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Abstract

This paper deals with supervised classification of multivariate time se-
ries. In particular, the goal is to propose a filter method to select a subset
of time series. Consequently, we adopt the framework proposed by Brown
et al. [10]. The key point in this framework is the computation of the
mutual information between the features, which allows us to measure the
relevance of each feature subset. In our case, where the features are a
time series, we use an adaptation of existing nonparametric mutual infor-
mation estimators based on the k-nearest neighbor. Specifically, for the
purpose of bringing these methods to the time series scenario, we rely on
the use of dynamic time warping dissimilarity. Our experimental results
show that our method is able to strongly reduce the number of time series
while keeping or increasing the classification accuracy.

Keywords— Multivariate time series, supervised classification, feature susbset selec-
tion, mutual information.

1 Introduction

The fourth Industrial Revolution has brought many advances in digital technologies.
This global transformation has led to the development of new monitoring systems. The
information reported from the monitorization could be used, for example, to detect
anomalies in person vital signs or perform a predictive maintenance of a machine that5

prevents a breakdown. The data collected in those scenarios have, in most cases, two
properties: 1) they are time ordered and 2) the relationships between closest in time
data points are stronger than between the farthest data points. Therefore, they could
be considered as time series (TS). Due to the ubiquity of this kind of data, in the last
few decades, the development of time series specific techniques have increased [1].10
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One of the most common activities in time series analysis is time series classifi-
cation (TSC) [2, 3]. This is a supervised learning problem, where the objective is to
distinguish between two or more possible situations or classes, while taking into ac-
count the information and properties of the time series. Especially for the univariate
case, where a classifier is trained using one dimension time series, a variety of methods15

have been proposed [4, 5, 6]. However, due to the complexity of high-dimensional
data, classification of multivariate time series (MTS) has received less attention.
In comparison with the univariate case, where an instance is composed by a unique
TS, in MTS classification, two or more time series represent an instance, so they need
to be analyzed together to obtain a classifier [7]. This makes the problem of MTS20

classification more challenging.
Some MTS classification problems involving the processing of these large volumes

of TS data require too many resources and can become unsustainable. Moreover, it is
common that many of the collected series are redundant or there may be series that
for the purpose of classification are not useful and generate noise, which penalizes the25

performance of the classifiers. Therefore, Feature Subset Selection (FSS) methods are
a necessary pre-processing step for dealing with high-dimensional MTS classification
problems [8]. The features to be selected in a MTS classification problem are uni-
variate TS. The goals of these techniques are to avoid over-fitting, to produce easily
interpretable models and to improve the classification [9].30

The objective of this paper is to develop a time series subset selection method with
the following properties:

• The output of the method is a subset of the original time series (not a transfor-
mation of them).

• The method takes into account the temporal information contained in the series.35

• The method considers the information provided by the class variable in the
selection process.

Consequently, we adapt FSS methods based on information theory designed for
non-temporal data [10, 9, 11] to the multivariate time series classification scenario.
We particularly concentrate on the method proposed by Brown et al. [10]. The main40

adaptation consists in the computation of the mutual information (MI) between two
time series, and between a time series and the class variable. This computation is
carried out by modifying non-parametric MI estimation methods by allowing them to
account for the temporal information of the time series. The results obtained suggest
that our FSS method succeeds in improving the accuracy of the MTS classification45

problem by reducing the univariate time series that compose the MTS.

The rest of this paper is structured as follows. In Section 2, related work of FSS
techniques in time series is reviewed. Section 3 details the proposed approach for TS
subset selection in MTS classification. In Section 4, adapted methods for estimating50

MI are described. In Section 5, the experimental framework is introduced, followed
by the obtained results and discussion in Section 6. Finally, in Section 7, conclusions
and future work are presented.

2 Related Work

FSS techniques are typically classified into three groups: wrapper methods, filter me-55

thods and embedded methods [12]. The main di↵erence between them is that wrapper
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and embedded methods are specific for the used classifier, while filter methods are in-
dependent of the employed classifier. Our work focuses on filter methods because,
given that they do not depend on any classifier to select the variables, they are more
general, less prone to overfitting and computationally cheaper than wrapper and em-60

bedded methods [11]. Basically, the objective of the filter FSS methods is to find
the minimal subset of original features that retains the information contained in the
whole set of features [11] for the purpose of classification. However, as explained in
[13], feature selection is not an easy task, due to the complicated interactions that
could occur between features.65

