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Abstract

Detecting groups within a set of interconnected nodes is a widely addressed prob-
lem that can model a diversity of applications. Unfortunately, detecting the opti-
mal partition of a network is a computationally demanding task, usually conducted
by means of optimization methods. Among them, randomized search heuristics
have been proven to be efficient approaches. This manuscript is devoted to pro-
viding an overview of community detection problems from the perspective of
bio-inspired computation. To this end, we first review the recent history of this
research area, placing emphasis on milestone studies contributed in the last five
years. Next, we present an extensive experimental study to assess the performance
of a selection of modern heuristics over weighted directed network instances.
Specifically, we combine seven global search heuristics based on two different
similarity metrics and eight heterogeneous search operators designed ad-hoc. We
compare our methods with six different community detection techniques over a
benchmark of 17 Lancichinetti-Fortunato-Radicchi network instances. Ranking
statistics of the tested algorithms reveal that the proposed methods perform com-
petitively, but the high variability of the rankings leads to the main conclusion:
no clear winner can be declared. This finding aligns with community detection
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tools available in the literature that hinge on a sequential application of different
algorithms in search for the best performing counterpart. We end our research by
sharing our envisioned status of this area, for which we identify challenges and
opportunities which should stimulate research efforts in years to come.

Keywords: Bio-inspired Computation, Community Detection, Network
Partition, Evolutionary Computation, Swarm Intelligence

1. Introduction1

Since the ground-breaking advent of Social Networks, a spectrum of tools and2

methods have been developed in the last decade for excerpting insights from the3

multiple interrelations between their users [16]. Knowledge that can be extracted4

by using these methods ranges from the evaluation of the influence of a specific5

node in the whole network (centrality), to enriched ways of visualizing graphs6

or the discovery of shortest paths between groups of nodes. As can be drawn7

from the related literature, all such knowledge can be exploited for a myriad of8

practical objectives, such as the inference of radicalization risk [96, 95, 52, 46],9

the identification of child abuse [179] or the detection of impersonation [172].10

Among the valuable information that can be extracted from Social Networks,11

the detection of communities within their constituent nodes is one of the most12

frequently addressed tasks in the related literature stream. Specifically, a com-13

munity refers to a group of elements which meet the general principles of strong14

intra-community connectivity (i.e. members of the same community are strongly15

tied to each other) and weak inter-community connectivity (nodes belonging to16

different partitions are loosely connected). Such a measure of connectivity varies17

depending on the characteristics of the network at hand (e.g. weighted, multiple18

edges, directed and/or with self-loops), thereby reformulating the quantification19

of the cohesiveness of any community. In this regard, different efficient metrics20

have been proposed in the literature for evaluating the quality of a partition of a21

given network. Each of these metrics relies on the aforementioned connectivity22

principles from different perspectives, yielding a partition quality indicator that23

eventually serves as a optimization fitness function. As such, alternatives such24

as Surprise [2], Permanence [29], or the renowned Girvan-Newman coefficient25

of modularity [133] are arguably among the most recurrently utilized partition26

metrics. From an algorithmic standpoint, the literature has been also rich in re-27

gards to different optimization strategies for discovering partitions by maximizing28

the aforementioned partition quality indicators. Interestingly under the scope of29
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this paper, meta-heuristic techniques with biological inspiration at their core have30

emerged as efficient algorithmic means to undertake community partition prob-31

lems over network instances of relative complexity, with Evolutionary Algorithms32

as the most resorted optimization techniques in last years [143].33

Interestingly, activity around bio-inspired optimization has been particularly34

active in proposing modern solvers which, by mimicking new biological phenom-35

ena, have been empirically proven to outperform traditional optimization methods36

in a plethora of application scenarios. This is the case, for instance, of the Bat Al-37

gorithm (BA, [185]), Firefly Algorithm (FA, [184]) or Cuckoo Search (CS, [186]),38

three exemplifying bio-inspired solvers that have spurred a flurry of research since39

their inception. A similar rationale can be drawn when it comes to physical pro-40

cesses observed in Nature, which have forged the more general family of nature-41

inspired optimization techniques: the Water Cycle Algorithm (WCA, [42]), for42

instance, is a good exponent of this alternative algorithmic branch. From this an-43

gle, several comprehensive surveys dealing with applications of bio- and nature-44

inspired optimization techniques have been reported to date, with diverse levels45

of coverage and depth [188, 187, 47]. However, to the best of our knowledge the46

current literature lacks a deep analysis synthesizing the state of the art around the47

application of sophisticated bio-inspired heuristics to community partition prob-48

lems in networks, elaborating on the transition from the use of classical methods49

– e.g. Genetic Algorithms (GA, [53]), Particle Swarm Optimization (PSO, [87])50

and the like – to the progressive adoption of modern meta-heuristics as the ones51

exemplified above. Definitely, a systematic study on the design trends and chal-52

lenges lying at this intersection is needed, for the community to gather research53

efforts in niches of opportunity and value within this vibrant area.54

1.1. Objective and Contribution55

The motivation introduced above is reflected in the goal of the work presented56

in this manuscript. To begin with, we delve into the state of the art around the57

use of bio-inspired optimization approaches for community partition in complex58

networks, critically examining some of the most important works in recent times.59

Specifically, we focus our attention on community detection algorithms relying60

on nature- and bio-inspired meta-heuristic solvers published in the last five years61

(2015-2019). This baseline literature study serves as a stepping stone towards62

the second contribution of this work: an experimental benchmark composed by63

a selection of modern bio-inspired solvers for finding communities in weighted64

directed graphs. This class of networks has been far less studied than other graphs65

despite its straightforward applicability to real-world scenarios, such as the design66
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of network protocols [113], relationships in the control structure of financial net-67

works [13], trade imbalance relationships between importers and exporters [158],68

or interactions in social network analysis [103]. To this end, we give design ra-69

tionale on how to adapt search-based heuristic operators to the specific charac-70

teristics of this problem, yielding a portfolio of 8 heterogeneous search operators71

based on diverse design principles (from ad-hoc heuristics to blind movement72

patterns). Furthermore, we resort to the label-based representation [75] for so-73

lution encoding, and adopt the Hamming Distance and the Normalized Mutual74

Information (NMI) as metrics to evaluate the similarity between different candi-75

date partitions. The diversity of the benchmark is augmented by also considering76

different global search mechanisms for the benchmark, based on a selection of77

seven meta-heuristic schemes: the aforementioned WCA, BA, FA, and CS, along78

with off-the-shelf and hybrid solvers hinging on classical techniques from bio-79

and nature-inspired computation: PSO and Evolutionary Simulated Annealing80

(ESA, [190]). Finally, the benchmark also comprises a population-based vari-81

ant of a classical non-biologically-inspired heuristic (Population-based Variable82

Neighborhood Search, PVNS, [175]) for the sake of completeness with respect83

to the wide field of random search heuristics. We note that some of them, such84

as WCA or ESA, have never been applied to community finding in weighted di-85

rected graphs. Part of the remaining ones (BA, FA and CS) have been less studied86

in the literature in comparison with other heuristic counterparts. We give in this87

manuscript a thorough description on how each of the 19 implemented solvers88

has been adapted to efficiently solve the modeled problem, along with deep de-89

tails of the considered operators and functions, and a justification of their expected90

benefits in terms of convergence.91

With the aim of comparatively assessing their performance, results obtained92

over 29 synthetically generated network instances of diverse size are discussed.93

The comparison is made on the basis of their capability to discover their true94

partition, which is known given the particular procedure used for generating the95

networks. In addition, the convergence behavior of the best solvers is also ana-96

lyzed to gain an intuition of the performance gaps noted among algorithms. Fi-97

nally, the significance of such performance gaps is statistically verified by means98

of the Friedman’s non-parametric and Holm’s post-hoc tests. Results reveal that99

BA with heuristic operators and using NMI as its distance function dominates the100

benchmark with statistical relevance.101

Moreover, we have conducted an additional set of tests in order to certify that102

bio-inspired computation schemes can perform competitively with respect to other103

established techniques for community detection. To this end, we have compared104
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the results obtained by our four best bio-inspired solvers with six different com-105

munity detection methods from the literature. This third experimentation has been106

performed over 17 diverse LFR instances [94] composed by 100 to 600 nodes.107

Results of this last experimentation reveal that bio-inspired approaches present a108

promising performance, being especially effective in instances with high values109

of their topological mixing coefficient. Finally, we draw attention to a number of110

identified research trends that are grasping the attention of researchers in this area.111

In light of these trends, a prospect of challenges and niches is outlined, along with112

possible technical directions that could be pursued by the community to advance113

over the current state of the art.114

The present work is an extension of the preliminary work reported in [136],115

yet comprising new contributed material that justifies its novelty and soundness.116

The first is the review of the state of the art conducted as an introduction to the117

experimental benchmark, in which we thoroughly examine recently proposed con-118

tributions and coherently relate each other towards identifying commonalities and119

trends. With this new content, the reader not only follow the state-of-the-art devel-120

opments of bio-inspired computation and community detection in networks, but121

also gain greater insights into different methods to be compared in the second part122

of this paper. From the algorithmic perspective, the research scope has been ex-123

tended over [136] by considering three additional meta-heuristic schemes: PSO,124

CS and BA. Furthermore, one additional distance metric has been developed, and125

a set of new heuristic movement operators has been implemented. In overall, 15126

new algorithmic configurations have been added to the experimentation. Besides127

that, additional network instances of increased size have been considered in the128

experimentation. It is also worth mentioning that the analysis of the results goes129

beyond the statistical assessment of the partition quality values attained by each130

scheme, to include as well as a convergence analysis of the best techniques in131

the benchmark. Moreover, an experimental comparison to 6 community detection132

methods from the literature has been conducted over 17 LFR instances. Finally,133

an equally important novel contribution is our personal envisioned status of this134

area, which we present in the form of challenges and open opportunities that re-135

main insufficiently addressed to date. The above three different aspects are the136

main contributions of our present paper, which makes it more comprehensive and137

complete than our previous works.138

The rest of the paper is structured as follows: Section 2 elaborates on the first139

contribution of the paper by analyzing the state of the art of the central topic of140

the paper. In Section 3 the problem of detecting communities in weighted directed141

networks is mathematically formulated, whereas the considered heuristic solvers142
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and their implementation details are described in Section 4. The experimental143

setup is detailed in Section 5, along with a discussion on the obtained results.144

Research opportunities for the area are highlighted in Section 6. Finally, Section145

7 concludes the paper with a general outlook for the wide audience.146

2. Recent Work in Community Detection using Bio-inspired Meta-heuristics147

A short glimpse to the related literature reveals the increasing importance of148

the community detection field in the scientific panorama. As mentioned in the in-149

troduction, the widespread societal impact of Social Networks lit the wick of the150

growing interest in this area, strongly linked to the valuable knowledge that can151

be drawn from community structures. This statement is buttressed by the amount152

of comprehensive surveys published in recent times, such as [90] which focuses153

on multi-layer networks. This kind of graphs are comprised of multiple interde-154

pendent sub-networks, each representing a different aspect of the interactions be-155

tween nodes. It is also interesting to mention the thorough review in [150] related156

to dynamic networks. Wider is the approach of the overview recently contributed157

in [80], stressing on community detection algorithms for disjoint and overlapping158

communities, along with related multidisciplinary applications. In this same sense159

disjoint communities are also the focus of the work in [35], mainly dived for tech-160

niques for inferring non-overlapping communities in large-scale real-world undi-161

rected and directed networks. Especially interesting for the scope of the present162

paper is the review recently published by Pizzuti in [143]. In that research, the163

author describes in depth Evolutionary Computation methods to unveil commu-164

nity structures in networks. Special attention is paid to solution representation165

(encoding) strategies and popular partition quality indicator functions adopted as166

fitness metrics to be optimized. This survey also examines different problem for-167

mulations in this regard, from multiple and single objectives to different graph168

topologies, such as dynamically evolving, multidimensional and signed graphs.169

It is interesting to mention that our research work presented in this paper builds170

upon prior contributions [143] in several novel directions, among which the most171

remarkable one is the practical study and experimentation conducted and dis-172

cussed in Sections 4 and 5. Furthermore, we place special attention on connecting173

the insights and findings drawn from the novel experimentation study with our174

prospects on the confluence between bio-inspired optimization and community175

detection in networks. To this end, we thoroughly describe several challenges and176

open opportunities that should guide the activity around this intersecting research177
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avenue in the next years. Additional recent review works dealing with community178

detection can be found in [26, 199, 14, 88].179

We build upon the momentum of this research area as evinced above to criti-180

cally examine recently published advances. Algorithmically speaking, many con-181

tributions have so far gravitated on the development of different approaches to182

find communities towards implicitly or explicitly optimizing one of the aforemen-183

tioned partition quality indicators. This is the case, for instance, of iterative greedy184

methods capable of inferring a hierarchy of communities in a constructive fashion,185

similarly to agglomerative hierarchical clustering techniques [20]. A technique of186

this kind is also used in [155], which emphasizes on large social networks re-187

trieved from the Stanford Network Analysis Project [99]; specifically, 973 ego188

networks from Twitter and 10 from Facebook, with the number of nodes ranging189

from 5 to 60 050, and from 10 to 1045, respectively. It is also worth-mentioning190

the findings reported in [183], in which the Girvan-Newman modularity (the same191

quality indicator function as the one adopted in our study) is used as the objective192

function for a two-step optimization technique called DiMod, composed by two193

mathematical programming models that rely on differently rearranged versions of194

the modularity to stress on different features of the underlying community struc-195

ture. Another two-stage solver is proposed in [76], in which the community find-196

ing is done over signed networks. In that paper, a Symmetric Nonnegative Matrix197

