarz we get

65 igrzs [ PO ASO] < X BT oo [z
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where (P, f)a(z) = \¥2P,, f(x/AY/?) and gx(x) = A\™%2g(x/\/?). The restriction
version of the Tomas—Stein theorem, together with an appropriate scale change,
yields

. T B P/ NIy —d/2— ’
g [, PHOTEASO] A2 N P ol
A

Since \—4/2-1)\d/ag — \d(1/ag—1/py) — )\—d/Q(l/Qd—l/Pd))\d/Q(l/(I{i—l/p;)7 the inequal-

ity for the second term of the right-hand side of follows by duality. To prove
the inequality for the first term, we introduce

1 g
PAf(x) = (27T)d/2 11_% /?n/\>6 )\e_ |£‘2 f(f) d§

since to finish the proof of this lemma is enough to show that

1 1

d(1 _ 1 d(i_1L
(56) NG5 | PPy fllaa S AT Pfl

We analyse P, by distinguishing the frequencies inside a neighbourhood of Sy of
width 20A/2, from those outside. Consider 6 € (0,1) —to be chosen— and set

L erE AP 5
1 —
Pkf(x) - (27T)d/2 15% e A\ — ‘§|2¢( o )f(é-) dg
and Pif = Prf — Pif, with ¢ € C§°(R;[0,1]) so that ¢(t) = 1 for all t € [—1,1]
and ¢(t) = 0 whenever |¢| > 2. By Bernstein’s inequality, Plancherel’s identity and

the fact that
2
Y e qeertias < n— e,

1o

we have that, for p > 2,

drl_ 1 dcl_ 1 _ —_,
PP flle S AEGT3) | P2Pfll 2 S AFGTSIN | Bef| 12
A

40—

a 1 _
26N Bl s

AR YA

where p’ is the dual exponent of p. In the previous chain of inequalities, we used
that \'/2 ~ 2% since k € I. Therefore, we have that, for p > 2,

a1l 1 _
(57) PP flle S N2 9NY P f | Lo

~

with p’ its dual exponent. In particular, considering p = ¢4, we have for Pf the cor-
responding inequality to since \%/2(1/aa=1/aa)=1 — \d/2(1/qz=1/d=1/qa=1/d) —
A4/2(1/a5=1/pa=1/9a+1/Pa) | Tt remains to prove for Pi. Start by rescaling so
that PP} f(x) = AY271P}(Pyf)a(A/2x), then it is enough to prove

(58) 1PigllLes S Nglla-

Covering the 25-width neighbourhood of S?~! with balls centred at points on S%*
and radius 26'/2, we can reduce the study to understand an operator of the form

1 et - [€Py e —EY
(59)  Qg(z) = Wilj%/mlx 1= |§|2¢( 5 )7//< 5172 )g(f) d¢
with ¢ € C§°(R%;[0,1]) so that 1(0) # 0 and 9 (n) = 0 whenever |n| > 2. The
reduction to understand Q instead of 7711 comes from the fact that, we can construct
a partition of unity subordinated to the covering made of such balls so that, the
latter can be written as a sum of operators {Q; : [ = 1... Ns} with these looking
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as the former after a rotation. Thus, if holds for operators as Q, then is
also valid for P;. Indeed,

Ny

1Piglro < 1Qiglze S lgll
=1

where Nj is the number of ball needed to cover the 26-width neighbourhood of
S=1. Therefore, in order to finish the proof we just need to prove that holds
for Q. Observe that Qg = K x g with

K(x) = @ lim /W leij;gd)(l LYy () ae

Write 1 — [¢]* = (B(&') +£a)(P(E') — €a) with € = (¢, &) and @(¢') = (1 - [¢'])"/?,
and take § < 1/8 so that

€q—
o) +& =1 Ve suppw(;lﬁ)-
Changing variables, in the integrand defining the kernel K, according to n’' = &’
and ng = ®(¢') — &4 we have that

1 i(x' 0"+ !
(60) K(I’) = W /]Rdi1 e (@"n"+za®(n ))a(nlaxd) d77/
with
1 e~ idnd
(61) a(n/,xd) = (27-(_)1/2I)V‘/]R T\I/('r]) dnd,
where

_ 1 1—[€]*\ rea—¢
i) = @(5/)+gd¢’< ) (55
The term a(n’, x4) reminds the well-known identity