While the recent literature accounts for an important number of works in filter
methods for the problem of multivariate time series forecasting, this is not the case
for the classification problem.
All of the filter methods for the problem of multivariate time series forecasting try
to find the subset of predictor TS that best improves the prediction accuracy of a70

target TS. In [14], di↵erent FSS techniques based on Pearson correlation, Spearman
correlation, Granger causality and mutual information are analyzed. The presented
methods select a subset of predictor TS by pairwise comparing them with the target
TS. However, they do not consider the relationships that may exist between selected
predictor TS, thus redundancies are not discarded. Dealing with possible redundancies,75

a representative FSS example is presented in Motrenko et al. [15]. It proposes a
Quadratic Programming Feature Selection (QPFS) method that selects a subset of
predictor features by solving a quadratic problem that minimizes correlation between
features while maximizing feature relevance. The shortcoming of this approach is the
computation of the close to singular similarity matrix and the computational cost of80

the solution of the problem. The existence of a variety of studies that use information
theory to develop feature selection methods in TS prediction is also worth mentioning.
For example, in Karevan et al. [16], a feature selection method that tries to select
the subset with the minimum conditional sample entropy of the target variable is
presented. Here, a clustering-based sample entropy that is calculated applying the85

Heaviside kernel is used to perform feature selection. Meanwhile, Liu et al. [17] uses a
mutual information criterion as a filter method. In this case, in order to estimate the
mutual information between TS, Kraskov et al.’s [18] method is followed. However,
how the method is modified to deal with TS is not detailed. Recently, González-
Vidal et al. [19] proposed a method that, before applying di↵erent feature selection90

methods, removes the temporal ordering of the series and generates a new set of
predictor variables by concatenating vectors of measurements at di↵erent timesteps.

Leaving the forecasting problem aside, for the MTS classification task, specific
FSS methods have also been developed [20, 21]. Most of these methods are based on
transforming the original TS using a di↵erent representation. For instance, methods95

such as shapelets [22], symbolic dynamic methods [23], pseudo-observations [24] are
implemented, while others extract features as graph-based features [25], pairwise mu-
tual information [26] (no details are given for the computation of the MI between TS)
or correlations [27]. Recently, in [28], for the extraction and the selection of relevant
and non-redundant multivariate ordinal patterns for classification, a technique called100

Ordex is presented. In addition, Bondi et al. [29] developed a method that first obtains
di↵erent representations of the time series using derivatives, cumulative sums, auto-
correlation between values of the signal at di↵erent time-stamps, and power spectrum.
Next, the new uninformative features are filtered by taking into account the balance
between their complexity and their informativeness. In summary, all these methods105

transform the original MTS data by generating new features of which a subset is se-
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lected for classification.
To carry out the transformations of the features, it is necessary to provide all the
original features, hence they have to be available and cannot be discarded. Apart
from that, an issue that may result from these transformations is the lost of part of110

the information that time series have, for example the temporal information or the
information about the relationship between the original series.
Another drawback in some FSS methods proposed in MTS is the lack of use of class
information [27] and the non-detection of redundancies between TS [30]. In [31], the
previously mentioned problems are solved by selecting the most relevant features for115

classification and the least redundant ones. Indeed, this proposal is the only one in
the literature, to the best of our knowledge, that selects a subset of the original uni-
variate time series, without transforming the series into a di↵erent representation as
in the previously mentioned approaches. The authors calculate Pearson’s correlation
to identify linear relationships and the Symmetrical uncertainty filter, which is based120

on entropy and information gain, for evaluating the non-linear relationships. However,
symmetrical uncertainty is only suitable for discrete data, so they previously discretize
the time series using an unspecified discretization method. This may result in a loss of
useful information of the time series that may negatively a↵ect the selection process
and, consequently, the classification results. Additionally, the lack of details about the125

discretization process in the paper and the unavailability of the code prevents us from
reproducing the results and comparing our method with it.

Therefore, to improve these approaches, a mutual information based TS selection
method for MTS classification is proposed. In our approach, we follow the Brown et
al. [10] framework, which focuses on classification and is based on Shannon Entropy130

[32].

3 Proposed Method

This section presents the proposed time series subset selection method based on mu-
tual information, which will be used to solve the multivariate time series classification
problem.135

Let us define a multivariate time series as a matrix of n⇥d, where n is the number
of time steps when d di↵erent variables are measured. By itself, each measure across
time steps is an univariate time series tsi = [ai

1, . . . , a
i
n], for i in

{1, . . . , d}. So, a multivariate time series will be denoted as:140
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In a supervised classification problem, m instances of the problem are observed. For
each instance, a class label is assigned. After training a classification model with the
observed instances, new instances can be classified. Thus, the supervised classification
problem that we have studied is presented in Figure 1.

