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Abstract

We review basic models of severe/hospitalized and mild/asymptomatic infection spreading (with classes
of susceptibles S, hopsitalized H, asymptomatic A and recovered R, hence SHAR-models) and develop the
notion of comparing different models on the same data set as exemplified in the comparison of SHAR models
with effective SIR models, where only the H-class of the SHAR model is taken into account in the SIR model.
This is done via the so-called Bayes factor.

A simpler pair of models with analytical expressions up to the Bayes factor will be briefly mentioned as
well. The notions developed with respect to dengue fever epidemiology will then be used to analyze recently
becoming available data on coronavirus disease 2019, COVID-19, where models can be fully parametrized
including hospital admission and more extensions like intensive care unit (ICU) admission and deceased,
always with a close look on as simple as possible models but not simpler, as exercised in Ocham’s razor and
analyzed by e.g. the Bayes factor.

We present the resulting models of SHAR-type with additional classes of ICU admissions U, and deceased
D, and for data analysis of cumulative disease data, also accounting the cumulative classes C, in the so-called
SHARUCD framework. Besides a first basic version, SHARUCD model 1, we investigate also in detail a
refined version, SHARUCD model 2, which could be achieved by a closer analysis of available data only
obtained after the exponential growth phase of the epidemic, when lockdown control measures showed effects.

Namely, the ICU admissions turned out to be more in synchrony with the hospitalized than with e.g.
the deceased cases, such that we could adjust the transitions so that ICU admissions are modeled like
hospitalizations in model 2, and not like recovery or disease induced death as assumed in model 1, explaining
much better the empirical data, specially after the effects of the lockdown became visible.

Special attention will be given here, for the first time, to the initial phase of the COVID-19 epidemics,
before all variables entered into the exponential phase, and its interplay between asymptomatic and severe
hospitalized cases, always in close check with the SIR-limiting case. Such improved understanding of the
initial phase will help in the future analysis of re-emergent outbreaks of COVID-19, likely to happen in the
next or a subsequent respiratory disease season in autumn or winter.
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2010 MSC classification number: 92D30, 92B05, 60H35, 97Mxx, 93A30, 62C10.

1. INTRODUCTION

Good epidemiological data are often available for many infectious diseases outbreaks, from severe or
hospitalized cases, well recorded and documented, however, the dynamic process of disease spreading can
be as well driven by less severe infection, often reported as mild or even asymptomatic cases. Scenarios
of epidemiological spreading of severe/hospitalized and mild/asymptomatic infection cases in susceptible, S,
hospitalized, H,asymptomatic, A, and recovered, R, systems via SHAR-models have been evaluated for long
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time [1], [2]. These models were mainly motivated by observations in dengue fever, where primary infections
are often mild and the main risk of severe disease is epidemiologically linked to a secondary infection caused
by heterotypic dengue virus [3], [4], [5]. The best documented dengue data are of severe and hospitalized
notified cases [6], representing the “peak of the iceberg”, which gives, nevertheless, good information about
complex dynamic features due to recurrent outbreaks over many decades [3]. However, as the mild infections
are mostly unrecorded, it is well known that those cases are of major importance for the epidemiological
dengue spreading.

A wide spectrum of symptoms is observed for many infectious diseases, from severe and potentially lethal
disease to milder forms such that the infected individual is often not aware of being infective due to a
sub-clinical or even asymptomatic course of infection. In bacterial meningitis caused by Neisseria bacteria,
for example, the pathogens are mostly commensal for the human host and only rarely, due to mutations,
turn out to be pathogenic, the so called accidental pathogens [7], [8], [9]. Via critical fluctuations [10], [9],
we observe that the more pathogenic the sooner they exhaust their basis, becoming extinct, whereas milder
mutants would survive longer time periods in the host population, eventually becoming commensals and not
harming their host in any noticeable way.