1 e—ist 1
——=DP.V. ——p(t)dt = —i= i —t)p(t)dt
goyapy [ e = —ig [ sien(s— 0@

and consequently,
1 .
a(n',zq) = —ig / sign(zq — ya) Fa¥ (7', ya) dya,
R

where F, stands for the 1-dimensional Fourier transform applied to the last variable.
Let us now get back to estimate Qg. Note that, on the one hand

K-y, xqg— " d /H
(32) H i1 ( Y,%d yd)g(y yd) Y (Ré-1)
< ||K('7xd yd)HLm(]Rd_l)Hg('ayd)HLl(Rd_l)'

On the other hand, Plancherel’s identity applied to the first d — 1 variables yields

K-y, zq— " ya)d /‘
(63) H s ( Y,Tq yd)g(y yd) Yy 2 (Ra-1)
SIF K (s xa = ya)ll Lo ma-1) 19 (s, Ya) | L2 ma-1),

where F’ stands for the (d — 1)-dimensional Fourier transform applied to the first
d — 1 variables. Furthermore, from the expression one sees that

17K (o 2a—ya)ll oo ra-1) ~ [la(s, 2a—ya)) | Lo ma-1) /S/R”‘Fd\l'('vyd)”Lm(Rd—l)dyd-
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Interpolating the inequalities and , we get

K(. — /, _ /, d /‘
(64) H Ol P

1 _ 1
< B oo = ga) e ooy 9o ) o oy

As a consequence of the stationary phase theorem (which exploits the curvature of
Sd—l),

_d—1
P

1K (v 24 — Ya)ll Loe ma—1y) S (1 + |2a — yal)
Thus,

d—1 1

_d-1(1_1
19010 5 || [ 1o =t =8 gl omsy

La(Rq,)

Considering ¢ = ¢4, we can apply the Hardy-Littlewood—Sobolev inequality and
conclude that

199220 S 1191l oy

holds, which was the last ingredient to finish the proof of the lemma [4.6 (]

Proof of the lemma[].2 The wanted inequality follows from , however, we give
here a simple proof for completeness. The argument follows the general scheme of
the proof of the lemma [£.6] but simpler, since no interpolation is required, neither
the curvature of S is exploited.

The estimate for the non-critical frequencies is straightforward, and works ex-
actly as in the lemma 4.6l To study the critical frequencies, we start analysing
the second term on the right-hand side of , and obtain again the inequality
(55). Applying the trace theorem —dual version of Theorem 7.1.26 in [14] (see also
Theorem 14.1.1 in [I5]), together with a change of scale, we have

g7 [ PHOTOASIO] £ A2/ Pl

Since A~4/2-1\(d+1)/2 — \—1/4\=1/4  the inequality for the second term of the
right-hand side of follows by duality. To prove the inequality for the first
term, we split again Py = P} + P3. Note that using with p = 2d/(d — 1), we
obtain

J J,_1 J,_1
IPePifllz2p,) S 22 1PkPRflliee S22 A7 2| Pifllpw < 22072 > 1 PifllLo (o)
leNp

Hence, by Hélder’s inequality
1 _1
(65) N PP f Il S A7 Pef]l-

We next prove for Pi. After rescaling PP} f(z) = A¥271PL( P, f)n(A/22), it
is enough to prove

(66) Sup ((W22) V2 IPlgll o nop,) S D (A22) gl 2o,
J&€lo j€ENg

As in the lemma the analysis can be reduced to study the operator Q in .
In fact, we only need to check that holds for Q. Indeed, applying and
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(60) we have
||Qg||L2(/\1/2DJ)

= H/ || K('fylvxd7yd)g(ylvyd)dyl||L2(Rd—1)dyd‘
R JRd-1

< : 1 dya|
~ H/ gt a2 -2, dya L2(|za| <A1/223)

(/\1/221 1/2 Z/H 1/\1/2Dz ]( yd)”L? Rd— 1)dyd

1eNp

5 ()\1/22j)1/2 Z(/\1/22l)1/2||g||L2()\1/2Dl)7
IS\

L2(|za|<A1/227)

where 1,1/2p, holds for the characteristic function of the set A/2D;. Therefore,
holds for O and the lemma is proved. O

4.2. The classical resolvent estimates. The classical resolvent estimates
and @ follows from the lemmas and respectively, together with appropriate
embeddings.

