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  30 

Abstract 31 

Despite broad scientific interest in harnessing the power of Earth's microbiomes, knowledge gaps 32 

hinder their efficient use for addressing urgent societal and environmental challenges. We argue 33 

that structuring research and technology developments around a design-build-test-learn (DBTL) 34 

cycle will advance microbiome engineering and spur new discoveries on the basic scientific 35 

principles governing microbiome function. In this Review, we present key elements of an 36 

iterative DBTL cycle for microbiome engineering, focusing on generalizable approaches, 37 

including top-down and bottom-up design processes, synthetic and self-assembled construction 38 

methods, and emerging tools to analyze microbiome function. These approaches can be used to 39 
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harness microbiomes for broad applications related to medicine, agriculture, energy, and the 40 

environment. We also discuss key challenges and opportunities of each approach and synthesize 41 

them into best practice guidelines for engineering microbiomes. We anticipate that adoption of a 42 

DBTL framework will rapidly advance microbiome-based biotechnologies aimed at improving 43 

human and animal health, agriculture, and enabling the bioeconomy.  44 

 45 

[H1] Introduction 46 

Microbial communities have seemingly limitless capabilities, driving Earth’s biogeochemical 47 

cycles and occupying every environmental niche1,2. Engineers and scientists have tapped into 48 

this power for a long time; for example, by manipulating soil microbiomes to increase crop 49 

productivity3, by stimulating naturally-occurring or introduced microbiomes to remediate 50 

contaminated groundwater4, or by building reactor microbiomes to recover valuable resources 51 

from wastewater5. Although these accomplishments highlight the valuable functions of 52 

microbiomes, the vast majority of the microbial world’s transformative capabilities have yet to 53 

be unlocked and harnessed. Recent insights driven by DNA sequencing have shed light on the 54 

high genetic diversity of not-yet-cultured microorganisms and their crucial roles in diverse 55 

ecosystems6,7, providing a window on potentially novel biotechnology applications. 56 

In recognition of this unlocked potential, funding agencies and the international science 57 

community have called for a global effort to advance microbiome research8,9. These initiatives 58 

have recognized the need for microbiome science to move beyond descriptive studies, and 59 

embrace a systems approach that generates the mechanistic, predictive, and actionable 60 

understanding that enables rational microbiome engineering8. However, achieving this transition 61 

is hindered by the lack of tractable experimental systems that permit the detailed functional 62 

investigation of microbiomes, the large pool of microbiome gene and metabolite functions that 63 

remain unknown10, the many uncharacterized interactions (for example, syntrophy) between 64 

microorganisms11, inadequate tools to accurately measure and simulate microbiome functions 65 

across time and space, and the limited availability of approaches to precisely manipulate 66 

microbiome structure and function. 67 

Integrating basic scientific discovery with engineering can overcome these challenges 68 

and develop innovative solutions that support sustainable natural resources management and 69 

human and animal health. In particular, engineering approaches can be used to create 70 
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experimental systems that permit the testing of conceptual knowledge and extraction of new 71 

knowledge that advances microbiome research. To accelerate both scientific discovery and 72 

translation into innovative solutions, we propose that microbiome engineering adopt an iterative 73 

design-build-test-learn (DBTL) cycle to structure research and the technology development 74 

process. This cycle involves developing an initial microbiome design or preliminary model 75 

system to achieve a defined engineering goal, building the microbiome, testing its function 76 

against a set of specified metrics to determine whether the design-build solution(s) produced the 77 

design objective (i.e. establish causation), learning what worked, what did not (and why), and 78 

incorporating new knowledge into the decision making process of subsequent DBTL cycles 79 

(Figure 1). This approach has been used successfully in manufacturing12, metabolic 80 

engineering13, and entrepreneurship (‘build, measure, learn’)14, and could rapidly advance our 81 

ability to develop much needed tools and design concepts for harnessing microbiomes, 82 

delivering innovative solutions and advancing scientific knowledge. 83 

In this Review, we present key elements of an iterative DBTL approach that can be 84 

implemented to advance the rational engineering of microbiomes for functions that benefit 85 

society. We review diverse approaches to harness microbiomes in medical, agricultural, energy, 86 

and environmental applications, and identify current challenges and opportunities associated 87 

with implementing each DBTL phase. Finally, we discuss how the DBTL cycle can be applied to 88 

build model systems to establish basic principles of microbial ecosystems and provide an outlook 89 

on the frontiers of microbiome engineering. 90 

  91 

[H1] Designing microbiomes 92 

Because of the high complexity and limited understanding of molecular-scale microbiome 93 

processes, microbiome design has conventionally followed a top-down approach. This approach 94 

tries to predict how ecosystem-level controls can create a microbiome with desired functions. 95 

However, recent advances in multi-omics have provided opportunities to design microbiomes 96 

from the bottom-up by predicting how the control of metabolic networks and their interactions 97 

can create a microbiome with desired functions. Combined, these approaches offer 98 

complementary strategies to design microbiomes for specific engineering goals, ranging from 99 

sustainable wastewater treatment to curing microbiome-associated human diseases.  100 

  101 
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[H2] Top-down design. Rather than deciding which organisms and detailed metabolic pathways 102 

to use a priori, the top-down approach uses carefully selected environmental variables (such as 103 

certain substrate loading rates, mean-cell retention times, and redox conditions) that force an 104 

existing microbiome (naturally occurring or inoculated) through ecological selection to perform 105 

the desired biological processes (or ‘metaphenotypes’15) (Figure 2). Here, ‘top’ refers to the 106 

ecosystem in which the desired biological process occurs and top-down design denotes the 107 

methods used to predict how manipulation of the ecosystem’s physical, chemical, and biological 108 

processes (that is, ecosystem processes) obtains the desired function. Predicting how to 109 

manipulate an ecosystem is informed by principles of ecological engineering16 (also known as 110 

microbial resource management17 or microbial community engineering18). This requires 111 

engineers to conceptualize the system as an ecosystem model that captures system inputs and 112 

outputs, physicochemical conditions (pH, temperature, redox potential, etc.), known abiotic and 113 

biotic processes, and environmental variables, and how their manipulation may promote or 114 

inhibit the biological process(es) being optimized19,20. Subsequently, mathematical modeling is 115 

used to perform mass balance analysis around chemicals and relevant microorganisms in the 116 

system and simulate chemical and biochemical transformation rates. These process-based models 117 

capture microbiome functions by representing key physiological or functional guilds of 118 

microorganisms (such as methanogens, fermenters, nitrifiers, or phototrophs) with specific 119 

stoichiometric (growth and product yields) and kinetic parameters (maximum specific growth 120 

rate, substrate uptake rate, and substrate affinity)21,22,23. The models can also integrate equations 121 

describing the three-dimensional physical transport processes (diffusion, advection, and 122 

dispersion) acting on chemicals and microorganisms, which are especially important in spatially 123 

structured systems such as biofilms24,25. 124 

  125 

[H2] Bottom-up design. Although the conventional top-down design approach for microbiome 126 

engineering offers a framework for macro-scale processes and has been widely successful for 127 

wastewater treatment21 and bioremediation4, it often neglects the complex in situ metabolic 128 

networks driving microbial and linked chemical transformations26 and ignores processes that 129 

depend on intricate interactions between community members; for example, syntrophic 130 

interactions through direct interspecies electron27. As a consequence, molecular-scale 131 

microbiome processes are often ignored during design, limiting system optimization through 132 
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molecular-scale mechanistic insight. Recent advances in multi-omics and automation technology 133 

(for example, in metagenomics and microfluidics) have enabled researchers to develop bottom-134 

up approaches and focus on engineering the microbiome’s metabolic network and microbial 135 

interactions. Here, ‘bottom’ refers to the metabolic networks of individual organisms in the 136 

microbiome (expressed from their genomes) and ‘bottom-up design’ denotes the methods used to 137 

predict how metabolic flux through these interacting networks obtains the desired function. The 138 

general design process is to obtain the genomes of individual members of the microbiome28 139 