A similar pattern is noticed in the current coronavirus disease 2019 outbreaks, COVID-19, where we observe
a relatively high disease induced mortality as compared to other well established influenza-like illnesses, ILI,
or any other human coronaviruses circulating during in the seasonal respiratory diseases period, however
milder forms are frequent. The COVID-19 case fatality ratio is decreasing over time as testing capacities
are increasing allowing the detection of infectious cases with mild or no symptoms. Data on hospitalizations
as well as on infected but not hospitalized cases, which we call mild or asymptomatic infections, are now
available such that SHAR-type models can be parametrized on actual outbreak data. For COVID-19 cases, a
variable spectrum of disease severity is observable, from very severe, prone to hospitalization up to intensive
care unit admissions and disease induced death, to milder forms with some characteristic disease symptoms,
but not needing hospitalization, to very mild forms with symptoms easily confused with other respiratory
diseases to even asymptomatic. See for a very recent study on seroprevalence in Spain [11], where up to 30
% asymptomatic are reported to be detected among the seropositive for immunoglobin G, IgG, antibodies.

In this study we distinguish between severe and potentially hospitalized to be always detectable with a
positive PCR test, in the H class, and mild up to asymptomatic, with a proportion ξ detected, which still
contribute to the force of infection, in the A class. We use stochastic models to estimate parameters from the
available data and models are parametrized as they can describe the exponential phase of the epidemic.

In March 2020, a multidisciplinary task force, the so-called Basque Modelling Task Force, BMTF, was
created to assist the Basque Health managers and the Basque Government during the COVID-19 responses.
Withing this BMTF we developed a modelling framework able to describe the COVID-19 outbreak in the
Basque Country in so-called SHARUCD models, using data referring to all positive PCR tested cases classified
as hospitalization, intensive care unit (ICU) admissions, deceased, and later also recovered. Besides the already
described SHAR compartments and ICU admissions, U, compartments for cumulatively notified disease
classes, C, namely CH , CA, CU and CR, and deceased, D, were introduced [12], [13]. The compartments
H , A, U and R are dynamical compartments whereas the corresponding C compartments are counting only
the entries cumulatively or in the case of CR only notified parts of entries, to compare with the empirical
cumulative cases in the Basque Country.

In the basic toy models for dengue fever, which are sketches of more extended multi-strain models [3],
a comparison between SHAR models and simpler SIR models could be performed in the transition towards
stationarity and fluctuations around stationarity, showing that data generated by the more complex SHAR
model could still be described by the simpler SIR model when taking shifts in parameters into account [2].
In a Bayesian framework the original parameters of the SHAR model as well as effective parameters of the
simplifying SIR model could be estimated and probabilities could be given for one model versus the other
via the Bayes factor, a quotient of Bayesian evidences of the compared models. This demonstrates that often
empirical data can give some information about dynamics of different models but not sufficient to distinguish
between them. The key question is what parameters the different models obtain and how models can be
compared [14].

In the present work we use the above notions to investigate for the SHARUCD models, describing and
being fully parametrized on COVID-19 data from the Basque Country, limiting cases of SIR-type models
and in how far extra information is obtained by adding more realistic features in the SHARUCD framework
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without over-parameterizing. If in previous work we have demonstrated that on available empirical data some
model refinements could be performed giving better results [12], here we describe how more information
can eventually be extracted from the present and future revisited data, including the disease introduction
phase. We face the present situation in COVID-19 research that many different models have been recently
developed describing often similar data. So a more formal procedure for model comparison will help in future
understanding of the recent pandemic and its future development in the soon upcoming respiratory disease
seasons. From experiences in other respiratory diseases, ILI, it would be expected to observe some seasonal
effect on the spreading of COVID-19. Although still difficult to disentangled disease control in the Norther
hemisphere from the lockdown measures, we should consider differences in disease speeding via seasonality.
Note that the first cases in China started in mid winter, with the disease spreading, via imported cases, into the
European countries in different times, but still in winter. However, as the lockdowns started differently, most
of these European countries were able to control disease transmission at similar times. That could indicate
some seasonal effect, hence not completely excluding the possibility of a second wave to begin in autumn.
Nevertheless, more information about SARS-CoV-2 virus has to be gained for further evaluations of risks,
now being in the phase of isolated outbreaks after the first lockdown relaxation.