Lemma 4.8. Forp,q € [q4,pa] with ¢ < p, there exists a constant C > 0 depending
on d, p and q such that

d(1
2

1_ 1
22572\ £l < C /]

z;,
for all f € S(R?).

Proof. By the Littlewood—Paley theorem, Bernstein’s inequalities and Plancherel
identity, we have that

1120 < IP<ifllZe + D IPefIIZs

k>kx—2
SPRGTD P f R+ Y MG PR+ Y 2MET B3
kel k>kx+1
We have that |]§<I\f(f)| ~ ATV 2my (€ )1/2|P/<1\f( €)| for all ¢ € R, Hence,
(67) 1P fllze = A~ my 2Py o
If £ > kx + 1, we have that \Pkf( )| =~ 27Fmy (& )1/2|Pkf(§)| for all £ € R%. Hence,
(68) 1Pefllz = 27y * P ]| 2.
Therefore,
1_1 ,,l
17130 S 322G D Peflf s + 27122962 |2 P 73
kel
+279G5D ST m) 2 Pef |2
k>kx+1

Since the critical scale 2% is of the order of A'/2, we have

1_ 1
1£170 S A2 || P flli

kel
—d
R (e 0 S S W )
k>kx+1

Finally, multiplying both sides by A%(1/P=1/Pa) and taking square root, we obtain
the embedding we were looking for. O
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Lemma 4.9. For p',q¢" € [pl),q)] with p' < ¢/, there exists a constant C > 0
depending on d, p' and ¢’ such that

i
5(

JH

o)
1fllzy o < O 27| fll s
for all f € S(RY).

Proof. Tt follows from the lemma by a standard duality argument, since the
Banach space (Zx,¢/, ||+ ||z, ) is reflexive, its dual can be identified with (Z5 || .

|z;,) and S (R) is dense in the latter space —see the lemma in the appendix
A O

Corollary 4.10. For p € [q4,pq] with d > 2, there exists a constant C' > 0
depending on d and p such that

1

a(1_1)_
A+ xi0)7 Sl £ 23631 )
for all f € S(RY).
Proof. This is an immediate consequence of the lemmas [4.8] [1.9] and [4.6] O

Remark 4.11. The corollary was stated in [I7] for d > 3. This corollary also
holds for d = 2 including the endpoint p = ps.

Lemma 4.12. There exists a constant C > 0 depending on d such that
N4f) < €l

Yo
for all f € S(R?).

Proof. By the triangle inequality and extending the domain of integration from D;
to R?, we have that

Ifllz2o;) < IP<ifllieoyy + Y. IP:fllz2py)
k> hy—2

SNP<rflle + D> N Pefllzoy + Y I1Pefllee.

kel k>ka+1
Multiplying by 277/2 with j € Ny and using the equivalences and (68):

2792 fllr2p,) < ZTJ-/QHPkaL?(Dj) + A71/2‘|mi/2P<IfHL2

kel
+ > 27 HmyPuf .
k>kx+1

Since there are only four critical frequencies, on has

‘ ‘ 1/2
> 2 PP laeny) = (2 NP i, )

kel kel
Using the Cauchy—Schwarz inequality, we can proceed as follows:

> 2 my Bl s27 (Y ||m1/2Pkf||L2)
k>kx+1 k>kx+1

The fact that the critical scale 25* is of the order of A\'/2 implies that, after taking
square, we obtain

1/2 15 3
N2273| £l ) SATV2 My 2Porf 13

+ 3 NP f|Ra AT DT Iy PRSI
kel k>kx+1
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Taking the corresponding supremum of j € Ny, we obtain the embedding stated in
the lemma. 0

Lemma 4.13. There exists a constant C > 0 depending on d such that
I £llvs < CATY41£1]
for all f € S(RY).

Proof. This lemma is consequence of the lemma together with a duality ar-
gument that uses that (Yy, || .[ly;) is the dual of (Y, ||« [[v,), and the density of

S(RY) in the former space. This duality argument is based on the Hahn-Banach
theorem (see the corollary 1.4 in [4]). O

Corollary 4.14. There exists a constant C' > 0 depending on d such that
NZIA + X +i0)7 fl. < O£

for all f € S(R?).

Proof. This is an immediate consequence of the lemmas [1.12] [£.13] and [£:2] O

4.3. A trace theorem. In this section we prove a trace theorem for the space Y.

This is an essential piece to construct the scattering solution for critically-singular
and d-shell potentials, specially to deal with the d-shell component.

