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MULTILINEAR SINGULAR INTEGRALS ON NON-COMMUTATIVE Lp SPACES

FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

Abstract. We prove Lp bounds for the extensions of standard multilinear Calderón-
Zygmund operators to tuples of UMD spaces tied by a natural product structure. The
product can, for instance, mean the pointwise product in UMD function lattices, or the
composition of operators in the Schatten-von Neumann subclass of the algebra of bounded
operators on a Hilbert space. We do not require additional assumptions beyond UMD on
each space – in contrast to previous results, we e.g. show that the Rademacher maximal
function property is not necessary. The obtained generality allows for novel applications.
For instance, we prove new versions of fractional Leibniz rules via our results concerning
the boundedness of multilinear singular integrals in non-commutative Lp spaces. Our
proof techniques combine a novel scheme of induction on the multilinearity index with
dyadic-probabilistic techniques in the UMD space setting.

1. Introduction

A Banach space X has the UMD property if any X-valued martingale difference se-
quence converges unconditionally in Lp for some (equivalently, all) p ∈ (1,∞). Standard
examples of UMD spaces are provided by the reflexive Lp function spaces, as well as the
reflexive Schatten-von Neumann subclasses Sp of the algebra of bounded operators on a
Hilbert space. The works by Burkholder [2] and Bourgain [1] yield an alternative char-
acterization: X is a UMD space if and only if singular integrals, in particular the Hilbert
transform, admit an Lp(X)-bounded extension. Such equivalence, albeit striking, is not so
surprising when viewed from the modern dyadic-probabilistic perspective on singular
integral operators. Indeed, Petermichl [43, 44] realized that the Hilbert transform lies in
the convex hull of certain dyadic operators akin to martingale transforms (the so-called
dyadic shifts), while Hytönen [28] extended this representation to general singular inte-
gral operators of Calderón-Zygmund type, relying on a probabilistic construction. These
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results have roots in the pioneering work of Figiel [13] and on the probabilistic approach
of Nazarov–Treil–Volberg to non-homogeneous Tb theorems [41].

The theory of linear singular integrals on Banach spaces,beyond its intrinsic interest,has
historically been motivated by its interplay with several related areas, such as geometry
of Banach spaces [31, 32], elliptic and parabolic regularity theory [3, 47], the theory of
quasiconformal mappings [15]. Furthermore, vector-valued bounds may often be used
in the pursuit of their multi-parameter analogs [22, 27].

In this article, we are concerned with Banach-valued extensions of multilinear singular
integral operators. A linear singular integral takes the general form

T f (x) =

ˆ

Rd
K(x, y) f (y) dy,

where different assumptions on the kernel K lead to important classes of linear transfor-
mations arising across pure and applied analysis. The term singular integral refers just to
the underlying kernel structure – a Calderón-Zygmund operator is a bounded singular

integral operator. A heuristic model of an n-linear singular integral operator T in Rd is
then obtained by setting

T( f1, . . . , fn)(x) = U( f1 ⊗ · · · ⊗ fn)(x, . . . , x), x ∈ Rd, fi : Rd → C,

where U is a linear singular integral operator in Rnd. For the basic theory see e.g.
Grafakos–Torres [18].

Multilinear singular integrals arise naturally from applications to partial differential
equations, complex function theory and ergodic theory, among others. Focusing on the
results of greater significance for the present work, we mention that Lp estimates for the
fractional derivative of a product, often referred to as fractional Leibniz rules, are widely
employed in the study of dispersive equations starting from the work of Kato and Ponce
[33], descend from the multilinear Hörmander-Mihlin multiplier theorem of Coifman-
Meyer [4]. The bilinear Hilbert transform is a prime example of a modulation invariant
bilinear Calderón-Zygmund operator. It rose to prominence with Calderón’s first com-
mutator program, and has been featured as a model operator in the study of bilinear
ergodic averages; the latter connection is expounded in e.g. [11]. Proving Lp estimates for
the bilinear Hilbert transform in the Lacey-Thiele framework [34, 35] involves a decom-
position into single trees, which are essentially modulated bilinear Calderón-Zygmund
operators.

Vector-valued extensions of multilinear Calderón-Zygmund operators have mostly
been studied within the more restrictive framework of ℓp spaces and function lattices.
Boundedness of these extensions is classically obtained through weighted norm inequal-
ities, more recently in connection with localized techniques such as sparse domination:
see [16] and the more recent [6, 37, 42] for a non-exhaustive overview of their interplay.
The paper [10], by Y. Ou and one of us, contains a bilinear multiplier theorem which
applies to certain non-lattice UMD spaces. The approach of [10] is based on a localization
of the UMD-valued tent space norms, see for instance [23], within the Carleson embed-
ding framework of Do and Thiele [12]. The tent space techniques lead to the additional
assumption of Lp estimates for a certain analogue of the Hardy-Littlewood maximal op-
erator obtained by replacing uniform bounds with randomized, or R-bounds, see e.g.
[47] for a definition. This assumption, usually referred to as the RMF property of X, dates
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back to the work of Hytönen, McIntosh and Portal on the vector-valued Kato square root
problem [21], and is in fact necessary for the X-valued Carleson embedding theorem to
hold [20].

In this article, we obtain vector-valued extensions of multilinear singular integrals
to tuples of UMD spaces tied by a natural product structure, such as that of pointwise
product in UMD function lattices or, more generally in fact, that of composition within the
Schatten-von Neumann classes. We do not require additional conditions on the spaces
involved – in particular, we do not require the RMF property. Thus, we are able to
extend multilinear Calrerón–Zygmund operators to natural tuples of non-commutative
Lp spaces – a result which does not seem attainable via abstract theorems involving
multilinear RMF type assumptions. A motivating corollary is a version of the fractional
Leibniz rule for products of Schatten-von Neumann class-valued functions.

In contrast to [10, 21, 23], our techniques are dyadic-probabilistic: a multilinear version
of the representation theorem of Hytönen [28], which appeared in the bilinear case in
[39] by Y. Ou and three of us, reduces the problem to the boundedness of the extensions
of a class of multilinear dyadic model operators, namely paraproducts and multilinear
dyadic shifts of arbitrary complexity. The novelty lies in how we treat these operators –
multilinearity poses significant problems in the vector-valued setup.

We note that UMD-valued extensions of bilinear, complexity zero dyadic shifts have
implicitly been treated in the work by Hytönen, Lacey and Parissis on the UMD dyadic
model of the bilinear Hilbert transform [30, Section 6]. The simple approach of [30] does
not extend to either the higher complexity or the multilinear cases. We tackle the n-linear
case by inducting suitably on the linearity, which is made possible by associating to our n-
tuples of UMD spaces a collection of related m-tuples, m < n. The framework is carefully
designed to allow us to treat non-commutative theory. Moreover, bilinear theory would
not reveal all the difficulties and is, in fact, strictly easier – a feature that is also present in
our followup paper [9] involving operator-valued multilinear analysis. Before providing
further insights on the novelty of our proof techniques, and comparisons to previous
approaches, we give the statements of our main results.

1.1. Main results. We start by discussing a simpler question, where the current literature
already has some restrictions that we can lift. If X is a Banach space and T is an n-linear

integral operator on Rd acting on n-tuples of functions in L∞c (Rd), we may let T act on

(L∞c (Rd) ⊗ X) × L∞c (Rd) × · · · × L∞c (Rd) by

T
(

f1, f2, . . . , fn
)

(x) =
∑

e1, jT( f1, j, f2, . . . , fn)(x), x ∈ Rd,

f1 =
∑

e1, j f1, j, f1, j ∈ L∞c (Rd), e1, j ∈ X.

A basic thing implied by our methods is that n-linear Calderón-Zygmund operators
extend boundedly when applied to one UMD-valued function and n − 1 scalar func-
tions, without any additional assumption on the UMD space. We send to Subsection 2.4
for the precise definition of an n-linear Calderón-Zygmund operator. This is the sim-
plest complete multilinear analogue of Bourgain’s UMD Hörmander-Mihlin multiplier
theorem from [1]; see also Weis [47] and Hytönen-Weis [26] for the operator-valued,
non-translation invariant case.

In the bilinear, translation invariant, operator-valued setting, a related result appeared
in [10, Corollary 1.2] under the assumption, known to be rather restrictive, that X is a UMD
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space with the non-tangential Rademacher maximal function property [21]. Theorem 1.1
shows, in particular, that the latter assumption is unnecessary. However, we formulate the
following more general version to facilitate the discussion below regarding the somewhat
special nature of bilinear theory.

1.1. Theorem. Let X1,X2,Y3 be UMD spaces with an associated product (a bounded bilinear
operator)

X1 × X2 → Y3 : (x1, x2) 7→ x1x2, |x1x2|Y3
≤ |x1|X1

|x2|X2 .

Let n ≥ 2 and T be an n-linear Calderón-Zygmund operator on Rd. The n-linear operator

T
(

f1, f2, . . . , fn
)

(x) =
∑

j1, j2

e1, j1 e2, j2T( f1, j1 , f2, j2 , f3, . . . , fn)(x), x ∈ Rd,

f1 =
∑

j1

e1, j1 f1, j1 , f2 =
∑

j2

e2, j2 f2, j2 f1, j, f2, j ∈ L∞c (Rd), e1, j1 ∈ X1, e2, j2 ∈ X2,

extends to a bounded operator

T : Lp1(Rd; X1)×Lp2(Rd; X2) ×

n∏

k=3

Lp j(Rd)→ Lqn+1(Rd; Y3),

1 < pk ≤ ∞,
1

n
< qn+1 < ∞,

1
qn+1
=

n∑

k=1

1
pk
.

The proof of this model case is an adaptation of the proof of Theorem 3.31 with some
additional observations regarding the bilinear case – see Remark 4.13. This simpler result
also showcases why the genuine n-linear theory that we formulate next is harder than
bilinear theory: the n-linear theory requires us to exploit a more careful product setting
so that we can run our inductive proof. We also note that at least in the basic case
X1 = Y3 = X and X2 = C, Theorem 1.1 can also be seen as a corollary of Theorem 3.31
using Example 3.17. It is simpler to just look at the proof, however.

Our main theorem concerns extensions of n-linear CZO operators T to an n-tuple
X1, . . . ,Xn of UMD Banach spaces lying in an enveloping algebra A, allowing for a
standard definition of (associative, not necessarily abelian) product A × A → A. We
refer to these configurations as UMD Hölder tuples if certain conditions are in place,
in particular, if the n-tuples are associated with suitable collections of related m-tuples,

m < n. If each X j is a subspace ofA, and fk ∈ L∞c (Rd) ⊗ Xk for 1 ≤ k ≤ n, we may define
the extension of a scalar integral operator by

T
(

f1, . . . , fn
)

(x) =
∑

j1,..., jn

T( f1, j1 , . . . , fn, jn)(x)

n∏

k=1

ek, jk , x ∈ Rd,

fk =
∑

jk

ek, jk fk, jk , fk, jk ∈ L∞c (Rd), ek, jk ∈ Xk.

(1.2)

The abstract setup is developed in Section 3. For expository purposes, herein we provide
a statement in a rather general concrete case of a UMD Hölder tuple. In the statement, we
denote by Lp(M) the non-commutative Lp spaces associated to a von Neumann algebra
M endowed with a normal, semifinite, faithful trace τ.
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1.3. Theorem. Let M be a von Neumann algebra endowed with a normal, semifinite, faithful
trace. For s = 1, . . . , S, let (Ms, µs) be measure spaces and for s = 0, . . . , S let

1 < ps
1, . . . p

s
n, q

s
n+1 < ∞,

1

qs
n+1

=

n∑

k=1

1

ps
k

be Banach Hölder tuples. Let

Xk = LpS
k (MS, µs; LpS−1

k (MS−1, µS−1; · · · Lp1
k (M1, µ1; Lp0

k (M)) · · · ), k = 1, . . . , n,

Yn+1 = LqS
n+1(MS, µS; LqS−1

n+1(MS−1, µS−1; · · · Lq1
n+1(M1, µ1; Lq0

n+1(M)) · · · ).
(1.4)

The n-linear operator (1.2) extends to a bounded operator

T :

n∏

k=1

Lpk (Rd; Xk)→ Lqn+1(Rd; Yn+1), 1 < pk ≤ ∞,
1

n
< qn+1 < ∞,

1
qn+1
=

n∑

k=1

1
pk
,

T :

n∏

k=1

L1(Rd; Xk)→ L
1
n ,∞(Rd; Yn+1).

In fact, we have the stronger estimate

|〈T( f1, . . . , fn), fn+1〉| .

∥∥∥∥M
(
| f1|X1

, . . . , | fn|Xn , | fn+1|Y∗
n+1

)∥∥∥∥
1
,

M(g1, . . . , gn+1)(x) ≔ sup
x∈Q

n+1∏

j=1

〈|g j|〉Q, 〈g〉Q≔
1

|Q|

ˆ

Q
g.

(1.5)

The estimate (1.5) is equivalent to a certain sparse bound, see Remark 3.29.

We send to Subsection 3.3 and to the references [7, 8] for more details on sparse
bounds and to [37, 38] for a survey of the weighted inequalities that may be derived as a
consequence.