In Section 2 we describe the model comparison of different models applied to the same data set along
the analytically treatable examples of the linear infection model and the Poisson model. In Section 3 the
SHAR modelling framework is introduced and numerical comparison of the SHAR models with effective SIR
models is tested. In Section 4 we describe the SHARUCD modelling framework to model COVID-19 based
on the previous notions of the SHAR models, where here the SHARUCD models would be the minimalistic
models describing quantitative features of the data, where many more detailed models have been suggested
recently, see e.g. [15], where the role of asymptomatic infected is emphasized, and many compartments are
used, just any difference in infectivity between severe and mild is lacking. Any difference between infectivity
of mild versus severe cases, actually, gives us technically tools to distinguish between the SIR-limiting case
and the SHAR specific properties of the disease dynamics. Section 4 gives two particular model versions of
the SHARUCD-type, the basic model first analyzed on data of COVID-19 in the exponential growth phase,
and an improved version, SHARUCD model 2, obtained in the phase of lockdown control measure effects,
in order to describe new incoming data features. Here we include new results on this improved model to
also capture more features of the disease introduction phase, i.e., before the COVID-19 exponential phase,
where with “exponential phase” we mean the explosive growth phase of all observed variables with the same
growth factor.

Since in the pre-exponential phase, some of the variables still lack behind they eventually give more
information on some of the modelling parameters and the dynamics of any introduction or re-introduction
of COVID-19 into a new area. Still more high quality data for this phase have to be sought to improve our
understanding of this very important initiation phase including stochastic fluctuations from external index
cases.

2. MODEL COMPARISON IN ANALYTICALLY TREATABLE CASES

2.1. Introduction

In this section we give a brief first example of how to compare different models on the same empirical data.
We derive the basic notions of likelihood, Bayesian prior and posterior along an analytically treatable model,
the linear infection model. Then we derive a simplifiction of this process, the Poisson model, in the same
analytically treatable way, and finally compare both models on the same data set, obtained from stochastic
simulations of the more complex linear infection model via probabilities of one model conditioned on the
data and probabilities of the other model conditioned on the same model, in the so-called Bayes factor. For
a more detailed description on this procedure see [14]. Then in the next section we will transfer all notions
obtained here to model comparisons of SHAR and SIR type, where the analysis can only be performed
numerically, but with the same notions as developed here in the analytically treatable case.
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2.2. The linear infection model as a simple analytically tractable stochastic system
With susceptible individuals S and infected I giving a population of size N we have one of the simplest

models in epidemiology given by the following reaction scheme

S + I
β−→ I + I (1)

I
α−→

with infection rate β and recovery rate α. Hence the probability of the system is given by the stochastic
variable I , and with constant population size following S = N − I as master equation

d

dt
p(I, t) =

β

N
(I − 1)(N − (I − 1)) · p(I − 1, t) + α(I + 1) · p(I + 1, t)

−
(
β

N
I(N − I) + αI

)
· p(I, t) (2)

not easily solvable explicitly. However, for a population of susceptibles being infected from an outside and
much larger pool of infected I∗, and no internal infection and no recovery (or counting only cumulative
infected) we have the even simpler linear infection model with the following reaction scheme

S + I∗
β−→ I + I∗ (3)

and its master equation

d

dt
p(I, t) =

β

N
I∗(N − (I − 1)) · p(I − 1, t)− β

N
I∗(N − I) · p(I, t) . (4)

For the linear infection model see e.g. [9] and references therein, and for general introduction to such
stochastic processes e.g. [16], [17], [18]. With the abreviation β∗ := β

N I
∗ the linear infection model then is

d

dt
p(I, t) = β∗(N − (I − 1)) · p(I − 1, t)− β∗(N − I) · p(I, t) (5)

and can now be analytically treated.