Theorem 4.15. Let I' be a compact hypersurface locally described by the graphs
of Lipschitz functions. There exists a constant C' > 0 only depending on d and I’
such that

[fllzzay < C|lf]
for all f € S(R?) and all A > 1.

Yy

Proof. We first introduce a localization function denoted by x, which is not com-
pactly supported. To do so, let ¢ € S(R?) be a [0, 1]-valued function so that its
support is contained in {¢ € R? : [¢| < 1} and it is not identically zero.

Then, there exists € (0,1] such that

[ emcorag] = 5 [ o@ae>0

whenever |z| < 4. Let x € S(RY) be defined by
1 % x-
(69) X(@) = i [ @0l e,

with R > 1so that I' € B = {z € R?: |z| < R}. Note that |x(z)| > 1 whenever
|z] < R and supp Y C {¢€ € R?: [¢] < 1}. Since T is contained in B,

12y S Ixfllezey S 27210 2
ez

In the last inequality we have used the trace theorem —a Besov-space form of
Theorem 14.1.1 in [I5]. We now show that

(70) > 22IP0)ee S 1]

l€Z

Yy

Start considering the low frequencies I < ky + 4. The continuity of P, in L?(R%)
and the fact that the sum of low frequencies is at most of the order of 25*/2 imply
that

(71) > 22 P(xf)llze £ 292l = AV e
1<k x+4
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On the other hand,
1/2 . 1/2
(72) Il = (X I ley) < (D 2nmoy) Il
j€No JENy

Since sup,era(1 + |2]) "V |x(z)] < oo for any N € N, the series on the right-hand

side of the inequality in converges. Thus, , and the lemma shows
that

(73) Y 21BN S AL S 1)

1<ky+4

Y-

Finally, we consider the high frequencies [ > k) + 4. By the triangle inequality,
(74) SO 2Pl < D] D 2 IRPS) e

I>k\+4 I>kx+4keZ
Since the support of ¥ is contained {¢ € R : |¢| < 1}, we have that

[ {ger g <) ith <2
(75) SuprPkf - { {5 c RY . 2k—2 < |€| < 2k+2} ifk > 2.

Thus, P;(xPrf) =0 whenever k < 2 and [ > 4, or whenever k > 2 and |l — k| > 3.
Consequently, the sum on the right-hand side of only has the terms [ > k) +4
and k > 2 —if k < 2 the non-zero terms satisfy | < 4, but there are no [ satisfying
kx+4 <1 <4 with A > 1. Therefore,

> 2PIRGHIe < D Y 2R e

I>kx+4 I>kx+4|k—1|<3
= Y 3 RPN S Y 22 Pufl e,
E>ka+1 |1—k|<3 k>kx41

In the last inequality we used the continuity in L%(RY) of the operators P, and
multiplication by x, and the fact that Z|l—k\<3 21/2 ~ 9k/2  Then, by Plancherel’s
identity, and Cauchy—Schwarz applied to the sum, we obtain

S22 PPl £ Y 272 my?Pufllre S 272 £

Yy
I>kx+4 k>kx+1

This inequality, together with (73, shows that holds, and consequently the

theorem is proved. O

Remark 4.16. The novelty of this trace theorem bases on showing that the operator
multiplication by x, defined as in , is bounded from Yy to 35’/12 (R?) with a norm
independent of A. Our next step will be to show that such an operator is in fact
compact.

Lemma 4.17. Let x be as in and A > 1. Multiplication by x defines a compact
operator from Yy to B;{f (R9).

Proof. In order to prove the compactness of the operator multiplication by y, we
will consider a bounded sequence {u,, : n € N} in Yy and show that there exist a
subsequence {uy, () : m € N} and u € Yy so that

im [ Xt (m) — XU||B;(12 =0.

We will show in the appendix |[A| that Yy is the dual space of Y (see the lemma
)A.1). Thus, given a bounded sequence {u,, : n € N} in Y, we know by the Banach—
Alaoglu—Bourbaki theorem that there exist a subsequence {un(m) : m € N} and
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u € Yy so that

(76) lim () —u, f) =0

m—o0

for all f € Yy. Here (.,.) stands for the duality pairing between Y and Y. For
convenience, let v, denote the difference w,,(,,) —u. We will show that

: 1/2 _
,ggnm;2 1P (xvm)l| 2 = 0.