(especially keystone species29, when known30), reconstruct their metabolic networks,31,32 and use 140 

modeling33 and/or network analysis tools34 to guide design (Figure 2). Existing constraint-based 141 

methods such as flux balance analysis (FBA) provide a suitable framework for exploring which 142 

combinations of chemical transformations are possible using quantitative models, in which 143 

individual populations’ reactions and metabolites can be compartmentalized and metabolic 144 

fluxes within and between populations can be simulated using optimality principles35. These 145 

models can also simulate steady-state flux distributions over time and space36,37 and can be 146 

integrated into process-based and/or individual-based models38 to predict metaphenotypes, self-147 

organizing spatial patterns, and other emergent behaviours. Such bottom-up tools provide the 148 

engineer with a computational framework to systematically evaluate the metabolic networks 149 

driving biological processes and ecological interactions, and a platform for rationally designing 150 

microbiomes with specific properties, such as distributed pathways39,40, modular species 151 

interactions41, community resistance and resilience42 and spatiotemporal organization43 that 152 

optimize ecosystem function and stability. However, the majority of these bottom-up design 153 

examples are based on simple communities with model organisms (such as Escherichia coli and 154 

Saccharomyces cerevisiae) that have engineered dependencies. Therefore, extending these 155 

designs to systems with non-model organisms of tens to hundreds of different species will 156 

require deeper insights into their metabolism and the principles governing their interactions and 157 

higher-order behavior. 158 

There are major challenges to implementing this bottom-up approach, including 159 

inaccurate and/or incomplete metabolic network reconstructions, unknown functions of many 160 

genes, proteins, and metabolites, poorly understood evolutionary pressures driving individual 161 

and community-level phenotypes, and limited understanding of gene, metabolic, and ecosystem 162 

regulatory schemes (for example, quorum sensing signal-response systems44). These limitations 163 
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lead to high model uncertainty because key constraints on pathway stoichiometry and enzyme 164 

kinetics are either inappropriate or missing, and objective functions fail to capture the true 165 

evolutionary drivers of cell behavior45, ultimately leading to poor predictions of in situ 166 

phenotypes. As a starting point for bottom-up design, core metabolic models that capture central 167 

carbon and energy metabolism can be reconstructed from genome annotations and known 168 

physiological information. The predictive power of these models may be limited initially, as they 169 

ignore regulatory information, pathway kinetics, secondary metabolism, and evolution. However, 170 

when this knowledge is acquired and becomes incorporated into metabolic models through 171 

multiple cycles of testing and learning, accurate predictions of system function (for example, 172 

metabolic fluxes and metabolite exchange) may emerge. As a complementary approach, data-173 

driven modeling techniques such as ensemble modeling and machine learning may offer more 174 

rapid methods to predict microbiome metabolic processes or obtain constraints and parameters 175 

required for microbiome modeling, without the need for detailed mechanistic understanding of 176 

metabolic regulation46,47. Such modeling frameworks have been used to predict pathway fluxes 177 

from proteomic and metabolomic data48, improve metabolite cross-feeding predictions through 178 

ensemble modeling-based FBA49, and to obtain key catalytic turnover numbers needed for 179 

metabolic models50. Although these approaches are flexible and generalizable enough to be 180 

applied to microbial communities, they require substantial amounts of experimental data on the 181 

metabolism of individual strains and interacting communities. This information could be 182 

leveraged from prior test phases (for example, from high-throughput phenotypic screens and 183 

multi-omics) to enable data-driven design.  184 

  185 

[H2] Integrated design. Moving forward, we envision that a judiciously balanced blend of top-186 

down and bottom-up approaches will be needed for successful microbiome design, especially 187 

when working with complex microbiomes, such as human microbiota or activated sludge 188 

(Figure 2). A blended approach could involve selecting both undefined mixtures and defined 189 

consortia to achieve desired microbiome functions, merging process-based models with bottom-190 

up metabolic models reconstructed from meta-omic information to simulate ecosystem 191 

processes, mass balances, and metabolite fluxes, and using genome-derived information to 192 

develop community selection strategies. Capturing higher-order properties in design, such as 193 

functional stability and dynamics, will likely also require top-down and bottom-up approaches to 194 
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converge. In particular, new mathematical modeling approaches that quantify mechanisms of 195 

functional degeneracy, niche complementarity, and network buffering51 using a metabolic 196 

framework may enable microbiome diversity to be optimized to sustain desired functions in situ. 197 

The need for a more comprehensive representation of microbiome metabolism will depend on 198 

the specific engineering objective and the degree of ecosystem tractability. For example, a more 199 

detailed representation of anaerobic microbiome metabolism is likely required for converting 200 

biomass into a specific commodity chemical instead of methane because finer control over 201 

metabolism would be needed. In either case, the design phase encompasses defining the 202 

engineering problem, developing conceptual and quantitative models, identifying key biological 203 

processes to be manipulated, and evaluating multiple candidate design alternatives. 204 

  205 

[H2] Practical design steps. There are five key steps when designing microbiomes, in particular 206 

complex microbiomes: defining the engineering problem, developing a conceptual ecosystem 207 

model, creating an quantitative model, identifying the microbiome process(es) to be engineered, 208 

and developing and evaluating candidate design strategies. 209 

  210 

To drive the DBTL cycle, a clear definition of the problem with measurable design objectives 211 

must be established. These objectives could specify desired outcomes such as product titers, rates 212 

and yields, pollutant removal efficiency, crop productivity, or degree of functional stability and 213 

robustness. Design objectives should be complemented by techno-economic assessments and/or 214 

life cycle analysis to ensure that solutions are economically feasible and have positive 215 

environmental and societal impacts52,53. 216 

  217 

Conceptual ecosystem models can be used to contextualize the problem. Such models capture 218 

system boundaries, inputs and outputs, major pathways of carbon and nutrient flows, key 219 

organisms and interspecies interactions responsible for those transformations, and factors 220 

influencing their activity (for example, pH, temperature, redox potential, and residence times)19. 221 

They provide a concept map that describes current understanding of interactions between the 222 

microbiome and physical, chemical, and biological components of the ecosystem, helping to 223 

identify important gaps in system understanding and needs for data collection. At this stage, all 224 

relevant information should be collected from the literature, existing data (for example, from the 225 
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Human Microbiome Project54), and online databases (for example, MiDAS (microbial database 226 

for activated sludge)55) for ecosystem characterization. This includes reference genomes and 227 

physiological information for keystone organisms, previous multi-omic datasets, ecosystem 228 

physicochemical properties (such as pH, temperature and chemical concentrations) and processes 229 

(such as photochemical reactions and hydrogeological processes), site characteristics (such as 230 

nutrient loadings and dynamics, soil profiles and gut anatomy), and all other information needed 231 

to characterize the ecosystem. Missing information, such as unknown biochemical pathways and 232 

organisms that mediate them, can be targeted during the build-test-learn phases. This conceptual 233 

ecosystem model can be used by the scientific community for proposing and testing theories and 234 

serves as a roadmap for developing quantitative simulation tools. 235 

  236 

Construction of quantitative modeling tools that enable the calculation and simulation of 237 

metabolic fluxes, microorganism abundances, mass balances, and ecosystem physicochemical 238 

parameters is critical for the systematic design of microbiomes. Several approaches could be 239 

used to create such models, including mechanistic metabolic modeling33, process-based 240 

modeling21, data-driven modeling (for example, machine learning)48, individual-based 241 

modeling38 or their combination. Regardless of the approach, the simulation of complex 242 

microbiomes will likely require simplification based on experimentally valid assumptions. 243 

Simplification could include reducing the model to a set of core or keystone organisms that 244 

represent important functional guilds and control major carbon and energy flows, or reducing the 245 

metabolic network size of organisms to central carbon and energy metabolism. Moving forward, 246 

it will be important to ensure that models undergo rigorous experimental validation and iteration 247 

during build-test-learn cycles to increase their utility and widespread use in microbiome 248 

engineering and to identify when modeling efforts fail, revealing gaps in conceptual 249 

understanding that can further facilitate model redesign and improvement. 250 

  251 

Quantitative microbiome modeling (such as dynamic FBA) helps to identify the core and 252 

peripheral biochemical pathways that need to be directly manipulated, added, or removed to 253 

achieve the desired engineering objective. Objectives could include increasing butyrate 254 

production and non-digestible carbohydrate degradation by fermenting bacteria in the human gut, 255 
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preventing toxin biosynthesis by cyanobacteria in freshwater ecosystems, or stimulating the 256 

degradation of toxic chloroorganics by bioaugmentation with organohalide-respiring bacteria.  257 