2.3. Analytic solution of the linear infection model with characteristic function
The characteristic function

〈eiκI〉 :=

N∑
I=0

eiκI · p(I, t) =: g(κ, t) (6)

=

N∑
I=0

ei
2π
N+1k·I · p(I, t) = ĝ(k, t) (7)

gives the tool for solving Eq. (5). With the wave number k defined via κ =: 2π
N+1 · k we have ĝ(k, t) as

Fourier transform with inverse Fourier transformation giving again the probability

p(I, t) =
1

N + 1

N∑
k=0

e−i
2π
N+1k·I · ĝ(k, t) . (8)

Hence we just have to solve a dynamical equation for g obtained from the dynamics of the probability and
use Fourier back transform to obtain the solution for the probability p via

∂

∂t
g(κ, t) =

N∑
I=0

eiκI · d
dt
p(I, t)

obtaining

∂

∂t
g(κ, t) = β∗N

(
(eiκ − 1)

)
· g(κ, t) + iβ∗(eiκ − 1) · ∂g

∂κ
(9)
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as dynamic equation. A separation ansatz g(κ, t) := h(κ) · `(κ, t) solves this partial differential equation
provided we use a second step of `(κ, t) := m(κ) · n(t). The first separation gives

∂`

∂t
= iβ∗

(
eiκ − 1)

) ∂`
∂κ

and
dh

dκ
= iN · h(κ)

with solution h(κ) = eiNκ. A special solution of the second separation is
dn

dt
= iβ∗ · n(t) ⇒ n(t) = eiβ

∗t

and
dm

dκ
=

1

eiκ − 1
·m(κ) ⇒ m(κ) = e−κ ·

(
eiκ − 1

)−i
.

For the solution including initial conditions we have I0 infected at time t0
p(I, t0) = δI,I0

giving the initial condition of the characteristic function

g(κ, t0) =

N∑
I=0

eiκI · p(I, t0) = eiκI0 .

With another function Φ(z) in the separation ansatz we include the intial conditions via z(κ, t) = m(κ) ·n(t)

g(κ, t) = h(κ) · Φ(z) = h(κ) · Φ(`(κ, t)) .

giving

Φ(z) =
(

1− zieβ
∗t0
)N−I0

and the characteristic function has the solution

g(κ, t) = eiκN ·
(
e−iκe−β

∗(t−t0) + (1− e−β
∗(t−t0))

)N−I0
(10)

with p(I, t) = 1
N+1

∑N
k=0 e

−i 2π
N+1k·I · g(κ(k), t) giving the probability solution

p(I, t) =

(
N − I0
I − I0

) (
e−β

∗(t−t0)
)N−I (

1− e−β
∗(t−t0)

)I−I0
= p(I, t|I0, t0) (11)

with the transition probability p(I, t|I0, t0) as used below in the likelihood function.

2.4. Likelihood function and its maximization
For a data set (I0, I1, ...In) we have the joint probability given by the product of the above calculated

transition probabilities

p(In, tn, In−1, tn−1, ..., I1, t1, I0, t0) =

n−1∏
ν=0

p(Iν+1, tν+1|Iν , tν) · p(I0, t0) .