In this paper, we propose a filter FSS method specifically designed for the problem145

of supervised MTS classification explained above. As can be seen in Figure 2, we will
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Figure 1: The studied MTS supervised classification problem.

depart from a labeled MTS dataset, and with our method, we will select a subset of the
original univariate time series. In particular, our FSS method is an adaptation of the
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Figure 2: Diagram of the problem of feature subset selection that selects a
subset of time series for a multivariate time series classification scenario.

probabilistic framework proposed by Brown et al. [10] for a time series. This method
considers a score function based on MI to measure the relevance of each subset of150

features. In particular, for the case of TS, the score function can be written as follows:

J(S) =
X

i2S

I(TSi;C)

� �

z�1X

j=1

zX

k=j+1

I(TSj ;TSk)

+ �

z�1X

j=1

zX

k=j+1

I(TSj ;TSk | C)

(1)

where I is the mutual information, TS are time series, C is the class variable and S a
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subset of TS, such that S = {TS1
, . . . , TS

z}. The objective is to obtain the subset of
TS that maximizes the score function J . Thus, the selected TS will be those that, at
the same time, share high information with the classification variable (first MI term),155

share low information between them (second MI term) and those that are more related
to each other given a class (third MI term).
To adjust the relevance given to each of these terms, the scoring function parameters �
and � 2 [0, 1] are set. In the literature, di↵erent criteria exist depending on the values
assigned to � and �. Based on the results of Brown et al. [10], the most common160

linear criteria are:

• Conditional Mutual Information (CMI): � = 1 and � = 1. All the terms are
equally relevant for the score function.

• Joint Mutual Information (JMI): � = 1
|S| and � = 1

|S| . The relevance of the
mutual information between TS and the mutual information between TS con-165

ditioned to the classification variable decreases with |S|.

• Minimum-Redundancy Maximum-Relevancy (MRMR): � = 1
|S| and � = 0.

Class-conditional mutual information between TS is irrelevant, while the rele-
vance of the mutual information between TS decreases proportionally with |S|.

The key point of the score function J (Equation (1)) is the computation of the170

mutual information terms involved. Contrary to the case of non-temporal vector-
value features where many estimation methods have been proposed in the literature
[9, 33, 34], the computation of the mutual information between two time series or
between a time series and a class label C is an unsolved problem.

Two possible alternatives can be used to deal with this problem:175

1. Assume a probabilistic model for the time series, such as, Autoregressive Moving
Average Models (ARMA) or Gaussian Process models [35] and then, calculate
information theory quantities departing from the models [36, 37].

2. Adapt to the time series case, those methods that do not assume any specific
probability distribution model in the data, such as, [18, 38, 39, 40].180

The first approach has some drawbacks, for example, the selected model may not
always fit the data properly. Moreover, the calculations to obtain the MI are complex
[36, 37]. Therefore, we have chosen the second approach. The methods for the com-
putation of each mutual information term will be described in the next section.

185

Having defined the score function J (Equation (1)), algorithms for searching the
subset of TS that maximizes it are now needed. Di↵erent searching algorithms could
be used for selecting the most adequate time series subset. The most common in the
FSS literature are Forward, Backward and Stepwise iterative algorithms [41].

190

4 Mutual Information Estimation Methods

In this section, MI estimation methods adaptations that allow the computation of the
previously mentioned score function terms are described.
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The score function J in Equation (1) requires the computation of the following MI195

terms: 1) I(TSi;TSj), 2) I(TS;C) and 3) I(TSi;TSj | C). To compute them, me-
thods that do not assume any probability distribution model in the data are considered
[18, 38, 39, 40]. All of these methods estimate the information shared between vector-
value variables using a k-nearest neighbor strategy. Our approach attempts to adapt
these techniques to the time series scenario.200

Because of the temporal information that the time series contain, a TS specific measure
has been applied in the computation of the k-nearest neighbor. Specifically, Dynamic
Time Warping (DTW) dissimilarity is proposed. DTW is designed for TS and it allows
the alignment of TS in a non-linear way by minimizing the distance between them [3].
Thanks to DTW, MI terms will account for the temporal information contained in the205

time series. The adapted methods for computing the three MI terms are explained
in the sections that follow. To contribute to understanding, we present them in a
di↵erent order than in the score function J (Equation (1)).

4.1 Mutual information between a time series I(TSi;TSj)

To estimate the term I(TSi;TSj), Kraskov et al.’s [18] method is followed. This
method estimates the MI between two continuous random variables using the k-
nearest neighbor to quantify the information shared. To apply this method to TS,
it is adapted as follows. First, we assume that TS

i and TS
j are random vari-

ables whose realizations are time series. We assume we have an m-size sample,
{(tsi1, tsj1), (tsi2, ts

j
2), . . . , (ts

i
m, ts

j
m)} where tsip 2 TS

i and ts
j
p 2 TS

j for p 2 {1, . . . ,m}.
Note that any element of the sample tslp is a time series for l 2 {i, j}. For each time se-
ries tslp of the sample, for l 2 {i, j}, let the value ⇠tslp be the distance from ts

l
p to its kth

nearest neighbor TS in the sample. As commented previously, we use DTW to calcu-
late this value. Then, using ⇠tsip and ⇠

tsjp
, ⇠(p) value is defined as ⇠(p) = max(⇠tsip , ⇠tsjp).