Theorem 1.3 is obtained as a corollary of Theorem 3.31 using Example 3.21. However,
we remark that, at least to the best of the authors’ knowledge, the spaces (1.4) encompass
all known examples of UMD Banach spaces. We further remark that the mixed norm
structure of the spaces (1.4) prevents from using purely non-commutative tools, as (1.4)
may be interpreted as semi-commutative spaces only if ps

k
does not vary with s for all

1 ≤ k ≤ n; on the other hand, (1.4) are not UMD lattices, so that Theorem 1.3 is out of
reach of purely lattice-type techniques.

Theorems 1.1 and 1.3 can be used to deduce certain weighted multilinear Leibniz
rules in the UMD-valued and non-commutative setting. For simplicity of notation,
we particularize the statements to the bilinear, unweighted, non-endpoint case for the

homogeneous fractional derivative Ds f = F −1(|ξ|s f̂ (ξ)), in the setting of Theorem 1.1. A
variety of formulations may be found e.g. in the article by Grafakos and Oh [17].

1.6. Corollary (Fractional Leibniz rules in UMD spaces). Let X1,X2,Y3 be UMD spaces as

in the statement of Theorem 1.1. For all sufficiently smooth f1 : Rd → X1, f2 : Rd → X2 there
holds

∥∥∥Ds( f1 f2)
∥∥∥

Lq3 (Rd;Y3)
.

∥∥∥Ds f1
∥∥∥

Lp1 (Rd ;X1)

∥∥∥ f2
∥∥∥

Lp2 (Rd;X2)
+

∥∥∥ f1
∥∥∥

Lr1 (Rd ;X1)

∥∥∥Ds f2
∥∥∥

Lr2 (Rd;X2)
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whenever s > d and

1 < p1, p2, r1, r2 ≤ ∞,
1

2
< q3 < ∞,

1
q3
= 1

p1
+ 1

p2
= 1

r1
+ 1

r2
.

Corollary 1.6 appears to be the first instance of a Leibniz type rule in the full vector-
valued setting, with no additional assumptions on the UMD spaces involved. We have
not strived for optimality of the range for the fractional exponent s. While the range
obtained in Corollary 1.6 is wider than what would follow from results of Coifman-

Meyer type, see [17, Remark 1], the extension to the sharp range s > max
{
0, d

(
1
q3
− 1

) }

requires bilinear estimates for kernels which fail to be of the standard CZ type considered
herein. Such estimates are carried out e.g. in [17]: their extension to the full vector-valued
setting is left for future work.

Proof of Corollary 1.6. We follow the beginning of the proof of [17, Theorem 1]. The es-
timate we seek is reduced to a bound for the UMD-valued extension of three different
bilinear paraproducts (meaning suitable parts of a Littlewood–Paley decomposition of
a product of functions – not in the exact sense as we use the word in connection with
dyadic model operators). We note that the symbol of the high-low paraproducts Π1 and
Π2 is of Coifman-Meyer type; therefore Π1,Π2 are bilinear CZO operators as defined
in Subsection 2.4 and Theorem 1.3 applies directly. The high-high term Π3 is a bilinear
integral operator with kernel

K(x, y1, y2) =
∑

m∈Z

ˆ

Rd
23mdφs(2

m(u − x))ψ(2m(u − y1))ψ(2m(u − y2)) du

where ψ is a Schwartz function whose Fourier transform Ψ is supported in an annular
region around the origin and φs = Dsφ for some Schwartz function φ such that its Fourier
transform has compact support containing 0, so that

|φs(x)| . (1 + |x|)−(d+s) , x ∈ Rd.

As s > d for us, this implies that Π3 is a bilinear CZO operator with a kernel K satisfying

‖Π3‖
L3×L3→L

3
2
+ ‖K‖CZ(s−d)/2

. 1,

where ‖K‖CZα is the kernel constant defined in the beginning of Section 2.4. The required
bounds forΠ3 follow from an application of Theorem 1.1. �

1.2. Proof techniques and novelties. A basic example of an n-linear dyadic shift operator
of complexity zero on R, in adjoint form, is

( f1, . . . , fn+1) 7→
∑

m∈Z

εm

ˆ (∏

k∈C

∆m fk(x)
)(∏

k∈N

Em fk(x)
)

dx

where εm are bounded coefficients, and Em and ∆m respectively indicate the conditional
expectation on the m-th dyadic filtration and the corresponding martingale difference,
C ∩ N = ∅ and C ∪ N = {1, . . . , n + 1}, with the key feature that the cardinality of the
cancellative indices C is always at least 2. We approach UMD-valued extensions of the
above forms to (n + 1)-tuples of UMD spaces via a novel induction argument, aimed at
reducing the cardinality of the set of non-cancellative indices N and the linearity of the shift
n at the same time. The induction relies upon a certain structure of the tuples involved,
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which is most easily described in the bilinear, n = 2, case. Loosely speaking, we consider
UMD spaces X1,X2,X3 endowed with a linear functional τ defined on all products e1e2e3,
e j ∈ X j, with the property that

‖e1‖X1
∼ sup
|e2|X2

=|e3 |X3
=1

|τ(e1e2e3)|

and the same holds for all permutations of X1,X2,X3. In combination with the martingale
decoupling inequality of McConnell [40] and Hytönen [29], and Stein’s inequality in UMD
spaces, this structure allows to reduce a trilinear shift form on X1,X2,X3 where, say, 1 ∈ C
and 2 ∈ N, to a bilinear shift form on X1,X

∗
1
, where both indices are cancellative, and

whose boundedness is known from the UMD character of X1. The induction is crucial in
the n-linear case to allow a repeated use of Stein’s inequality.

We remark here that the martingale decoupling has been previously used by Hänninen
and Hytönen [19] in the proof of a T1 theorem for linear singular integrals on UMD spaces
with operator-valued kernels, providing among other results a non-translation invariant
analogue of Weis’s theorem [47]. The multilinear operator-valued theory, together with
a related representation theorem, is the object of forthcoming work by the authors [9].

Acknowledgments. The authors would like to warmly thank Yumeng Ou for fruitful
discussions on the subject of multilinear UMD-valued singular integrals. F. Di Plinio is
grateful to Ben Hayes and Vittorino Pata for enlightening exchanges on factorization in
noncommutative Lp spaces.

2. Definitions and preliminaries

2.1. Vinogradov notation. We write A . B if A ≤ CB for some absolute constant C. The
constant C can at least depend on the dimensions of the appearing Euclidean spaces,
on integration exponents, on the degree of linearity of the multilinear operators, and on
various Banach space constants. We use the notation A ∼ B if B . A . B.

2.2. Dyadic notation. LetD0 be the dyadic lattice in Rd, defined by

D0 = {2
−k([0, 1)d +m) : k ∈ Z,m ∈ Zd}.

We recall the random dyadic grids of Nazarov–Treil–Volberg, see for example [41]. The

version we use here is from [29]. Let Ω = ({0, 1}d)Z and let P be the natural probability
measure on Ω such that the coordinates are independent and uniformly distributed on

{0, 1}d. If Q ∈ D0 and ω = (ωk)k∈Z ∈ Ω, we set

Q + ω≔Q +
∑

k : 2−k<ℓ(Q)

ωk2−k.

The random dyadic lattice Dω on Rd is defined by Dω = {Q + ω : Q ∈ D0}. By a dyadic
latticeDwe mean thatD = Dω for some ω.

Let X be a Banach space. If p ∈ (0,∞] we denote by Lp(X) = Lp(Rd; X) the usual Bochner

space of X-valued functions f : Rd → X. Let D be a dyadic lattice. Suppose Q ∈ D and
f ∈ L1

loc
(X) (the set of locally integrable functions). We use the following notation:

• The side length of Q is denoted by ℓ(Q);
• ch(Q) consists of those Q′ ∈ D such that Q′ ⊂ Q and ℓ(Q′) = ℓ(Q)/2;
• If k ∈ Z, k ≥ 0, then Q(k) denotes the cube R ∈ D such that Q ⊂ R and 2kℓ(Q) = ℓ(R);
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• The average of f over Q is 〈 f 〉Q =
1
|Q|

´

Q f dx, and we also write EQ f = 〈 f 〉Q1Q;

• The martingale difference ∆Q f is ∆Q f =
∑

Q′∈ch(Q) EQ′ f − EQ f ;
• For k ∈ Z, k ≥ 0, define

∆k
Q f =

∑

R∈D
R(k)=Q

∆R f and Ek
Q f =

∑

R∈D
R(k)=Q

ER f.

Haar functions. When Q ∈ Dwe denote by hQ a cancellative L2 normalized Haar function.

This means the following. Writing Q = I1 × · · · × Id we can define the Haar function h
η

Q
,

η = (η1, . . . , ηd) ∈ {0, 1}d, by setting

h
η

Q
= h

η1

I1
⊗ · · · ⊗ h

ηd

Id
,

where h0
Ii
= |Ii|

−1/21Ii
and h1

Ii
= |Ii|

−1/2(1Ii,l
− 1Ii,r

) for every i = 1, . . . , d. Here Ii,l and Ii,r

are the left and right halves of the interval Ii respectively. If η , 0 the Haar function is

cancellative:
´

h
η

Q
= 0. We usually exploit notation by suppressing the presence of η, and

simply write hQ for some h
η

Q
, η , 0.

Notice that if f ∈ L1
loc

(X), then ∆Q f =
∑
η,0〈 f, h

η

Q
〉h
η

Q
, or suppressing the η summation,

∆Q f = 〈 f, hQ〉hQ. Here 〈 f, hQ〉 =
´

f hQ.

2.3. Definitions and properties related to Banach spaces. An extensive treatment of
Banach space theory is given in the books [24, 25] by Hytönen, van Neerven, Veraar and
Weis.

We say that {εk}k is a collection of independent random signs, where k runs over some index
set, if there exists a probability space (M, µ) so that ε : M→ {−1, 1}, {εk}k is independent
and µ({εk = 1}) = µ({εk = −1}) = 1/2. Below, {εk}k will always denote a collection of
independent random signs.

Suppose X is a Banach space. We denote the underlying norm by | · |X. The Kahane-
Khintchine inequality says that for all x1, . . . , xM ∈ X and p, q ∈ (0,∞) there holds that

(
E

∣∣∣∣
M∑

m=1

εmxm

∣∣∣∣
p

X

)1/p
∼

(
E

∣∣∣∣
M∑

m=1

εmxm

∣∣∣∣
q

X

)1/q
.

We also denote

‖(xm)‖Rad(X)≔

(
E

∣∣∣∣
∑

εmxm

∣∣∣∣
2

X

)1/2
.

The Kahane contraction principle says that if (am)M
m=1

is a sequence of scalars and p ∈ (0,∞],
then

(2.1)
(
E

∣∣∣∣
M∑

m=1

εmamxm

∣∣∣∣
p

X

)1/p
. max |am|

(
E

∣∣∣∣
M∑

m=1

εmxm

∣∣∣∣
p

X

)1/p
.

Actually, if p ∈ [1,∞] and am ∈ R, then (2.1) holds with “≤” in place of “.”, see [24] for
more details.
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A Banach space X is said to be a UMD space if for all p ∈ (1,∞), all X-valued Lp-

martingale difference sequences (d j)
k
j=1

and signs ǫ j ∈ {−1, 1} there holds that

(2.2)
∥∥∥∥

k∑

j=1

ǫ jd j

∥∥∥∥
Lp(X)

.

∥∥∥∥
k∑

j=1

d j

∥∥∥∥
Lp(X)

.

Here the Lp(X)-norm is with respect to the measure space where the martingale differences
are defined. If the estimate (2.2) holds for one p0 ∈ (1,∞), then it holds for all p ∈ (1,∞).

A version for UMD-valued functions of Stein’s inequality concerning conditional ex-
pectations is due to Bourgain. For a proof, see for example [24, Theorem 4.2.23]. For our
purposes we formulate the estimate in the following way. Suppose X is a UMD space

and let D ⊂ Rd be a dyadic lattice. Suppose that for each Q ∈ D we have a function
fQ ∈ L1

loc
(X) supported in Q (such that only finitely many of them are non-zero). Then for

all p ∈ (1,∞) there holds that

(2.3) E

∥∥∥∥
∑

Q∈D

εQ〈 fQ〉Q1Q

∥∥∥∥
Lp(X)

. E

∥∥∥∥
∑

Q∈D

εQ fQ

∥∥∥∥
Lp(X)

.

The decoupling inequality. We record a special case of the decoupling estimate [19, Theorem
6] by Hänninen–Hytönen. These decoupling estimates originate from McConnell [40],
but see also Hytönen [29].

Let D be a dyadic lattice in Rd and Q ∈ D. LetVQ be the probability measure space

VQ = (Q,Leb(Q), |Q|−1 dx⌊Q), where Leb(Q) is the set of Lebesgue measurable subsets of

Q and |Q|−1 dx⌊Q is the normalized Lebesgue measure restricted to Q. Define the product
probability spaceV =

∏
Q∈DVQ, and let ν be the related measure. If y ∈ V, we denote

the coordinate related to Q ∈ D by yQ.
Suppose X is a UMD space, p ∈ (1,∞) and f ∈ Lp(X). Let k ∈ {0, 1, 2, . . . } and j ∈

{0, . . . , k}. DefineD j,k ⊂ D by

(2.4) D j,k = {Q ∈ D : ℓ(Q) = 2m(k+1)+ j for some m ∈ Z}.