To do so, we will use the dominate convergence theorem (DCT for short), which
could be applied after we shown that, for every | € Z, || P,(xvm)||z2 tends to 0 as
m goes to infinity, and

(77) 22| Py (xom) |22 S ATVA2 2 cpy pa + 272100 1,

where the implicit constant does not depend on m and, 1;<x, +4 and 1;54, 44 stand
for the characteristic functions of the set {{ € Z : | < kx+4}and {l € Z : | > k\+4}.
Note that we can apply the DCT because the sequence on the right-hand side of
belongs to I1(7Z).

Let us first check that holds. Start by analysing the case [ < kx + 4. The
boundedness of P, in L?(R?), the inequality and the 1emma implies that

(78) 22| P (xom) 22 S A2 ol vy

This inequality is only useful if [ < ky + 4. Continue now with the case | > ky + 4.
Using for I > ky +4, the boundedness of P; and multiplication by y in L2(R%),
Plancherel’s identity and , we have that

22| Pilxvm)lle <22 37 IBOPwm)lle S22 Y0 | Pevmllze

|k—1]<3 |k—1]<3
(79) 12 —ky, 1/255 —1/2
~ 212 N 27K m P Pevm |12 < 272 |vmllyv;-
|k—1]<3

The inequalities and , together with the fact that {v,, : m € Z} is bounded
in Yy, yields .

It remains to prove that

1P (xvm)| L2 = 0.

lim
m—r o0
We will show this using the DCT again. Start by checking the point-wise conver-
gence:
2ld ~
Pi(xvm)(x) = W<Umvx¢(2 (=)
where (.,.) stands for the duality pairing between Y and Y), and v denotes the

base function used to construct the Littlewood—Paley projectors. Since x$(2l (x—))
belongs to Yy for all z € R?, the convergence implies that

Jim Py (xom)(z) =0

for all 2 € R%. Continue with the domination:

|P(xvm) (@)] S 2 [omlly; X2 (2 = 2))lvs.

Note that, since {v,, : m € Z} is bounded in Yy, it is enough to see that the function
x> |[x¥ (24 (x—.))|ly, belongs to L2(R?). We finish the proof of this lemma showing
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that this is the case. By the lemma[£.13] and then using Cauchy-Schwarz, we know
that

X2 (x = ))llys S AT 2723 (2 (@ — )2y
J€No
SO 2991p )22 (@ — 1)) 2
J€No

where ¢ is a constant so that ¢ > 1. Consequently,

/ D@z — 2, do < / IS 2915, )12x(24 @ — )12 da
Rd Rd .
IS
— (S 29 P1p,) # [P e
Jj€Ng
< IS 29y 21, 1 5222

J€Ng

Since x and 1 are in S(R?), the right-hand side of the previous chains of inequalities
is bounded, which concludes the proof of this lemma. O

4.4. Other estimates. In this section we state and derive several consequences
from the embeddings and inequalities proved in the sections[{.1]and[£:2] In particu-
lar, , and , beside a slightly different version of the Sylvester—Uhlmann
inequality. At this point it might be convenient recall that the definition of the norm
of Y was given in ().

Lemma 4.18. Whenever d > 3, there exists a constant C > 0 depending on d so
that

/]
for all f € S(RY) and \ = 2.

vy < OHf”yTl/z

Proof. The fact that my (&) < |g,(€)] for all £ € R? implies that

£ < Mael"2Pr flI7e + D N2IPANE+ D el Pefl72
kel k>ky+1

Thus, if we prove that for k € I we have
(80) T2 Puflle S Warl 2Pl e,

then the result follows since there exists a constant ¢ > 0 so that
P fOP+ Y IBSEOP <FOP,  VEeR™
k>ky—2

Last inequality is a known property of the Littlewood—Paley projectors. To finish
the proof of this lemma, we show that holds. Let g be defined by

(81) (&) = la- (V2 (€), Ve e RY

Thus, using the inversion formula of the Fourier transform and changing variables
to p=|¢/| and 0 = ¢&'/|¢'| with & = (¢/,&4) € R x R, we have that

Peg(p9.€a) -
2) P i€y sz -6 k9 d—2
(82) Puf() (2 d/2/ / /sd > la-(p0, €0)[1/2 A5(6)p" " dpdea,

where dS denotes the volume form on S~2. Note that, extending the integration
from D; to {x € R? : |2’| < 27}, applying Plancherel’s identity in the variable x4
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and then Minkowski’s inequality, we have