From this, the value

⌫tslp
=
���
n
q | q 2 {1, . . . ,m}� {p}, DTW (tslq, ts

l
p) < ⇠(p)

o���

is determined for l 2 {i, j}. Again, the DTW is used as a distance between TS. After
these definitions, the mutual information between two time series TS

i and TS
j is

estimated by the adaptation of the method proposed in Kraskov et al. [18], as follows:

I(TSi;TSj) =  (k) +  (m)

� 1
k
�
 

1
m

mX

p=1

⇣
 (⌫tsip) +  (⌫

tsjp
)
⌘! (2)

where  is the digamma function, which can be calculated recurrently as  (x+ 1) =210

 (x)+1/x with  (1) = �C, where C = 0.5772156... is the Euler-Mascheroni constant.
TS

i and TS
j will share more information when, for all of the instances, the k nearest

time series samples for both random variables keep the same distance proportion.

4.2 Mutual information between time series and the classi-
fication variable I(TS;C)215

To estimate the first term of the score function, I(TS;C), three di↵erent methods
of MI estimation between a continuous and a discrete variable are considered. They
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will be adapted to measure the information shared between a TS and the associated
classification variable. The methods that will be followed are the Ross method [38],
Bulinski and Kozhevin method [39] and Coelho et al. method [40].220

The Ross method [38] was designed to estimates the MI between a discrete random
variable and a continuous random variable. It uses a similar approach to the one used
in Kraskov et al. [18]. The proposed adaptation to deal with TS is as follows: let TS
be defined as in previous section and let C be a discrete classification variable taking
values in a finite set. A sample of size m, {(ts1, c1), (ts2, c2), . . . , (tsm, cm)}, is given
to estimate MI. From the sample, ⌫cp value is defined as the number of sample pairs
whose class value is equal to cp. Then, within this subset of sample pairs, whose class
value is equal to cp, the distance dp from time series sample tsp to its k

th nearest
neighbor is determined. DTW is used as a distance between TS. Then, ⌫tsp value
is set to be, ⌫tsp = |{ q | q 2 {1, . . . ,m}� {p}, DTW (tsq, tsp)  dp}|. After these
definitions, the adaptation of the Ross method [38] to estimate mutual information
between a discrete random variable and a TS is as follows:

I(TS;C) =  (k) +  (m)

� 1
m

 
mX

p=1

�
 (⌫cp) +  (⌫tsp)

�
!

(3)

where  is again the digamma function. On this occasion, the closer the distance
between series of the same class, the higher the mutual information.

Similarly to the previous case, in Bulinski and Kozhevin [39] propose a method
to estimate the conditional entropy for a discrete random variable given a continu-225

ous random variable. Following this approach, the proposed adaptation allows us to
estimate the conditional entropy, H(C|TS), of the classification variable C given a
TS. Then, I(TS;C) is calculated using the relationship that exists between MI and
entropy, I(TS;C) = H(C)�H(C | TS).
Let TS and C be as previously defined. A sample of size m, {(ts1, c1), (ts2, c2), . . . ,230

(tsm, cm)}, is given. Using this sample, the conditional entropy H(C|TS) is estimated.
First, for each time series tsp of the sample, ⇠tsp value that is the distance from tsp to its
k
th nearest neighbor TS in the sample is set. DTW dissimilarity is applied. Then, using
⇠tsp , ⌫p value is defined as ⌫p =

��{ q |q 2 {1, ...,m}� {p}, cq = cp, DTW (tsq, tsp)  ⇠tsp}
��.

Then, H(C|TS) is estimated adapting the method developed by Bulinski and Kozhevin235

[39] as:

H(C | TS) = log(k)� 1
m

mX

p=1

log (⌫p + 1) (4)

Once H(C | TS) is estimated, only by estimating H(C) for the discrete variable,
I(TS;C) is obtained.

In the case of Coelho et al.’s [40] method, they use the Kozachenko-Leonenko
entropy estimator [18] to estimate the entropy of a continuous random variable and
the conditioned entropy given a classification variable. Considering this approach, an
adaptation is presented to estimate both entropy terms, H(TS) and H(TS|C), for a
time series. Then, I(TS;C) is calculated with the equivalent relationship between MI
and entropy to the one presented in the previous method but conditioned to C. It is
supposed to have a sample of size m, {(ts1, c1), . . . , (tsm, cm)}. For each time series
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tsp, ⇠tsp value is the distance from tsp to its k
th nearest neighbor TS in the sample

is set. To calculate distances between TS, DTW is applied. Following Coelho et al.’s
[40] method, the adaptation for calculating entropy of time series is presented as:

H(TS) = � (k) +  (m) +
1
m

 
mX

p=1

log(2 · ⇠tsp)
!