[19, Theorem 6] implies that

(2.5)

ˆ

Rd

∣∣∣∣
∑

Q∈D j,k

∆l
Q f (x)

∣∣∣∣
p

X
dx ∼ E

ˆ

Rd

ˆ

V

∣∣∣∣
∑

Q∈D j,k

εQ1Q(x)∆l
Q f (yQ)

∣∣∣∣
p

X
dν(y) dx

for any l ∈ {0, 1, . . . , k}. The point of dividing to the subcollections D j,k is that now ∆l
Q

f

is constant on every Q′ ∈ D j,k such that Q′ ( Q, which is required by the decoupling

theorem (together with the fact that
´

∆l
Q

f = 0 and spt∆l
Q

f ⊂ Q).

2.4. Multilinear singular integrals and model operators. A function

K : Rd(n+1) \ ∆→ C, ∆ = {x = (x1, . . . , xn+1) ∈ Rd(n+1) : x1 = · · · = xn+1},

is called an n-linear basic kernel if for some α ∈ (0, 1] and CK < ∞ it holds that

|K(x)| ≤
CK

(∑n+1
m=2 |x1 − xm|

)dn
,



10 FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

and for all j ∈ {1, . . . , n + 1} it holds that

|K(x) − K(x′)| ≤ CK

|x j − x′
j
|α

(∑n+1
m=2 |x1 − xm|

)dn+α

whenever x = (x1, . . . , xn+1) ∈ Rd(n+1) \ ∆ and x′ = (x1, . . . , x j−1, x
′
j
, x j+1, . . . xn+1) ∈ Rd(n+1)

satisfy

|x j − x′j| ≤ 2−1 max
2≤m≤n+1

|x1 − xm|.

The best constant CK is called ‖K‖CZα .
An n-linear operator T defined on a suitable class of functions (e.g. on the linear

combinations of cubes) is an n-linear singular integral operator (SIO) with an associated
kernel K, if we have

〈T( f1, . . . , fn), fn+1〉 =

ˆ

Rd(n+1)
K(xn+1, x1, . . . , xn)

n+1∏

j=1

f j(x j) dx

whenever spt fi ∩ spt f j = ∅ for some i , j.
We say that T is an n-linear Calderón–Zygmund operator (CZO) if the following conditions

hold:

• T is an n-linear SIO.
• We have that for all m ∈ {0, . . . , n} there holds that

‖Tm∗(1, . . . , 1)‖BMO≔ sup
D

sup
K0∈D

( 1

|K0|

∑

K∈D
K⊂K0

|〈Tm∗(1, . . . , 1), hK〉|
2
)1/2

< ∞,

where the first supremum is taken over all dyadic lattices D. Here T0∗≔T, Tm∗

denotes the mth adjoint of T for m ∈ {1, . . . , n}, and the pairings 〈Tm∗(1, . . . , 1), hK〉

have a standard T1 type definition with the aid of the kernel K.
• We have that

‖T‖WBP≔ sup
D

sup
Q∈D

|Q|−1|〈T(1Q, . . . , 1Q), 1Q〉| < ∞.

An SIO T is a CZO if and only if

(2.6) ‖T( f1, . . . , fn)‖Lqn+1 (Rd) .

n∏

m=1

‖ fm‖Lpm (Rd)

for some (equivalently for all) exponents p1, . . . , pn ∈ (1,∞), qn+1 ∈ (1/n,∞) satisfying∑n
m=1 1/pm = 1/qn+1. While such a T1 theorem is well-known (see e.g. [9, 18, 39]), we will

need a very precise version of this called a dyadic representation theorem. To this end,
we need some definitions.

Let k = (k1, . . . , kn+1), 0 ≤ ki ∈ Z, and letD be a dyadic lattice inRd. An operator S = Sk
D

is called an n-linear dyadic shift if it has the form

(2.7) S( f1, . . . , fn) =
∑

K∈D

AK( f1, . . . , fn),
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where

AK( f1, . . . , fn) =
∑

Q1,...,Qn+1∈D

Q
(kj)

j
=K

aK,(Q j)

n∏

j=1

〈 f j, h̃Q j
〉̃hQn+1

.

Here aK,(Q j) = aK,Q1,...,Qn+1
is a scalar satisfying the normalization

|aK,(Q j)| ≤

∏n+1
j=1 |Q j|

1/2

|K|n
,

and there exist two indices j0, j1 ∈ {1, . . . , n+ 1}, j0 , j1, so that h̃Q j0
= hQ j0

, h̃Q j1
= hQ j1

and

h̃Q j
= h0

Q j
if j < { j0, j1}.

An n-linear dyadic paraproduct π = πD also has n + 1 possible forms, but there is no
complexity (the k = (k1, . . . , kn+1)) associated to them. One of the forms is

π( f1, . . . , fn) =
∑

K∈D

aK

n∏

j=1

〈 f j〉KhK,

where the coefficients satisfy the BMO condition

(2.8) sup
K0∈D

( 1

|K0|

∑

K∈D
K⊂K0

|aK|
2
)1/2
≤ 1.

This is the paraproduct associated with the tuple (1K/|K|, . . . , 1K/|K|, hK), and in the re-
maining n alternative forms the hK is in a different position.

We call shifts and paraproducts dyadic model operators (DMOs). Suppose T is an n-linear

Calderón-Zygmund operator in Rd related to a kernel K. If f1, . . . , fn+1 are, say, Ln+1(Rd)
functions, then the representation theorem states that

(2.9) 〈T( f1, . . . , fn), fn+1〉 = CTEω

∞∑

k1,...,kn+1=0

∑

u

2−max kiα/2〈Uk
Dω,u

( f1, . . . , fn), fn+1〉.

Here

|CT| .

n∑

m=0

‖Tm∗(1, . . . , 1)‖BMO + ‖T‖WBP + ‖K‖CZα

. ‖T‖Ln+1×···×Ln+1→L(n+1)/n + ‖K‖CZα ,

α is the parameter in the Hölder continuity assumptions of the kernel of T, and the sum

over u is finite, say, over u = 1, 2, . . . ,C(n, d). If max ki > 0, then Uk
Dω,u

is some dyadic

shift Sk
Dω

of complexity k with respect to the latticeDω. If max ki = 0, then Uk
Dω,u

is a shift

of complexity zero or a paraproduct. In this sense, a CZO T can be represented using
DMOs. For n = 2, a proof of this result is given by three of us and Y. Ou in [39]. The
n-linear case for general n, which requires certain modifications, is [9, Theorem 6.3]. The
reference [9, Theorem 6.3] is a more general theorem involving operator-valued CZOs.
We note that the additional assumptions related to the operator-valued setup, such as
the RMF assumption, concern only the estimation of the model operators. They are not
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needed for the above stated structural theorem, which has essentially the same proof in
the scalar-valued and operator-valued settings.

As DMOs satisfy Lp estimates in the full expected range of exponents, the T1 theorem
follows from the representation theorem. Our main task in this paper will be to prove
Lp-bounds for the extensions of n-linear DMOs to suitably defined tuples of UMD spaces,
which we term UMD Hölder tuples and define in the subsequent section.

3. UMD Hölder tuples and the boundedness of multilinear SIOs

Throughout this section, and the remainder of the article, we make use of the follow-
ing notational conventions. For m ∈ N we write Jm≔{1, . . . ,m} and denote the set of
permutations of J ⊂ Jm by Σ(J). We simply write Σ(m) in place of Σ(Jm). We say that
p1, . . . , pm is a Hölder tuple of exponents if

(3.1) 1 < p1, . . . , pm < ∞,

m∑

j=1

1
p j
= 1.

3.1. UMD Hölder tuples. The notion of UMD Hölder tuple involves fixing an associative
algebra A over C. We denote the associative operation A × A → A by the product
notation, that is, we write (e, f ) 7→ e f . In the abstract definition, we do not find useful
forA itself to be endowed with a topology; on the other hand, we will work with linear
subspaces ofA endowed with a Banach norm.

We assume that there exists a subspace L1 of A and a linear functional τ : L1 → C,
which we refer to as trace.

Given an m-tuple (X1, . . . ,Xm) of Banach subspaces ofA, we construct the seminorm

(3.2) |e|Y(X1 ,...,Xm) = sup



∣∣∣∣∣∣∣
τ


e

m∏

ℓ=1

eσ(ℓ)




∣∣∣∣∣∣∣
: σ ∈ Σ(m), |e j|X j

= 1, j = 1, . . . ,m



on the subspace

(3.3) Y(X1, . . . ,Xm) =

e ∈ A : e

m∏

ℓ=1

eσ(ℓ) ∈ L
1 ∀σ ∈ Σ(m), e j ∈ X j, j = 1, . . . ,m



of A. The next lemma clarifies the intent of definition (3.2): if | · |Z is a seminorm such
that all (m + 1)-linear forms on X1 × · · · × Xm × Z in (3.5) below are bounded, then the
Z-seminorm dominates the seminorm Y(X1, . . . ,Xm).

3.4. Lemma. Let (X1, . . . ,Xm) be a m-tuple of Banach subspaces of A. Suppose that e ∈ A
belongs to the subspace (3.3). Then

(3.5)

∣∣∣∣∣∣∣
τ


e

m∏

ℓ=1

eσ(ℓ)




∣∣∣∣∣∣∣
≤ |e|Z

m∏

j=1

|e j|X j
, ∀σ ∈ Σ(m), e j ∈ X j, j = 1, . . . ,m,

holds for |e|Z = |e|Y(X1,...,Xm). In addition, if | · |Z is a seminorm on A such that (3.5) holds,
|e|Y(X1,...,Xm) . |e|Z.

Proof. Immediate from the definitions. �



MULTILINEAR SINGULAR INTEGRALS ON NON-COMMUTATIVE Lp SPACES 13

3.6. Definition (Admissible spaces). We say that a Banach subspace X ofA is admissible

if Y(X) from (3.3) is a Banach space with respect to | · |Y(X) of (3.2)1, the map

(3.7) y ∈ Y(X) 7→ x∗[y] ∈ X∗, x∗[y](x) = τ(yx), x ∈ X,

is onto, and furthermore, for each x ∈ X, y ∈ Y(X), xy ∈ L1 and

(3.8) τ(xy) = τ(yx).

3.9. Remark. If X is admissible, then the map (3.7) is an isometric bijection from Y(X) onto
X∗. We are thus allowed to identify Y(X) with X∗ via (3.7) and we do so without explicit
mention from now on. Notice that if X is admissible, then X is a UMD space if and only
if Y(X) is.

For our purposes, it is convenient to state the next observation in the form of a lemma.

3.10. Lemma. Let X be admissible and reflexive. If Y(X) is also admissible, then Y(Y(X)) = X as
sets and |x|Y(Y(X)) = |x|X for all x ∈ X.

Proof. The reflexivity of X and Remark 3.9 imply that Y(Y(X)) is isometrically isomorphic
with X. Here we want to show that they are actually equal as sets with equal norms.
Denote Y≔Y(X) and Z≔Y(Y). It follows quite directly from the definitions that X is a
subset of Z.

Let ϕ : X∗ → Y be the isometric isomorphism from the definition of the admissibility
of X. This induces the isometric isomorphism φ : X∗∗ → Y∗ defined by

φ(x∗∗)(y)≔x∗∗(ϕ−1(y)),

where x∗∗ ∈ X∗∗ and y ∈ Y. Since X is reflexive and Y is admissible, we have the canonical
isometric isomorphism ρ : X→ X∗∗ and the isometric isomorphism η : Y∗ → Z. Now, the
composition η ◦ φ ◦ ρ : X→ Z is an isometric isomorphism.

Suppose x ∈ X and denote z≔η ◦ φ ◦ ρ(x). Let y ∈ Y. Then we have that

τ(zy) = η−1(z)(y) = φ−1 ◦ η−1(z)(ϕ−1(y)) = ϕ−1(y)(ρ−1 ◦ φ−1 ◦ η−1(z)) = τ(xy).

Since x and z are both elements of Z, the fact that τ(zy) = τ(xy) for all y ∈ Y implies that
x = z. Thus, the isometric isomorphism η ◦φ ◦ ρ : X→ Z is actually the identity map. �

If X,X1, . . . ,Xm are Banach spaces we write X = Y(X1, . . . ,Xm) to mean that X and
Y(X1, . . . ,Xm) coincide as sets, Y(X1, . . . ,Xm) is a Banach space with the norm | · |Y(X1,...,Xm),
and that the norms are equivalent, that is, |x|X ∼ |x|Y(X1 ,...,Xm) for all x ∈ X.

We turn to defining UMD Hölder m-tuples relatively toA, τ. We first do so for m = 2.