  258 

Microbiome modeling can predict how environmental (such as substrate loading, pH, and solids 259 

retention time) or genetic manipulation (such as gene knockouts, pathway additions, and forced 260 

dependencies) could optimize microbiome functions towards the engineering objective. If 261 

necessary, synthetic microorganisms could be designed to improve microbiome function. Such 262 

synthetic microorganisms will need to be evaluated for their ability to cooperate and compete 263 

with existing microbiome members under relevant environmental conditions. 264 

  265 

 266 

[H1] Building microbiomes 267 

The build phase consists of physically assembling the designed microbiome by either top-down 268 

manipulation of a natural community (that is, a self-assembled microbiome) or bottom-up 269 

assembly using axenic or enrichment cultures of naturally-occurring or engineered 270 

microorganisms (that is, a synthetic microbiome). The build phase aims to bring the design 271 

specifications and predictions into reality. 272 

  273 

[H2] Building by self-assembly. Self-assembled microbiomes may include those built as open 274 

mixed cultures using reactor engineering (for example, wastewater treatment bioreactor) or 275 

biostimulation (for example, additions to soils, sediments or groundwater aquifers), in which 276 

construction creates an environment that promotes the growth and desirable activity of resident 277 

microorganisms. Examples include manipulating reactor hydrodynamics to immobilize slow-278 

growing microorganisms into compact granules that enable their retention and proliferation56,57, 279 

use of non-human-digestible carbohydrates to stimulate fermentative production of short-chain 280 

fatty acids in the gut58, or adding electron donors to drive the metabolism of organohalide-281 

respiring bacteria during bioremediation of toxic chlorinated contaminants4. This approach is 282 

powerful when differences in physiological and physicochemical properties between functional 283 

guilds can be exploited for assembly through environmental manipulation (for example, 284 

differences in growth rates59, main electron donors and acceptors4,60, substrate affinities, cell 285 

and/or biofilm densities61, and redox gradients). However, it can be limited when more fine-scale 286 
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control over microbial metabolism and interactions is necessary (for example, controlling 287 

complex competitive interactions62, producing valuable bioproducts at high yields and purity63, 288 

or controlling organisms with versatile lifestyles64).  289 

In addition, new strategies for evolutionary engineering have emerged as promising tools 290 

to build self-assembled microbiomes. Controlled exposure of an initial microbiome to multiple 291 

selection cycles and/or regimes results in the microbiome gaining or optimizing specific 292 

functions through adaptation or evolution. For example, successively transferring the 293 

microbiomes that maximize plant traits has generated microbiomes that  improve plant biomass65 294 

and flowering time66. Response to community-level selection will often be driven by enrichment 295 

or adaptation of single species67,68; however, selection for production of community biomass has 296 

also been shown to enhance desired species interactions in defined two and three species co-297 

cultures37,69. Re-examining selection experiments to understand when and how mutations and/or 298 

adaptations altered microbiome phenotypes could elucidate the mechanisms underlying 299 

microbiome fitness optimization and inform design, as has been shown for E. coli in laboratory 300 

evolution experiments70,71. As similar evolutionary approaches (for example, adaptive laboratory 301 

evolution) have also been successfully applied to optimize strains for metabolic engineering72, 302 

extension of experimental and computational protocols already developed for individual 303 

microorganisms to microbiomes could streamline the design phase and reduce the time required 304 

to complete evolution experiments. 305 

  306 

[H2] Building synthetic microbiomes. Direct construction of microbiomes using axenic or 307 

enrichment cultures is also promising because of reduced complexity and the use of 308 

microorganisms that are genetically tractable and/or well-characterized. This bottom-up 309 

approach makes the growing suite of synthetic biology tools accessible for microbiome 310 

construction and optimization. An early approach for building microbiomes directly from 311 

cultured microorganisms is bioaugmentation. Here, defined laboratory consortia are added back 312 

to the environment to enhance the degradation rates of specific contaminants. A successful 313 

example has been the addition of consortia containing organohalide-respiring bacteria of the 314 

class Dehalococcoidia to contaminated groundwater aquifers and sediments to speed up the 315 

degradation of toxic chlorinated solvents. Crucial for the success of this approach was detailed 316 

knowledge of the physiology, nutritional requirements, and potential ecological interactions of 317 
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the keystone dechlorinators with other microorganisms and the geochemical environment4. 318 

However, contrary to the success for chlorinated contaminants, bioaugmentation approaches 319 

have largely failed for oil spills. Unlike organohalide-respiring Dehalococcoidia members that 320 

fill a unique ecological niche and cannot grow without the chlorinated contaminants, organisms 321 

capable of degrading oil hydrocarbons (especially aerobic bacteria) are ubiquitous, metabolically 322 

versatile, and do not depend on a specific substrate or redox couple for growth64. This metabolic 323 

versatility limits their utility for bioaugmentation given their unpredictable in situ activity. Other 324 

reasons why bioaugmentation can fail are that unrecognized mutualistic interactions and 325 

microorganisms performing critical functions are missing (for example, production of 326 

polysaccharide surfactants to increase hydrocarbon bioavailability73), or that consortia selected 327 

under laboratory conditions are no longer competitive enough under harsh and/or variable field 328 

conditions74,75,76. These examples highlight the need to better understand the interaction networks 329 

of synthetic consortia, especially the roles of supporting interactions (secondary functions), and 330 

the competitive landscape in situ, which are often difficult to predict in complex ecosystems. 331 

Despite the appeal of building microbiomes bottom-up and the growing collection of 332 

cultured microorganisms from specific habitats77,78, the majority of microorganisms relevant for 333 

human health, agriculture, and environmental applications remain uncultured, poorly 334 

characterized, genetically intractable, and difficult to maintain, making the construction of 335 

synthetic microbiomes challenging. To capture this uncharacterized metabolic diversity, 336 

innovative isolation and controlled microbiome assembly techniques are needed, such as single-337 

cell sorting79 coupled to high-throughput culturing (culturomics)80,81 and phenotyping82,83 across 338 

multiple conditions in parallel. Microfluidics84,85, that is, creation and manipulation of microliter 339 

droplets, can facilitate this approach. Microfluidic chips can enable automated assembly and 340 

analysis of microbial communities from axenic or enrichment cultures through droplet 341 

combination86, elimination of specific species87, sequencing, and multi-omics phenotyping of 342 

individual cells88,89. Combined with new gene editing techniques, such as CRISPR-based 343 

genomic tools90 that improve the efficiency of homologous recombination-based gene 344 

editing91,92, microfluidics could also automate synthetic biology techniques for the engineering of 345 

cells and microbiomes with novel capabilities93. 346 

Another challenge with synthetic microbiomes is maintaining their functional stability in 347 

the laboratory or in open systems (for example, human gut, soil, and wastewater treatment 348 
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plants), which are susceptible to invasion by naturally-occurring microorganisms and dynamic 349 

heterogeneous environments. As mentioned above, the major reason for the success of 350 

bioaugmentation with organohalide-respiring Dehalococcoidia members is their highly 351 

specialized lifestyle that enables them to occupy an open ecological niche using chlorinated 352 

electron acceptors. However, the functional stability of organisms with versatile lifestyles in 353 

open systems is much less predictable. Few studies have examined the functional stability of 354 

synthetic consortia in open systems and the knowledge required to rationally engineer stable 355 

ecological interactions is limited. However, engineered bacteria have been successfully deployed 356 

as diagnostic sensors in the mammalian gut for up to 200 days maintaining robust function94,95. 357 