Factorization-based Propagation method is proposed. The first stage of this ap-198

proach is to carry out a symmetric nonnegative matrix factorization on its positive199

part, and associate each node with an initial group indication vector. The second200

phase conducts a diffusion process to guarantee that these indication respect the201

topology of the entire network and preserve their initial values at the same time.202

Logically, nodes in the same community have similar indication vectors, while203

they differ in vertices that most likely reside in different communities. Thus, final204

indication vectors provide a satisfactory partition of the graph, and can be em-205

ployed to assign elements into communities. Finally, we want to spotlight one last206

related work, which application is based on bipartite large-scale networks [166].207

Bipartite graphs can be divided into two disjoint groups, G> and G⊥, such that ev-208

ery link connects a node in G> to one in G⊥. Authors of that research introduce an209

algorithm called ComSim, which is based on a similarity measure between nodes210

exploiting the bipartite connections. The proposed method seeks cycles of links211

maximizing the similarity between vertices, defining in this manner the core of212

the discovered communities.213

Beyond the ad-hoc heuristics for community finding reviewed above, a grow-214

ing strand of literature currently gravitates on the application of bio-inspired meta-215
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heuristic methods directly adopting a partition quality indicator as their objective216

function. Examples are many, each focusing on assorted combinations of network217

instances, metric functions and algorithmic approximations. Arguably, Genetic218

Algorithms (GAs) are among the most recurrently explored ones for discovering219

communities in networks of different characteristics. In [66], for example, a novel220

generational GA is proposed, which is guided by the modularity index, and which221

introduces efficient initialization strategies and search operators. An additional222

GA-based method is proposed by Said et al. in [153], which introduces a Clus-223

tering Coefficient-based GA which not only detects cohesive groups from dense224

networks, but also identifies communities in sparse graphs. The main philoso-225

phy behind this proposal is to use a social network analysis measure to generate226

the initial population [177]. Another GA-based approach is presented in [39] for227

similar purposes, in which authors adopt label propagation for creating the ini-228

tial population, and conduct an anti-destructive one-way crossover. Moreover,229

for improving the search efficiency, authors implement a node-local optimization230

strategy as a means to perform a tailored mutation process over evolved solutions.231

Specially interesting is the work in [67], published recently. This contribution232

proposes a GA comprising two different novel ingredients: 1) a strategy based on233

local structural similarity and roulette wheel selection for the generation of the234

initial population; and 2) a new mutation operator based on label propagation and235

local structural similarity. The efficiency of this GA-based community detection236

algorithm has been tested over synthetic and real-world networks, and compared237

to additional state-of-the-art methods.238

Other interesting works were previously reported in [74] and [161]. The239

main contribution of the first one is the development of a multi-individual en-240

semble learning-based crossover function, which builds an offspring through the241

use of a hierarchical agglomerative clustering approach. On the other hand, [161]242

proposed the adaptation of the well-known two-point crossover, confirming its243

promising performance also for this context. The algorithmic approach proposed244

in [161] was later extended by Morada and Parsa in [125] by a novel local search245

strategy to improve the accuracy of the algorithm and to speed up its convergence.246

Additional works can be found in [102] and [168].247

Besides GA, the history of bio-inspired meta-heuristics for community par-248

tition has also placed other techniques under its spotlight, PSO or Ant Colony249

Optimization (ACO):250

• Regarding PSO, one of the most influential works can be found in [25], in251

which a discrete PSO was developed for finding communities in signed net-252
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works through the optimization of the signed modularity. A similar research253

is proposed by the same corresponding author in [24], in that case focused254

on large-scale social network clustering. Moreover, in [146] a multi-objective255

solver relying on a modified variant of this scheme is implemented, namely,256

MOPSO-Net. The main novelty of this proposed solver hinges on the modifi-257

cation of the particles’ moving strategy, which is endowed with elements from258

genetically inspired operators (i.e., crossover and mutation). In [55], another259

discrete multi-objective PSO, termed MODPSO, is proposed. The main novel260

ingredients of MODPSO is the use of a specific solution encoding, as well as the261

redefinition of the velocity concept that drives the search of this meta-heuristic262

solver. Objectives to minimize in this latter work coincide with those in [146].263

An alternative multi-objective formulation of the community detection prob-264

lem is tackled in [107] through a PSO based solution. In this case, graphs265

under study are the above mentioned signed networks. Finally, a PSO-based266

approach is proposed in [100] for solving the same multi-objective community267

finding problem. The network clustering algorithm implemented in this work is268

referred to as quantum-behaved discrete multi-objective PSO, with paralleliza-269

tion and the automatic determination of the number of communities as novel270

contributions with respect to preceding literature.271

• Likewise, several ACO-based schemes have emerged in recent years, mainly272

due to the suitability of this particular global search meta-heuristic to undertake273

problems in graphs.Two of the first adaptations of this meta-heuristic algorithm274

were presented in [32] and [73]. Several studies have been developed thereafter.275

We focusing our attention in recent works,such as [62]. In this study two ACO-276

based variants are proposed for being applied to ego networks, where the central277

node of the graph (ego) represents the focal user under study. Thus, methods to278

be developed aim to automatically determine the different users that compose279

groups or circles of interest around the ego node. Both ACO-based techniques280

in [62] differ in the source of information used to perform the community find-281

ing task. While one of them employs the knowledge drawn from the topology282

of the graph, the second ACO takes into account the information contained in283

the user profile. Further stimulating research can be found in [205], focused284

on the detection of overlapping communities in complex networks. Although285

the technique proposed in this paper (named as AntCBO) shares many similar-286

ities with other ACO-based approaches from the literature, a point of novelty287

resides in its post-processing phase, which is executed to naturally achieve a288

final overlapping community structure.289
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More recently, the community has started to explore the suitability of modern290

nature-inspired meta-heuristics for community detection in graphs. One of these291

methods is BA, as exposed by works such as [72] and [162]. Particularly relevant292

are [120] and [207], which focus on the application of BA over dynamic social net-293

works, and in which a multi-objective community finding problem is formulated.294

Specifically, BA simultaneously optimizes the modularity density and the NMI as295

objective functions in both references. FA has also been adapted for dealing with296

community finding problems: in [37] the behavioral patterns of fireflies are em-297

ulated in the genotype of the community partition problem, rather than applying298

the FA operators on a numerically encoded representation of its search space. It is299

also interesting to mention that, in that paper, the metric to optimize is the recently300

proposed Surprise [2], which assesses how statistically unlikely a given clustering301

arrangement is with respect to a random network featuring the same distribution302

of nodes per cluster. Another interesting work can be read in [79], in which a FA-303

based solver is shown to outperform other bio-inspired solvers such as GA and304

ACO applied to a small number of real-life networks. In this case, the metric to be305

maximized is the Girvan-Newman modularity which, in light of our bibliographic306

analysis, appears to be the de facto fitness choice. Artificial Bee Colony (ABC,307

[85]) is another modern bio-inspired solver also applied to community partition308

problems. In [68] the proposed solver automatically defines the optimal number309

of partitions of the network, thanks to the inherent multi-agent nature of the ABC310

solver. Other exemplifying works dealing with ABC for complex network par-311

titioning can be found in [176, 129]. Finally, we acknowledge the exploration312

of CS-based heuristics for community partition presented in [203, 202], which313

rounds up the review of the background literature targeted in this section.314

Finally, we pause at several recent works where assorted bio-inspired meta-315

heuristics have been adapted for the community detection problem. This is the316

case of [64], which explores the efficiency of a method never used before for317

community detection: the Fireworks Algorithm. The main characteristics that au-318

thors used to develop a competitive method are new initialization strategies and319

new mutation functions, both based on the label propagation strategy to speed up320

the convergence. Two years after that study, Messaoudi and Kamel retake the321

Fireworks Algorithm for community finding in Social Network context [119]. In322

that case, the solver is endowed with an Affinity Propagation approach for initial-323

ize the population, and a double-step mutation procedure. Another algorithmic324

scheme which has been recently adapted for same purposes is the Sine-Cosine325

meta-heuristic, developed and presented in [200]. Also significant is the contri-326

bution introduced in [30] in which the adequacy of the Chemical Reaction evolu-327
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tionary method is explored. Main contribution of the algorithm implemented by328

authors in that study is the use of two encoding schemes for the same solver: the329

locus-based representation and the vector-based encoding. The main reason for330

this dual encoding approach is the enhancement of the exploration capability of331

the overall search algorithm. For testing the quality of the proposed method, the332

performance of the Chemical Reaction based approach is compared to that fea-333

tured by standard community detection algorithms, such as Louvain or GA-Net.334

Table 1: Recent literature showcasing the use of bio-inspired optimization for different community
finding problem variants.

Community partition
problem

Optimization
criterion

Evolutionary
Computation

Swarm
Intelligence

Other bio-
inspired
solvers

Example of adopted criteria

Non-overlapping communities
(partitional graph clustering)

Single-objective

[66], [66], [39],
[128], [9], [127],

[81], [105],
[200], [125],
[194], [74],

[161], [102],
[168], [78], [67]

[136], [72],
[162], [37], [79],

[68], [176],
[129], [65], [61],
[9], [119], [64],
[32], [73], [24],

[25]

[136], [9],
[23], [57],

[86]

max Modularity
max Surprise

max Extended Modularity

Multi-objective

[182], [70], [34],
[193], [51],
[121], [30],
[167], [142]

[146], [55],
[100], [202],

[82], [54], [58],
[111], [126],

[107]

[57]
max intra-link strength

versus min inter-link strength

Overlapping communities
(fuzzy graph clustering)

Single-objective
[157], [101],

[27], [41]
[205], [4], [157],

[77], [198]

[164], [89],
[147],

[159],[45]

max Leicht’s Modularity [98]
max Fuzzy Modularity [130]

Multi-objective
[195], [178],
[110], [191],
[17], [174]

[104], [8] [109]
max intra-link strength

versus min inter-link strength

Time-evolving networks
(dynamic community detection)

Single-objective
[141], [134],
[33], [115]

[192], [164],
[165], [15]

[206]

max Modularity
max Conductance
max Expansion

max Internal Density

Multi-objective
[12], [174],

[154], [48], [7]
[120], [207],
[83], [203]

[59], [50],
[208],
[204]

max Cluster Accuracy
versus min Clustering Drift

Other problems
(attributed, semantic, multiplex...)

Single-objective [114], [144], [1]
[62], [28], [69],

[122]
–

max Semantic Modularity (SimQ)
max Eigenvector Centrality

Multi-objective
[108], [123], [5],

[6], [1]
– [149], [56]

max Modularity
versus Homogeneity

335

As evinced by the above references, community detection has been tackled by336

the community in many different ways, using a wide variety of solving approaches337

over different formulations of the underlying optimization problem. The recent338

literature is really huge and spans beyond the brief excerpt provided in this section.339

However, we note that the main propeller of this bustling research activity is the340

ever-growing number of metaphor-based solvers witnessed in the field of bio-341

inspired computation in recent times, such as Japanese Tree Frog Algorithm [61],342

Parliamentary Optimization Algorithm [4] or Penguins Search Optimization [65].343

We will later revolve on the implications of this noted upsurge of literature in344
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Section 6. Finally, we summarize and complement in Table 1 the bio-inspired345

related literature reviewed in this section, which evidences the relevance of the346

field in the current scientific community.347

3. Problem Statement348

As has been introduced previously, we concentrate our analysis on the detec-349

tion of communities in weighted directed networks. Diverse inference problems350

have been tackled in the literature for this class of networks, as they model com-351

plex real-world scenarios [22, 63]. The practical applicability of the findings de-352

rived from our investigations, and the relative scarcity of contributions dealing353

with this class of networks, are the reasons why we consider weighted directed354

graphs in this research work. In this line of reasoning, we note that other simpler355

graph types – assuming no weights and/or directedness – have been contemplated356

in the literature, grasping a notably higher interest than more complex network357

classes. We thereby conclude that the consideration of both weighted and directed358

edges in our problem formulation sheds light on a research niche that remains359

insufficiently studied to date.360

Once the election of this kind of graphs has been justified, we start by math-361

ematically modeling the weighted network as a graph G .
= (V , E), where V rep-362

resents the group of |V| = V vertices or nodes of the network, E denotes to363

the set of connecting edges or links, and fW : V × V 7→ R+ corresponds to364

a function assigning a non-negative weight to the edge connecting every pair of365

nodes. We also assume the absence of self loops in the graph (fW(v, v) = 0366

∀v ∈ V), and that fW(v, v′) = 0 if nodes v and v′ are not connected. Furthermore,367

we define fW(v, v′) ≡ wv,v′ , leading to a V × V adjacency matrix W given by368

W ≡ {wv,v′ : v, v′ ∈ V} and fulfilling that the trace Tr(W) = 0 as per the lack of369

self loops assumed before. In addition, asymmetry is assumed in the graph edges,370

thus, wv,v′ is not necessarily equal to wv′,v.371

Considering this notation, the main problem of detecting communities in a372

graph G can be understood as the partition of the set of nodes V into a number373

of non-empty, disjoint groups, each with a non-fixed size. We refer as M to374

the number of groups or communities of partition Ṽ .
= {V1, . . . ,VM}, such that375

∪Mm=1Vm = V and Vm ∩ Vm′ = ∅ ∀m′ 6= m (i.e. no overlapping communities).376

Therefore, we can represent the community to which node v belongs as Vv ∈ Ṽ .377

It is interesting to highlight here that the size of partitions is not restricted to any378

minimum or maximum fixed value.379
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The weighted directed nature of the links within the graph imposes a reformu-
lation of the classical in-degree and out-degree values to yield the so-called input
and output strengths, which are defined as [132]:

sinv =
∑
v′∈V

wv′,v, soutv =
∑
v′∈V

wv,v′ , (1)

specifically, input and output strengths are the sum of the weights of the incident380