(5)

Then, H(TS|C) is defined as:

H(TS|C) =
kX

s=1

H(TS | cs) · p(cs) (6)

where p(c) is the probability distribution function of C that takes values in {c1, . . . , ck}.240

H(TS) and H(TS|cs) are computed with the same method but the second term uses
a subsample of the given sample, restricting it to the instances with class value equal
to cs. After estimating both terms H(TS) and H(TS | C), I(TS;C) is obtained.

4.3 Conditional mutual information between time series
I(TSi;TSj | C)245

Finally, to estimate the third term in the score function, I(TSi;TSj | C), we base on
the following equation:

I(TSi;TSj | C) =
kX

s=1

I(TSi;TSj | cs) · p(cs) (7)

where I(TSi;TSj | cs) is estimated with the previously described adapted method for
computing I(TSi;TSj) in Equation (2), but restricted to those instances in which the
classification variable C is equal to the class label cs [12]. The probability of each class
must also be estimated before we can estimate MI.

5 Experimental Framework250

This section will present all of the requirements for carrying out the evaluation of the
proposed method in MTS classification problems.

To evaluate our time series subset selection method in the solutions of MTS classi-
fication problems, some of the benchmark datasets provided in [42] are used. Large255

datasets requiring large computational resources and datasets with less than 6 dimen-
sions for which FSS methods become meaningless are discarded. The properties of the
selected datasets are summarized in Table 1.

Before applying the proposed time series subset selection method to the datasets,
some components and parameters need to be set. In particular, we consider di↵erent260

MI estimation methods, di↵erent score functions, di↵erent parameters for MI estima-
tion and di↵erent search algorithms. The following algorithms and parameters are
used to define an instance of the proposed framework for time series subset selection:

• Methods for MI estimation between a TS and the classification vari-
able: the Ross method (1) [38], Bulinski and Kozhevin method (2) [39] and265

Coelho et al. method (3) [40] are considered.
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Table 1: Properties of selected datasets

Dataset
Dimensions

(d)
TS length

(n)
Classes

(c)

ArticularyWordRecognition 9 144 25
BasicMotions 6 100 4
Cricket 6 1197 12
DuckDuckGeese 1345 270 5
EigenWorms 6 17984 5
FingerMovements 28 50 2
HandMovementDirection 10 400 4
Heartbeat 61 405 2
JapaneseVowels 12 29 9
LSST 6 36 14
MotorImagery 64 3000 2
NATOPS 24 51 6
PEMS-SF 963 144 7
Phoneme 11 217 39
RacketSports 6 30 4
SelfRegulationSCP1 6 896 2
SelfRegulationSCP2 7 1152 2

• Score function criteria: CMI (C), JMI (J) and MRMR (M).

• Distances used in the methods for MI estimation: Euclidean distance
(EU), which ignores the temporal information of the time series, and dynamic
time warping dissimilarity (DTW), which includes the temporal information,270

are considered.

• k for k-nearest neighbor in MI estimation methods: values 1, 3, 6, 10,
13, 16, 20 for k are considered.

• Searching algorithms: forward (F), backward (B) and stepwise (S).

Each subset returned by the proposed FSS method will be evaluated by means of a275

1-NN classifier with DTW dissimilarity. Despite its simplicity, it achieves competitive
results and in the literature it is considered as a benchmark [4, 43]. In the case of MTS,
two generalizations of the DTW are commonly used: the dimension independent DTW
(DTWI) and the dimension dependent DTW (DTWD) [43, 44]. DTWI is calculated as
the sum of the DTW distances in each dimension. In contrast, for DTWD, the values280

of all the time series at time t are considered as a vector. Then, at each pair of time
steps, the Euclidean distance is computed between the corresponding vectors and the
DTWD is calculated departed from these values. Both classification alternatives, 1-NN
with DTWD and 1-NN with DTWI , will be considered in the following experiments.

All of the MTS classification problems that we have used come divided into two285

datasets, one for training and the other for testing. The training dataset will be used to
apply our FSS method. The testing dataset will then be filtered with the output of the
FSS method. Finally, the selected time series will be used to evaluate the classification
and also the FSS method. Classification accuracy has been used to evaluate the
performance of a classifier. In particular, the classification accuracy obtained will be290

compared with the accuracy obtained when the classification is performed with all
available TSs. Therefore, we will examine whether our method returns TS subsets
that improve classification accuracy.
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6 Results and Discussion

In this section, the obtained results after running the experiments are discussed.295

For each dataset, all of the possible parameters configurations are examined. In
total, for each dataset, 756 experiments have been run (3 methods for MI estimation
between TS and class variable x 3 score functions x 2 MI estimation distances x 7
parameters k in MI estimation x 3 searching algorithms x 2 classification alternatives).300