3.11. Definition (UMD Hölder pair). Let X1, X2 be admissible spaces. We say that {X1,X2}

is a UMD Hölder pair if X1 is a UMD space and X2 = Y(X1). In view of Remark 3.9 and
Lemma 3.10 one can equivalently say that {X1,X2} is a UMD Hölder pair if X2 is a UMD
space and X1 = Y(X2).

For m ≥ 3 the definition of a UMD Hölder m-tuple is given inductively on m as follows.

3.12. Definition (UMD Hölder m-tuple, m ≥ 3). Let X1, . . . ,Xm be admissible spaces. We
say that {X1, . . . ,Xm} is a UMD Hölder m-tuple if the following properties hold.

1This includes that if y ∈ Y(X) then |y|Y(X) < ∞.
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P1. For all j0 ∈ Jm there holds

X j0 = Y
({

X j : j ∈ Jm \ { j0}
})
.

P2. If 1 ≤ k ≤ m−2 andJ = { j1 < j2 < · · · < jk} ⊂ Jm, then Y(X j1 , . . . ,X jk) is an admissible
Banach space with the norm (3.2) and

(3.13) {X j1 , . . . ,X jk ,Y(X j1 , . . . ,X jk )}

is a UMD Hölder (k + 1)-tuple.

The following remark is an important consequence of the definition.

3.14. Remark. Let m ≥ 3 and {X1, . . . ,Xm} be a UMD Hölder m-tuple. Then according to
P2 the pair {X j0 ,Y(X j0)} is a UMD Hölder pair, which by Definition 3.11 implies that X j0
and Y(X j0) are UMD spaces. The inductive nature of the definition then ensures that each
Y(X j1 , . . . ,X jk ) appearing in (3.13) is a UMD space.

3.15. Remark. Let m ≥ 2 and {X1, . . . ,Xm} be a UMD m-Hölder tuple. Let e j ∈ X j for j ∈ Jm.

For each σ ∈ Σ(m), as Xσ(1) = Y(Xσ(2), . . . ,Xσ(m)), we necessarily have
∏m

j=1 eσ( j) ∈ L
1 and

|τ(eσ(1) · · · eσ(m))| ≤ |eσ(1)|Y(Xσ(2),··· ,Xσ(m))

m∏

j=2

|eσ( j)|Xσ( j)
=

m∏

j=1

|e j|X j
.

We clarify the extent of our definition with some examples of UMD Hölder tuples.

3.16. Example. It is immediate to verify that the m-tuple X j = C, j = 1, . . . ,m, is a UMD
Hölder m-tuple with respect to the usual product.

The next example is of relevance if one wants to deduce Theorem 1.1 in the basic case
X1 = Y3 = X and X2 = C from Theorem 3.31. However, otherwise we do not need it, and
Theorem 1.1 is best seen mimicking our main proofs.

3.17. Example. Let X = X1 be a complex UMD space and denote X2 = X∗. The goal of
this example is to show that for each m ≥ 2 the tuple {X1,X2, . . . ,Xm} with X j = C for
2 < j ≤ m is a UMD Hölder tuple. This is conceptually simple but requires some work in
order to define a suitable enveloping algebra A. We let V = X ⊕ X∗, and define A to be
the tensor algebra over V, namely

A =

∞⊕

k=0

V⊗k.

We let
L1 = span{e ⊗ e∗ + f ∗ ⊗ f, e, f ∈ X, e∗, f ∗ ∈ X∗};

notice that this is a linear subspace of V⊗2. We then define the functional τ by

τ
(
e ⊗ e∗ + f ∗ ⊗ f

)
= 〈 f ∗, e〉 + 〈e∗, f 〉

for e, f ∈ X, e∗, f ∗ ∈ X∗ and extend it to all of L1 by linearity. We notice that the definition
(3.3) yields that

Y(X j1 , . . . ,X jk) =



X 1 < { j1 . . . , jk}, 2 ∈ { j1 . . . , jk},

X∗ 1 ∈ { j1 . . . , jk}, 2 < { j1 . . . , jk},

C {1, 2} ⊂ { j1 . . . , jk} or {1, 2} ∩ { j1 . . . , jk} = ∅.
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With this information in hand, we learn that X,X∗,C are admissible spaces. Proceeding
by induction on m, we then easily verify that {X1,X2, . . . ,Xm} is a UMD Hölder tuple.

We now start explaining how non-commutative Lp spaces fit our abstract framework.

3.18. Example. Consider a von Neumann algebraM ⊂ B(H), namely a self-adjoint unital
subalgebra of the algebra of bounded linear operators on a complex Hilbert space H which
is closed in the weak operator topology [45, 46]. LetM+ = {A ∈ M : 〈Ah, h〉 ≥ 0∀h ∈ H}
denote the positive part ofM. A trace τ is a functionalM+ → [0,∞] satisfying

τ(A + λB) = τ(A) + λτ(B), ∀A,B ∈ M+, λ > 0

as well as the tracial property

τ(AA∗) = τ(A∗A)

for all A ∈ M. Following [46], we assume τ is normal, semifinite, faithful (n.s.f.) and define
the corresponding space of measurable operators A = L0(M) equipped with convergence
in measure: a detailed definition is in [46]. ThenA is a (metrizable) topological ∗-algebra
andM is dense inA. We will also recall the notion of S+,S as introduced in [46, p.1463]:
S+ is the cone of those A ∈ M+ such that τ(supp A) < ∞, where supp A is the least
projection P ∈ M+ with PA = A, and S ⊂ M is the linear span of S+. We note [48,
Proposition 1.15(ii)] that τmay be extended to a unique linear functional on S, satisfying

(3.19) τ(A∗) = τ(A), τ(AB) = τ(BA), ∀A,B ∈ S.

For 1 ≤ p < ∞, we call noncommutative Lp space the Banach subspace of A obtained by
completion of S with respect to the norm

‖A‖Lp(M) =

[
τ

((
A⋆A

) p
2

)] 1
p

, 1 ≤ p < ∞.

In fact, we record the characterization

Lp(M) =
{
A ∈ A : τ

(
(A⋆A))

p
2

)
< ∞

}
;

in the above equality, τ denotes the extension of the trace to the positive part ofA defined
via generalized singular numbers [46]. We also point out the Hölder inequality

‖ξ1ξ2‖Lp(M) ≤ ‖ξ1‖Lp1 (M)‖ξ2‖Lp2 (M),
1
p =

1
p1
+ 1

p2

valid whenever 1 ≤ p1, p2, p < ∞. A suitable substitute holds for p = ∞ if the Lp(M)-norm
is replaced by the B(H)-norm. Furthermore, notice that τ may be extended from S to a
unique linear bounded functional on L1(M) satisfying

|τ(A)| ≤ ‖A‖L1(M).

The tracial property (3.19) extends to the following: if A,B ∈ A are such that A ∈ Lp(M)

and B ∈ Lp′(M), then

(3.20) τ(AB) = τ(BA).

This is the concrete equivalent of property (3.8) we assumed in the abstract setup. We
refer to [48, Rem. 1.2.11] for the details of (3.20).
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For 1 < p < ∞, we then have Lp(M)∗ = Lp′(M) with isometric isomorphism given by
the Riesz representation map

λ ∈ Lp(M)∗ 7→ Bλ ∈ Lp′(M), λ(A) = τ(BλA) ∀A ∈ Lp(M).

A fortiori, Lp(M) is reflexive for 1 < p < ∞. For our purposes, it is also important to
observe that Lp(M) is a UMD space in the same range [46, Corollary 7.7]. We detail below
two concrete examples of von Neumann algebras equipped with a n.s.f. trace.

If M is an abelian von Neumann algebra, then M = L∞(M, µ) for some measure
space (M, µ), a n.s.f. trace is obtained by integration with respect to the measure µ, and
A = L0(M, µ), the topological ∗-algebra of measurable functions on M with respect to
convergence in measure. Then Lp(M) = Lp(M, µ) for 1 ≤ p < ∞.

IfM = B(H), the bounded linear operators over a separable Hilbert space H and

τ(A) =

∞∑

j=1

〈Aei, ei〉

where ei is any orthonormal basis of H [46, Example (ii), p. 1465], then the spaces Lp(M)
are referred to as Schatten-von Neumann classes and denoted by Sp.

Let now p j, j = 1, . . . ,m be a Hölder tuple as in (3.1). We claim that X j = Lp j(M) is a

UMD Hölder tuple relative to the algebra A = L0(M), with trace τ. This can be proved
by induction on m, relying on the equality

Lp(J)(M) = Y({Lp j(M) : j ∈ J}),
1

p(J)
= 1 −

∑

j∈J

1

p j

valid for each ∅ ( J ( Jm, whose verification is immediate and left to the reader.

3.21. Example. In Appendix A, we prove that if {ps
j

: 1 ≤ j ≤ m} are Hölder tuples of

exponents as in (3.1) for s = 0, . . . , S,M is a von Neumann algebra with n.s.f. trace τ as in
Example 3.18, and (Ms, µs) are σ-finite Borel measure spaces for s = 1, . . . , S, the tuple of
spaces

X j = L
pS

j (MS, µS; L
pS−1

j (MS−1, µS−1; · · · L
p1

j (M1, µ1; L
p0

j (M)) · · · )

is a UMD Hölder m-tuple relative to the trace

f 7→

ˆ

M1×···×MS

τ( f (t1, . . . , tS)) dµ1 × · · · × µS(t1, . . . , tS).

A precise statement is provided in Proposition A.1.

3.2. Extensions of CZOs. If X is a Banach space we will use the notation L∞c ⊗ X for

functions of the type
∑N

i=1 fiei, where N ∈N, fi ∈ L∞c (Rd) =: L∞c and ei ∈ X.
Let {X1, . . . ,Xn+1} be a UMD Hölder tuple where n ≥ 1. Suppose T0 is an n-linear

CZO with a kernel K0 as defined in Section 2.4. Since we know that T0 is a bounded
operator, see (2.6), we know that 〈T0( f1, . . . , fn), fn+1〉 makes sense for f j ∈ L∞c . We define
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the corresponding (n + 1)-linear form

ΛT0 : L∞c ⊗ X1 × · · · × L∞c ⊗ Xn+1 → C,

ΛT0( f1, . . . , fn+1) =
∑

a1,...,an+1

〈T0( f1,a1
, . . . , fn,an), fn+1,an+1

〉τ
( n+1∏

j=1

e j,a j

)
,

(3.22)

where f j =
∑N j

a=1
f j,ae j,a. If U is a dyadic model operator as in Section 2.4 we define the

form ΛU in the corresponding way. We can also make sense of ΛU more directly. For
example, if U is a dyadic shift as in (2.7), then

(3.23) ΛU( f1, . . . , fn+1) =
∑

K∈D

∑

Q1,...,Qn+1∈D

Q
(kj)

j
=K

aK,(Q j)τ
( n+1∏

j=1

〈 f j, h̃Q j
〉
)
.

3.24. Remark. We chose to utilize the identity permutation in Σ(n + 1) for the product
appearing in (3.22). However, the notion of being a UMD Hölder tuple is clearly invariant
under reordering of {X1, . . . ,Xn+1} .

Let p j ∈ (1,∞) for j ∈ Jn+1 be such that
∑n+1

j=1 1/p j = 1. From Theorem 3.31 it will follow

among other things that

(3.25) |ΛT0( f1, . . . , fn+1)| .

n+1∏

j=1

‖ f j‖Lpj (X j)
.

Based on this boundedness one can define as usual n+1 adjoint operators. Let us describe
how the adjoints look like in our Hölder tuple set up.

Fix j0 ∈ Jn+1 and f j ∈ Lp j(X j) for j ∈ Jn+1 \ { j0}. Consider the linear functional

(3.26) f j0 ∈ Lp j0 (X j0) 7→ ΛT0( f1, . . . , fn+1),

which is bounded because of (3.25). Recall that Lp j0 (X j0)∗ is identified with L(p j0
)′(Y(X j0))

with duality pairing

〈g, f j0〉 =

ˆ

Rd
τ(g(x) f j0 (x)) dx.

Therefore, there exists a function

T∗ j0( f j : j ∈ Jn+1 \ { j0})≔T j0∗( f1, . . . , f j0−1, f j0+1, . . . , fn+1) ∈ L(p j0
)′(Y(X j0))

so that

ΛT0( f1, . . . , fn+1) =

ˆ

Rd
τ(T∗ j0( f j : j ∈ Jn+1 \ { j0})(x) f j0 (x)) dx.

The n-linear bounded operator

T j0∗ : Lp1(X1) × · · · × Lp j0−1(X j0−1) × Lp j0+1 (X j0+1) × · · · × Lpn+1(Xn+1)→ L(p j0
)′(Y(X j0))

is one of the adjoint operators. In the same way one can define the adjoint T
j∗
0

of T0 so
that

〈T
j0∗

0
(g1, . . . , g j0−1, g j0+1, . . . , gn+1), g j0〉 = 〈T0(g1, . . . , gn), gn+1〉,

where g j ∈ Lp j .
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Suppose f j =
∑N j

a=1
f j,ae j,a ∈ L∞c ⊗ X j for j ∈ Jn+1 \ { j0}. A calculation involving the

invariance of τ under cyclic permutations yields that

T∗ j0( f j : j ∈ Jn+1 \ { j0})

=
∑

T
j0∗

0
( f j,a j

: j ∈ Jn+1 \ { j0})e j0+1,a j0+1
· · · en+1,an+1

· · · e j0−1,a j0−1
.