(outgoing) edges to (from) node v. These values represent both the weighted381

nature and the directivity of the W adjacency matrix. This is the reason because382

they play a crucial role in the measurement of the adequacy of communities, in a383

similar fashion to the in-degree and out-degree in unweighted and directed graphs.384

Extending this logic further, a redefinition of the well-known modularity for
undirected graphs introduced in [131, 98] can be used for measuring the quality of
a specific partition Ṽ . To this end, we define a binary function δ : V × V in {0, 1}
in which δ(v, v′) = 1 if Vv = Vv′ as per the partition Ṽ (and 0 otherwise). With
this introduced function the modularity for weighted directed graphs is given by:

Q(Ṽ)
.
=

1

|
∑

W |
∑
v∈V

∑
v′∈V

[
wv,v′

sinv s
out
v′

|
∑

W |

]
δ(v, v′), (2)

where |
∑

W | denotes the sum weight of all edges of the network. Under this
redefined partition quality indicator, the best partition Ṽ∗ of network G yields as:

Ṽ∗ = arg max
Ṽ∈BV

Q(Ṽ), (3)

where BV denotes the group of all possible partitions of V elements into nonempty385

subgroups (i.e. the solution space of the above combinatorial problem). The spe-386

cific cardinality of this set is huge, which is given by the V -th Bell number [71].387

This means that by following the recursion BV+1 =
∑V

v=0

(
V
v

)
Bv (with V ≥ 1388

and B0 = 1) [180], if we consider a network composed by V = 20 nodes, it can389

be partitioned in approximately 517.24 · 1012 different manners. Consequently, if390

we assume that a separated evaluation of the quality of a single partition can be391

computed within 1 microsecond on average, we would need more than one and392

a half years to check all possible combinations. This situation supports the need393

for using heuristic methods for the efficient exploration of this solution space,394

which lies at the motivational core of the literature surveyed previously and the395

developments presented in what follows.396
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4. Proposed Nature-inspired Solvers397

With the aim of efficiently addressing the problem stated above, several mod-398

ern nature-inspired meta-heuristics have been designed. In this regard, the bio-399

inspired optimization realm is composed by a plethora of different methods, each400

inspired by different biological phenomena. To narrow our experimentation and401

obtain meaningful conclusions, we have chosen an excerpt of bio-inspired algo-402

rithms contributed recently in the literature. The main reason behind the selection403

of the particular techniques considered in this work is the excellent performance404

that such algorithms have shown along the years, reflected in the momentum fea-405

tured by these approaches within the scientific community [38]. Thus, prior to406

the description of each considered method, some common design directives are407

next portrayed, related specifically to the encoding strategy, solution repair mech-408

anisms and the metrics employed for measuring the difference between two can-409

didate partitions.410

One of the most important design aspects when designing heuristics is the411

numerical representations of a solution to the problem at hand. In our case, we412

embrace the label-based representation [75] as the solution encoding strategy for413

partitions evolved during the search process. This way, each potential solution is414

encoded as a vector x = [c1, c2, . . . , cV ] of V integers from the range [1, . . . , V ],415

where we recall that V = |V| stands for the number of nodes in the whole graph.416

Additionally, cv represents the cluster label to which node v belongs. For in-417

stance, and considering a network composed by 12 nodes, a possible feasible418

solution could be x = [1, 2, 2, 1, 1, 2, 2, 3, 2, 3, 3, 3], meaning that the partition419

underneath is Ṽ = {V1,V2,V3}, with V1 = {1, 4, 5}, V2 = {2, 3, 6, 7, 9} and420

V3 = {8, 10, 11, 12} as its compounding disjoint communities.421

Once an encoding strategy has been selected, a metric of similarity between422

two different solutions (partitions) must be devised. This similarity is the func-423

tional basis of movement strategies inherent to each of the proposed techniques.424

In this research work we explore two possible functions in this regard, among425

other additional aspects. As a result, different configurations have been consid-426

ered for the seven considered meta-heuristics that will be later detailed, leading427

to an experimentation benchmark composed by 19 different optimization algo-428

rithms. The first similarity function is the Hamming distance, which has been429

already used for other combinatorial problems. Specifically, the Hamming dis-430

tance DH(x,x′) is given by the number of non-corresponding elements (high-431

lighted in bold) between two encoded individuals x′ and x′. For instance, if432

x = [1, 2, 2, 1, 2, 2, 2, 3, 2, 3, 1, 1] and x = [1, 2, 1, 1, 1, 2, 2, 3, 2, 3, 3, 3], then433
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DH(x,x′) = 4. The negligible time required to compute this similarity met-434

ric clashes with a severe drawback when it is used for this specific community435

detection problem: the need for repairing the individuals so as to avoid ambigu-436

ities in the genotype (numerical encoding) of two phenotypically equivalent par-437

titions. A clarifying example occurs between x = [4, 2, 2, 4, 4, 2, 2, 3, 2, 3, 3, 3]438

and x′ = [7, 1, 1, 7, 7, 1, 1, 4, 1, 4, 4, 4], which both represent the same network439

partition even though their Hamming distance is maximum (DH(x,x′) = 12).440

To overcome this issue, a repair procedure has been developed partly inspired441

from the one proposed in [44]. Thanks to this procedure, which is applied to442

every newly created solution, ambiguities generated by partitions are efficiently443

resolved, leading to both of the solutions exemplified above to an unified geno-444

type, i.e. x = [1, 2, 2, 1, 1, 2, 2, 3, 2, 3, 3, 3]. The second distance metric used is445

the Normalized Mutual Information (NMI), which has been used previously for446

similar goals [196, 189, 11]. The NMI score quantifies the level of agreement be-447

tween two community partitions, yet ignoring label permutations [173]. As such,448

if NMI(x,x′) = 1 the partitions Ṽ and Ṽ ′ represented are equal to each other. This449

also means that lower values denote that they are phenotypically different to each450

other.451

Finally, the last aspect to mention before the description of the considered452

meta-heuristics is the design of the movement operators used for evolving indi-453

viduals during the search process. In this sense, two groups of functions have454

been designed, which are separately employed in different configurations of the455

implemented solvers:456

• The first set of operators corresponds to blind movements, which do not exploit457

any heuristic knowledge of the problem. In this category, four alternatives have458

been considered, which are applied depending on the distance between two459

individuals (in the case of FA, WCA, BA and PSO), or depending on the nature460

of the solution (in the case of ESA, CS and PVNS). Specifically, these functions461

are named CE1, CE3, CC1 and CC3. For each of these operators, the subscript462

represents the number of randomly selected vertices, which are extracted from463

its corresponding community. InCE∗ operators, the taken nodes are re-inserted464

in already existing communities, while in CC∗ nodes can be inserted also into465

newly generated communities.466

• The second category of operators corresponds to heuristic movements, which
leverage specific knowledge about the tackled problem to select the most ap-
propriate movement at each iteration of the search process. In this category two

15



subcategories can be discerned: simple heuristics (SH∗) and improved heuris-
tics (IH∗), each one composed by two components: SH1 and SH3 for the SH∗
category, and IH1 and IH3 for the IH∗ category. It is important to mention
that these operators are based strictly on the aforementioned measure of simi-
larity (distance) between individuals, as their objective is to get an individual
closer to other one (in the case of BA, for instance, to the best within the whole
swarm). For this reason, these operators can only be utilized on those meta-
heuristics conducting distance-based movements, namely, WCA, FA, BA and
PSO. Specifically, SH∗ methods select uniformly at random a node of the whole
destination individual x′, which denotes the solution the in-movement solution
x is enforced to get closer to. Then, by analyzing the c′i value associated to the
node placed in the selected position, the in movement individual x adopts in its
solution the whole V ′i community corresponding to the c′i value. This procedure
is repeated for as many ∗ times as indicated in the name of the applied operator
(SH∗ or IH∗). A visual example with the SH1 operator may help the reader
understand this movement process. If the following in-movement individual x
moves towards the destination partition x′ given by:

x = [1, 2, 2, 3, 2, 1, 2, 4, 1, 2, 4, 3], x′ = [1, 2, 2, 1, 1, 2, 2, 3, 2, 3, 3, 3], (4)

and we further consider that c′10 has been randomly chosen, we can see that
c10 = 3 for x′. Thus, x would adopt the whole community identified by label
3, resulting in a moved solution x′′ given by:

x′′ = [1, 2, 2, 3, 2, 1, 2, 3, 1, 3, 3, 3]. (5)

Regarding the IH∗ operators, the movement process also departs from the uni-
formly random selection of a vertex from the destination solution x′. Then,
the community V ′i to which the selected node belongs is compared to all the
communities of the in-movement individual x. Finally, the node placed in the
selected position adopts the ci of the community that shares most similarity with
V ′i. This operation is also repeated for ∗ times. Another hypothesized example
is next given to clarify this process. If we consider the following partitions:

x = [3, 4, 4, 5, 4, 3, 3, 4, 5, 6, 6, 6], x′ = [1, 2, 1, 3, 1, 2, 2, 3, 2, 3, 3, 3], (6)

and assuming that c′4 has been randomly selected, the community to compare
is V ′3 = {4, 8, 10, 11, 12} since c′4 = 3. In this case, the cluster belonging to
x that shares most similarities with V ′3 is V4 = {10, 11, 12}. Thus, since the
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ci value of V4 is 6, the solution represented by x would use this value in c4,
resulting in the following moved individual x′′:

x = [3, 4, 4, 6, 4, 3, 3, 4, 5, 6, 6, 6]. (7)

Now, the details of the considered global search meta-heuristics are introduced,467

along with an explanation how the movement operators described above are em-468

bedded in their search procedures:469

4.1. Water Cycle Algorithm (WCA)470

The WCA solver was originally conceived in [43] for tackling continuous op-
timization problems. Similarly to recent works dealing with other applications
[137], a discrete adaptation of this heuristic has been done to make WCA opera-
tors efficiently deal with the discrete solution encoding of this work. Laying aside
the features detailed in the beginning of this section, the most crucial mechanism
to design is the way in which streams and rivers flow to their corresponding lead-
ing river or sea. In this sense, and based on the original WCA, the movement of
each stream pstr ∈ Pstr (where we hereafter x(t)

n denotes the n-th solution in the
swarm at generation t) towards its river λ(pstr) at generation t ∈ {1, . . . , T} is set
to:

x
(t+1)
pstr = Ψ

(
x
(t)
pstr ,min

{
V,
⌊
rand · θ ·Dist

(
x
(t)
pstr ,x

(t)
λ(pstr)

)⌋})
, (8)

where rand is a continuous random variable uniformly distributed in R[0, 1], and471

Dist(·, ·) ∈ {DH(·, ·),NMI(·, ·)} represents the similarity function that can be472

parameterized depending on the solver. Additionally, θ is a heuristic parameter.473

Furthermore, Ψ(x, Z) ∈ {CE1, CE3, CC1, CC3, SH1, SH3, IH1, IH3}, each de-474

pending on the number of times Z this function is applied to x
(t)
pstr . The best po-475

sition resulting from the Z movements performed on x
(t)
pstr is chosen as the output476

of the operator. The same procedure is followed for the movements of a river or477

a stream towards the sea, just replacing x
(t)
λ(pstr)

by xpsea(t). In is important to478

mention that the function is selected depending on the implemented variant of the479

WCA solver, as will be later detailed.480

With the intention of boosting the exploration capacity of the technique, the481

inclination mechanism recently proposed in [137] is also used in the developed482

WCA solvers for community detection. This simple but efficient mechanism pro-483

vides the search methods with the intelligence for properly choosing the move-484

ment operator to use at each iteration for each individual. This decision depends485
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on the situation of the raindrop which is about to move. Specifically, each time486

an individual is ready to conduct a movement in the solution space, the afore-487

mentioned inclination ξ(x,x′) is calculated, using as the reference the distance488

Dist(·, ·) between the raindrop x and its designated river/sea x′. Specifically,489

ξ(·, ·) could be equal to V/DH(·, ·) or V/NMI(·, ·). Thus, the larger the value of490

Dist(·, ·) is, the higher ξ(·, ·) should be, forcing the technique to conduct a fast491

move with a higher probability. On the other hand, if Dist(·, ·) has a small value,492

the inclination is made lower, suggesting that the search is near a promising area493

of the solution space, thereby requiring to perform a slow move with higher prob-494

ability. In this paper, among all the considered operators, CC∗, SH3 and IH3 are495

classified as fast moves, whereas CE∗, SH1 and IH1 are regarded as slow moves.496

Last but not least, raining and evaporation procedures follow the same philosophy497

as in the basic WCA. In particular, the raining process performs a number R of498

consecutive CC3 movements regardless the variant of the WCA solver in use.499

4.2. Bat Algorithm (BA)500

Similarly to what happened for WCA and in general, as it occurs in most
Swarm Intelligence methods, the canonical BA was first introduced for solving
continuous-variable optimization problems. For this reason, a discrete adaptation
has been designed also for this second meta-heuristic. As in most of the adapta-
tions [139], each bat in the swarm represents a feasible solution of the problem.
Additionally, loudness Ai and pulse emission ri have been considered in the same
form as in the classical version of the BA. Moreover, in order to simplifying the
complexity of the method, the frequency parameter fi has not been considered.
Lastly, velocity vi has been adapted by considering DH(·, ·) or NMI(·, ·) for
measuring the similarity between two different bats. Thus, v(t)i is computed as:

v
(t)
i = Uniform[1, Dist(x

(t)
i ,x

(t)
best)], (9)

i.e., the value of v(t)i of bat (solution) i at time step t is drawn from a uniform501

discrete probability distribution between 1 and the difference between the index i502

of this bat and that of the fittest bat in the swarm. Furthermore, the movement of a503

bat follows the same rule as defined in the above Eq. (8), using v(t)i as the number504

of movements to be applied to solution x
(t)
i . Finally, an inclination mechanism505

is also developed for the discrete versions of the BA presented in this research,506

which relies on the same procedure as for its WCA counterpart, using the best bat507

in the swarm as the reference.508
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4.3. Firefly Algorithm (FA)509