Once the global best results are analyzed, we evaluate the sensitivity of the method
to di↵erent characteristics and parameters of the algorithm. Specifically, we analyze
the results considering the di↵erent options for the score function criterion, distance
used for MI estimation, the parameter k used for MI estimation, the search algorithm
and the classification alternatives. To this end, we calculate the percentage of fea-305

tures selected by each configuration of the method with respect to the initial number
of features in the dataset (% of selected TS). We also measure the improvement in
accuracy obtained when the classification is performed only with the selected features
as opposed to the classification with all the initial features (% Improvement Acc).
The following six sections will present these results.310

6.1 Global best results

The objective of our first analysis is to try to find the parameter combinations of the
proposed method that work the best for all of the datasets.
For each dataset, we consider the best accuracy obtained by all the di↵erent parameter
combinations. In case of ties, we identify those parameter combinations that produce315

the subset with the lowest number of TS as being the best.
The best results for each dataset along with the summary of the parameter confi-

gurations that return these results are presented in Table 2. The displayed columns
are, from left to right: 1) the dataset, 2) the best accuracy obtained after applying
the time series subset selection methods versus the accuracy obtained with all the320

available TS, 3) the number of TS that the best selected subset has versus the number
of possible time series in the dataset, 4) the number of parameter combinations that
obtain the best accuracy versus the number of experiments performed, 5) the classifier
applied (1-NN with dependent DTW or 1-NN with independent DTW), and from 6)
to 10) columns the parameters and alternatives of the proposed method where the325

best value was reached, in the same order as defined in the previous section (Section
5).

Several conclusions can be extracted from Table 2. First, although the percentage
of improvement depends on the dataset, in almost all of the cases, the selected subset of
time series strongly improves the accuracy reached when all the series are used (except330

in ArticularyWordRecognition with the 1-NN withDTWD and, JapaneseVowels, LSST
and RacketSports with the 1-NN with DTWI ).
Second, in addition to improving accuracy, our method is able to dramatically reduce
the number of series with regards to the original subset. This demonstrates that the
proposed method has a remarkably e↵ective performance.335

However, the percentage of parameter configurations that yield the best results are
low and there is apparently no clear parameter combination pattern that works better
than the rest of them for all of the datasets. Consequently, selecting a successful
parameter configuration is not an easy task.
With regard to the methods for MI estimation between a TS and the classification340
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variable, it is observed that there is no method that clearly improves the results of
the others. Depending on the dataset, the best results are obtained with di↵erent
methods, but without following any obvious pattern.

6.2 Evaluation of the score function criterion

In the experiments, the CMI, JMI and MRMR score functions are tested. The in-345

tention is to extract information about which is the most appropriate for TS subset
selection.

For each dataset and criterion, the average of the “% Improvement Acc” and
the average of the “% of selected TS” is calculated. Then, in Figure 3, for each
criterion, a scatter plot between both measures is presented (the further to the top-350

left, the better). The average “% of selected TS” for each criterion will depend on the
output of all the experiments using that criterion in the FSS method. Each dataset
is represented using a di↵erent shape. The two di↵erent colors represent the distances
used for MI estimation, DTW dissimilarity and Euclidean distance. Because they
influence the final score function together with the criterion, we add this information355

to the dispersion graph.
Figure 3 shows that disparities exist in the obtained results. On the one hand, it

can be determined that among the three methods, the CMI, on average, selects the
smallest relative sets of TS. That is, the points appear more to the left than for the
rest of the criteria. However, in terms of the average “% Improvement Acc”, the CMI360

criterion, for certain datasets such as Japanese Vowels, Heartbeat, Articulary Word
Recognition, PEMS-SF and LSST, is worse than the others. A possible reason is that
the CMI criterion is more restrictive with the features that it selects and, consequently,
some classification information is lost, resulting in no improvement in the accuracy.

365

On the other hand, taking into account the average “% of selected TS”, the JMI
criterion returns larger subsets than the others. If we analyze the score function J

when the JMI criterion is used (see Section 3), we conclude that a possible reason
could be that the weight of the second and third terms of J diminish their relevance
in the score function when the selected TS subset S grows.370

Finally, with the exception of Japanese Vowels, LSST and Racket Sports datasets,
MRMR is the criterion that obtains the best average “% Improvement Acc”. However,
on average, it selects a higher percentage of TS than the CMI.

6.3 DTW vs Euclidean distance in mutual information es-
timation375

The main adaptation proposed in MI estimation methods for time series is the use of
the DTW dissimilarity to consider the temporal information of the TS. To validate the
performance of our adaptation, the results obtained using the DTW dissimilarity to
estimate the MI terms are compared with those obtained using the Euclidean distance.