3.3. Sparse domination of dyadic operators. The following basic sparse domination
result, Lemma 3.27, was first proved by Culiuc, Ou and one of us in the linear scalar-
valued setting in [6, 7] and recast by Y. Ou and three of us in the multilinear scalar-valued
case [39]. The proof in our current Banach-valued setting is completely analogous.

Let η ∈ (0, 1). We say that a collection S of cubes in Rd (not necessarily dyadic) is
η-sparse (or just sparse) if for every Q ∈ S there exists a set EQ ⊂ Q with |EQ| > η|Q| so
that the sets EQ, Q ∈ S, are pairwise disjoint.

3.27. Lemma. Let n ≥ 1, {X1, . . . ,Xn+1} be a UMD Hölder tuple, D be a dyadic grid, k =
(k1, . . . , kn+1), 0 ≤ ki ∈ Z. Suppose that the scalars aK,(Q j) satisfy the normalization

|aK,(Q j)| ≤ A1

n+1∏

j=1

|Q j|
1/2|K|−n

and we are given scalar functions u j,Q =
∑

Q′∈ch(Q) c j,Q′1Q′ satisfying |u j,Q| ≤ |Q|
−1/2.

If there exists a Hölder tuple p1, . . . , pn+1 as in (3.1) such that the forms

UD′(g1, . . . , gn+1)≔
∑

K∈D′

∑

Q1,...,Qn+1∈D

Q
(ki)

i
=K

aK,(Qi)τ
( n+1∏

j=1

〈g j, u j,Q j
〉
)
, D′ ⊂ D,

satisfy

sup
D′⊂D

|UD′(g1, . . . , gn+1)| ≤ A2

n+1∏

j=1

‖g j‖Lpj (Rd ;X j)
, g j ∈ L∞c (Rd; X j), j = 1, . . . , n + 1,

then for each tuple f j ∈ L∞c (X j), j = 1, . . . , n + 1, and η > 0 there exists an η-sparse collection
S = S(( f j), η) ⊂ D such that

|〈UD( f1, . . . , fn), fn+1〉| .η (A1 + A1κ + A2)
∑

Q∈S

|Q|

n+1∏

j=1

〈| f j|X j
〉Q,

where κ = max km.

In the previous lemma the sparse collection is in the same grid where the dyadic
operator is defined. The result can be updated to involve a universal sparse set, which
is explained in Remark 3.28. This is important when we move the sparse estimate from
DMOs to CZOs via the representation theorem, which involves a family of dyadic grids.

3.28. Remark. There exist dyadic grids Di, i = 1, . . . , 3d, with the following property, see
Lacey–Mena [36], [39], or [8] for a simple proof. Let gm ∈ L1

loc
, m = 1, . . . , n + 1, be
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scalar-valued and let η1, η2 ∈ (0, 1). Then for some i there exists an η2-sparse collection
U =U((gm), η2) ⊂ Di, so that for all η1-sparse collections of cubes S we have

∑

Q∈S

|Q|

n+1∏

m=1

〈|gm|〉Q .η1,η2

∑

Q∈U

|Q|

n+1∏

m=1

〈|gm|〉Q.

3.29. Remark. In [8], it is noted that the sparse domination estimate for an n + 1-linear

form Λ on Rd, acting on scalar functions

|Λ( f1, . . . , fn+1)| .
∑

Q∈S

|Q|

n+1∏

j=1

〈| f j|〉Q,

is equivalent to the estimate in terms of the multilinear maximal operator M

|Λ( f1, . . . , fn+1)| . ‖M( f1, . . . , fn+1)‖1, M( f1, . . . , fn+1)(x) = sup
x∈Q

n+1∏

j=1

〈| f j|〉Q.

Vector-valued versions of this principle may be formulated in a totally analogous way.
We have used this equivalence to state the sparse bounds in our main results; this is
particularly convenient as the formulation in terms of the multilinear maximal function
may be given without defining what a sparse collection is.

Next, we discuss the well known fact that the sparse domination of an operator implies
boundedness in the full range: for more details and weighted corollaries see [8, 39] and
references therein.

Let X1, . . . ,Xn+1 be Banach spaces, n ≥ 1. Assume that Λ is an (n + 1)-linear form

initially defined on L∞c (Rd) ⊗ X1 × · · · × L∞c (Rd) ⊗ Xn+1 such that if f j ∈ L∞c (Rd) ⊗ X j, then
there exists a dyadic latticeD and a sparse collection S ⊂ D so that

(3.30) |Λ( f1, . . . , fn+1)| .
∑

Q∈S

|Q|

n+1∏

j=1

〈| f j|X j
〉Q.

This easily implies that if p j ∈ (1,∞) for j ∈ Jn+1 are such that
∑n+1

j=1 1/p j = 1 thenΛ can be

extended to a bounded formΛ : Lp1(X1)× · · · ×Lpn+1(Xn+1)→ C. Indeed, just use Hölder’s
inequality and then Carleson embedding theorem in the right hand side of (3.30).

We estimate the adjoints T j∗ of Λ, which are defined in the usual way based on the
functional as in (3.26). By symmetry it will suffice to tackle the case j = n + 1 and simply

write T in place of T(n+1)∗.

We use the so-called A∞ extrapolation from Cruz-Uribe–Martell–Pérez [5]. Let A∞(Rd)

be the class of A∞ weights in Rd, see [5] for a definition. Suppose v ∈ A∞(Rd) and
f j ∈ L∞c (X j) for j ∈ Jn. Taking fn+1(x) = ξ(x)v(x) for a suitably chosen ξ ∈ L∞c (Xn+1) there
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holds that
ˆ

Rd
|T( f1, . . . , fn)|X∗

n+1
v ∼ Λ( f1, . . . , fn+1) .

∑

Q∈S

n∏

j=1

〈| f j|X j
〉Qv(Q)

≤
∑

Q∈S

(〈
Mn
D

(| f1|X1
, . . . , | fn|Xn)1/2

〉v

Q

)2
v(Q)

.

ˆ

Rd
Mn
D

(| f1|X1
, . . . , | fn|Xn )v,

where 〈h〉v
Q
= v(Q)−1

´

Q hv and Mn
D

(g1, . . . , gn)≔ supQ∈D

∏n
m=1〈|gm|〉Q1Q is the dyadic max-

imal function and in the last step we used the Carleson embedding theorem. Now, the
A∞ extrapolation result, Theorem 2.1 in [5], gives that

ˆ

Rd
|T( f1, . . . , fn)|

p

X∗
n+1

v .

ˆ

Rd
Mn
D(| f1|X1

, . . . , | fn|Xn)pv

for all p ∈ (0,∞) and v ∈ A∞(Rd). Using this with v = 1 the boundedness of the maximal
function gives that

‖T( f1, . . . , fn)‖Lqn+1 (X∗
n+1

) .

n∏

j=1

‖ f j‖Lpj (X j)
,

where p j ∈ (1,∞] are such that 1/qn+1≔
∑n

j=1 1/p j > 0. Notice that the boundedness of

Mn
D

follows from Hölder’s inequality and the boundedness of M1
D

, since there holds that

Mn
D

(g1, . . . , gn) ≤
∏n

m=1 M1
D

(gm). As is clear, multilinear weighted bounds also follow
from this argument and the corresponding results of Mn

D
.

3.4. Proof of the main theorem. In this section we state and prove our main theorem
assuming the estimates for model operators from Section 4 and Section 5.

3.31. Theorem. Let n ≥ 1, T0 be an n-linear CZO with kernel K0 and {X1, . . . ,Xn+1} be a UMD
Hölder tuple. The (n + 1)-linear form ΛT0 defined in (3.22) can be extended to act on functions
f j ∈ L∞c (X j), and given η ∈ (0, 1) there exists an η-sparse collection of cubes S = S(( fm), η) so
that

|ΛT0( f1, . . . , fn+1)| .η
[
‖K0‖CZα + ‖T0‖WBP +

n+1∑

j=1

‖(T0) j∗(1, . . . , 1)‖BMO

]

×
∑

Q∈S

|Q|

n+1∏

j=1

〈| f j|X j
〉Q.

Consequently, we for instance have

‖T0( f1, . . . , fn)‖Lqn+1 (X∗
n+1

) .

n∏

j=1

‖ f j‖Lpj (X j)

whenever p j ∈ (1,∞] are such that 1/qn+1≔
∑n

j=1 1/p j > 0. See Section 3.3 for a full discussion

of the corollaries of the sparse estimate.
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Proof. Let f j ∈ L∞c ⊗ X j for j ∈ Jn+1 be of the form f j =
∑N j

a=1
f j,ae j,a. Then, we have by the

dyadic representation (2.9) that

ΛT0( f1, . . . , fn+1)

= CT

∑

a1,...,an+1

Eω

∞∑

k1 ,...,kn+1=0

∑

u

2−
αmax ki

2 〈Uk
Dω,u

( f1,a1
, . . . , fn,an), fn+1,an+1

〉τ
( n+1∏

j=1

e j,a j

)

= CTEω

∞∑

k1,...,kn+1=0

∑

u

2−
αmax ki

2 ΛUk
Dω,u

( f1, . . . , fn+1).

(3.32)

In Section 4 and Section 5 it is shown that if U is a dyadic model operator then

(3.33) |ΛU(g1, . . . , gn+1)| .

n+1∏

j=1

‖g j‖Lpj (X j)

holds for any p j ∈ (1,∞) and g j ∈ L∞c (X j), j ∈ Jn+1, such that
∑n+1

j=1 1/p j = 1; if U is a shift,

then the estimate depends polynomially on the complexity. This implies that ΛT0 can be
extended to act on functions f j ∈ L∞c (X j) and that (3.32) holds for such functions.

The estimate (3.33) implies via Lemma 3.27 and Remark 3.28 that if f j ∈ L∞c (X j) for
j ∈ Jn+1 then there exist a dyadic grid and an η-sparse collection S = S(( f j)) ⊂ D so that
all the model operators appearing in (3.32) satisfy

|ΛUk
Dω,u

( f1, . . . , fn+1)| .
∑

Q∈S

|Q|

n+1∏

j=1

〈| f j|X j
〉Q,

where the estimate depends polynomially on the complexity. This combined with (3.32)
finishes the proof. �

In Section 6, we show that the UMD Hölder tuples enjoy a suitable maximal property
among tuples of spaces admitting Lp-bounded extensions of n-linear CZO operators and
dyadic shifts.

4. Boundedness of multilinear shifts in UMD Hölder tuples

This section is dedicated to the proof of the boundedness of multilinear shifts. Before
starting the main argument, we record a randomized bound for UMD Hölder tuples in
the following lemma.

4.1. Lemma. Let {X1, . . . ,Xn+1} be a UMD Hölder tuple, n ≥ 2, and let K ∈ Z+. For each
k = 1, . . . ,K let ak be a scalar such that |ak| ≤ 1 and for each j ∈ Jn assume that we are given
e j,k ∈ X j. Then we have

∣∣∣∣
K∑

k=1

ak

n∏

j=1

e j,k

∣∣∣∣
Y(Xn+1)

≤

n∏

j=1

‖(e j,k)K
k=1‖Rad(X j).

Proof. Fix K, |ak| ≤ 1 and e j,k ∈ X j as in the assumptions. Let {εi
k
}K
k=1

, i ∈ Jn−1, be collections
of independent random signs. We denote the expectation with respect to the random



22 FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

variables {εi
k
}K
k=1

by Ei, and write E = E1 · · ·En−1. We have the identity

K∑

k=1

ak

n∏

j=1

e j,k = E

K∑

k1 ,...,kn=1

ε1
k1
ε1

k2
ε2

k2
ε2

k3
· · · εn−1

kn−1
εn−1

kn
ak1

n∏

j=1

e j,k j

= E
( K∑

k1=1

ε1
k1

ak1
e1,k1

)( K∑

k2=1

ε1
k2
ε2

k2
e2,k2

)
· · ·

( K∑

kn=1

εn−1
kn

en,kn

)
.

We can dominate this with

E

∥∥∥∥
K∑

k1=1

ε1
k1

ak1
e1,k1

∥∥∥∥
X1

( n−1∏

i=2

∥∥∥∥
K∑

ki=1

εi−1
ki
εi

ki
ei,ki

∥∥∥∥
Xi

)∥∥∥∥
K∑

kn=1

εn−1
kn

en,kn

∥∥∥∥
Xn

,

which is further controlled by

(
E

∥∥∥∥
K∑

k1=1

ε1
k1

ak1
e1,k1

∥∥∥∥
2

X1

)1/2

×
[
E
( n−1∏

i=2

∥∥∥∥
K∑

ki=1

εi−1
ki
εi

ki
ei,ki

∥∥∥∥
2

Xi

)∥∥∥∥
K∑

kn=1

εn−1
kn

en,kn

∥∥∥∥
2

Xn

]1/2
.