Again, some modifications have been performed over the original version of510

the FA for properly dealing with the community detection problem addressed in511

this research. As in the BA, each firefly in the population represents a feasible512

solution for the problem. Furthermore, light absorption, a concept essential for513

adjusting fireflies’ attractiveness, is considered in this discrete adaptation. The514

distance between two fireflies is also computed using DH(·, ·) or NMI(·, ·), giv-515

ing rise to different flavors of FA-based solvers for detecting communities. More-516

over, the movement of a firefly to another brighter one is defined by the same logic517

shown in Expression (8). Thus, each time a firefly x is about to carry out a move518

towards another firefly. x′, it examines Dist(x,x′). If this value is greater than519

V/2, a large movement is performed by using CC∗, SH3 or IH3. Otherwise, a520

short move is made by means of the CE∗, SH1 or IH1 operators. This mecha-521

nism can be regarded as an adaption to embed a behavior similar to the inclination522

concept described for WCA.523

4.4. Particle Swarm Optimization (PSO)524

Similarly to previous solvers in this section, PSO has been already applied to525

discrete problems in the past [31, 201]. We rely on this previous background as a526

inspiration for our case study. As such, each particle represents a possible solution527

for the addressed problem, whereas the computation of the velocity parameter v(t)i ,528

movement functions and inclination feature of WCA and BA are performed as for529

the previously detailed WCA and BA solvers. The movement criterion shown in530

Expression (8) is also implemented to drive the movement of particles inside the531

swarm. Likewise,DH(·, ·) orNMI(·, ·) have been adopted as similarity functions532

to compare among different particles.533

4.5. Cuckoo Search (CS)534

CS was conceived in [186] as a structured randomized search method inspired535

by the combination of the holoparasite characteristics and Lévy flight foraging536

configurations of some cuckoo species. By virtue of its reduced number of control537

parameters and its relative efficiency when tackling complex optimization prob-538

lems, adaptations of CS to discrete problem formulations have been particularly539

notable during the last year [106, 117, 19]. In our case we opt for an similar540

adaptation strategy to the one reported in [140] for the Traveling Salesman Prob-541

lem, defining similar parameters and mechanisms. For the cuckoos movement, the542

same CC∗, CE∗, IH∗ and SH∗ functions have been considered. Depending on543
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the CS version implemented, a random function is first assigned to each cuckoo544

at the beginning of the algorithm execution. Additionally, the movement of each545

individual is carried out by using the logic in Expression (8), using DH(·, ·) or546

NMI(·, ·) as the distance function, and the best cuckoo as the reference solution.547

4.6. Evolutionary Simulated Annealing (ESA)548

The fifth developed global search heuristic is a population-based evolution-549

ary version of Simulated Annealing [190]. The population-based variant of this550

single-point heuristic has been adopted for the sake of fairness in the compar-551

ison with the rest of methods in the benchmark. In line with this, the ESA-552

based schemes are endowed with the previously described movement operators.553

This way, each element of the population has its own randomly assigned func-554

tion. Moreover, each individual has a temperature value randomly drawn from555

R[0.7, 1.0]. We again rely on Expression (8) for the movement of solutions.556

Again, DH(·, ·) has been used as the function to measure the distance between557

individuals in the population. Thereby, each solution performs a number of suc-558

cessive movements as per DH(·, ·), choosing the best individual in the population559

as its reference. Among all movements, the most profitable one as dictated by their560

fitness improvement is selected. The best individual, however, performs a random561

number of movements between 1 and Z, which is declared to be an additional562

parameter to be tuned for the ESA-based heuristics.563

4.7. Population-based Variable Neighborhood Search (PVNS)564

The last considered meta-heuristic in this study consists of a population-based565

variant of the original VNS. Taking as a baseline the same design principles con-566

sidered for ESA, each individual of the population is assigned a movement func-567

tion randomly selected among all the available options: CE1, CE3, CC1 and CC3568

for the first cases; SH1 and SH3 for the second group; and IH1 and IH3 for the569

last one. Then, at each iteration, each individual performs a movement based on570

its assigned operator, which can be replaced by a different one with probability571

0.25 to promote diversity in the movement dynamics within the population.572

5. Experimentation and Results573

In order to evaluate the performance of the developed methods, a comprehen-574

sive experimental setup has been designed over a heterogeneous set of syntheti-575

cally created network instances. Although repositories containing emulated and576

real network instances can be found available in the public domain, our rationale577
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for using synthetic networks is to have full control of the true community structure578

underneath the network, so that supervised quality indicator statistics can be com-579

puted and used for a fair comparison. We next detail how such instances have been580

generated to provide intuition on our criterion to build this benchmark. Neverthe-581

less, the set of generated instances to foster discussion has been made available to582

the public domain in [84] in order to stimulate future algorithmic developments.583

The conducted experimentation is organized in three different phases: the first584

one is done over small network instances of up to V = 75 nodes, whereas the585

second and third ones deal with network instances of higher size (between V =586

100 and V = 600 nodes):587

• In the first experimentation phase (Subsection 5.1), the benchmark comprises588

24 network composed by V ∈ {35, 50, 75} elements. For each graph, a dif-589

ferent amount of ground of truth communities is enforced by generating a par-590

tition of the network (with random sizes for its constituent groups {Vm}Mm=1),591

and then by connecting nodes belonging to different communities with prob-592

ability pout, and nodes within every group with probability pin. The ground593

of truth community partition can be thought to be less detectable by any com-594

munity detection scheme if the value of pout gets close to that of pin. In addi-595

tion, weights wv,v′ for each edge (v, v′) have been drawn uniformly at random596

from R[10.0, 20.0] (intra-community edges) and R[0.0, 10.0] (inter-community597

edges). This network building procedure allows evaluating the performance598

of all implemented methods over noisy versions of a graph characterized by a599

controlled underlying community distribution. We advocate for this benchmark600

criterion as opposed to the common practice in the field, by which comparisons601

of this kind are based on the attained fitness value of each solver rather than on602

their capacity to infer the real community structure of the network.603

• Five additional sets of network instances have been generated for the second604

phase of the experimentation (Subsection 5.2) by enlarging the number of nodes605

to V ∈ {100, 200, 300, 400, 500}. These network instances have been con-606

structed with the main intention of assessing the performance of designed solvers607

when the dimensions of the network increase. For constructing these instance608

sets, the LFR algorithm described in [93] for producing directed weighted net-609

works with overlapping communities has been used. Specifically, for all net-610

work instances we set k = 15 (average degree) and maxk = 40 (maximum).611

Additionally, for instances with V ∈ {100, 200} the values of muw (weight612

mixing parameter), minc and maxc (minimum and maximum community size)613

are fixed to 0.1, 5 and 20, respectively. For the case with V = 300, on the614
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other hand, the values of such parameters are set to muw = 0.2, minc = 10615

and maxc = 25. For the remaining two instances we configure the instance616

generation algorithm in [93] with parameters muw = 0.2, minc = 15 and617

maxc = 30. The concatenation of the values for all these LFR parameters618

compose the label of each network referred through the presentation and dis-619

cussion of the results.. Due to the high computational effort needed to solve620

these larger network instances, only the four most promising methods found in621

the first experimentation phase have been considered for this second stage. The622

criterion to discriminate which four methods perform best is later detailed.623

• The third experimentation stage (Subsection 5.3) comprises network instances624

of large size and higher connectivity between clusters as per the topological625

mixing coefficient of the LFR benchmark generator. The rationale and cover-626

age of this third set of experiments are later elaborated in the corresponding627

subsection.628

As has been pointed, 19 different solvers have been implemented, which result629

from the allowed combinations between the seven considered global search meta-630

heuristic, the two similarity measures between community partitions, and the eight631

implemented movement operators. Table 2 summarizes the main characteristics of632

each of these 19 solvers. Every meta-heuristic scheme shares the same parametric633

configuration, meaning that e.g. all BA approaches are configured by using the634

same values for their control parameters, disregarding the similarity function or635

operators employed.636

Aiming to reach statistically reliable insights on the obtained results, for each637

solver 15 independent runs have been executed for every network instance consid-638

ered in the first experimental stage, and 10 for each larger instance in the second639

phase. The search process initiated at each run is ended when V +
∑V

v=1 v =640

V (V + 3)/2 iterations of the algorithm at hand have been executed without any641

improvement of the best solution found. The population size has been established642

to 50 individuals for each method. In the case of WCA, the number of rivers has643

been set to 9 (approximately 20% of the whole population), yielding a total of644

40 streams. Moreover, the maximum distance for evaporation and R have been645

fixed to 5% and an uniform random value from the discrete range N[0, b0.5V c],646

respectively. In FA-based methods the value of the light absorption coefficient is647

configured as γ = 0.95, whereas for solvers with BA as their core meta-heuristic648

α = β = 0.98, A0
i = 1.0 (loudness) and r0i = 0.1 (rate). Besides that, for CS the649

probability to discover an alien egg is set to pa = 0.2. These parametric values650
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have been tuned by following the guidelines given in [137, 139, 138, 140]. Fi-651

nally, ESA and PVNS have been configured as explained in Subsections 4.6 and652

4.7, respectively.

Table 2: Characteristics of each implemented solver. DH(·, ·) refers to Hamming Distance func-
tion, NMI(·, ·) refers to Normalized Mutual Information function.

Identifying label Meta-heuristic Similarity measure Movement function(s)
WCA Ham WCA DH(·, ·) CC∗, CE∗
ESA Ham ESA DH(·, ·) CC∗, CE∗
FA Ham FA DH(·, ·) CC∗, CE∗

PVNS Ham PVNS DH(·, ·) CC∗, CE∗
CS Ham CS DH(·, ·) CC∗, CE∗
PSO Ham PSO DH(·, ·) CC∗, CE∗
BA Ham BA DH(·, ·) CC∗, CE∗

WCA NMI B WCA NMI(·, ·) CC∗, CE∗
FA NMI B FA NMI(·, ·) CC∗, CE∗
PSO NMI B PSO NMI(·, ·) CC∗, CE∗
BA NMI B BA NMI(·, ·) CC∗, CE∗
WCA NMI SH WCA NMI(·, ·) SH∗
FA NMI SH FA NMI(·, ·) SH∗
PSO NMI SH PSO NMI(·, ·) SH∗
BA NMI SH BA NMI(·, ·) SH∗
WCA NMI IH WCA NMI(·, ·) IH∗
FA NMI IH FA NMI(·, ·) IH∗
PSO NMI IH PSO NMI(·, ·) IH∗
BA NMI IH BA NMI(·, ·) IH∗

653

5.1. First Experimentation: Comparing the proposed Bio-inspired Methods654

For the sake of a better readability, outcomes have been divided in four differ-655

ent tables. Thus, in Tables 4-7, statistics (average/best/standard deviation) of the656

results attained by each of the 19 solvers for the first experimentation are shown657

in terms of the NMI with respect to the ground of truth partition of every network658

instance. A first inspection over these values allows to glimpse a promising perfor-659

mance of methods such as WCA Ham, PSO NMI B, BA NMI SH and BA NMI IH,660

which show superior average NMI scores for most cases. In fact, these methods661

are the best ones in their specific category. In overall, the best solver of the 19 con-662

sidered ones is BA NMI SH. Furthermore, as could have been intuitively expected663

beforehand, outcomes degrade when values of pin and pout are made sufficiently664

close to each other to etch topological noise on the ground of truth partition. This665

aspect can be analyzed in instances such as (V,M, pin, pout) = (50, 5, 0.6, 0.4)666

(for which the best partition found attains NMI = 0.699) and (50, 5, 0.9, 0.1)667

(which is solved by 8 methods in all their runs).668
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Turning the discussion onto the computational efficiency of these techniques,669

average run times needed by each method are shown in Tables 8 and 9. At this670

point we note that different studies have pointed out that run times are strongly671

dependent on the computer resources, programming language and other practical672

aspects of the experimentation. Therefore, we have also conducted an analysis673

of the convergence behavior of the algorithms, which decouples our complexity674

insights from the aforementioned implementation dependence. This being said,675

interesting trends arise from Tables 8 and Table 9. Focusing on the methods that676

obtained better performance in terms of quality, namely WCA Ham, PSO NMI B,677

BA NMI SH and BA NMI IH, it can be observed that WCA Ham requires more678

time that the other alternatives. This conforms to expectations, because the meta-679

heuristic search strategy of WCA is more complex than that of BA and PSO.680

On the other hand, negligible differences can be found between BA and PSO,681

obtaining similar performance levels in this regard. Thus, execution times are not682

conclusive as a choice criterion for discriminating the best developed technique.

Table 3: Unadjusted and adjusted p-values obtained as a result of the application of Holm’s post-
hoc procedure using BA_NMI_SH as control algorithm. A p value lower than 0.05 means signifi-
cant differences.