The experiments that achieve an improvement in accuracy after applying our FSS380

method when compared to using all the time series are first filtered. Then, for each
dataset, we count the number of these configurations that use DTW dissimilarity
and those that use Euclidean distance when estimating the MI. Finally, the obtained
results are segmented by the selected classification alternative (DTWD or DTWI). This
information is shown in Table 3, where the distance measure that obtains the highest385

number of configurations for each dataset and classification alternative is highlighted.
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Figure 3: Dispersion table with “% of selected TS” and “% Improvement Acc”
for each selection criterion and distance used for MI estimation in the di↵erent
datasets. Note that the further to the top-left, the better.

In Table 3, this crossed information is presented for each dataset. The higher
number of configurations between the Euclidean distance and the DTW dissimilarity
in MI estimation are highlighted for each dataset and classification alternative.

Table 3 provides more insight into how the applied distances a↵ect the results. It390

can be seen that for the majority, the number of parameter configurations that improve
the accuracy using the DTW is higher than using the Euclidean distance. This result
validates the main adaptation proposed to add the temporal information of the series
in the computation of the MI.

6.4 Sensitivity of the k parameter in the mutual informa-395

tion estimation

The selection of the k parameter in the estimation of the MI quantities is another
aspect to consider in the application of this time series selection method. It can vary
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Table 3: Number of parameter configurations that improve the accuracy for each
dataset divided by the classification alternatives and the distances used for MI
estimation. The maximum number of combinations between MI computation
distances and between classification alternatives are highlighted for each dataset.

Classif. MI dist. Classif. MI dist.
Datasets altern. EU DTW Total Datasets altern. EU DTW Total
Artic. DTWD 94 111 205 DTWD 81 98 179
Word DTWI 94 105 199 LSST DTWI 48 57 105
Recog. Total 188 216 404 Total 129 155 284
Basic DTWD 171 178 349 Motor DTWD 189 189 378
Motions DTWI 160 179 339 Imagery DTWI 4 3 7

Total 331 357 688 Total 193 192 385
DTWD 149 150 299 NATOPS DTWD 81 128 209

Cricket DTWI 149 154 303 DTWI 125 150 275
Total 298 304 602 Total 206 278 484

Duck DTWD 80 87 167 PEMS-SF DTWD 105 107 212
Duck DTWI 183 186 369 DTWI 101 113 214
Geese Total 263 273 536 Total 206 220 426
Eigen DTWD 182 189 371 Phoneme DTWD 189 189 378
Worms DTWI 165 189 354 DTWI 189 189 378

Total 347 378 725 Total 378 378 756
Finger DTWD 121 128 249 Racket DTWD 57 102 159
Mov. DTWI 124 139 263 Sports DTWI 55 102 157

Total 245 267 512 Total 112 204 316
Hand DTWD 187 188 375 SelfReg. DTWD 183 181 364
Mov. DTWI 43 42 85 SCP1 DTWI 85 96 181
Direction Total 230 230 460 Total 268 277 545
Heart DTWD 101 57 158 SelfReg. DTWD 74 83 157
beat DTWI 74 43 117 SCP2 DTWI 26 30 56

Total 175 100 275 Total 100 113 213
Japanese DTWD 60 54 114 Total 3777 4041 7818
Vowels DTWI 48 45 93

Total 108 99 207
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between di↵erent values and finding the best could be time consuming. Consequently,
di↵erent k values are tested to find how they a↵ect the TS selection process.400

In Figure 4, a dispersion graph is presented, where the average “% Improvement
Acc” and average “% of selected TS” are crossed. For each dataset, a color and a
shape are set. Depending on the k chosen for the MI estimation, the shape has a
di↵erent size; that is, when k = 1 the shape will be smaller that when k = 20.
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Figure 4: Dispersion graph with “% of selected TS” and “% Improvement Acc”
for each k-value used in the nearest neighbor algorithm for the estimation of the
mutual information in the di↵erent datasets. Each k-value has a di↵erent size
in the shapes.

Analyzing Figure 4, it is observed that, except for ArticularyWordRecognition,405
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DuckDuckGeese and Finger Movements the choice of k has minimal influence on the
“% Improvement Acc” because in that axis the points of the same dataset are grouped
together. Hence, despite the fact that it has a higher influence for the “% of selected
TS”, it can be determined that the choice of parameter k, in general, has low influence
in the performance of our FSS method and in the obtained results.410

6.5 Evaluation of the searching algorithms

Due to the relevance that the searching algorithm could have in the process of time
series subset selection, the objective is to analyze the performance of the applied
searching algorithms. We will study the relationship that they have with the amount
of selected time series and the reached classification accuracy.415
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Figure 5: Dispersion table with “% of selected TS” and “% Improvement Acc”
for each optimal searching algorithm used for selecting TS and each classification
alternative in the datasets.