2792 Py fll22(p,)

Peg(p0, +) o2
< 2= J/z / / / ZPI -0 k ds (e d 2d ) dz’
(83) / g2 lar (00, D172 ©)p Pl (®) x)

B — Pg(p&,.) 2 E
<27l / / o0 LEIP0 ) 5012 gy
H o o SO )

where B} = {2/ € R*"! : [2/| < 27}. Next we change variables pz’ =y’ so that

» ia0_Prg(p0, ) 2 N3
2 1/2(/{‘ [ e|quzp97.)|1/2 s (o)) dx/)

Peg (p0,.) 2 3
1d/2 2; 1/2 iy -0 _LEG\PY, ) ds(1? ay’
(Lo o i 250" )

Applying the extension version of the trace theorem —Theorem 7.1.26 in [14] valid
here for d > 3— we have that the right-hand side of the previous identity can be
bounded so that the inequality (83]) becomes

i 1_7 |Peg(pt, )| )% -
s 2 4P, < | [ H( [ 0 as0)
Note that |g,(p0,&4)|> = |72 — p? — €2]? + |27&4|?, which does not depend on 6.
Hence, by the Cauchy—Schwarz inequality applied to the integration in p, we have
that the right-hand side of the previous inequality is bounded by a constant multiple
of

[N

2k +1 1
sap ([ lartogol M an)
0

[Ea]<2k+1

[ 1PRa(e0, ) dS(@)p" > |

L2(R)

Since k € I, one can check that this term is bounded by 7=1/2|P.g||z2. Thus, the
inequality becomes

2792 Peflleaoyy S 72 Ngr V2 Pif o
Taking supremum in j € Ny we obtain . (]

Corollary 4.19 (Haberman—Tataru). Whenever d > 3, there exists a constant
C > 0 depending on d so that, if x € S(R?), then

T2xfllee < Cllfllyre
for all f € S(RY).
Proof. This is a consequence of the inequality and the lemmas and
O

Lemma 4.20. Whenever d > 3, there exists a constant C' > 0 depending on d so
that

[flly=1r2 < Cli fllvs
for all f € S(R?) and \ = 72.

Proof. Tt follows from the lemma [I.1§ by a standard duality argument. O

Corollary 4.21 (Sylvester—Uhlmann). Whenever d > 3, there exists a constant
C > 0 depending on d so that

_ c
I(A + 2705, + %) fll. < —IIf]
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for all f € S(R?).
Proof. 1t follows from the identity (9) and the lemmas[4.18] [4.20 [£.12]and [£.13] O

Lemma 4.22. Whenever d > 3, there exists a constant C > 0 depending on d so
that

£l 2,

<Ol
for all f € S(RY) and \ = 2.

Proof. By the same argument as in the proof of the lemma [£.18] it is enough to
show that for k € I we have

(85) 1P fllea S g ? Pf | 2
Let g be as in , and write Py f as in . Applying Bernstein’s and Plancherel’s
identities in the variable x4 and after this Minkowski’s inequality, we have

27" G5 | P f || ra ety

Prg(pb, ) Pa
zp;v 0 LRGP d—2 /
(86) S /]Rd 1 ||/ /Sd 2 lg- (0, )| r ds(0)p™7d ||L2(R) )

Peg (pf,.) o L
< zp:v -0 XY ,
H / /Rd 1 /Sd 2 |q7_ p@ )‘1/2 dS(0)| dx ) p

As in the proof of the lemma [4.18] we change variables pz’ = 3 so that

Prg(p0,) &
zpz -0 kg(p ds(6 Pd dil?l Pd
(fo ey 95O a)

_ (1—d)/pa iy’ -0 Pkg(pe? ') Pd /) é
A Lo s i 45O )
Applying the extension version of the Tomas—Stein theorem —valid here for d > 3
since pg = qq—1— we have that the right-hand side of the previous identity can be
bounded so that the inequality becomes

Bog(0. ) o\ s
Pd 2 2 dS(8 d
/Su o 5©) P

As we noted in the proof of the lemma [4.18] |q,(pf, £q)| does not depend on 6, and
consequently, applying the Cauchy—Schwarz inequality to the integration in p, we
have that the norm on the right-hand side of the previous inequality is bounded by
a constant multiple of