Index Algorithm Unadjusted p pHolm
1 FA Ham 0 0
2 ESA Ham 0.000008 0.000129
3 FA NMI B 0.000043 0.000687
4 FA NMI SH 0.000113 0.001699
5 FA NMI IH 0.001831 0.02563
6 WCA NMI SH 0.002271 0.029524
7 WCA NMI IH 0.002473 0.029675
8 WCA NMI B 0.005603 0.061635
9 PVSN Ham 0.133487 1.334867
10 CS Ham 0.140255 1.334867
11 BA Ham 0.20421 1.63368
12 PSO NMI SH 0.23805 1.666349
13 BA NMI B 0.24319 1.666349
14 PSO NMI IH 0.248408 1.666349
15 PSO NMI B 0.270059 1.666349
16 PSO Ham 0.644303 1.93291
17 BA NMI IH 0.847452 1.93291
18 WCA Ham 0.857509 1.93291

683

Going back to the results analysis, and following the guidelines in [40, 135],684

two different tests have been carried out to resolve the statistical relevance of685

the reported performance gaps. To begin with, the Friedman’s non-parametric686
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test for multiple comparison allows proving whether differences among the re-687

sults obtained by all reported methods can be declared as statistically signifi-688

cant. The last row of Tables 4-7 displays the mean ranking returned by this689

non-parametric test for each of the compared algorithms (the lower the rank,690

the better the performance). These results support the conclusions drawn above:691

BA NMI SH is the best performing method. Moreover, in their own category,692

WCA Ham, PSO NMI B, and BA NMI IH emerge as the most promising alterna-693

tives. Besides that, the Friedman statistic obtained is 116.06, distributed according694

to χ2 with 19 degrees of freedom. Furthermore, and establishing the confidence695

interval in 99%, being 36.191 the critical point in the χ2 distribution with 19 de-696

grees of freedom. Since 116.06 > 36.191, it can be concluded that there are697

significant differences among the results.698

Table 4: (Part 1) Obtained NMI results (average/best/standard deviation) using WCA, ESA, FA,
PVNS, CS, PSO and BA. The _Ham suffix means that the solver uses the Hamming distance as
the similarity measurement function. Best average results have been highlighted in bold.

(V,M, pin, pout)
WCA Ham ESA Ham FA Ham PVNS CS PSO Ham BA Ham

Avg/Best/Std Avg/Best/Std Avg/Best/Std Avg/Best/Std Avg/Best/Std Avg/Best/Std Avg/Best/Std
(35, 4, 0.6, 0.1) 0.526/0.526/0.000 0.515/0.526/0.010 0.521/0.547/0.010 0.526/0.526/0.000 0.522/0.526/0.010 0.526/0.526/0.000 0.525/0.526/0.003
(35, 4, 0.9, 0.4) 0.876/0.876/0.000 0.860/0.876/0.010 0.745/0.768/0.010 0.876/0.876/0.000 0.864/0.876/0.013 0.876/0.876/0.000 0.851/0.876/0.018
(35, 7, 0.6, 0.1) 1.000/1.000/0.000 0.972/1.000/0.010 0.900/0.929/0.010 1.000/1.000/0.000 0.973/1.000/0.021 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.6, 0.4) 0.807/0.807/0.000 0.827/0.863/0.010 0.800/0.828/0.010 0.806/0.807/0.010 0.828/0.855/0.017 0.806/0.807/0.003 0.829/0.855/0.020
(35, 7, 0.8, 0.1) 1.000/1.000/0.000 0.997/1.000/0.010 0.927/0.949/0.010 1.000/1.000/0.000 0.997/1.000/0.009 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.9, 0.4) 1.000/1.000/0.000 0.997/1.000/0.010 0.914/0.935/0.010 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 18, 0.6, 0.1) 0.960/0.969/0.010 0.931/0.962/0.010 0.952/0.973/0.010 0.954/0.969/0.010 0.957/0.959/0.003 0.950/0.969/0.013 0.959/0.969/0.009
(35, 18, 0.9, 0.4) 0.998/1.000/0.010 0.971/0.974/0.010 0.974/0.990/0.010 0.998/1.000/0.010 0.990/0.992/1.000 0.992/1.000/0.009 0.989/1.000/0.010
(50, 5, 0.6, 0.1) 1.000/1.000/0.000 0.998/1.000/0.010 0.821/0.851/0.010 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(50, 5, 0.6, 0.4) 0.664/0.699/0.010 0.680/0.699/0.010 0.684/0.658/0.010 0.689/0.699/0.010 0.680/0.699/0.014 0.691/0.699/0.006 0.677/0.690/0.019
(50, 5, 0.9, 0.1) 1.000/1.000/0.000 0.996/1.000/0.010 0.825/0.905/0.030 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(50, 10, 0.7, 0.4) 0.971/0.972/0.000 0.971/1.000/0.010 0.893/0.908/0.010 0.972/0.972/0.010 0.970/0.977/0.006 0.972/0.972/0.000 0.970/0.972/0.004
(50, 10, 0.9, 0.4) 1.000/1.000/0.000 0.989/1.000/0.010 0.941/0.962/0.010 1.000/1.000/0.000 0.989/0.989/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(50, 25, 0.6, 0.1) 0.979/0.989/0.010 0.952/0.965/0.010 0.955/0.969/0.010 0.967/0.977/0.010 0.979/0.982/0.004 0.971/0.989/0.008 0.972/0.988/0.008
(50, 25, 0.6, 0.4) 0.955/0.968/0.010 0.942/0.961/0.010 0.944/0.961/0.010 0.947/0.968/0.010 0.955/0.960/0.009 0.950/0.957/0.005 0.949/0.966/0.009
(50, 25, 0.9, 0.4) 0.990/0.991/0.010 0.971/0.987/0.010 0.970/0.980/0.010 0.982/0.991/0.010 0.986/0.986/0.000 0.983/0.991/0.004 0.984/0.991/0.006
(75, 8, 0.6, 0.1) 0.987/1.000/0.010 0.959/1.000/0.010 0.828/0.844/0.010 0.971/1.000/0.010 0.939/0.991/0.025 0.982/1.000/0.014 0.935/1.000/0.022
(75, 8, 0.8, 0.3) 1.000/1.000/0.000 1.000/1.000/0.000 0.865/0.993/0.010 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(75, 8, 0.9, 0.4) 1.000/1.000/0.000 1.000/1.000/0.000 0.896/0.998/0.010 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(75, 15, 0.6, 0.2) 0.986/0.987/0.010 0.982/0.989/0.010 0.892/0.917/0.010 0.984/0.989/0.010 0.974/0.992/0.15 0.986/0.987/0.001 0.979/0.987/0.010
(75, 30, 0.6, 0.1) 0.971/0.976/0.010 0.949/0.973/0.010 0.943/0.956/0.010 0.956/0.966/0.010 0.968/0.970/0.006 0.966/0.976/0.006 0.965/0.974/0.006
(75, 30, 0.8, 0.4) 0.966/0.970/0.010 0.951/0.971/0.010 0.939/0.955/0.010 0.958/0.979/0.010 0.962/0.968/0.004 0.963/0.979/0.008 0.962/0.975/0.006
(75, 38, 0.9, 0.1) 0.984/0.993/0.010 0.972/0.981/0.010 0.972/0.979/0.010 0.973/0.981/0.010 0.981/0.983/0.002 0.982/0.987/0.003 0.980/0.993/0.007
(75, 38, 0.9, 0.4) 0.985/0.993/0.010 0.968/0.981/0.010 0.970/0.982/0.010 0.973/0.994/0.010 0.982/0.984/0.002 0.976/0.982/0.005 0.977/0.982/0.003

Friedman’s non-parametric test (mean ranking)
Rank 6.7917 13.7708 17.6458 8.9375 8.8958 7.25 8.5625

The second statistical test is the Holm’s post-hoc test. For properly conducting699

this test, BA has been set as the control algorithm. Table 3 gathers the unadjusted700

and adjusted p-values obtained through the application of Holm’s post-hoc pro-701

cedure. From these p-values it can be stated that BA, for the first case, and FA,702

for the second one, are significantly better than their counterparts at a 95% confi-703

dence level, since all p values are lower than 0.05. From this statistical analysis,704

several interesting conclusions can be drawn. To begin with, BA NMI IH is the705
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Table 5: (Part 2) Obtained NMI results (average/best/standard deviation) using WCA, FA, PSO
and BA. The _NMI_B suffix indicates the use of NMI as distance function and blind movements
(CC∗ and CE∗). Best average results have been highlighted in bold.

(V,M, pin, pout)
WCA NMI B FA NMI B PSO NMI B BA NMI B
Avg/Best/Std Avg/Best/Std Avg/Best/Std Avg/Best/Std

(35, 4, 0.6, 0.1) 0.523/0.526/0.005 0.530/0.542/0.010 0.526/0.526/0.000 0.526/0.526/0.000
(35, 4, 0.9, 0.4) 0.872/0.876/0.009 0.814/0.876/0.054 0.876/0.876/0.000 0.876/0.876/0.000
(35, 7, 0.6, 0.1) 1.000/1.000/0.000 0.921/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.6, 0.4) 0.809/0.825/0.004 0.825/0.866/0.023 0.807/0.807/0.000 0.812/0.838/0.000
(35, 7, 0.8, 0.1) 1.000/1.000/0.000 0.964/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.9, 0.4) 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 18, 0.6, 0.1) 0.948/0.959/0.012 0.949/0.954/0.004 0.952/0.959/0.006 0.954/0.959/0.005
(35, 18, 0.9, 0.4) 0.987/0.992/0.007 0.992/0.992/0.000 0.992/0.992/0.000 0.992/0.992/0.000
(50, 5, 0.6, 0.1) 1.000/1.000/0.000 0.869/1.000/0.109 1.000/1.000/0.000 1.000/1.000/0.000
(50, 5, 0.6, 0.4) 0.675/0.699/0.022 0.666/0.707/0.038 0.694/0.699/0.006 0.686/0.699/0.015
(50, 5, 0.9, 0.1) 0.982/1.000/0.028 0.941/0.966/0.064 0.966/0.966/0.000 0.975/1.000/0.014
(50, 10, 0.7, 0.4) 0.972/0.972/0.000 0.967/0.972/0.006 0.972/0.972/0.000 0.973/1.000/0.014
(50, 10, 0.9, 0.4) 0.989/0.989/0.000 0.979/0.989/0.037 0.989/0.989/0.000 0.989/0.989/0.000
(50, 25, 0.6, 0.1) 0.962/0.984/0.013 0.979/0.983/0.004 0.966/0.984/0.007 0.973/0.983/0.010
(50, 25, 0.6, 0.4) 0.949/0.960/0.010 0.952/0.960/0.005 0.954/0.970/0.006 0.956/0.961/0.007
(50, 25, 0.9, 0.4) 0.974/0.983/0.005 0.986/0.986/0.000 0.983/0.993/0.005 0.986/0.986/0.001
(75, 8, 0.6, 0.1) 0.967/0.991/0.022 0.893/0.991/0.105 0.991/0.991/0.000 0.942/0.991/0.027
(75, 8, 0.8, 0.3) 0.996/1.000/0.010 0.955/0.980/0.062 0.981/1.000/0.004 1.000/1.000/0.009
(75, 8, 0.9, 0.4) 1.000/1.000/0.000 0.924/1.000/0.093 1.000/1.000/0.000 1.000/1.000/0.000
(75, 15, 0.6, 0.2) 0.988/0.992/0.004 0.992/0.992/0.000 0.992/0.992/0.000 0.977/0.992/0.018
(75, 30, 0.6, 0.1) 0.967/0.979/0.008 0.943/0.956/0.006 0.960/0.978/0.009 0.953/0.970/0.157
(75, 30, 0.8, 0.4) 0.959/0.975/0.007 0.940/0.955/0.007 0.962/0.976/0.007 0.961/0.977/0.008
(75, 38, 0.9, 0.1) 0.970/0.987/0.006 0.972/0.979/0.003 0.977/0.987/0.005 0.976/0.989/0.008
(75, 38, 0.9, 0.4) 0.972/0.979/0.006 0.969/0.982/0.008 0.978/0.984/0.004 0.977/0.991/0.010

Friedman’s non-parametric test (mean ranking)
Rank 11 13.1458 8.2917 8.3958

most promising method in terms of results quality, yet the difference between its706

counterparts is not significant in many cases. Additionally, this table clarifies that,707

in general, best performing meta-heuristic schemes are PSO and BA, exhibiting a708

superior overall performance in all its versions. On the other hand, FA, ESA and709

WCA (except WCA Ham, which obtains promising outcomes) have demonstrated710

not to be appropriate to tackle the problem tackled in this part of the paper. Fi-711

nally, PVSN and CS schemes are in medium positions of the ranking, failing to712

perform competitively in any of the instances of the benchmark.713
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Table 6: (Part 3) Obtained NMI results (average/best/standard deviation) using WCA, FA, PSO
and BA. The _NMI_SH suffix means the use of NMI as distance function and SH∗ movement
functions. Best average results have been highlighted in bold.