This feat, together with the bioaugmentation example of Dehalococcoidia4, demonstrates that 358 

synthetic consortia can form stable microbiomes with previously established community 359 

members, provided key players can compete with resident microorganisms. 360 

Observations from self-assembled microbiomes suggest that building communities with 361 

spatiotemporal organization will be important for achieving stable and multi-functional synthetic 362 

microbiomes. Highly diverse microbial communities, such as human microbiota or those used 363 

for wastewater treatment, self-assemble as biofilms, flocs, or granules comprised of multiple 364 

single-species microcolonies attached together via species-specific extracellular polymeric 365 

substances (including polysaccharides, proteins, and DNA) and other poorly defined 366 

macromolecules (such as humics)96,97. These self-organizing microbial assemblages create 367 

diverse microenvironments and ecological niches that support the combination of seemingly 368 

incompatible functions (for example, both aerobic and anaerobic processes98,99) and functionally 369 

diverse population structures that can compensate for disturbances, such as changes in nutrients, 370 

physicochemical condition, or predation100,101. Although building such fine-scale and 371 

sophisticated architectures into synthetic microbiomes is nascent, microfluidic-based systems 372 

have been used to assemble simple communities with improved functional stability by 373 

controlling spatial structure and chemical communication102. Additionally, 3D bioprinting 374 

platforms could enable the construction of spatially organized systems, in which populations can 375 

be physically separated while remaining chemically interactive103,104. How to scale these 376 

spatially defined structures from experimental laboratory systems to real-world applications 377 

remains to be resolved, although knowledge gained from test and learn phases with model 378 

systems (such as synthetic polysaccharide particles 105,106) should provide more insights. Until 379 
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then, existing approaches based on top-down assembly and/or engineered biofilm carrier 380 

media107 could be used to build self-organized synthetic microbiomes with better stability and 381 

functionality.  382 

Designing synthetic genetic circuits in engineered hosts that can robustly perform sense-383 

compute-respond programs in complex environments also remains a major challenge108. 384 

Therefore, it will be important to examine the molecular mechanisms that determine microbiome 385 

stability and adaptation to environmental perturbation in natural and engineered ecosystems, in 386 

order to extract design principles that can be used for rationally engineering robust functions. 387 

Given the potential utility of genetically engineered microorganisms and microbiomes in diverse 388 

open environments, safeguards such as biocontainment systems (such as two-layered gene 389 

circuits and essential synthetic auxotrophies109) will also require further development and will be 390 

needed as integral components of constructed synthetic microbiomes that use genetically 391 

modified organisms in the future. 392 

  393 

[H2] Integrating approaches. The ultimate goal for rational microbiome design is to develop 394 

tools that enable engineers to directly add, remove, or modify specific functions and phenotypes 395 

in situ over a range of desirable operational conditions. One emerging technique with promise to 396 

achieve such flexibility is in situ metagenomic engineering110,111, which involves delivery of 397 

engineered mobile genetic elements to resident microorganisms. For example, donor strains 398 

engineered with integrative and conjugative elements have transferred DNA carrying a reporter 399 

and antibiotic resistance genes or multi-gene pathways (for example, nitrogen fixation (nif) gene 400 

cluster112) to bacteria in highly heterogeneous and diverse environments, such as soil112 and the 401 

mammalian gut111. Further development of such tools in combination with existing CRISPR-Cas 402 

gene editing techniques would enable the precise manipulation of the microbiome’s metabolic 403 

network in situ, effectively combining self-assembled and synthetic microbiomes (Figure 3; Box 404 

1) 405 

 406 

 407 

[H1] Testing microbiome function 408 

The test phase involves measuring microbiome-associated phenotypes and properties to 409 

determine the efficacy of the design-build solution. The measurements should determine whether 410 
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the design outcomes were achieved (for example, measuring the titer-rate-yield of a bioproduct, 411 

pollutant removal efficiency, or crop productivity) and whether the design-build solution was 412 

responsible for the observed outcome (establishing cause and effect). This typically requires 413 

readouts of ecosystem physicochemical properties (such as pH, temperature, and chemical 414 

concentrations), as well as the stoichiometry and kinetics of key ecosystem processes and 415 

microbiome functions (such as biomass growth, chemical transformations, nutrient assimilation, 416 

and metabolic fluxes). For example, acetate degradation rates and pathways to methane in an 417 

anaerobic digester microbiome could be tested using 13C-labelled acetate and online biogas 418 

analysis that measures the flux through acetoclastic methanogenesis versus syntrophic acetate 419 

oxidation coupled to hydrogenotrophic methanogenesis113. While the level of microbiome 420 

granularity measured during testing will depend on the specific design objectives and ecosystem 421 

complexity, the ability to quantify molecular microbial processes (for example, metabolic 422 

pathway rates and routes, enzyme activities, and individual organism growth rates) goes beyond 423 

bulk activity measurements and enables testing the specific mechanisms responsible for the 424 

observed microbiome functions. The challenge will be to develop tools that are high-throughput, 425 

quantitative, affordable, and easy to use, such that routine analyses of the microbiome over time, 426 

space, and under dynamic conditions can be accomplished.  427 

Towards this goal, we envision a test phase comprised of high-throughput phenotypic 428 

screening of microbiome design-build solutions, followed by deeper investigation of promising 429 

solutions using multi-omic and metabolic flux analyses to obtain greater insights on underlying 430 

mechanisms (Figure 4). High-throughput phenotypic testing of constructed microbiomes could 431 

be achieved using droplet microfluidics, as has recently been demonstrated for screening 432 

~100,000 synthetic communities114. Fully automated microbioreactor platforms that combine 433 

liquid handling and advanced sensing with microtiter plate or scaled-down bioreactor cultivation 434 

could also be used82,83. Combined with emerging methods to measure metabolic network activity 435 

and metabolic processes in heterogeneous environments (Box 2), rich information will be 436 

obtained to facilitate learning.  437 

  438 

[H2] Microbiome metabolic network activity. To test predictions of microbiome function at a 439 

systems-level, measurement of the microbiome’s in situ metabolic network structure and activity 440 

is critical. Multi-omic approaches (metagenomics, metatranscriptomics, metaproteomics, 441 
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metabolomics) combined with bioinformatic tools have enabled the genome-centric analysis of 442 

individual species (or even strains115) within microbiomes and global measurement of sequences, 443 

proteins, and metabolites116,117,118. These tools measure the microbiome’s components on a 444 

spectrum from functional potential (for example, gene abundance) to expressed products (for 445 

example, protein and metabolite abundance), and through their combined activity produce 446 

microbiome metaphenotypes that drive system function. Currently, multi-omic approaches used 447 

to infer microbiome function have focused on correlating gene abundances or gene expression 448 

data across time and space with ecosystem geochemical data or process rates. This has included 449 

measurements of key functional genes and transcripts using qPCR assays (for example, ammonia 450 

monoxygenase119), microarrays (for example, GeoChip120), or untargeted high-throughput 451 

approaches (metatranscriptome and/or metaproteome). Although useful for overall system 452 

characterization and discovery, these approaches focus on measuring the components or “parts 453 

list” of the system, which are often limited predictors of emergent phenotypes due to metabolic 454 

network complexity, interactions, and regulation121,122. Therefore, new approaches and tools are 455 

needed to measure the in situ stoichiometry and fluxes of microbiome metabolic networks to 456 

permit the direct testing of design predictions and offer mechanistic insights into metabolic 457 

regulation. 458 

MFA is the most authoritative method for measuring in vivo fluxes. This method 459 

calculates fluxes from metabolite stable isotope measurements obtained during isotopic labelling 460 

experiments using metabolic network modeling123. Although MFA has been used to measure 461 

fluxes in co-cultures124, flux analysis in communities is challenging because metabolite pools 462 

cannot be easily assigned to individual cells and the number of possible reactions in a 463 

microbiome greatly exceed those of an individual organism. Nonetheless, isotopic tracers 464 

combined with exometabolomics and/or off-gas analysis have been used to determine process 465 

fluxes driving important microbiome functions, such as syntrophic acetate oxidation and 466 

methanogenesis during anaerobic digestion116. To circumvent the challenges with metabolite 467 

measurements, a method analyzing labelling patterns from short peptides instead of amino acids 468 

for MFA was proposed125. Peptides can be assigned to individual species in a microbiome using 469 

high-throughput metaproteomic approaches, which opens the door to determining fluxes in 470 