In Figure 5, a scatter graph is displayed, where the average “% Improvement
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Table 4: Average “% Improvement Acc” of each dataset separated by the two
classification alternatives (1-NN with DTWD and 1-NN with DTWI).

Classification alternatives
Datasets DTWD DTWI

ArticularyWordRecognition -4,74 -4,73
BasicMotions 1,25 -0,38
Cricket -1,31 -1,20
DuckDuckGeese -10,63 19,83
EigenWorms 5,95 2,48
FingerMovements 2,32 3,97
HandMovementDirection 22,83 -15,95
Heartbeat -4,94 -8,38
JapaneseVowels -15,97 -16,40
LSST -4,77 -12,24
MotorImagery 21,41 -10,15
NATOPS -2,05 -0,59
PEMS-SF -0,69 -1,33
Phoneme 0,09 0,09
RacketSports -3,98 -4,40
SelfRegulationSCP1 1,33 -0,41
SelfRegulationSCP2 0,56 -4,79

Acc” and average “% of selected TS” are crossed for each searching algorithm. Each
dataset is represented using a di↵erent shape. The two di↵erent colors represent
the classification alternatives applied, 1-NN with dependent DTW and 1-NN with
independent DTW.420

It can be observed in the figure that there are not substantial di↵erences between
the search algorithms in terms of accuracy and number of selected series.

6.6 DTWD vs DTWI in 1-NN classifier

While our FSS method is independent of the classifier used, we would like to analyze
if there are any di↵erences in the use of the DTWD and the DTWI in the 1-NN.425

To examine the relationship between the used classification alternatives and the
proposed TS selection method, the “% Improvement Acc” is calculated for each ex-
periment. The average result is then computed for each classification alternative and
each dataset. In Table 4, these results are presented.

It can be observed that the average “% Improvement Acc” derived from all the430

experiments is higher for the classification with DTWD than for the DTWI in almost
all the evaluated datasets, except for Cricket, DuckDuckGeese, Finger Movements and
NATOPS datasets. A possible explanation for this is that the 1-NN with dependent
DTW considers all of the time series at once when calculating distances for classifi-
cation and, therefore, it takes more advantage of removing those time series that are435

redundant. In any case, the di↵erences in the average “% Improvement Acc” between
both classifiers are not enough to yield any general conclusion, and we thus conclude
that the average improvement in accuracy depends on the dataset.
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7 Conclusion440

The results of this paper show that the proposed TS subset selection method based
on MI strongly increases the classification accuracy, while reducing the number of
time series chosen to solve a MTS classification problem. Consequently, thanks to the
realized experiments in multivariate time series classification, it has been demonstrated
that our feature subset selection pre-process is a relevant step to improve the accuracy445

in MTS classification problems.
Several parameter combinations have been considered in the development of this

time series subset selection method based on MI. The results of the method will be af-
fected by the choice of parameter, distance and algorithm. In fact, no clear parameter
pattern has been found that works correctly for all datasets. Nevertheless, some useful450

conclusions have been found for the selection of the best parameters. First, regarding
to the distance used for the mutual information estimation, using the DTW dissi-
milarity instead of Euclidean distance leads to high probability of improving accuracy
compared to classification using all features. This result validates the main adaptation
proposed to add the temporal information of the series in the computation of the MI.455

In addition, our results reveal that, after applying the proposed method, depen-
dent DTW dissimilarity based 1-NN classification obtains a slightly higher percentage
of improvement in accuracy when classifying the available TS than the independent
DTW, in most cases. Hence, we can deduce that when using the DTW in the MI esti-
mation and the DTWD for the classification, generally, the probability of overcoming460

the accuracy obtained using all of the available time series is higher.
Moreover, considering all the experimental results, in most cases, when the CMI

criterion is applied, our FSS method returns more reduced subsets of TS and, when
the MRMR criterion is selected, the method obtains results with higher classification
accuracy values. In conclusion, the choice of the selection criterion seems to a↵ect465

our method in finding reduced subsets of TS that improve the accuracy with respect
to the original set of TS. Even so, taking into account that the three criterion obtain
good results (see the best results in Table 2), the choice of one or the other criterion
is not entirely dramatic. Finally, it is inferred that the choice of the k that is used for
MI estimation, as well as the searching algorithm implemented to find the optimal TS470

subset, are not as influential as the MI estimation techniques or the distance used.
Despite the work that is done and the conclusions that are drawn, there is still

room for improvement.
Our future investigation will be focused on new non-linear score functions as an alter-
native to the proposed function. In addition, new ways to add temporal information of475

the time series for MI estimation methods will also be examined in the future. Finally,
the next step in our research will be to modify the proposed time series subset selec-
tion method based on the mutual information for multivariate time series classification
problem, which will allow it to cope with massive time series datasets.
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