(4.2)

The first factor is less than ‖(e1,k)K
k=1
‖Rad(X1) by Kahane’s contraction principle. We now

consider the second factor. We see that the variables ε1
k

appear only inside the norm X2,
and moreover there holds that

E
1
∥∥∥∥

K∑

k2=1

ε1
k2
ε2

k2
e2,k2

∥∥∥∥
2

X2

= ‖(e2,k)K
k=1‖

2
Rad(X2).

After using this identity, the variables ε1
k

do not appear anymore, and the variables ε2
k

appear only inside the norm X3. Repeating the same reasoning, we deduce that the
second factor in (4.2) is equal to the product

∏n
j=2 ‖(e j,k)K

k=1
‖Rad(X j). �

Now, we turn to the actual proof of boundedness of shifts. We assume that n ≥ 1
and that {X1, . . . ,Xn+1} is a UMD Hölder tuple. Let k = (k1, . . . , kn+1), 0 ≤ ki ∈ Z, and

let D be a dyadic lattice in Rd. Suppose Sk≔Sk
D

is an n-linear dyadic shift as described
in Equation (2.7). We consider its related (n + 1)-linear form ΛSk which acts on locally

integrable functions f j : R
d → X j by

(4.3) ΛSk( f1, . . . , fn+1) =
∑

K∈D

ΛK( f1, . . . , fn+1),

where

ΛK( f1, . . . , fn+1) =
∑

Q1,...,Qn+1∈D

Q
(kj)

j
=K

aK,(Q j) j∈Jn+1
τ
( n+1∏

j=1

〈 f j, h̃Q j
〉
)
.

Here aK,(Q j) j∈Jn+1
is a scalar satisfying |aK,(Q j) j∈Jn+1

| ≤
∏n+1

j=1 |Q j|
1/2|K|−n, and there exist two

indices j0, j1 ∈ Jn+1, j0 , j1, so that h̃Q j0
= hQ j0

, h̃Q j1
= hQ j1

and h̃Q j
= h0

Q j
if j ∈ Jn+1\{ j0, j1}.
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The sparse domination lemma 3.27 reduces the problem to the following theorem.

4.4. Theorem. Suppose p j ∈ (1,∞) for j ∈ Jn+1 are such that
∑n+1

j=1 1/p j = 1. The dyadic shift

form from (4.3) satisfies the estimate

|ΛSk( f1, . . . , fn+1)| .

n+1∏

j=1

‖ f j‖Lpj (X j)

for f j ∈ L∞c (X j), where the estimate depends polynomially on κ≔max j k j.

Proof. Let f j ∈ L∞c (X j) for j ∈ Jn and consider (4.3). Recall the lattices Di,κ from (2.4),
where κ≔max j k j. We first divide the sum over the cubes K ∈ D as

∑κ
i=0

∑
K∈Di,κ

. We fix
one i and consider the corresponding term.

Let J̃ be the set of those indices such that the corresponding Haar functions are non-

cancellative, that is, h̃Q j
= h0

Q j
. Suppose j ∈ J̃ is such that k j > 0. We use that fact that

〈 f j, h̃Q j
〉 = 〈E

k j

K
f j, h

0
Q j
〉 and split

(4.5) E
k j

K
f j =

k j−1∑

l j=0

∆
l j

K
f j + EK f j.

There holds that

(4.6) 〈EK f j, h
0
Q j
〉 = 〈 f j, h

0
K〉〈h

0
K, h

0
Q j
〉

and

(4.7) 〈∆
l j

K
f j, h

0
Q j
〉 = 〈 f j, h

Q
(kj−l j)

j

〉〈h
Q

(kj−l j)

j

, h0
Q j
〉,

where as usual we suppressed the summation over the different Haar functions.
We use (4.5) to split

∑
K∈Di,κ

ΛK( f1, . . . , fn+1) into at most (1 + κ)n−1 terms of the form

(4.8)
∑

K∈Di,κ

∑

Q1,...,Qn+1∈D

Q
(kj)

j
=K

aK,(Q j) j∈Jn+1
τ
( n+1∏

j=1

〈P
l j

K, j
f j, h̃Q j

〉
)
,

where l j ∈ Z, 0 ≤ l j ≤ k j. For j ∈ Jn+1 \ J̃ we have that P
l j

K, j
is the identity operator, and

below we write l j = k j. If j ∈ J̃ and l j > 0 then P
l j

K, j
= ∆

l j

K
, and if j ∈ J̃ and l j = 0 then P0

K, j

is either EK or ∆K (but does not change with K). We write
∑

K∈Di,κ

∑

Q1,...,Qn+1∈D

Q
(kj)

j
=K

=
∑

K∈Di,κ

∑

L1,...,Ln+1∈D

L
(l j)

j
=K

∑

Q1,...,Qn+1∈D

Q
(kj−l j)

j
=L j

and notice that by (4.6) and (4.7) we always have that

〈P
l j

K, j
f j, h̃Q j

〉 = 〈 f j, h
′
L j
〉γ(Q j, L j),
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where h′
L j
∈ {h0

L j
, hL j
} and

|γ(Q j, L j)| =
|Q j|

1/2

|L j|1/2
.

We can now write (4.8) further as

(4.9)
∑

K∈Di,κ

∑

L1,...,Ln+1∈D

L
(l j)

j
=K

bK,(L j) j∈Jn+1
τ
( n+1∏

j=1

〈 f j, h
′
L j
〉
)
,

where

bK,(L j) j∈Jn+1
=

∑

Q1,...,Qn+1∈D

Q
(kj−l j)

j
=L j

aK,(Q j) j∈Jn+1

n+1∏

j=1

γ(Q j, L j).

There exists J ⊂ Jn+1 with #J ≥ 2 so that h′
L j
= hL j

for j ∈ J and if j ∈ Jn+1 \ J then

h′
L j
= h0

L j
and l j = 0. Also, we have the normalization |bK,(L j) j∈Jn+1

| ≤
∏n+1

j=1 |L j|
1/2|K|−n.

We have reduced to considering the new shift type operator (4.9). The coefficients
satisfy the usual normalization of shifts, but the number #J of indices with cancellative
Haar functions may be bigger than 2. What is essential is that the complexity related
to the non-cancellative indices is zero – that is, if j ∈ Jn+1 \ J then l j = 0. We now
start estimating (4.9). Also, the separation of scales, K ∈ Di,κ, will allow us to use the
decoupling estimate (2.5).

Case 1. Assume that J = Jn+1. Let qn+1 ∈ (1,∞) be the exponent determined by
1/qn+1 =

∑n
j=1 1/p j. We need to estimate

∥∥∥∥
∑

K∈Di,κ

∑

L1,...,Ln+1∈D

L
(l j)

j
=K

bK,(L j) j∈Jn+1

n∏

j=1

〈 f j, hL j
〉hLn+1

∥∥∥∥
Lqn+1 (Y(Xn+1))

∼
(
E

ˆ

Rd

ˆ

V

∣∣∣∣
∑

K∈Di,κ

εK1K(x)
∑

L1 ,...,Ln+1∈D

L
(l j)

j
=K

bK,(L j) j∈Jn+1

×

n∏

j=1

〈 f j, hL j
〉hLn+1

(yK)
∣∣∣∣
qn+1

Y(Xn+1)
dν(y) dx

)1/qn+1

,

where we used the decoupling estimate. Notice that since by assumption Xn+1 =

Y(X1, . . . ,Xn), there holds also that Y(Xn+1) = Y(Y(X1, . . . ,Xn)), so we could also use
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the norm | · |Y(Y(X1,...,Xn)) instead. Write

∑

L1,...,Ln+1∈D

L
(l j)

j
=K

bK,(L j) j∈Jn+1

n∏

j=1

〈 f j, hL j
〉hLn+1

(yK)

=
1

|K|n

ˆ

Kn
bK(yK, z)

n∏

j=1

∆
l j

K
f j(z j) dz =

ˆ

Vn
bK(yK, zK)

n∏

j=1

∆
l j

K
f j(z j,K) dνn(z),

where νn is the product measure ν × · · · × ν on the product spaceVn and

bK(yK, zK) = |K|n
∑

L1,...,Ln+1∈D

L
(l j)

j
=K

bK,(L j) j∈Jn+1

n∏

j=1

hL j
(z j,K)hLn+1

(yK).

We can now continue the estimate by using Hölder’s inequality related to the integral
´

Vn . We end up with

(4.10)
(
E

ˆ

Rd

ˆ

V

ˆ

Vn

∣∣∣∣
∑

K∈Di,κ

εK1K(x)bK(yK, zK)

n∏

j=1

∆
l j

K
f j(z j,K)

∣∣∣∣
qn+1

Y(Xn+1)
dνn(z) dν(y) dx

)1/qn+1

.

Suppose n ≥ 2. Notice that |bK(yK, zK)| ≤ 1 and use Lemma 4.1 to get that

∣∣∣∣
∑

K∈Di,κ

εK1K(x)bK(yK, zK)

n∏

j=1

∆
l j

K
f j(z j,K)

∣∣∣∣
Y(Xn+1)

≤

n∏

j=1

‖(1K(x)∆
l j

K
f j(z j,K))K∈Di,κ

‖Rad(X j).

Using first Hölder’s inequality, then Kahane-Khintchine inequality and finally the de-
coupling estimate, we conclude that

(4.10) .

n∏

j=1

(ˆ

Rd

ˆ

V

‖(1K(x)∆
l j

K
f j(zK))K∈Di,κ

‖
p j

Rad(X j)
dν(z) dx

)1/p j

∼

n∏

j=1

(
E

ˆ

Rd

ˆ

V

∣∣∣∣
∑

K∈Di,κ

εK1K(x)∆
l j

K
f j(zK)

∣∣∣∣
p j

X j

dν(z) dx
)1/p j

.

n∏

j=1

‖ f j‖Lpj (X j)
.

Suppose then n = 1. In this case we have that q2 = p1 and Y(X2) = X1. We use Kahane-
Khintchine inequality to move the expectation inside of the exponent p1. Then, we use
Kahane’s contraction principle and move the expectation out again. This gives that

(4.10) .
(
E

ˆ

Rd

ˆ

V

∣∣∣∣
∑

K∈Di,κ

εK1K(x)∆l1
K

f1(zK)
∣∣∣∣
p1

X1

dν(z) dx
)1/p1

. ‖ f1‖Lp1 (X1),
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where the last step used the decoupling estimate. Linear estimates for shifts have ap-
peared e.g. in [19, 29].

Case 2. Assume now that J ( Jn+1. Since #J ≥ 2, this implies that n ≥ 2. Let
j0 ∈ Jn+1 \ J be an index such that j0 + 1 ∈ J ; by (n + 1) + 1 we mean 1. Let σ ∈ Σ(n + 1)
be the cyclic permutation such that σ(n) = j0. Then σ(n + 1) ∈ J . If e j ∈ X j for j ∈ Jn+1

then from Remark 3.15 one sees that
∏n

j=1 e j ∈ Y(Xn+1) and therefore the cyclic invariance

of the trace (3.8) gives that τ(e1 · · · en+1) = τ(en+1e1 · · · en). Repeating this we have that (4.9)
is equal to

∑

K∈Di,κ

∑

L1,...,Ln+1∈D

L
(l j)

j
=K

bK,(L j) j∈Jn+1
τ
( n+1∏

j=1

〈 fσ( j), h
′
Lσ( j)
〉
)
.

Having made this important observation, we may now assume, for small notational
convenience, that j0 = n and σ = id. Under this assumption n ∈ Jn+1 \ J , which implies
that ln = 0. Thus, the coefficient bK,(L j) j∈Jn+1

depends only on the cubes L1, . . . , Ln−1, Ln+1

and K. Below we will write the coefficient as bK,(L j).
We need to estimate

∥∥∥∥
∑

K∈Di,κ

∑

L1,...,Ln−1,Ln+1∈D

L
(l j)

j
=K

bK,(L j)

n−1∏

j=1

〈 f j, h
′
L j
〉〈 fn〉K|K|

1/2hLn+1

∥∥∥∥
Lqn+1 (Y(Xn+1))

∼
(
E

ˆ

Rd

ˆ

V

∣∣∣∣
∑

K∈Di,κ

εK1K(x)〈ϕK,y〉K

∣∣∣∣
qn+1

Y(Xn+1)
dν(y) dx

)1/qn+1

,

where we used the decoupling estimate, and for K ∈ Di,κ and y ∈ V we defined the

function ϕK,y : Rd → Y(Xn+1) by setting ϕK,y(x) to equal

|K|1/2
∑

L1,...,Ln−1,Ln+1∈D

L
(l j)

j
=K

bK,(L j)

n−1∏

j=1

〈 f j, h
′
L j
〉 fn(x)hLn+1

(yK).

After using Stein’s inequality (2.3) with respect to x ∈ Rd with fixed y ∈ V we are left
with

(4.11)
(
E

ˆ

Rd

ˆ

V

∣∣∣∣
∑

K∈Di,κ

εK1K(x)ϕK,y(x)
∣∣∣∣
qn+1

Y(Xn+1)
dν(y) dx

)1/qn+1

.