microbial communities (that is, to ‘metafluxomics’). Given that fluxes represent the final 471 

outcome of cellular regulation across all levels126, further development and demonstration of 472 
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metafluxomics will be essential for advancing microbiome engineering efforts and our 473 

understanding of metabolic regulation in microbiomes. This will also require new software 474 

packages for associated computational analyses, similar to existing 13C-MFA software127. Such 475 

data may also allow metabolic modelers to infer, rather than assume, community and individual-476 

level objective functions and to identify new constraints, enabling the accurate prediction and 477 

measurement of reaction rates driving microbiome function.  478 

 479 

[H2] Measuring function in spatially heterogeneous environments. Most natural microbiomes, 480 

such as those associated with plants (for example, rhizosphere), humans (for example, oral 481 

microbiome), and industrial processes (for example, acid mine drainage), display highly-482 

organized spatial organization across micro-scale physicochemical gradients that directly 483 

influences microbiome function. For example, the spatial proximity of microorganisms can 484 

control whether they interact through diffusible substrates or direct transfer128, whereas 485 

variations in colony size can dramatically influence apparent substrate affinity constants and 486 

substrate competition between biofilm microorganisms129. Therefore, one of the biggest 487 

challenges will be to create tools that measure and report on microbiome spatial structure and 488 

function across all relevant scales (from μm to km). Current methods to measure structure-489 

function relationships have focused on the µm to mm scale using approaches such as 490 

fluorescence in situ hybridization (FISH) combined with stable isotope labeling (SIP)130, 491 

chemical fingerprinting131, mass spectrometry imaging132, and/or fluorescence-based 492 

biorthogonal non-canonical amino acid tagging (BONCAT)133 (Box 2). Although these 493 

techniques have successfully identified the substrate use and activity patterns of spatially 494 

distributed microorganisms in microbiomes, they are limited by throughput and can only 495 

examine and/or differentiate a limited number of organisms. The integrated application of 496 

labelling techniques (for example, SIP and BONCAT) with metaproteomics and cell sorting (for 497 

example, fluorescence-activated cell sorting (FACS)133) could be used to measure the metabolic 498 

activity of microorganisms in high throughput with spatial resolution. Combined with 499 

microsensor devices that profile microenvironmental chemical properties, for example, through 500 

microelectrodes134 or engineered biosensors95, microbiome structure, function, and ecosystem 501 

physicochemical parameters could be monitored in real-time. 502 
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[H2] Learning microbiome design principles 503 

Progressing through the design-build-test phases of microbiome engineering presents a unique 504 

opportunity to learn from previous failures and successes, and to incorporate new knowledge into 505 

subsequent cycles. Indeed, the learn phase of the DBTL cycle is critical for success and for 506 

improving microbiome engineering efficacy. To date there are no general strategies, techniques, 507 

or approaches that guarantee success in translating information obtained from the test phase into 508 

new knowledge that informs the next design phase. Therefore, we stress the importance of 509 

devoting enough emphasis and resources to the learn phase early on, so as to avoid, for example, 510 

the difficulties encountered in metabolic engineering due to a relative lack of investment in the 511 

learn step13. Further development of computational methods to formalize the learn phase will be 512 

needed, including machine learning algorithms48,135,136, metabolic flux analysis and constraint-513 

based analysis36,124,125,137, ecosystem modeling approaches138, and regulatory network analysis139. 514 

Together, these analyses could isolate the principal drivers of microbiome interactions and 515 

function from large datasets to inform microbiome design. For example, generalized Lotka-516 

Volterra equations could infer interacting species from temporal population dynamics data that 517 

become the starting point for bottom-up design140 or constraint-based analysis could be applied 518 

to identify key metabolite exchange reactions from 13C-metabolomic data that improve flux 519 

simulation accuracy and design of anaerobic consortia137.  520 

More broadly, we envision the learn phase to focus on translating data into generalizable 521 

principles for microbiome engineering, through the continuous refinement of conceptual 522 

knowledge and proposed theory (for example, from traditional macroecology141,142,143,144,51) with 523 

each DBTL cycle. We propose that model laboratory ecosystems should be utilized to drive 524 

microbiome engineering inquiry and learning. Model laboratory ecosystems are experimental 525 

platforms that can replicate the physicochemical conditions of a complex environment (natural or 526 

engineered) in a simplified and controlled manner and contain model microbial communities (for 527 

example, the model rhizosphere microbiome THOR145) that can be used as testing grounds for 528 

learning how to design, construct, and optimize engineered microbiomes. These ecosystems have 529 

reduced complexity, are accessible for experimentation, and can be established in a reproducible 530 

manner, which is often not possible when working in natural environments.  531 

Recently, model laboratory ecosystems have been developed for studying plant-soil 532 

microbiome interactions146. These fabricated ecosystem (EcoFAB) use 3D printing, sensing, and 533 
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analytical and imagining technologies to create an experimental device that replicates the native 534 

soil ecosystem, in which microorganism and host phenotypes can be monitored in response to 535 

changing variables, enabling the systematic dissection of microbial interactions and metabolite 536 

exchanges influencing plant health146,147. EcoFABs offer a middle ground between model 537 

organisms and complex natural microbiomes, and can be established collaboratively between 538 

expert investigators to create standardized and reproducible devices and protocols for 539 

dissemination to the broader research community. Such model systems offer the ability to 540 

experimentally develop engineered microbiomes with desired functions in a tractable manner, 541 

and permit results to be compared with results from natural settings. This cross-examination 542 

between model and natural ecosystems will be a valuable and necessary approach for learning 543 

engineering principles and practices that are relevant to real-world systems (not laboratory 544 

artifacts), and for acquiring knowledge on scaling-up lab-based engineering strategies to full-545 

scale applications (Figure 5). For example, microfluidic-based in vitro models of the human gut 546 

microbiome that contain co-cultures of human cells with different bacterial consortia are already 547 

producing physiological (including epithelial cell monolayer formation, cell growth and viability, 548 

cytokine levels, and metabolomic profiles) and environmental (including oxygen gradients and 549 

laminar flow) variables that are comparable to in vivo variables148. 550 

 The combination of model ecosystems with the DBTL cycle may be particularly fruitful for 551 

understanding the mechanisms governing microbial interactions and functional stability. 552 

Substantial knowledge is available on specific microorganisms that co-aggregate and exchange 553 

metabolites, such as bacteria involved in nitrogen cycling2, consortia of methane-oxidizing 554 

archaea and sulphate-reducing bacteria149,150,128, and syntrophic bacteria partnered with 555 

hydrogenotrophic methanogens151,152. However, we are only beginning to understand the 556 

complex mechanisms (such as quorum sensing and secondary metabolites) involved in 557 

regulating the behavior, interactions, and kin discrimination of microorganisms in 558 

communities153. Although studies have established links between microbiome functional 559 

redundancy, diversity, and stability154, a framework to predict or engineer functionally stable 560 

microbiomes has not been attained. Through the use of model laboratory ecosystems together 561 

with existing knowledge of microbial ecology and engineering design, it may be possible to 562 

decipher the chemical language of microbiomes and discover mechanisms of other important 563 

processes (including evolution, selection, dispersal limitation, and neutral processes155) that 564 
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enable robust and stable microbiome function. Translating this theory into engineering design 565 

practice will require a quantitative framework that links these mechanisms to metabolic 566 

interaction networks, and new approaches that enable ecological properties to emerge from 567 

metabolic models (Box 3). 568 

  569 

 570 

 [H1] Outlook 571 

True advancement in microbiome engineering will need multiple rounds of DBTL to capture the 572 

necessary ecological principles to manipulate microbiomes in a precise manner with predictable 573 

outcomes (Figure 1). For example, incorporating direct interspecies electron transfer discovered 574 

during previous DBTL cycles into metabolic models and bioreactor construction (for example, 575 

by adding conductive materials) could optimize the efficiency of biogas production from waste27; 576 

or designing engineered E. coli to control levels of previously discovered autoinducers could 577 

tailor gut microbiota under conditions of dysbiosis towards a healthier state156. However, 578 

developing new knowledge and tools with fast turnaround will require next-generation 579 