2 2/pa 1
14 2 ) s
o / Ta-(00. )| / / Pg 0 ds d
\§d|§2k+1( 0 |qr(p9,§d) i 2| 19(p0, )| @)p p‘

Since k € I, one can check that the first term of the previous product is bounded
by 71/Pa=1/2 Thus, we end up with the inequality

| P f | pea S 28/271 /P01 Pa=1/2) g V2P || o

~

1

||Pkf\|LPd(Rd)§ (=5

L2(R)

L®

Since k € I and 2% ~ 7, we get the inequality (85). O

Corollary 4.23 (Haberman). Assume d > 3. There exists a constant C' > 0
depending on d so that

[fllzea < Cllflly2/2
for all f € S(R?).

Proof. 1t is a consequence of the lemmas [£.8 and [£.22] O
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Lemma 4.24. Whenever d > 3, there exists a constant C' > 0 depending on d so
that

1flly 722 < Clifllz, ,,
for all f € S(R?) and \ = 72.
Proof. Tt follows from the lemma by a standard duality argument. O

Corollary 4.25 (Kenig—Ruiz—Sogge). Assume d > 3. There exists a constant
C > 0 depending on d so that

||(A +270,, + TQ)_lf”Lpd < C”f”Lp’d
for all f € S(RY).
Proof. 1t follows from the identity (9], the corollary and the lemmas and
750 O
APPENDIX A. THE FUNCTIONAL ANALYTICAL FRAMEWORK

Here we prove the propositions and [2.7] which describe some basic prop-
erties of the functional spaces X and X}. As we see, these propositions will be
immediately derived from some properties related to the spaces Yy, Yy, Z) and Z3.

Lemma A.1. The pair (Yy,| +|ly,) is a Banach space and its dual is isomorphic
to (Y¥, |+ llyy). The Schwartz class S(R?) is dense in Yy and Yy with their corres-
ponding norms.

Lemma A.2. The pair (Z, |||z, ) is a reflexive Banach space and its dual
is isomorphic to (Z3 ,, || « || z; ) with p and p’ duals. The Schwartz class S(R?) is
dense in Zy , and Z3 ,, with their corresponding norms.

Note that 2% ~ A2 when k € I, my(&)Y2|Porf(€)] ~ A/2|P_;f(¢)], and
ma(€)/2| P f (€)] ~ 27| P £(€)| when k > ky + 1. Thus, the norms of the spaces Y,
Yy, Zyp and Z3 , can be re-written similarly to the norms of non-homogeneous
Besov spaces with different weights and norms on the critical scales k € I. This
remark is the key to justify that these spaces are Banach and S(R?) is dense with
respect to the corresponding topologies. The duality also works because of the same
principle —since the norms in the corresponding pieces are taken to be dual. To
be more precise, note that || . ||« is the dual norm of || . || and not the other way
around, while ||+ ||, and ||+ ||fa: are dual of each other. Hence, Zy ; is reflexive
and Y, is not.

Now, we show how to derive the propositions[2.5] 2.6]and [2.7]stated in the section
Start by the first of these three propositions. The density of S(R?) in Yy and Z)
is explicitly stated in the lemmas [A-T] and [A2] in particular, the density also holds
for X, = Y, + Z, with its corresponding norm. This proves the proposition
Now, we turn to the proposition [2.6] Since (Y, ||.||y,) and (Zy, ||+ | z,) are Banach
spaces and Yy and Z, are subspaces of S’'(R?), we have by Theorem 1.3 in [3] that
(X, |l+]lx,) is a Banach space. The identity is a standard property of Banach
spaces (see Corollary 1.4 in [4]). This concludes the proof of the proposition
Finally, let us focus on the last of these three propositions. It is a well-known fact
—since S(RY) is dense in Yy, and Z,— that (X3, ||. | x;) is isomorphic to the space
YN Z; endowed with the norm max{||.|[y;, || +[|z;} (see 2 in the section Exercises
and Further Results for Chapter 3 of the book [3]). Note that this later space is
actually isomorphic to the space described in the proposition 2.7] endowed with the
norm (18]). To finish the proof of this proposition, it is enough to check the density
of S(RY) in X} with its corresponding norm. Note that this holds because S(R?)
is dense in Yy and Z3, and the norm || . || x; is equivalent to max{|| . [[v;, [ - |z }-
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