Recall that n ≥ 2 in Case 2. From Remark 3.15 we can deduce that if en ∈ Xn and
en+1 ∈ Xn+1, then enen+1 ∈ Y(X1, . . . ,Xn−1) and |enen+1|Y(X1,...,Xn−1) ≤ |en|Xn |en+1|Xn+1

. Also,
since {X1, . . . ,Xn−1,Y(X1, . . . ,Xn−1)} is a UMD Hölder tuple, we see from Remark 3.15

again that if e j ∈ X j for j ∈ Jn−1, then
∏n−1

j=1 e j ∈ Y(Y(X1, . . . ,Xn−1)). Suppose now that

e j,k ∈ X j for j ∈ Jn−1, k = 1, . . . ,K, and en ∈ Xn. Then the above consideration implies that
the key inequality

(4.12)
∣∣∣∣

K∑

k=1

n−1∏

j=1

e j,ken

∣∣∣∣
Y(Xn+1)

≤

∣∣∣∣
K∑

k=1

n−1∏

j=1

e j,k

∣∣∣∣
Y(Y(X1,...,Xn−1))

|en|Xn
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holds. Write Z≔Y(Y(X1, . . . ,Xn−1)) for the moment. Using this in (4.11) and then Hölder’s
inequality we have that (4.11) is dominated by ‖ fn‖Lpn (Xn) multiplied by

(
E

ˆ

Rd

ˆ

V

∣∣∣∣
∑

K∈Di,κ

εK1K(x)
∑

L1 ,...,Ln−1,Ln+1∈D

L
(l j)

j
=K

b̃K,(L j)

n−1∏

j=1

〈 f j, h
′
L j
〉hLn+1

(yK)
∣∣∣∣
p(Jn−1)

Z
dν(y) dx

) 1
p(Jn−1)

∼

∥∥∥∥
∑

K∈Di,κ

∑

L1,...,Ln−1,Ln+1∈D

L
(l j)

j
=K

b̃K,(L j)

n−1∏

j=1

〈 f j, h
′
L j
〉hLn+1

∥∥∥∥
Lp(Jn−1)(Z)

,

where we defined 1/p(Jn−1)≔
∑n−1

j=1 1/p j, b̃K,(L j)≔|K|
1/2bK,(L j) and used the decoupling in-

equality. Notice that

|̃bK,(L j)| ≤

∏n−1
j=1 |L j|

1/2|Ln+1|
1/2

|K|n−1
.

We see that we have reduced the estimate to the boundedness of an (n − 1)-linear shift
type operator as in (4.9). Now, we have two possibilities. If all the Haar functions h′

L j

for j ∈ Jn−1 are cancellative then we are in a position to apply Case 1 from above to
finish the estimate. If some of them is non-cancellative, then we dualize with a function
g ∈ Lp(Jn−1)′(Y(X1, . . . ,Xn−1)). This leads us to a corresponding situation as the beginning
of Case 2 above but now the form is n-linear and the underlying UMD Hölder n-tuple is
{X1, . . . ,Xn−1,Y(X1, . . . ,Xn−1)}. We see that we can repeat the argument in Case 2 until we
can apply Case 1. This finishes the proof.

�

4.13. Remark. We discuss why Theorem 1.1 works without any UMD Hölder tuple as-
sumptions on the spaces X1, X2 and Y3, and why we can’t allow more UMD spaces in
Theorem 1.1. The key point is that for e1,k ∈ X1 and e2 ∈ X2 the estimate

(4.14)
∣∣∣∣

K∑

k=1

e1,ke2

∣∣∣∣
Y3

≤

∣∣∣∣
K∑

k=1

e1,k

∣∣∣∣
X1

|e2|X2 ,

which corresponds to (4.12), holds without any further assumptions on the spaces. Using
this kind of estimates one can prove Theorem 1.1 with similar techniques as in the proof
of Theorem 4.4.

Suppose then we have UMD spaces X1, . . . ,Xn and Yn+1, where n ≥ 3, and we have
a product X1 × · · · × Xn → Yn+1 – a bounded n-linear operator. Of course, an estimate
corresponding to (4.14) holds, namely

∣∣∣∣
K∑

k=1

e1,k

n∏

j=2

e j

∣∣∣∣
Yn+1

≤

∣∣∣∣
K∑

k=1

e1,k

∣∣∣∣
X1

n∏

j=2

|e j|X j
.

However, in the above proof for shifts, when we use Stein’s inequality, we need to reduce
the linearity before we can use it again. That is why we need the product structure of
UMD Hölder tuples rather than just a product X1 × · · · × Xn → Yn+1 on the top level.
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5. Boundedness of multilinear paraproducts in UMD Hölder tuples

In this section we prove the boundedness of multilinear paraproducts. Let us first
recall a result for paraproducts acting on UMD-valued functions. If X is a UMD space,
D is a dyadic lattice and {aQ}Q∈D is a collection of scalars satisfying the BMO condition
(2.8), then

(5.1)
∥∥∥∥
∑

Q∈D

aQ〈 f 〉QhQ

∥∥∥∥
Lp(X)

. ‖ f ‖Lp(X),

where p ∈ (1,∞). This result goes back to Bourgain, see Figiel–Wojtaszczyk [14]. Another
nice proof is obtained by adapting the argument of Hänninen–Hytönen [19], who consider
paraproducts with operator coefficients.

Let n ≥ 1 and let {X1, . . . ,Xn+1} be a UMD Hölder tuple. Suppose that D is a dyadic
lattice and that π≔πD is a paraproduct as described in Section 2.4. Let j0 ∈ Jn+1 be the
index related to the cancellative Haar functions of π and let σ ∈ Σ(n + 1) be the cyclic
permutation such that σ(n + 1) = j0. We consider the (n + 1)-linear form Λπ acting on
functions f j ∈ L∞c (X j) by

(5.2) Λπ( f1, . . . , fn+1) =
∑

Q∈D

aQτ



[ n∏

j=1

〈 fσ( j)〉Q
]
〈 fσ(n+1), hQ〉


 ,

where the scalars {aQ}Q∈D satisfy the BMO condition (2.8). The following theorem com-
bined with Lemma 3.27 proves the desired estimate.

5.3. Theorem. Suppose that p j ∈ (1,∞) for j ∈ Jn+1 are such that
∑n+1

j=1 1/p j = 1. If f j ∈ L∞c (X j)

for j ∈ Jn+1 then the form Λπ from (5.2) satisfies the estimate

|Λπ( f1, . . . , fn+1)| .

n+1∏

j=1

‖ f j‖Lpj (X j)
.

Proof. For m ∈ Jn we let p(Jm) be the exponent defined by 1/p(Jm) =
∑m

j=1 1/p j. For

convenience of notation we may assume that j0 = n + 1, so that σ = id. In this case we
need to estimate the term

∥∥∥∥
∑

Q∈D

aQ

n∏

j=1

〈 f j〉QhQ

∥∥∥∥
Lp(Jn)(Y(Xn+1))

.

The case n = 1 is the known estimate (5.1). Therefore, we assume that n ≥ 2.
Applying the UMD property of Y(Xn+1) we are led to

(5.4)
(
E

ˆ

Rd

∣∣∣∣
∑

Q∈D

εQaQ

n∏

j=1

〈 f j〉Q|hQ(x)|
∣∣∣∣
p(Jn)

Y(Xn+1)
dx

)1/p(Jn)
,

where to pass from hQ to |hQ| we used that for fixed x ∈ Rd the families {εQhQ(x)} and

{εQ|hQ(x)|} are identically distributed. Since |hQ| = 1Q/|Q|
1/2, we can use Stein’s inequality

to have that

(5.4) .
(
E

ˆ

Rd

∣∣∣∣
∑

Q∈D

εQaQ

n−1∏

j=1

〈 f j〉Q fn(x)|hQ(x)|
∣∣∣∣
p(Jn)

Y(Xn+1)
dx

)1/p(Jn)
.
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Now, we use the same inequality we used in the shift proof, Equation (4.12), and
Hölder’s inequality to have that the last term is less than ‖ fn‖Lpn (Xn) multiplied by

(
E

ˆ

Rd

∣∣∣∣
∑

Q∈D

εQaQ

n−1∏

j=1

〈 f j〉Q|hQ(x)|
∣∣∣∣
p(Jn−1)

Y(Y(X1,...,Xn−1))
dx

)1/p(Jn−1)
.

Since {X1, . . . ,Xn−1,Y(X1, . . . ,Xn−1} is a UMD Hölder n- tuple, we see that we have reduced
to a situation as in (5.4) but now the degree of linearity is n−1. We can repeat the argument
until we end up with a linear operator, and then we apply (5.1). �

6. Maximality of UMD Hölder tuples

In this brief section, we show that UMD Hölder tuples are in a suitable sense maximal
for Lp-boundedness of extensions of n-linear CZO operators and dyadic shifts via an
associative product as in Section 3. The precise statement is in Proposition 6.3 below.

Therefore, we fix an associative algebraA and a functional τ as in Section 3. We begin
with a lemma.

6.1. Lemma. Let (X1, . . . ,Xn) be a n-tuple of admissible spaces. If Xn+1 is an admissible space

such that for all (n+ 1)-linear shift forms (3.23) and functions f j ∈ C
1(Rd)⊗X j, j = 1, . . . , n+ 1

(6.2)
∣∣∣∣ΛUk

Dω,u
( f1, . . . , fn, fn+1)

∣∣∣∣ .



n+1∏

ℓ=1

‖ f j‖Ln+1(Rd ;X j)




with implicit constant depending possibly on the complexity k, then (3.5) holds for m = n, and in
particular Xn+1 ֒→ Y(X1, . . . ,Xn).

Proof. Test (6.2) on a suitable trivial shift and appeal to Lemma 3.4. �

To make our maximality claim precise, we need an additional definition. We say that
the tuple {X1, . . . ,Xn+1} of admissible spaces is an n-linear shift extension if (6.2) holds for all
(n+1)-linear shift forms (3.23). If in addition, whenever Z is an admissible space such that
for some j0 ∈ Jn+1 the tuple {X1, . . .X j0−1,Z,X j0+1, . . .Xn+1} is an n-linear shift extension,
it must be Z ֒→ X j0 , we say that {X1, . . . ,Xn+1} is a maximal n-linear shift extension.

6.3. Proposition. Let {X1, . . . ,Xn+1} be a UMD Hölder tuple. Then

• {X1, . . . ,Xn+1} is a maximal n-linear shift extension;
• whenever 1 ≤ k ≤ n − 1 and #J = k, {X j : j ∈ J} ∪ {Y({X j : j ∈ J})} is a maximal

k-linear shift extension.

Proof. Theorem 4.4 shows that if {X1, . . . ,Xn+1} is a UMD Hölder tuple, then it is an n-
linear shift extension. As X j0 = Y({X j : j ∈ J0}) by definition of UMD Hölder tuple, we
learn from Lemma 6.1 that {X1, . . . ,Xn+1} is in fact a maximal n-linear shift extension. This
proves the first point.

By the inductive definition of UMD Hölder tuple, for each 1 ≤ k ≤ n − 1 and #J = k,
{X j : j ∈ J}∪ {Y({X j : j ∈ J})} is a UMD Hölder tuple. Then this tuple must be a maximal
k-linear shift extension because of the first point. The second point is also proved. �
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Appendix A. Iterated mixed-norm non-commutative Lp
spaces

LetM be a von Neumann algebra equipped with a n.s.f. trace as described in Example
3.18. Recall in particular that A = L0(M) is an associative ∗-algebra endowed with a
compatible complete metrizable topology, induced by the metric dA of convergence in
measure. For an integer S ≥ 1, let (Ms, µs), s = 1, . . . , S, be σ-finite measure spaces and
(ΩS, ωS) the product measure space

ΩS =

S∏

s=1

Ms, ωS =

S∏

s=1

µs.

Let A0,S be the vector space of simple functions f : ΩS →A, namely

f (t) =

J∑

j=1

A j1E j (t), t = (t1, . . . , ts) ∈ ΩS,

with A j ∈ A, E
j ⊂ ΩS withωS(E j) < ∞. Then A0,S is an associative algebra with respect to

the pointwise product: for f, g ∈ A0,S, the function f g defined by ( f g)(t) = f (t)g(t), where
the latter is the strong product inA, belongs to A0,S. We denote by

AS≔ closure of A0 w.r.t. sequential dA-pointwise convergence

namely, f ∈ AS if there exists a sequence fn ∈ A0,S such that

lim
n

dA( f (t), fn(t)) = 0 a.e. t ∈ ΩS.

Then AS, the class of strongly measurable A-valued functions on ΩS, is an associative
algebra with respect to the same product. Furthermore, AS is complete with respect to
the topology of convergence in measure, namely fn → f if for all ε > 0

lim
n
µ
({

t ∈ ΩS : dA( f (t), fn(t)) > ε
})
= 0,

and the product operation is continuous. Note that the latter topology is also metrizable,
proceeding in an analogous way to [24, Proposition A.2.4].

Recall thatM is equipped with the n.s.f. trace τ, which is a linear bounded functional
on L1(M). Then the functional

τS( f ) ≔

ˆ

ΩS

τ( f (t)) dωS(t)

is linear and bounded on the Bochner space L1(ΩS, ωS; L1(M)), which is a subspace of AS.
With this definition, AS is endowed with the trace τS. Under these assumptions, we have
the following proposition.