infrastructure for data collection, data sharing, and knowledge integration. To accelerate 580 

progress, developing the predictive capabilities needed for the learn phase is a priority. Model 581 

laboratory ecosystems combined with advances in automation, such as liquid-handling robots, 582 

microfluidics, and data analysis pipelines157,158, will offer a starting point for the testing of 583 

multiple designs in a rigorous and reproducible manner. Capturing new knowledge from this 584 

process and integrating information into subsequent DBTL cycles will accelerate microbiome 585 

engineering developments, creating innovative biotechnologies and practices for the 586 

management of microbiomes across medicine, agriculture, manufacturing, and environmental 587 

stewardship. Examples that show particular promise for advancing microbiome engineering 588 

across these fields include illuminating the roles that phages and metabolite cross-feeding have 589 

in controlling ruminal carbon turnover159, harnessing untapped anaerobic fungal-bacterial 590 

consortia to improve biomass conversion to valuable bioproducts160,161, creating microfluidic cell 591 

sorting techniques to automatically sort stable isotope-labelled cells from high diversity samples 592 

for subsequent multi-omic analysis or cultivation162, and developing in situ metagenomic 593 

engineering tools to introduce new functions into microbiomes in their native environment111. 594 
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To move the DBTL approach forward, interdisciplinary research teams with expertise in 595 

experimentation (for example, in culturing, molecular genetics, or biochemistry) computation 596 

(for example, metabolic modeling, machine learning, or bioinformatics), automation (for 597 

example, robotics, or microfluidics), and practice (for example, professional engineers, or 598 

medical doctors) are essential. The road ahead for microbiome engineering seems long, given 599 

our nascent understanding of microbial ecology; however, structuring research and technology 600 

developments around the DBTL cycle offers a promising approach for advancing microbiome 601 

engineering and providing innovative solutions for addressing pressing societal and 602 

environmental problems. 603 

 604 

 605 
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 1117 

Box 1 - A DBTL cycle to create synthetic microbiomes with desired functions  1118 

Here, we present a generalized DBTL cycle for creating synthetic microbiomes with desired 1119 

functions, integrating both top-down and bottom-up approaches. We briefly describe two 1120 
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iterations of the cycle and identify opportunities for incorporating high-throughput approaches 1121 

and automation to increase speed and reproducibility.  1122 

  1123 

[b1] Top-down approach 1124 

[b2] Design: identify biological process(es)  1125 

An example of a process to harness or replicate is anaerobic conversion of complex 1126 

lignocellulosic biomass into valuable commodity chemicals. The initial design step includes 1127 

selection of different innocula that may contain microorganisms with desired functions (for 1128 

example, acid phase anaerobic digester, herbivore rumen, or others). Conceptual ecosystem 1129 

models that include environmental parameters (pH, temperature, nutrients, etc.) and expected 1130 

functional guilds (hydrolytic bacteria, fermenting bacteria, methanogens, etc.) are used to 1131 

select enrichment variables.  1132 

[b2] Build: enrich microbiomes from multiple sources  1133 

Source innocula are cultivated under different environmental conditions to select for desired 1134 

function using real (for example, lignocellulosic hydrolysate or rumen fluid) and synthetic 1135 

media. Modulation of environmental conditions and medium composition are done to 1136 

improve desired function. For complex environments (such as soil) model laboratory 1137 

ecosystems could be ideal platforms for microbiome enrichment146. 1138 

[b2] Test: evaluate performance  1139 

Performance of enriched microbiomes are tested on real and synthetic media using high-1140 

throughput phenotypic screens. High-throughput screens could be developed using 1141 

microfluidic or automated microbioreactor experiments. Deeper multi-omic measurements 1142 

(such as metagenomics, metatranscriptomics, and metaproteomics) are collected from high 1143 

performing microbiomes.  1144 

[b2] Learn: identify key functional roles of microbiome members  1145 

Besides key functions, bottlenecks for the desired function are identified using metabolic 1146 

reconstruction and multi-omic analysis. This understanding helps to refine conceptual models 1147 

of microbiome function and create quantitative models.  1148 

 1149 

Bottom-up approach 1150 

[b2] Design: screen for new potential microbial partners 1151 
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In silico metabolic modeling is used to screen for interacting microorganisms from high 1152 

performing microbiome enrichments. Metagenome-assembled genomes (MAGs) can be used 1153 

to reconstruct metabolic models of key microbiome members. Automated computational 1154 

workflows (together with manual curation) will accelerate model building. FBA is used to 1155 

predict each microorganism’s requirements for optimal growth and activity, and unify 1156 

individual metabolic models into a microbiome model to identify new potential partners that 1157 

improve the design objective (for example, higher titers, rates, or yields of valuable product).  1158 

[b2] Build: recombine key microorganisms into new synthetic consortia  1159 

Following their isolation or enrichment, key microorganisms are assembled into new 1160 

synthetic consortia based on in silico predictions at various ratios (for example, 1:1, 1:10). 1161 

Microfluidic devices and/or liquid handling robotics could be used for high-throughput 1162 

isolation and recombination.  1163 

[b2] Test: test function and stability of consortia  1164 

High-throughput phenotypic screening coupled to multi-omic measurements can be used for 1165 

testing. This step should also include validation of predicted metabolisms of individual 1166 

isolates or enrichments.  1167 

[b2] Learn: identify microbial interactions that control function 1168 

 Analyzing the metabolism of microorganisms growing in consortia versus in isolation using 1169 

metabolic flux analysis (MFA) can identify important mechanisms and interactions. This 1170 

understanding can be used to propose how microbiome function and stability could be 1171 

optimized by environmental manipulation and/or in situ genome-engineering. 1172 

 1173 

 1174 

Box 2 - A toolbox for measuring microbiome function 1175 

  1176 

[b2] Multi-omics integration. The ability to assemble genomes from metagenomic data28 has 1177 

enabled the genome-resolved analysis of individual transcriptomes63 and proteomes118 from 1178 

diverse communities and greatly increased the interpretive power of multi-omic datasets. A key 1179 

challenge moving forward will be the integration of metabolomic information163, both 1180 

intracellular and extracellular, which cannot be readily assigned to individual members of the 1181 

microbiome such as DNA, RNA, and proteins can be. The large amount of unknown or poorly 1182 
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characterized genes, enzymes and metabolites currently limits the interpretive power of multi-1183 

omic information. It does, however, create novel targets for further biochemical studies. 1184 

Advances in bioinformatic tools, such as data-driven approaches (for example, statistical or 1185 

machine learning methods) and knowledge-based approaches (for example, interaction networks 1186 

or genome-scale metabolic modeling)164,165, will be key to the success of systematic 1187 

measurements of microbiome function through coherent multi-omics data integration. 1188 

  1189 

[b2] Isotopic tracers. Isotopic tracers have a long history in functional analysis in both pure 1190 

cultures and communities, and have been combined with DNA166, RNA167, and protein116 1191 

measurements to link individual populations to specific in situ functions. Moving forward, more 1192 

efforts to incorporate isotopic tracers with multi-omics (especially metaproteomics and 1193 

metabolomics) are needed for illuminating the complex metabolic networks within microbiomes. 1194 

The combination of these techniques should also pave the way for measurement of intracellular 1195 

and extracellular reaction rates ( ‘metafluxomics’)124,125, which has been one of the most 1196 

powerful tools for elucidating in vivo phenotypes, pathway constraints, and metabolic regulation 1197 

in pure cultures used for engineering purposes. 1198 

  1199 

[b2] Mass spectrometry imaging. Mass spectrometry imaging (MSI) techniques visualize the 1200 

distribution of elements and their isotopes as well as biomolecules within complex samples. MSI 1201 

is well suited for the analysis of spatially structured microbiomes and for the investigation of 1202 

cellular interactions. When combined with FISH, MSI also enables the linking of microbiome 1203 

structure with function168,169. The chemical coverage, spatial resolution, and sample preparation 1204 

that can be obtained with different MSI techniques depends on the selected ionization method132. 1205 