Inserting this and omitting the star from β∗ for notational ease we obtain the joint probability of all data
points as a function of model parameters, here the parameter β, the likelihood function

L(β) =

n−1∏
ν=0

(
N − Iν
Iν+1 − Iν

) (
e−β∆t

)N−Iν+1
(
1− e−β∆t

)Iν+1−Iν · p(I0, t0)

with ∆t := tν+1 − tν . The most likely parameter is the the maximum of L(β), or hence also its logarithm
l(β) := ln(L(β)), with the result

β̂ =
1

∆t
· ln

(
N − 1

n

∑n−1
ν=0 Iν

N − 1
n

∑n−1
ν=0 Iν+1

)
from the data Iν .
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2.5. Bayesian probabilities for parameters given the data

Of course, one wants to know the probability of the paramters given the data at hand, here p(β|I), condi-
tioned on the data set I = (I0, I1, ...In), in order to evaluate the parameter estimation and the information the
data provide. The likelihood as constructed above is however the probability of the data given the parameters,
hence L(β) = p(I|β), and not a normalizable probability in respect the the parameters. Considering the joint
probability of data and parameters and conditioning on one or the other gives us the wanted probability of
the parameters given the data p(β|I) from the likelihood as obtained directly from the data p(I|β) via the
Bayesian ansatz

p(β|I) =
p(I|β)

p(I)
p(β) , (12)

with the normalization constant p(I) =
∫
p(I|β) · p(β) dβ. See e.g. [19], [20] for a general introduction to

the Bayesian framework.
The introduction of an a priori probability of the parameter p(β) occasionally leads to some discussion

between frequentists and Bayesians, since there is no real criterion how to chose this, and leaves some
arbitrariness to the result p(β|I) of the posterior, in case the prior is chosen narrowly. However, a braod
prior is mostly overwritten by the data, which give much larger terms than the prior, hence a fair choice of
relatively uninformed priors over the hopefully well informed and much narrower posterior is desirable [19].
For analytic convenience often conjugate priors are used, having the same functional form as the likelihood
function, whereas in computaional methods often a flat prior, on the costs of a cut-off far outside the parameter
region of interest is used, for normalization purposes.

The conjugate prior for the linear infection model is a beta-distribution with prior parameters a1 and b1,
which should be specified beforehand and give uninformed priors. Then for the posterior we obtain the
analytical expression

p(β|I) =
Γ(a1 + b1 +

∑n−1
ν=0(N − Iν))

Γ(a1 +
∑n−1
ν=0(Iν+1 − Iν)) Γ(b1 +

∑n−1
ν=0(N − Iν+1))

(13)

·
(
1− e−β∆t

)a1+
∑n−1
ν=0 (Iν+1−Iν)−1 (

e−β∆t
)b1+

∑n−1
ν=0 (N−Iν+1)−1 · e−β∆t ·∆t ,

with the detailed calculations given e.g. in [9].
The posterior is again a beta-distribution with parameters ã = a1 +

∑n−1
ν=0(Iν+1 − Iν) and b̃ = b1 +∑n−1

ν=0(N−Iν+1), the hyperparameters with the large terms of the data overwriting the small prior parameters.
For a further investigation of prior versus posterior performance see [21], and especially Fig. 3 therein.

Then the median or the mode of the posterior is taken as best estimate and the confidence intervals can
be read off directly from the posterior distribution p(β|I). Now we will investigate in how far a model is
suitable at all to describe the data at hand, or more specifically if other models can describe the data better
or worse than the presently considered model, hence we search now for probabilities of one model, given
the data, in comparison to other models, given the same data.

2.6. Model comparison

Often in life science different research groups are working on the same data or similar data but with different
models, often parametrized quite differently and emphasizing one or another feature of the dynamics of the
system. Now in times of COVID-19 this happens more than ever, and even on a global scale. Hence to address
this question of model comparison in the present Bayesian framework we look at another model with which
we can compare the one we have been working with up to now. We consider now a further simplification of
the linear infection model, i.e. for large N we have β∗(N − (I − 1)) ≈ β∗(N − I) ≈ β∗N =: λ which is
constant, and so the master equation reduces to the form

d

dt
p(I, t) = λ · p(I − 1, t)− λ · p(I, t) (14)
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now with constant transition probabilities λ. This describes the Poisson process and with initial conditions
p(I, t0) = δI,I0 has the solution, see [9] for the detailed calculations,

p(I, t) =
(λ ·∆t)I−I0

(I − I0)!
e−λ·∆t (15)

giving also the transition probability p(I, t|I0, t0) needed for the likelihood function with the result