A.1. Proposition. For a Hölder tuple {p0
j

: 1 ≤ j ≤ m} as in (3.1), let

X0
j = L

p0
j (M).

Let {ps
j

: 1 ≤ j ≤ m} be further Hölder tuples of exponents, for 1 ≤ s ≤ S. Then the Banach

subspaces of As

(A.2) Xs
j = L

ps
j(Ms, µs; Xs−1

j ), s = 1, . . . , S,
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are a UMD Hölder m-tuple.

Before the proof proper, we need to set some notation, and develop suitable auxiliary
lemmata. For 1 ≤ k ≤ m − 1, J = { j1 < j2 < · · · < jk} ⊂ Jm, and 0 ≤ s ≤ S we write

1

qs
J

=

k∑

u=1

1

ps
ju

,
1

ps
J

= 1 −
1

qs
J

.

It will be convenient to introduce the auxiliary mixed norm spaces

E1
j = L

p1
j (M1, µ1),

Es
j = L

ps
j(Ms, µs; Es−1

j ), s = 2, . . . , S,

for j = 1, . . . ,m and similarly

E0
J
= C,

Es
J
= L

qs
J (Ms, µs; Es−1

J
), s = 1, . . . , S.

In general we write S(X) for the unit sphere in the Banach space X.

A.3. Lemma. Let J = { ju : 1 ≤ u ≤ k}. There exists maps Bs
u : S(Es

J
)→ S(Es

ju
) such that

f =

k∏

u=1

Bs
u( f ) ∀ f ∈ S(Es

J
)

and

‖ fn − f ‖Es
J
→ 0, ‖ fn(ts) − f (ts)‖Es−1

J
→ 0 a.e. ts ∈Ms =⇒

‖Bs
u( f ) − Bs

u( fn)‖Es
ju
→ 0, ‖Bs

u( fn)(ts) − Bs
u( fn)(ts)‖Es−1

ju
→ 0 a.e. ts ∈Ms, 1 ≤ u ≤ k.

(A.4)

Proof. We deal with the case ju = u, u = 1, . . . , k which is generic. We prove the statement
by induction on s. If s ≥ 2, assume inductively that maps Bs−1

u as in the statement have
been constructed; for the base case s = 1, we run the argument below with B0

u the identity
map. In both cases, we need to define Bs

u : S(Es
J

)→ S(Es
u). We use that each f ∈ S(Es

J
) is

Es−1
J

-valued. So for each ts ∈Ms, write

f (ts) = | f (ts)|Es−1
J

g(ts) =

k∏

u=1


| f (ts)|

qs
J

ps
u

Es−1
J

gu(ts)


 ≕

k∏

u=1

Bs
u( f )(ts)

where g is S(Es−1
J

)-valued, so that each gu = Bs−1
u (g) is S(Es−1

u )-valued. Notice that each

fu = Bs
u( f ) is (strongly)µs-measurable with values in Es−1

u : in fact | f (·)|Es−1
J

is µs-measurable

and each gu is µs-measurable, as Bs−1
u is (norm) continuous from Es−1

J
→ Es−1

u and g is

µs-measurable with values in Es−1
J

. A direct calculation reveals that

‖ fu‖Es
u
= 1, 1 ≤ u ≤ k.

It remains to show that the thus defined maps Bs
u are continuous in the sense of (A.4)

by assuming the same properties hold for the maps Bs−1
u . Let fn, f be as in the first line
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of (A.4) and write fn(ts) = | fn(ts)|Es−1
J

gn(ts). We first show the pointwise convergence: for

each we have

‖Bs
u( f )(ts) − Bs

u( fn)(ts)‖Es−1
u
≤ ‖ f (ts)‖Es−1

J
‖Bs−1

u (g(ts)) − Bs−1
u (gn(ts))‖Es−1

u

+ ‖Bs−1
u (gn(ts))‖Es−1

u

∣∣∣‖ f (ts)‖

qs
J

ps
u

Es−1
J

− ‖ fn(ts)‖

qs
J

ps
u

Es−1
J

∣∣∣

Relying on the norm continuity of Bs−1
u we obtain that both summands in the previous

display converge to zero for each ts such that ‖ fn(ts)‖Es−1
J
→ ‖ f (ts)‖Es−1

J
, ‖gn(ts)− g(ts)‖Es−1

J
→

0; this is a set of full µs measure, so that this part of the proof is complete. We come to the
norm continuity in (A.4). We have

‖Bs
u( f ) − Bs

u( fn)‖
ps

u

Es
u
.

ˆ

Ms

| f (ts)|
qs
J

Es−1
J

|Bs−1
u (g(ts)) − Bs−1

u (gn(ts))|
ps

u

Es−1
u

dµs(ts)

+

ˆ

Ms

∣∣∣∣∣∣∣∣
| f (ts)|

qs
J

ps
u

Es−1
J

− | fn(ts)|

qs
J

ps
u

Es−1
J

∣∣∣∣∣∣∣∣

ps
u

|Bs−1
u (gn(ts))|

ps
u

Es−1
u

dµs(ts)

The first integrand converges to zero pointwise a.e. and is dominated by | f (ts)|
qs
J

Es−1
J

, so the

integral converges to zero by dominated convergence. The second integral is equal to

‖F − Fn‖
ps

u

Lps
u (Ms,µs)

, F(ts) = | f (ts)|

qs
J

ps
u

Es−1
J

, Fn(ts) = | fn(ts)|

qs
J

ps
u

Es−1
J

.

Notice that ‖F‖ps
u
= ‖ f ‖

qs
J
/ps

u

Es
J

, ‖Fn‖pu = ‖ fn‖
qs
J
/ps

u

Es
J

. As Fn → F pointwise, Fn, F ∈ Lps
u(Ms, µs)

and ‖Fn‖ps
u
→ ‖F‖ps

u
, then ‖F − Fn‖ps

u
converges to zero by a well-known variation of the

proof of the Lp dominated convergence theorem. �

A.5. Lemma. Let 2

X0
J
= L

q0
J (M), X0

J ,+ = L
q0
J (M)+,

Xs
J
= L

qs
J (Ms, µs; Xs−1

J
), Xs

J ,+ = L
qs
J (Ms, µs; Xs−1

J ,+), s = 1, . . . , S.

Let f ∈ Xs
J ,+

be a simple function with ‖ f ‖Xs
J
= 1. Then there exist fu ∈ Xs

ju,+
, u = 1, . . . , k with

f =

k∏

u=1

fu, ‖ fu‖XS
ju
= 1.

Proof. Again we deal with the generic case ju = u, u = 1, . . . , k. First of all, we make a
remark about the case s = 0. Fix A ∈ X0

J ,+
with ‖A‖X0

J
= 1. Using the Borel functional

calculus for positive closed densely defined operators to define Aθ for θ > 0

(A.6) A =

k∏

u=1

Bu(A), Bu(A) = A

q0
J

p0
u , u = 1, . . . , k.

2Recall that L
q0
J (M)+ denotes the positive cone of L

q0
J (M), namely the positive operators in L

q0
J (M).
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Trivially

‖Bu(A)‖X0
u
= ‖A‖

q0
J

p0
u

X0
J

= 1, u = 1, . . . , k.

We now prove the main statement. Let f ∈ Xs
J ,+

be a simple function with ‖ f ‖Xs
J
= 1. We

factor
f (t) = F(t)A(t), F(t) = | f (t)|X0

J
, t ∈ Ωs.

Notice that F ∈ Es
J

of unit norm, so that using Lemma A.3

F =

k∏

u=1

Bs
u(F), ‖Bs

u(F)‖Es
u
= 1,

and we may write, also using (A.6)

f =

k∏

u=1

fu, fu(t) = Bs
u(F)(t)Bu(A(t)),

Notice that each fu is strongly measurable as Bu(A(·)) is a simple X0
u,+-valued function

and Bs
u(F) is a measurable function in Es

u. Also as |Bu(A(t))|X0
u
= 1 for all t ∈ Ωs

‖ fu‖Xs
u
= ‖Bs

u(F)‖Es
u
= 1,

which completes the proof of the claim. �

We turn to the proof of the proposition. Namely we need to show that the tuple Xs
j

from (A.2) is a UMD Hölder tuple for each s = 1, . . . , S. In proving this, by virtue of
the case s = 0 being already established in Example 3.18 we may argue inductively and
assume the claim has been proved in the cases of 0, . . . , s − 1.

Clearly each Xs
j
is a subspace of As. Denoting by qs

j
, s = 0, . . . , S the conjugate exponent

of ps
j
, it is convenient to define the spaces

Y0
j = L

q0
j (M),

Ys
j = L

qs
j(Ms, µs; Ys−1

j ), s = 1, . . . , S.

which are Banach subspaces of As. Further, as each Xs
j

is a reflexive Banach space and

enjoys the Radon-Nikodým property [24, Theorem 1.3.21], an inductive argument yields
the Riesz representation theorem (cf. [24, Theorem 1.3.10]) then yields that

(
Xs

j

)∗
= Ys

j, 1 ≤ j ≤ m

through the identification

λ ∈ (Xs
j)
∗ 7→ gλ ∈ Ys

j λ( f ) = τs(gλ f ), f ∈ Xs
j.

We have in particular shown that each Xs
j

is an admissible space for the algebra As with

trace τs and Y(Xs
j
) = Ys

j
.

We verify that {Xs
j

: j ∈ Jm} is a UMD Hölder tuple by induction on m. The case m = 2

is actually immediate by virtue of the observation and the well known fact that each
Xs

j
,Ys

j
is a UMD space.
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To obtain the inductive step, we fix m ≥ 3 and verify the following equality. For each
1 ≤ k ≤ m − 1, J = { j1 < j2 < · · · < jk} ⊂ Jm, there holds

(A.7) Y({Xs
j : j ∈ J}) is isometrically isomorphic to

(
Xs
J

)∗
,

where we refer to the spaces defined in Lemma A.5. More explicitly, denoting

Y0
J
= L

p0
J (M),

Ys
J
= L

ps
J (Ms, µs; Ys−1

J
), s = 1, . . . , S,

we have Y({Xs
j

: j ∈ J}) = Ys
J
=

(
Xs
J

)∗
.

Property P1 then corresponds to this equality in the cases k = m−1. Verifying property
P2 amounts to checking that when k < m−1, the tuple {Xs

j
: j ∈ J}∪{Ys

J
} is a UMD Hölder

(k + 1)-tuple. As k < m − 1, {Xs
j

: j ∈ J} ∪ {Ys
J
} is a UMD Hölder (k + 1)-tuple and the

exponents {ps
j

: j ∈ J , ps(J)} are a Hölder tuple, this check is made by a straightforward

appeal to the induction assumption.
We are left with proving (A.7). To do this we will define a linear surjective isometry

Φ : Y({Xs
j

: j ∈ J})→ Ys
J

. First of all note that

(A.8) ‖g‖Y({Xs
j
: j∈J}) ≤ ‖g‖

L
ps
J (Ms,µs;Ys−1

J
)
= ‖g‖Ys

J

descends immediately from Hölder’s inequality in Lp(Ms, µs)-spaces and Lemma 3.4
applied to the UMD Hölder tuple Xs−1

j1
,Xs−1

j2
, . . . ,Xs−1

jk
. We will use this below.

Fix then g ∈ Y({Xs
j

: j ∈ J}). We claim that if f is a simple X0
J ,+

-valued function on Ωs

with ‖ f ‖Xs
J
= 1, then

(A.9) |τs(g f )| ≤ ‖g‖Y({Xs
j
: j∈J}).

Indeed, applying Lemma 3.4 we obtain

∣∣∣τs(g f )
∣∣∣ =

∣∣∣∣∣∣∣
τs


g

k∏

u=1

fu




∣∣∣∣∣∣∣
≤ ‖g‖Y({Xs

j
: j∈J})

k∏

u=1

‖ fu‖Xs
ju
, ‖ fu‖Xs

ju
= 1, u = 1, . . . , k,

which is (A.9). As Xs
J

is the Xs
J

-norm closure of the linear span of simple X0
J ,+

-valued

function onΩs, the linear bounded functional f 7→ τs(g f ) extends uniquely to an element
Φ(g) of (Xs

J
)∗ ≡ Ys

J
with

‖Φ(g)‖Ys
J
≤ ‖g‖Y({Xs

j
: j∈J}).

It is easy to see that the map Φ : Y({Xs
j

: j ∈ J}) → Ys
J

is linear. From (A.8) we gather

that if g ∈ Ys
J

then Φ(g) is well-defined. In this case the linear bounded functionals

g 7→ τs(g f ) and Φ(g) coincide on a dense set, it must be Φ(g) = g. So Φ is obviously
surjective. Furthermore using (A.8) again we obtain

‖Φ(g)‖Ys
J
≥ ‖Φ(g)‖Y({Xs

j
: j∈J}) = ‖g‖Y({Xs

j
: j∈J}) ≥ ‖Φ(g)‖Ys

J

whence equality must hold throughout. So Φ is a linear isometric isomorphism and the
proof of (A.7) is complete.
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