Although nanoscale secondary ion mass spectrometry (nanoSIMS) has superior lateral resolution 1206 

compared to matrix-assisted laser desorption-ionization (MALDI) or desorption electrospray 1207 

ionization (DESI; 50 nm, 3-50 mm and 100 mm, respectively), its relative chemical versatility is 1208 

very low (elements and isotopes versus peptides, lipids, metabolites, and other molecules). 1209 

Therefore, nanoSIMS has generally been applied to study substrate use of single cells, whereas 1210 

MALDI has been used to visualize chemical interactions between populations132. Although 1211 

MALDI-MSI and DESI-MSI are more accessible than nanoSIMS170 and could be well positioned 1212 

to visualize the broad range of chemical interactions within microbiomes, they have very low 1213 
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throughput and their lateral resolution and sensitivity currently prohibit single-cell metabolic 1214 

profiling132. A technique that combines the best of these two methods is nanostructure-initiator 1215 

mass spectrometry (NIMS). NIMS is a matrix-free desorption-ionization technique that depends 1216 

on initiator molecules trapped in 30 nm large pores to achieve the ionization of small molecules 1217 

adsorbed to the pore surface. NIMS offers a lateral resolution of ~150 nm and is particularly well 1218 

suited for the analyses of peptides and metabolites171. So far, NIMS has only seen limited 1219 

application in microbiology172,173. We expect advances that improve these issues will make MSI 1220 

a useful and more widely applied tool for functional analysis of microbiomes in the near 1221 

future174. 1222 

  1223 

[b2] Bioorthogonal chemistry. Metabolic labeling techniques, such as bioorthogonal non-1224 

canonical amino acid tagging (BONCAT), offer additional approaches to measure microbiome 1225 

anabolic activity in situ. BONCAT is based on the in vivo translational incorporation of a non-1226 

canonical amino acid (for example, L-azidohomoalanine, a L-methionine surrogate), followed by 1227 

fluorescent labelling of tagged cellular proteins by azide-alkyne click chemistry175. The 1228 

technique can be used together with rRNA-targeted FISH to directly link taxonomy with in situ 1229 

activity175. BONCAT has also been combined with FACS to separate active cells from complex 1230 

samples and further characterize them by DNA sequencing133. In addition, tagged proteins can be 1231 

selectively enriched through bead-capture and subjected to proteomic analysis176. The combined 1232 

application of these methods could enable the high-throughput tracking of newly synthesized 1233 

proteins from uncultivated microorganisms under different physicochemical conditions. 1234 

Although BONCAT can be limited due to differences in cellular amino acid uptake and 1235 

metabolic perturbation, the technique offers a flexible tool for the comparatively simple, 1236 

inexpensive, and high-throughput analysis of in situ activity on a single-cell level. 1237 

  1238 

[b2] Microfluidics. Devices that enable the high-throughput analyses of microorganisms at 1239 

single-cell resolution will be important for the rapid cultivation and functional analysis of 1240 

microbiomes. Microfabricated devices such microfluidic ‘lab-on-chip’ technology could offer 1241 

multiple applications, including isolation of individual cells and populations from complex 1242 

microbiomes177, creation of in vitro cell-based models that facilitate assembly of synthetic 1243 

microbiomes and experimentation under heterogenous microenvironmental conditions178, and 1244 
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online diagnostics for rapid monitoring and detection of desired phenotypes. These applications 1245 

are still in early stages of development and several challenges remain, including reliable 1246 

detection of microorganisms in droplets, precise control of gas concentrations, cross 1247 

contamination, and technology accessibility177,179. 1248 

  1249 

[b2] Automation. To increase the reproducibility, throughput, efficiency, and standardization of 1250 

microbiome engineering, advances in automation will be necessary. This includes incorporating 1251 

liquid handling robotics, microfluidic devices, automated cultivation systems, online 1252 

physicochemical measurement sensors, and software into data generation and analysis 1253 

workflows. Emerging examples include the use of liquid handling robotics coupled to automated 1254 

micro-fermentation platforms for high-throughput cultivation82, or microfluidics to automate the 1255 

analysis of thousands of droplet experiments that probe microbial community interactions180,114. 1256 

Such automated platforms could also integrate several functional tools (for example, single-cell 1257 

analyses and multi-omics), resulting in rich reproducible data sets that could be leveraged for 1258 

machine learning and other big data analytics. 1259 

 1260 

 1261 

Box 3 - Emerging principles for microbiome engineering: a case for niche modeling 1262 

  1263 

Ecological niche modeling could be used to systematically design higher-order properties such as 1264 

functional stability and robustness into engineered microbiomes. However, to develop such a 1265 

framework, mechanistic understanding on how diversity is maintained within microbiomes and 1266 

how it imparts properties such as functional stability is needed. Here we propose that this 1267 

understanding could come from applying the DBTL cycle to answer key questions: 1268 

  1269 

[b1] Does functional degeneracy lead to productivity and functional stability? 1270 

Diversity has been correlated with productivity and functional stability in communities of macro-1271 

organisms143,181, yet the role that diversity has in improving microbiome function and functional 1272 

stability remains open. For microbiome engineering, we propose that diversity be viewed, 1273 

discussed, and defined through the lens of functional redundancy (as described previously154), or 1274 

more specifically, functional degeneracy. This is the degree to which a set of organisms perform 1275 
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an identical role in ecosystem functionality (for example, methane oxidation, nitrogen fixation, 1276 

or polymer hydrolysis), but exhibit degeneracy with respect to other physiological traits (for 1277 

example, pH optima or biofilm formation), which enables them to achieve realized niche space 1278 

and coexistence51. The DBTL cycle offers an excellent opportunity to understand the molecular 1279 

basis of functional degeneracy and to examine how emergent community-level properties, such 1280 

as resilience to perturbation or susceptibility to invasion by another species, are predictable from 1281 

quantifying the fundamental and realized niche space in microbiomes. We propose that 1282 

ecological niche modeling could be a particularly useful framework to achieve this goal. 1283 

[b1] How is diversity maintained in microbial ecosystems? 1284 

To create a framework for ecological niche modeling, it will be important to understand how 1285 

diversity is maintained. Competitive exclusion suggests that two species with identical resource 1286 

requirements cannot coexist in the same ecological niche144. Therefore, we need to understand 1287 

the mechanisms that create niche space and enable diversity to develop and be maintained. For 1288 

example, what role do the processes of spatiotemporal variability, dormancy, predation, nutrient 1289 

loading, secondary metabolite production and resistance, cell motility, and biofilm formation 1290 

have in niche differentiation? And how can these processes be manipulated to achieve and 1291 

maintain a desired level of functional degeneracy in a microbiome? Answers to these questions 1292 

will offer microbiome engineering mechanisms to design and control ecological niche space for 1293 

desired microbiome properties. 1294 

  1295 

[b1] How does ecological niche modeling underlie microbiome engineering? 1296 

To enable the systematic engineering of desirable higher-order microbiome properties, we 1297 

propose that microbiome engineering develops a framework for ecological niche modeling. The 1298 

goal of this framework would be to quantify community and individual fundamental niche and 1299 

realized niche space by integrating multi-omic data, physiological information, nutrient 1300 

availability, and environmental parameters, and use them to develop strategies for controlling 1301 

cooperation and competition in microbiomes. To achieve this goal, new mathematical 1302 

representations of the fundamental and realized niche of an organism or guild will need to be 1303 

defined, together with fitness functions that describe responses to environmental variables. When 1304 

incorporated into microbiome modeling, this framework will enable the ecological forecasting of 1305 

higher-order properties, as well as quantification of cooperative and competitive microbiome 1306 
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landscapes. Moreover, such frameworks will help guide important unresolved microbiome 1307 

design questions, such as the trade-off between functional redundancy and minimal diversity. 1308 