(V,M, pin, pout)
WCA NMI SH FA NMI SH PSO NMI SH BA NMI SH
Avg/Best/Std Avg/Best/Std Avg/Best/Std Avg/Best/Std

(35, 4, 0.6, 0.1) 0.520/0.534/0.009 0.528/0.540/0.011 0.517/0.530/0.024 0.514/0.534/0.023
(35, 4, 0.9, 0.4) 0.876/0.876/0.000 0.876/0.876/0.000 0.876/0.876/0.000 0.876/0.876/0.000
(35, 7, 0.6, 0.1) 0.985/1.000/0.020 0.925/0.941/0.010 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.6, 0.4) 0.810/0.863/0.015 0.794/0.835/0.024 0.807/0.807/0.000 0.810/0.835/0.007
(35, 7, 0.8, 0.1) 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.9, 0.4) 1.000/1.000/0.000 0.935/0.968/0.019 1.000/1.000/0.000 1.000/1.000/0.000
(35, 18, 0.6, 0.1) 0.945/0.969/0.013 0.898/0.919/0.013 0.954/0.969/0.009 0.964/0.969/0.003
(35, 18, 0.9, 0.4) 0.983/1.000/0.011 0.904/0.933/0.011 0.989/1.000/0.008 1.000/1.000/0.000
(50, 5, 0.6, 0.1) 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(50, 5, 0.6, 0.4) 0.689/0.698/0.007 0.683/0.699/0.032 0.695/0.699/0.005 0.695/0.699/0.012
(50, 5, 0.9, 0.1) 0.992/1.000/0.019 1.000/1.000/0.000 0.996/1.000/0.014 1.000/1.000/0.000
(50, 10, 0.7, 0.4) 0.972/0.972/0.000 0.972/0.972/0.000 0.972/0.972/0.000 0.975/1.000/0.006
(50, 10, 0.9, 0.4) 0.998/1.000/0.010 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(50, 25, 0.6, 0.1) 0.964/0.988/0.010 0.870/0.888/0.008 0.971/0.980/0.006 0.983/0.989/0.008
(50, 25, 0.6, 0.4) 0.945/0.964/0.009 0.858/0.878/0.015 0.951/0.964/0.007 0.955/0.964/0.002
(50, 25, 0.9, 0.4) 0.976/0.991/0.008 0.987/0.987/0.007 0.980/0.991/0.004 0.991/0.991/0.000
(75, 8, 0.6, 0.1) 0.976/0.991/0.008 0.983/1.000/0.000 0.980/0.991/0.004 0.989/0.991/0.004
(75, 8, 0.8, 0.3) 0.995/1.000/0.009 0.994/1.000/0.010 1.000/1.000/0.000 1.000/1.000/0.018
(75, 8, 0.9, 0.4) 1.000/1.000/0.000 0.925/1.000/0.098 1.000/1.000/0.000 1.000/1.000/0.000
(75, 15, 0.6, 0.2) 0.985/0.987/0.001 0.980/0.987/0.009 0.986/0.987/0.001 0.973/0.987/0.018
(75, 30, 0.6, 0.1) 0.959/0.974/0.008 0.954/0.967/0.008 0.962/0.967/0.003 0.956/0.976/0.003
(75, 30, 0.8, 0.4) 0.959/0.973/0.007 0.953/0.965/0.006 0.962/0.972/0.006 0.962/0.966/0.006
(75, 38, 0.9, 0.1) 0.975/0.986/0.006 0.893/0.905/0.006 0.976/0.985/0.005 0.976/0.987/0.010
(75, 38, 0.9, 0.4) 0.972/0.985/0.007 0.882/0.895/0.008 0.974/0.981/0.004 0.977/0.988/0.009

Friedman’s non-parametric test (mean ranking)
Rank 11.4583 12.7708 8.4167 6.5

5.2. Second Experimentation: Scalability and Performance in Larger Networks714

Once discussed the first stage of the experimentation, we proceed by com-715

menting on the results of a second phase by employing instances of larger size.716

The main objective with these tests is to go deeper in the analysis of the most717

promising solvers, trying to conclude which one scales best when partitioning718

networks. For this purpose, the best performing methods of each category have719

been considered: WCA Ham, PSO NMI B, BA NMI SH and BA NMI IH. Simi-720

larly to the previous phase, Table 10 summarizes the average, best and standard721

deviation of the NMI scores achieved by every solver over each instance. This722

experimentation also analyzes the convergence behavior of each method. For this723
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Table 7: (Part 4) Obtained NMI results (average/best/standard deviation) using WCA, FA, PSO
and BA. The _NMI_IH suffix denotes the use of NMI as distance function and IH∗ operators.
Best average results have been highlighted in bold.

(V,M, pin, pout)
WCA NMI IH FA NMI IH PSO NMI IH BA NMI IH
Avg/Best/Std Avg/Best/Std Avg/Best/Std Avg/Best/Std

(35, 4, 0.6, 0.1) 0.495/0.534/0.044 0.528/0.540/0.011 0.523/0.534/0.009 0.521/0.534/0.008
(35, 4, 0.9, 0.4) 0.872/0.876/0.009 0.844/0.886/0.021 0.876/0.876/0.000 0.876/0.876/0.000
(35, 7, 0.6, 0.1) 0.997/1.000/0.010 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.6, 0.4) 0.811/0.845/0.011 0.820/0.863/0.018 0.808/0.825/0.005 0.819/0.863/0.015
(35, 7, 0.8, 0.1) 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 7, 0.9, 0.4) 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(35, 18, 0.6, 0.1) 0.944/0.969/0.010 0.950/0.965/0.017 0.959/0.969/0.010 0.964/0.969/0.006
(35, 18, 0.9, 0.4) 0.981/1.000/0.007 0.998/1.000/0.010 1.000/1.000/0.000 1.000/1.000/0.000
(50, 5, 0.6, 0.1) 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000 1.000/1.000/0.000
(50, 5, 0.6, 0.4) 0.686/0.709/0.013 0.672/0.660/0.012 0.697/0.699/0.004 0.694/0.699/0.007
(50, 5, 0.9, 0.1) 0.992/1.000/0.019 0.888/0.917/0.019 1.000/1.000/0.000 1.000/1.000/0.000
(50, 10, 0.7, 0.4) 0.973/0.977/0.001 0.972/0.972/0.000 0.972/0.972/0.000 0.972/1.000/0.010
(50, 10, 0.9, 0.4) 1.000/1.000/0.000 0.980/1.000/0.020 1.000/1.000/0.000 1.000/1.000/0.000
(50, 25, 0.6, 0.1) 0.963/0.980/0.011 0.973/0.981/0.008 0.968/0.988/0.009 0.979/0.989/0.010
(50, 25, 0.6, 0.4) 0.949/0.975/0.012 0.945/0.963/0.009 0.948/0.964/0.006 0.955/0.964/0.004
(50, 25, 0.9, 0.4) 0.977/0.991/0.008 0.976/0.991/0.008 0.980/0.991/0.004 0.991/0.991/0.000
(75, 8, 0.6, 0.1) 0.996/1.000/0.007 0.943/0.975/0.017 0.960/1.000/0.019 0.941/0.977/0.016
(75, 8, 0.8, 0.3) 1.000/1.000/0.000 0.995/1.000/0.009 1.000/1.000/0.000 1.000/1.000/0.000
(75, 8, 0.9, 0.4) 1.000/1.000/0.000 0.990/1.000/0.012 0.986/0.987/0.001 1.000/1.000/0.000
(75, 15, 0.6, 0.2) 0.983/0.987/0.009 0.975/0.987/0.015 0.986/0.987/0.005 0.978/0.987/0.013
(75, 30, 0.6, 0.1) 0.956/0.967/0.008 0.963/0.975/0.013 0.960/0.976/0.009 0.964/0.975/0.011
(75, 30, 0.8, 0.4) 0.957/0.969/0.009 0.958/0.965/0.006 0.959/0.971/0.007 0.956/0.966/0.007
(75, 38, 0.9, 0.1) 0.969/0.987/0.007 0.970/0.980/0.012 0.972/0.980/0.005 0.980/0.986/0.010
(75, 38, 0.9, 0.4) 0.969/0.987/0.006 0.970/0.981/0.008 0.972/0.982/0.006 0.977/0.988/0.009

Friedman’s non-parametric test (mean ranking)
Rank 11.4167 11.5625 8.375 6.8125

goal, column tconv shows the average number of fitness evaluations needed by724

each solver to converge under the adopted stop criterion (this value is shown in725

thousands). Analogously to the previous experimentation, average runtimes trun726

are also reported, measured in seconds.727

The main conclusion that can be reached after analyzing these results is that728

BA NMI SH is, again, the solver that obtain best results, followed by BA NMI IH729

and WCA Ham. In this case, PSO NMI B renders a lower quality than its counter-730

parts. Furthermore, in terms of convergence, solvers that employ heuristic move-731

ment operators (BA NMI IH and BA NMI SH) yield a much better performance732

than blind alternatives. These differences are especially remarkable in compar-733

ison with WCA Ham, providing a great advantage for both BA approaches. For734
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Table 8: Run times of WCA, ESA, FA, PVNS, CS, PSO, and BA using blind movement functions,
measured in seconds. The _NMI_B suffix indicates the use of NMI as distance function and blind
movements (CC∗ and CE∗). The _Ham suffix means that the solver uses the Hamming distance
as the similarity measurement function.

(V,M, pin, pout) WCA Ham ESA Ham FA Ham PVNS CS PSO Ham BA Ham WCA NMI B FA NMI B PSO NMI B BA NMI B
(35, 4, 0.6, 0.1) 2.23 0.91 10.93 1.72 1.71 1.73 2.12 7.96 14.83 4.34 3.46
(35, 4, 0.9, 0.4) 4.48 1.03 14.55 2.53 1.78 1.91 1.88 9.64 22.54 3.20 2.05
(35, 7, 0.6, 0.1) 3.63 0.91 14.47 1.95 1.43 1.44 1.75 7.35 15.96 2.95 2.04
(35, 7, 0.6, 0.4) 4.95 0.95 15.43 1.99 1.84 1.89 1.99 10.79 14.79 3.28 2.97
(35, 7, 0.8, 0.1) 3.10 0.89 16.85 1.94 1.60 1.78 2.15 7.31 17.26 2.86 2.23
(35, 7, 0.9, 0.4) 3.19 0.89 17.20 1.79 1.44 1.70 1.83 6.71 12.62 2.96 2.20
(35, 18, 0.6, 0.1) 5.79 0.99 12.66 1.98 2.23 1.84 1.48 8.81 17.90 5.39 4.73
(35, 18, 0.9, 0.4) 4.30 1.20 12.83 2.03 2.18 1.94 1.81 9.86 17.58 6.82 5.11
(50, 5, 0.6, 0.1) 12.90 6.63 19.37 7.12 8.19 6.77 7.97 20.69 25.57 16.63 10.13
(50, 5, 0.6, 0.4) 13.95 5.86 20.48 6.67 12.05 9.53 8.89 20.45 26.01 17.42 12.26
(50, 5, 0.9, 0.1) 12.80 4.94 18.36 7.81 9.55 5.45 7.46 18.95 24.66 16.01 11.79
(50, 10, 0.7, 0.4) 14.01 4.90 19.69 6.85 8.52 6.31 9.31 20.86 25.48 13.87 9.82
(50, 10, 0.9, 0.4) 10.04 4.53 18.13 6.63 7.45 5.54 10.44 17.96 23.16 14.39 7.65
(50, 25, 0.6, 0.1) 16.98 5.72 20.95 7.45 15.54 11.72 13.88 23.88 28.54 19.20 18.02
(50, 25, 0.6, 0.4) 17.86 5.13 19.29 7.40 15.66 9.23 11.73 25.04 29.43 16.98 15.22
(50, 25, 0.9, 0.4) 19.96 5.27 20.96 9.04 14.86 8.97 8.54 24.20 30.18 20.87 18.72
(75, 8, 0.6, 0.1) 84.18 36.39 90.27 34.28 70.28 53.30 67.09 91.13 98.95 74.84 42.36
(75, 8, 0.8, 0.3) 71.04 34.56 85.95 33.76 60.07 44.02 56.62 84.65 96.79 62.06 39.56
(75, 8, 0.9, 0.4) 69.43 28.94 80.03 59.60 45.65 52.49 54.35 85.29 94.28 68.23 37.54
(75, 15, 0.6, 0.2) 82.40 56.34 90.50 59.39 56.68 60.48 64.35 92.17 96.43 74.08 44.67
(75, 30, 0.6, 0.1) 93.59 59.05 98.84 36.90 82.60 75.60 68.74 91.92 99.67 82.35 79.59
(75, 30, 0.8, 0.4) 94.59 58.10 97.95 36.10 83.34 71.34 68.32 92.40 97.53 84.35 72.76
(75, 38, 0.9, 0.1) 86.25 44.30 90.89 36.49 80.21 76.77 72.42 85.70 89.77 76.09 69.82
(75, 38, 0.9, 0.4) 87.57 44.23 92.29 35.51 80.90 72.79 76.44 89.54 92.73 81.56 76.20

Table 9: Run times of WCA, FA, PSO, and BA using heuristic functions, measured in seconds.
The _NMI_SH suffix means the use of NMI as distance function and SH∗ movement functions.
The _NMI_IH suffix denotes the use of NMI as distance function and IH∗ operators.

(V,M, pin, pout) WCA NMI SH FA NMI SH PSO NMI SH BA NMI SH WCA NMI IH FA NMI IH PSO NMI IH BA NMI IH
(35, 4, 0.6, 0.1) 6.10 9.80 3.21 4.23 5.08 9.32 4.95 3.88
(35, 4, 0.9, 0.4) 3.34 8.95 3.01 2.23 5.66 9.76 3.50 3.27
(35, 7, 0.6, 0.1) 3.93 10.23 2.33 2.34 4.41 8.02 3.42 2.44
(35, 7, 0.6, 0.4) 5.42 10.96 3.29 2.65 5.73 8.81 4.01 3.33
(35, 7, 0.8, 0.1) 4.68 10.67 2.37 5.43 3.99 9.47 2.66 2.37
(35, 7, 0.9, 0.4) 3.83 9.74 2.33 3.15 4.13 9.40 2.87 2.58
(35, 18, 0.6, 0.1) 5.73 10.62 3.96 7.50 5.67 10.39 6.28 6.75
(35, 18, 0.9, 0.4) 6.19 12.13 4.22 8.66 5.66 12.92 7.55 6.67
(50, 5, 0.6, 0.1) 17.82 25.21 11.39 8.40 15.82 23.42 18.22 12.49
(50, 5, 0.6, 0.4) 23.95 31.26 18.75 17.64 21.78 32.96 25.94 18.33
(50, 5, 0.9, 0.1) 17.90 27.52 14.89 10.62 17.80 27.10 18.78 14.65
(50, 10, 0.7, 0.4) 17.31 30.33 13.41 12.77 17.83 30.69 18.56 13.83
(50, 10, 0.9, 0.4) 17.20 28.27 10.68 14.83 16.39 33.37 16.94 11.90
(50, 25, 0.6, 0.1) 22.99 42.36 28.85 32.50 21.77 45.61 37.72 28.84
(50, 25, 0.6, 0.4) 31.95 45.05 23.95 33.25 19.87 43.07 35.75 35.94
(50, 25, 0.9, 0.4) 32.51 47.28 25.83 34.82 22.40 44.96 31.91 37.40
(75, 8, 0.6, 0.1) 90.02 97.83 78.97 42.50 83.37 94.55 86.27 77.27
(75, 8, 0.8, 0.3) 64.70 96.73 90.58 46.11 62.88 90.14 84.25 72.34
(75, 8, 0.9, 0.4) 61.89 94.21 82.93 51.31 60.02 95.34 81.50 76.57
(75, 15, 0.6, 0.2) 92.24 99.13 91.90 54.09 84.71 97.18 80.65 65.76
(75, 30, 0.6, 0.1) 93.30 101.03 94.07 72.74 77.43 98.41 83.13 81.92
(75, 30, 0.8, 0.4) 81.33 96.96 92.39 93.51 85.49 100.07 92.71 71.96
(75, 38, 0.9, 0.1) 103.68 113.56 104.13 97.53 82.67 97.28 86.65 81.06
(75, 38, 0.9, 0.4) 83.23 97.45 86.21 80.42 79.22 93.42 83.91 80.38
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Table 10: Obtained NMI results (average/best/standard deviation) for large instances using
WCA_Ham, PSO_NMI_B, BA_NMI_H1 and BA_NMI_H2. Best average results have been high-
lighted in bold.

WCA Ham PSO NMI B BA NMI SH BA NMI IH
Dataset Avg Best Std tconv trun Avg Best Std tconv trun Avg Best Std tconv trun Avg Best Std tconv trun

(100, 15, 40, 0.1, 5, 20) 0.883 0.897 0.021 0.820 233.12 0.820 0.989 0.025 0.688 193.02 0.862 0.904 0.032 0.403 201.25 0.841 0.898 0.027 0.362 203.95
(200, 15, 40, 0.1, 5, 20) 1.0 1.0 0.0 0.531 315.54 1.0 1.0 0.0 0.381 307.69 1.0 1.0 0.0 0.378 322.06 1.0 1.0 0.0 0.310 319.95
(300, 15, 40, 0.2, 10, 25) 1.0 1.0 0.0 0.895 506.21 1.0 1.0 0.0 0.573 517.55 1.0 1.0 0.0 0.640 522.69 1.0 1.0 0.0 0.583 532.90
(400, 15, 40, 0.2, 15, 30) 0.992 1.0 0.007 2.413 663.59 0.998 1.0 0.001 1.007 650.47 0.999 1.0 0.001 0.865 642.05 0.998 1.0 0.004 0.884 647.11
(500, 15, 40, 0.2, 15, 30) 0.992 1.0 0.004 3.256 802.07 0.997 1.0 0.003 1.337 796.62 1.0 1.0 0.0 1.051 792.74 1.0 1.0 0.0 1.097 804.44

Friedman’s non-parametric & Holm’s post-hoc tests (results quality)
Friedman’s Rank 2.4655 2.8793 2.3103 2.3448

pHolm 1.294346 0.27992 Control Solver 1.294346
Friedman’s non-parametric & Holm’s post-hoc tests (convergence behavior)

Friedman’s Rank 3.4828 3.2069 1.7241 1.5862
pHolm 0 0.000003 0.684127 Control Solver

this second experimentation, Friedman’s non-parametric test for multiple com-735

parison and Holm’s post-hoc test have been also applied to both results’ quality736

and convergence behavior. For these statistical tests, the outcomes of all the 29737

contemplated network instances (24 previous ones and 5 large instances) have738

been considered. For this reason, and for the seek of completeness, we depict in739

Table 11 the convergence shown by the four solvers for the first 24 cases.

Table 11: Convergence behavior of WCA_Ham, PSO_NMI_B, BA_NMI_H1, BA_NMI_H2 for the
first 24 instances. tconv is the average number of evaluations needed by each solver to reach the
final solution.

(V,M, pin, pout)
WCA Ham PSO NMI B BA NMI SH BA NMI IH

(V,M, pin, pout)
WCA Ham PSO NMI B BA NMI SH BA NMI IH

tconv tconv tconv tconv tconv tconv tconv tconv
(35, 4, 0.6, 0.1) 0.091 0.144 0.080 0.095 (50, 10, 0.9, 0.4) 0.136 0.145 0.070 0.040
(35, 4, 0.9, 0.4) 0.132 0.127 0.062 0.036 (50, 25, 0.6, 0.1) 0.652 0.610 0.262 0.404
(35, 7, 0.6, 0.1) 0.099 0.110 0.040 0.037 (50, 25, 0.6, 0.4) 0.510 0.564 0.587 0.496
(35, 7, 0.6, 0.4) 0.167 0.178 0.086 0.054 (50, 25, 0.9, 0.4) 0.383 0.532 0.130 0.117
(35, 7, 0.8, 0.1) 0.075 0.098 0.027 0.020 (75, 8, 0.6, 0.1) 0.686 0.449 0.181 0.480
(35, 7, 0.9, 0.4) 0.081 0.091 0.023 0.024 (75, 8, 0.8, 0.3) 0.267 0.452 0.234 0.206
(35, 18, 0.6, 0.1) 0.256 0.232 0.136 0.160 (75, 8, 0.9, 0.4) 0.223 0.172 0.118 0.088
(35, 18, 0.9, 0.4) 0.124 0.211 0.083 0.079 (75, 15, 0.6, 0.2) 0.609 0.374 0.348 0.385
(50, 5, 0.6, 0.1) 0.160 0.129 0.045 0.097 (75, 30, 0.6, 0.1) 1.256 0.944 1.054 0.474
(50, 5, 0.6, 0.4) 0.486 0.457 0.320 0.240 (75, 30, 0.8, 0.4) 1.647 0.996 0.332 1.367
(50, 5, 0.9, 0.1) 0.145 0.229 0.053 0.130 (75, 38, 0.9, 0.1) 1.400 1.727 0.848 0.857
(50, 10, 0.7, 0.4) 0.179 0.183 0.123 0.115 (75, 38, 0.9, 0.4) 1.863 0.870 0.795 0.645

740

With all this, Friedman’s test also supports the conclusions drawn for the first741

tests, in which BA NMI SH was underscored as the best alternative. Furthermore,742

after conducting both experimentations BA NMI IH can be highlighted as the743

second-best solver, followed by WCA Ham and PSO NMI B. As occurred previ-744

ously, Holm’s post-hoc test unveils that gaps identified in the results are not sta-745

tistically significant. Anyway, the combination of these findings with the results746

related to the convergence behavior leads us to the claim that both BA NMI SH747

and BA NMI IH dominate this benchmark. To be concise, Friedman’s and Holm’s748

tests sustain these assertions, proving that heuristic methods are statistically better749
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that WCA Ham and PSO NMI B in terms of convergence behavior. These tests also750

discover that gaps between both BA NMI SH and BA NMI SH are not significant.751

Finally, regarding run times, similar conclusions can be drawn from the reported752

results over these large instances. That is, techniques based non PSO and BA re-753

quire similar computational resources and do not exhibit significant performance754

differences. Once again, execution times are not decisive for choosing among the755

techniques.756

On a closing note for this second benchmark, we conclude that BA NMI SH757

and BA NMI IH stand out from the rest of the solver, obtaining best outcomes758

in terms of results quality and convergence behavior. We can also highlight that759

WCA Ham and PSO NMI B are promising approaches for solving the community760

detection problem dealt with in this study, despite they stay one step below in761

terms of quality and completely left behind regarding convergence behavior.762

5.3. Third Experimentation: Benchmark with Community Detection Algorithms763

Until now, we have analyzed the performance and running times of all the 19764

implemented bio-inspired solvers, and the convergence behavior of the best tech-765

niques of each category. As a result, bio-inspired schemes have been proven to766

efficiently deal with the community finding problem in weighted directed net-767

works. In any case, we carry out a final set of experiments to corroborate if768

bio-inspired solvers can compete in terms of results quality with 6 community769

detection techniques from the state of the art, all suited to deal with weighted770

directed networks: the well-known Louvain (Louvain) and Leiden (Leiden)771

algorithms whose quality function to be optimized is set to the aforementioned772

directed weighted modularity [20, 171], a Leiden algorithm optimizing the Sur-773

prise metric [169] (Surprise), a Reichardt and Bornholdt Potts model [148]774

(RB Potts), a Constant Potts Model [170] (CPM), and the well-known InfoMap775

algorithm [151] (InfoMap). We note that all these algorithms can cope with di-776

rected weighted networks. The six considered community detection algorithms777

included in this third experimental stage have been executed in the same com-778

puter as the bio-inspired methods, and for each network instance 10 independent779

executions have been performed so as to extract performance statistics.780

In this third experimentation, 17 LFR instances have been considered. The781

first 5 instances are the same utilized in previous experiments. The remaining 12782

instances have been generated by using the same LFR benchmark generator for783

weighted directed networks [93]. In this case, however, we focus on instances784

with moderate to high values of their topological mixing coefficient, thereby pos-785

ing a more challenging task for the considered algorithms. Our research hypoth-786
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esis motivating this configuration is that meta-heuristics can make a difference787

with respect to state-of-the-art community detection algorithms specially when788

the hidden cluster structure of the network is composed by notably interconnected789

clusters. Departing from this research hypothesis, we set the network sizes of790

the new instances to V ∈ {100, 200, 300, 400, 500, 600}, with mixing coefficients791

equal to 0.5 and 0.7. Obviously, NMI values with respect to the true cluster distri-792

bution of every network are expected to decrease with respect to those in previous793

experiments, as the higher topological mixture among clusters makes it more dif-794

ficult for the algorithms to infer their true structure. The values of the rest of the795

parameters used for creating the LFR instances are indicated by the label of each796

instance, in the same format as before.797

Table 12 shows the results obtained in this third experimentation. In that table,798

the results and standard deviations obtained by the whole group of 10 techniques799

is depicted. Furthermore, the table is divided into two different parts. The first800

one is devoted to the five instances also considered in the previous experimenta-801

tion. On the other hand, the second division revolves around the 12 new generated802

dispersed datasets. Finally, last rows illustrate the mean ranking calculated by803

the Friedman’s non-parametric test for all the compared algorithms (the lower804

the rank, the better the performance). In this regard, two different Friedman’s805

tests have been carried out. The first one using the outcomes obtained in the 12806

newly generated dispersed instances, while the second has been conducted over807

the whole group of network instances. For each of these statistical tests, the cor-808

responding standard deviation computed over the considered network instances is809

also represented to shed light on the variability of the rankings over the bench-810

mark.811

Several interesting findings can be drawn from this third experimentation.812

First of all, it seems clear that state-of-the-art methods perform better in the first813

group of instances, inferring the true community structure of the networks in al-814

most all the cases. However, this situation is reversed for the second group of815

network instances, thus validating our research hypothesis. In fact, when inspect-816

ing the Friedman’s test results, BA NMI IH is on average the best performing817

method for these instances, followed closely by Leiden. It is also remarkable818

that BA NMI SH and PSO NMI B perform better than the state-of-the-art commu-819

nity detection algorithms included for comparison, except for Leiden.820

Notwithstanding the superior performance of BA NMI IH as per its lower av-821

erage ranking, a closer examination at the ranking statistics unveils that rankings822

are quite irregular. In other words, it is fair to claim, in light of the results, that823

this bio-inspired solver can dominate the rest of algorithms, but just in certain net-824
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work instances. In fact, the high variability of rankings occurs concurrently for825

all algorithms. This observation buttresses empirically the most important insight826

stemming from this work: it is not possible to discriminate a method that clearly827

performs best for each and every kind of network. This empirical finding supports828

us in our prospects about the future of bio-inspired computation algorithms for829

community detection in graphs, which we next develop in detail.

Table 12: NMI results (average/standard deviation) obtained by WCA_Ham, PSO_NMI_B,
BA_NMI_H1, BA_NMI_H2 and the methods from the state of the art (Louvain, Surprise,
Leiden, RB Potts, CPM and InfoMap).