 1309 

 1310 

Figure 1. The design-build-test-learn cycle for microbiome engineering. The figure presents key 1311 

aspects and approaches of each phase of the design-build-test-learn (DBTL) cycle. The cycle 1312 

starts with a defined engineering objective that determines the design and produces an 1313 

engineered microbiome that performs the desired function(s).  1314 

  1315 

Figure 2. Top-down and bottom-up approaches to design microbiomes. The left panel illustrates 1316 

a bottom-up design workflow starting from pure isolates. Physiological characterization of 1317 

individual organisms is performed, and metabolic modeling is used to design consortia for 1318 

desired function (produce light blue compound from dark blue compound). Genetic engineering 1319 

and synthetic biology strategies are used to optimize system function (identifying gene editing 1320 

targets that re-route metabolic flux away from toxin (purple) and towards desired product; 1321 

designing of toxin reporter strain). The right panel illustrates a top-down design starting with an 1322 

inoculum containing uncultivated microorganisms from the environment. Community 1323 

characterization of mixed microbiome is performed, and bioprocess modeling (mass balance 1324 

analysis including kinetics and microbial growth) is used to develop selection strategies to 1325 

achieve desired function (produce light blue compound from dark blue compound). Reactor 1326 

engineering design is used to optimize system function. The middle panel shows an integrated 1327 

top-down bottom-up design. Combinations of uncultivated consortia and defined cultures are 1328 

selected to achieve desired functions. Community characterization is performed and microbiome 1329 

modeling that integrates process-based simulation with metabolic modeling is used to develop 1330 

selection strategies and analyze microbiome metabolic fluxes. The shapes of the microorganisms 1331 

represent different isolates or communities selected during design.  1332 

 1333 

Figure 3. Building self-assembled and synthetic microbiomes. (a) This example shows a 1334 

protocol for assembling synthetic microbiomes from multiple microbiome sources. Complex 1335 

microbiomes can be taken apart into key functional members using automated microfluidic cell 1336 

sorting techniques. Isolated or enriched members can then be recombined into synthetic 1337 
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consortia using liquid handling robotics for downstream screening and/or cultivation. (b) 1338 

Microbiome assembly can also be achieved through environmental selection via bioreactor 1339 

manipulation or biostimulation (top) or using bioaugmentation with defined cultures (bottom). 1340 

(c) Another option is microbiome assembly through directed adaptation and/or evolution of the 1341 

microbiome to acquire or optimize a desired function. (d) In situ microbiome engineering can be 1342 

used to add new functions to microbiomes residing in the environment.  1343 

  1344 

Figure 4. Testing microbiome function. (a) Isotopic tracers combined with metaproteome can 1345 

also be used to measure microbiome metabolic flux by analyzing isotopic labelling patterns of 1346 

short peptides rather than amino acids (metabolome). (b) Biorthogonal non-canonical amino acid 1347 

tagging (BONCAT) is a method for rapid profiling of the anabolic processes (growth) in situ 1348 

using either fluorescent detection or metaproteomics. (c) Metagenomics, metatranscriptomics, 1349 

metaproteomics, and metabolomics can be integrated to reconstruct and analysis metabolic 1350 

network expression in microbiomes. (d) An automated microbioreactor platform enables high-1351 

throughput analysis of microbiome processes across diverse conditions (for example, with 1352 

changing environmental or physiological variables). The platform can integrate tools for detailed 1353 

functional analysis of individual microbiome members to complex communities. HPG: the 1354 

amino acid homopropargylglycine. 1355 

  1356 

Figure 5. Learning fundamental principles for microbiome engineering. (a) Model laboratory 1357 

ecosystems can be used for controlled experiments with simplified microbiomes and 1358 

environmental properties, representing an in-between of pure lab conditions (such as test tubes or 1359 

flasks) and complex natural environments (such as soil or the ocean). Continuous cross-1360 

examination between laboratory-scale models and natural complex ecosystems will be needed 1361 

for developing engineering principles and practices that are robust in real systems, while also 1362 

tractable in the lab. This will require close collaboration between multiple stakeholders, 1363 

including researchers and end-users (such as hospitals or treatment plants) that have expertise 1364 

and experience with issues specific to each scale. Key principles that need to be learned to enable 1365 

systematic microbiome engineering are microbial interaction mechanisms, mechanisms 1366 

governing functional stability and degeneracy, and frameworks for quantitatively mapping and 1367 

simulating ecological niches in complex ecosystems.  1368 
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 1369 

 1370 

Glossary 1371 

Microbiome science: discovery and testing of fundamental principles governing microbiome 1372 
function and assembly. 1373 
  1374 
Microbiome engineering: leveraging fundamental scientific principles and quantitative design 1375 
to create microbiomes that perform desired functions. 1376 
  1377 
Metaphenotypes: sets of emergent functions of a microbiome resulting from the interactions 1378 
between individual microbial genomes (metagenome) and their interaction with the environment. 1379 
  1380 
Ecological engineering: the process of designing and operating bioreactors and other engineered 1381 
systems to foster the development of specific microbial communities that can perform desired 1382 
functional processes. 1383 
 1384 
Exometabolomics: an analytical technique to quantify extracellular small molecule metabolites 1385 
from environmental and/or biological samples typically through gas/liquid chromatography-mass 1386 
spectrometry or nuclear magnetic resonance. 1387 
  1388 
Functional guilds: groups organisms that use similar resources (for example, electron donors, 1389 
electron acceptors, or carbon source) and occupy a similar ecological niche. 1390 
  1391 
Fundamental niche: the entire set of environmental conditions in which an organism can 1392 
survive and reproduce (that is, an organism’s niche in the absence of interspecific competition).  1393 
 1394 
Generalized Lotka-Volterra equation: A set of ordinary differential equations used to 1395 
represent population dynamics based on experimentally inferred species interaction 1396 
parameters. 1397 
 1398 
Off-gas analysis: the monitoring of gas flow rate and chemical composition (e.g. carbon 1399 
dioxide, hydrogen, methane) produced from a biological system. 1400 
 1401 
Realized niche: the set of environmental conditions used by a species after considering 1402 
interspecific competition (competition, predation, and others). 1403 
 1404 
Keystone species: An organism that has a disproportionately large effect on maintaining the 1405 
microbiome's function and microbial interactions (both between micoorganisms and with the 1406 
environment). 1407 
  1408 
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Flux balance analysis: a constraint-based mathematical modeling technique for simulating 1409 
metabolic fluxes through a metabolic network reconstructed from genomic information. 1410 
  1411 
Ensemble modeling: Use of multiple models to address uncertainty by simulating a set of 1412 
possibilities and selecting those consistent with measured data. 1413 
  1414 
Machine learning: A technique used to build predictive models through patterns and inferences 1415 
obtained from sample data, rather than explicit or mechanistic relationships. 1416 
  1417 
Self-assembled microbiome: a microbiome built through environmental manipulation that 1418 
selects for desired functions. 1419 
  1420 
Synthetic microbiome: a microbiome built using pre-defined axenic or enrichment cultures to 1421 
achieve a desired function. 1422 
 1423 
Syntrophy: an obligately mutualistic process that is mediated by metabolite cross-feeding 1424 
between two or more organisms that cannot be catalyzed by one organism alone. 1425 
 1426 
Techno-economic assessment: A tool used to evaluate the technical and economic viability of 1427 
an integrated process through a combination of process design, modeling, and economic 1428 
evaluation. 1429 
 1430 
Life cycle analysis: a tool used to evaluate the environmental impacts associated with all stages 1431 
of a product or processes life, such as energy and water consumption, and air pollutant and 1432 
greenhouse gas emissions. 1433 
 1434 
Integrative and conjugative elements (ICEs): ICEs are mobile genetic elements able to 1435 
integrate into DNA sites via site-specific recombination that carry genes encoding the machinery 1436 
necessary for conjugation. 1437 
 1438 
Structure-function relationships: the influence of the microbiomes three-dimensional spatial 1439 
organization on its function. 1440 
 1441 

 1442 

Subject terms 1443 

Applied microbiology /631/326/2522 1444 

Bacterial techniques and applications /631/326/41/2537 1445 

Industrial microbiology /631/326/252 1446 

Microbial communities /631/326/2565 1447 
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Microbiome /631/326/2565/2134 1448 

Biomedical engineering /639/166/985 1449 

 1450 

ToC blurb 1451 

Microbiome engineering has many potential applications, ranging from agriculture to medicine. 1452 

In this Review, Lawson, McMahon and colleagues guide us through the design-build-test-learn 1453 

cycle that has been successful in many disciplines and explain how it applies to microbiome 1454 

engineering.  1455 
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