Instance
WCA Ham PSO NMI B BA NMI SH BA NMI IH Louvain Surprise Leiden RB Potts CPM InfoMap
avg/std avg/std avg/std avg/std avg/std avg/std avg/std avg/std avg/std avg/std

(100, 15, 40, 0.1, 5, 20) 0.883/0.021 0.820/0.025 0.862/0.032 0.841/0.027 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
(200, 15, 40, 0.1, 5, 20) 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
(300, 15, 40, 0.2, 10, 25) 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
(400, 15, 40, 0.2, 15, 30) 0.992/0.007 0.998/0.001 0.999/0.001 0.998/0.004 1.000/0.000 1.000/0.000 1.000/0.000 0.995/0.006 1.000/0.000 1.000/0.000
(500, 15, 40, 0.2, 15, 30) 0.992/0.004 0.997/0.003 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 0.994/0.005 1.000/0.000 1.000/0.000
(100, 10, 40, 0.5, 5, 20) 0.786/0.037 0.865/0.031 0.868/0.028 0.878/0.041 1.000/0.000 0.959/0.020 1.000/0.000 0.936/0.067 0.830/0.019 0.804/0.050
(100, 10, 50, 0.7, 5, 20) 0.481/0021 0.455/0.034 0.446/0.025 0.425/0.013 0.316/0.019 0.503/0.030 0.327/0.033 0.313/0.034 0.503/0.021 0.309/0.029
(200, 10, 40, 0.5, 10, 80) 0.628/0.017 0.648/0.015 0.626/0.011 0.633/0.021 0.630/0.000 0.625/0.022 0.625/0.022 0.643/0.004 0.520/0.014 0.590/0.080
(200, 20, 50, 0.7, 10, 80) 0.319/0.025 0.304/0.011 0.315/0.019 0.329/0.015 0.183/0.000 0.303/0.014 0.219/0.031 0.234/0.028 0.256/0.016 0.228/0.016
(300, 10, 40, 0.5, 10, 100) 0.551/0.018 0.566/0.025 0.535/0.034 0.534/0.037 0.621/0.000 0.541/0.015 0.608/0.014 0.575/0.012 0.464/0.010 0.560/0.044
(300, 20, 50, 0.7, 10, 100) 0.485/0.029 0.525/0.020 0.513/0.027 0.511/0.020 0.488/0.000 0.534/0.021 0.554/0.029 0.459/0.051 0.489/0.013 0.309/0.029
(400, 10, 40, 0.5, 15, 150) 0.469/0.024 0.496/0.020 0.499/0.028 0.500/0.018 0.597/0.008 0.446/0.020 0.622/0.019 0.573/0.019 0.412/0.009 0.501/0.042
(400, 20, 50, 0.7, 15, 150) 0.339/0.018 0.341/0.013 0.342/0.009 0.342/0.012 0.290/0.012 0.337/0.006 0.311/0.042 0.267/0.023 0.331/0.011 0.255/0.042
(500, 10, 40, 0.5, 20, 200) 0.558/0.032 0.561/0.027 0.572/0.024 0.575/0.021 0.693/0.004 0.548/0.021 0.726/0.021 0.686/0.020 0.449/0.009 0.528/0.030
(500, 20, 20, 0.7, 20, 200) 0.234/0.032 0.242/0.020 0.280/0.018 0.287/0.010 0.274/0.000 0.208/0.009 0.268/0.023 0.161/0.030 0.214/0.007 0.129/0.011
(600, 10, 40, 0.5, 20, 200) 0.429/0.031 0.433/0.045 0.466/0.029 0.460/0.037 0.525/0.000 0.435/0.009 0.501/0.102 0.541/0.050 0.407/0.007 0.396/0.052
(600, 20, 50, 0.7, 20, 200) 0.381/0.035 0.390/0.033 0.398/0.027 0.391/0.041 0.357/0.034 0.351/0.010 0.389/0.013 0.352/0.033 0.333/0.008 0.305/0.036

Friedman’s non-parametric tests (results quality) for the 12 new instances
Friedman’s Rank/std 6.0000/2.33 4.5000/1.93 4.2917/2.15 3.95832.30 4.5417/3.34 5.8333/2.45 4.0000/2.91 5.5000/3.02 7.7083/2.56 8.667/1.86

Friedman’s non-parametric tests (results quality) for all the 17 big instances
Friedman’s Rank/std 6.4706/2.79 5.3235/2.42 4.7353/2.33 4.6471/2.55 4.4412/3.25 5.3235/2.94 4.2353/2.80 5.7353/3.17 6.7059/3.74 7.3824/3.89

830

6. A Prospect of Research Opportunities and Open Challenges831

In light of the literature review in Section 2, and the experimentation with832

modern bio-inspired meta-heuristics carried out in Sections 4 and 5, it is unques-833

tionable that bio-inspired computation will play a paramount role in the challeng-834

ing horizon envisioned for this field. In this context, we foresee promising re-835

search directions along diverse axis in the field of community detection with this836

kind of solvers, among which we pause at the following ones:837

• We definitely call for a profound reflection around the computational efficiency838

of bio-inspired solvers when facing network instances of large size. Most re-839

ported works related to this approach have so far addressed controlled problem840

instances of small and medium size (in terms of number of nodes V ). This is841

also the case of the experimental part of this manuscript, which has assessed842

the performance of modern heuristics over networks of up to V = 600 nodes.843
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However, the scales featured by real-world problems can get several orders of844

magnitude higher, which not only hinders the computational efficiency at which845

this family of heuristics perform, but also compromises their convergence prop-846

erties. One possible workaround to this issue is to hybridize message passing847

methods and bio-inspired optimization algorithms. These methods have been848

applied in several previous studies, such as [92], in which the so-called APCOM849

(affinity propagation for community finding) scheme is applied to network par-850

tition problems. Another inspiring study is [197], in which the application of851

Belief Propagation (that can be regarded as a message passing scheme) and the852

so-called Cavity Method is explored; or the research in [160], which delves into853

such an approach for weighted community detection. We firmly believe that a854

step further should be taken in the development of solvers for this problem by855

delving into the hybridization of concepts coming from different worlds, such856

as the bio-inspired computation and message passing methods. Besides the857

straightforward benefits in terms of efficiency, exchanging messages among lo-858

cally implemented heuristics over the network can be regarded as an ad-hoc,859

graph-sensitive flavor of distributed Evolutionary Algorithms [60], which may860

yield additional profits in terms of convergence speed and local optima avoid-861

ance [156]. Other inherently distributed heuristics also deserve further atten-862

tion, such as Stochastic Diffusion Search [36] which, in addition, can help ob-863

tain theoretical insights on its performance as a community search algorithm864

thanks to its solid theoretical framework.865

• In line with our postulations above, future research efforts in community parti-866

tion with bio-inspired heuristics should also account for tools and frameworks867

arising in other disciplines of knowledge, not necessarily related to Computer868

Science whatsoever. For instance, an interesting research path can be discerned869

in regards to the Nobel-winning Matching Theory framework [112, 152], which870

unleashes a number of centralized and distributed matching algorithms – e.g.871

the renowned Gale-Shapley’s Deferred Acceptance algorithm [49] – that can872

be adapted to enable an efficient framework for hierarchical community detec-873

tion over graphs. To this end, a formulation of the utility function (preference)874

of a generic node with respect to another should be undertaken to properly es-875

tablish the criterion to associate nodes to each other. Furthermore, caveats such876

as the eventual existence of inter-dependencies between the players preferences877

(externalities) and its consequences in terms of matching stability should be878

considered and resolved over the graph, for instance by circumscribing the util-879

ity computation and subsequent matching process to local contexts of the node880
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at hand as per a measure of reachability with respect to the rest of nodes in the881

network. Another possible research avenue worth exploring in the future is the882

adoption of graph-theoretic elements that have hitherto been overseen by the883

heuristic community, such as the concept of group-level centrality [145], the884

dispersion among pair of nodes [10], or the rich club phenomenon [118], with885

potential implications in the discovery of hierarchical communities. Surely the886

ever-growing substrate of graph-theoretic measures that continuously emerge887

from the literature will stimulate new ad-hoc solvers trading their meta-heuristic888

nature for a best performance in complex community partition tasks.889

• In partial consonance with the previous point, the main conclusion drawn from890

the third stage of our experiments (“No community detection algorithm per-891

forms best in each and every network instance”) concurs with the postulates892

of the No Free Lunch Theorem for optimization [181], and confronts a con-893

troversial trend noted in the community toward claiming that the performance894

of newly proposed bio-inspired meta-heuristics is superior for a problem rather895

than for the instances considered in the study. Generalizing the so-claimed su-896

periority of a bio-inspired algorithm to any new problem instance, however,897

requires more exhaustive experiments than those usually reported in related898

studies.899

For this reason, we decidedly advocate for problem-solving strategies similar900

to those adopted in already existing tools for community detection, such as901

SurpriseMe [3]. This exemplified tool integrates a set of community detection902

algorithms (all hinging on the Surprise metric), which are applied sequentially903

for a given network instance under test. The solution scoring the highest metric904

value is then selected no matter which particular community detection algo-905

rithm that produced it. This search strategy implicitly acknowledges that no906

community detection algorithm can be declared to perform best for any net-907

work instance to be analyzed. Given the empirical results of our experiments908

in this overview, we encourage the community to pursue research towards the909

development of more bio-inspired community detection algorithms for their in-910

clusion in this type of integrated tools, instead of misleadingly racing to achieve911

superior performance scores over limited experimental setups.912

• Placing again the computational issues derived from processing massive net-913

works under the spotlight, a bio-inspired paradigm of utmost applicability fo-914

cuses on imprinting modifications to classical optimization heuristics aimed915

at coping with problem formulations comprising a high number of variables.916
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This portfolio of new optimization algorithms, collectively referred to as large-917

scale global optimization, can unchain unprecedented approaches to commu-918

nity detection in massive networks composed by thousands of nodes. In this919

context, methods such as the Multiple Offspring Sampling [97] or SHADEILS920

[124] should be explored for this optimization task. Another option to simul-921

taneously alleviate the computational complexity of the solver and improve its922

performance can be found within the area of cooperative co-evolutionary al-923

gorithms [116], which could divide the community partition problem into two924

different subproblems (for instance, one resolving the optimal partitioning of925

the network, the other for the overlapping between such communities), each926

endowed with a sub-population evolved along generations of the search heuris-927

tic. An additional research trend related to computational efficiency would be928

the design and implementation of self-adaptive solvers [91], capable of modi-929

fying and selecting the most appropriate optimization criteria and/or parametric930

configuration of the solver during the search process. All in all, we foresee that931

these heuristic variants, along with their implementation over Big Data frame-932

works for massive data processing such as Apache Hadoop or Spark could sig-933

nificantly boost the adoption of bio-inspired heuristics for community partition934

over large-scale graphs.935

• The community has lately moved forward to formulate sophisticated variants936

of the community detection problem, always in an attempt at reliably modeling937

real-life applications for which an increased insight on the unveiled commu-938

nity structure is sought. This rationale is indeed the core of relatively recent939

directions in the field, such as 1) the incorporation of multiple objectives to ac-940

count for e.g. the balance between internal and external connectivity of clusters941

[17, 203, 207]; 2) challenging graphs instances such as dynamic networks [48]942

or bipartite graphs [166]; or 3) new clustering quality indicators, evolved from943

classical ones to better reflect certain aspects of the inferred community struc-944

ture (such as Surprise, which was proposed as a well-behaved clustering metric945

for community distributions of varying size [2]; or Fuzzy Modularity Maxi-946

mization for fuzzy community detection in overlapping networks [163]). Many947

other examples beyond this excerpt of alternative problem formulations still re-948

main far less addressed in the literature (such as the discovery of motifs [18] or949

the partitioning of multi-layered network structures [21]), thereby opening up950

an uncharted research niche for the application of bio-inspired heuristics.951
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7. Conclusions952

This manuscript has gravitated on community detection problems over net-953

works through the perspective of bio-inspired optimization. First, we have briefly954

reviewed the recent history of this field, highlighting some of the most valu-955

able works published in last years with a focus on modern bio-inspired solvers.956

This literature overview has been complemented by the empirical insights drawn957

from a comprehensive experimental study focused on detecting communities over958

weighted directed graphs. The discovery of optimal partitions is modeled as959

an optimization problem driven by an adaptation of the well-known modularity960

measure to accommodate the directional and weighted nature of the edges of the961

network. Seven different bio-inspired heuristics have been adapted to efficiently962

tackle the formulated optimization problem, namely, Water Cycle Algorithm, Par-963

ticle Swarm Optimization, Cuckoo Search, Firefly Algorithm, Bat Algorithm,964

Evolutionary Simulated Annealing and Population-based Variable Neighborhood965

Search. Furthermore, two different similarity measures have been used as a core966

component of eight heterogeneous distance-based movement operators: Normal-967

ized Mutual Information (NMI) and Hamming Distance. In overall, 19 different968

solving schemes have been developed for the aforementioned problem, which re-969

sult from combinations of the search heuristics, similarity functions and move-970

ment operators.971

The performance of these techniques has been assessed and compared over a972

benchmark of 24 network instances of small size (from 35 to 75 nodes), as well as973

over five instances of larger size comprising up to 500 nodes. NMI with respect to974

their ground of truth partition has been adopted as the comparison criterion. The975

obtained results have revealed that BA with heuristic operators and using NMI as976

its similarity measure dominates the benchmark. A third experimentation has been977

carried out with the main goal of confirming that bio-inspired approaches can be978

competitive with respect to other established community detection methods. To do979

that, six different community detection algorithms have been used for comparison980

over 17 LFR big instances composed by 100 to 600 nodes.981

An interesting outcome of this last set of experiments is that no clear win-982

ning algorithm outstands over the considered network instances. This finding is in983

consonance with the strategy followed by existing tools for community detection,984

which rely on the sequential application of different solvers in search for the one985

performing best in terms of the considered fitness function. In order to quantita-986

tively support this statement, we have analyzed the mean and standard deviation of987

the rankings of all the compared algorithms. As we now conclude in the end of the988
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experimental section of the paper, such ranking statistics confirm two interesting989

claims:990

1. The proposed bio-inspired algorithms perform on average better than standard991

solvers in some network instances, particularly with highly overlapping com-992

munities.993

2. Considering the high variability of the algorithms rankings across network in-994

stances, there is no clear winner in the benchmark.995

This two-fold conclusion is among the research directions that conclude this996

overview, summarizing our envisioned future of the field. We have identified997

several inspiring challenges and opportunities which should congregate most of998

the global research efforts in the coming years. Among them, we advocate for999

the synergistic hybridization of solvers developed by graph theorists and experts1000

in meta-heuristics along the years. It is in the mixture and complementarity of1001

technical approaches from different disciplines where the community may find1002

most of the potential to undertake network partitioning problems of unprecedented1003

complexity. For this to occur, we eagerly call for more efforts invested in research1004

areas such as Game Theory, message passing algorithms, distributed Evolutionary1005

Computation, many-objective optimization and large-scale global optimization,1006

with an emphasis on blending such disciplines in real-world network instances1007

and problem formulations.1008

We unequivocally foresee an exciting future for the community in this research1009

avenue, which we should face just like edges of a network: by connecting together1010

multifaceted knowledge disciplines.1011
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