L(λ) =

n−1∏
ν=0

(λ∆t)Iν+1−Iν

(Iν+1 − Iν)!
e−λ∆t . (16)

For the Poisson model the conjugate prior is the gamma-distribution with prior parameters a2 and b2 and we
obtain

p(λ|I) =
(b2 + n)a2+k2

Γ(a2 + k2)
(λ∆t)(a2+k2−1)e−λ∆t(b2+n)∆t . (17)

for the posterior.
Consider now the linear infection model and the Poisson model, for a given data set I , which we obtain

from Gillespie simulations from the more complex linear infection model. We will refered to the linear
infection model M1 and to the Poisson model as M2. With same probability initially for both models
p(M1) = p(M2) = 1/2 the Bayes factor k gives the ratio of probability of model M1 over model M2, both
conditioned on the same data set

k :=
p(M1|I)

p(M2|I)
=

p(I|M1)
p(I) · p(M1)

p(I|M2)
p(I) · p(M2)

=
p(I|M1)

p(I|M2)
. (18)

Computing the Bayesian evidence of models M1 and M2 by integrating over all parameters, which we already
obtained via the normalization constants in each model individually, here p(I|M1) =

∫
p(I|β,M1) · p(β) dβ

for model M1 and respectively p(I) =
∫
p(I|λ,M2) · p(λ) dλ for M2, we get

p(I|M1) = k1 ·
Γ(a1 + b1)

Γ(a1)Γ(b1)
· Γ(a1 + k2)Γ(b1 + k3)

Γ(a1 + k2 + b1 + k3)
(19)

and
p(I|M2) = k4 ·

ba22

Γ(a2)
· Γ(a2 + k2)

(b2 + n)a2+k2
(20)

and for Bayes factor

k =
k1 · Γ(a1 + b1) · Γ(a1 + k2) · Γ(b1 + k3) · Γ(a2) · (b2 + n)a2+k2

k4 · Γ(a1) · Γ(b1) · Γ(a1 + k2 + b1 + k3) · Γ(a2 + k2) · ba22

(21)

with constants which include the data information, i.e. k1 :=

(∏n−1
ν=0

(
N − Iν
Iν+1 − Iν

))
and further k2 :=∑n−1

ν=0(Iν+1 − Iν), k3 :=
∑n−1
ν=0(N − Iν+1) and k4 :=

∏n−1
ν=0

1
(Iν+1−Iν)! .

We evaluated the Bayes factor for a data set simulated with the linear infection model M1. However, in
some parameter regions often the simpler Poisson model appears to be more likely, i.e., has higher probability
or evidence than the truly underlying linear infection model, see [14] for more details on various data sets
generated from model M1. A Bayes factor of k > 1 indicates a higher probability of model M1 than
the probability for model M2 while a Bayes factor smaller than 1, hence k < 1, would indicate a higher
probability for the simpler model M2, though the data set was originally simulated via model M1. Sometimes
a value of k higher than 10 is considered as selection of model M1, but there is no strict border. Still, if a
Bayes factor is above 100, model M1 is 100 times more likely than M2 etc., hence the unfavoured model
can be considered as inappropriate to describe the data set under investigation.

The Bayes factor was then computed for many realizations of the process and for different values of β. Fig.
1 shows the variation of the logarithm of k with β. We see that in some parameter regions the Bayes factor
favours the model not underlying the simulation. This happens in parameter regions which do not easily give
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sufficient information to the simulated data to reject the simpler model M2. This is a common situation in
empirical systems with limited available data. As expected, the underlying model is clearly selected if the
parameter β is increased.

Figure 1: Logarithm of the Bayes factor for various values of β. Lines indicate k = 1, hence ln(k) = 0 and a value
given often as theshold to distinguish one model from the other of k = 10, which however is not really a good choice.
Clear cases are given for much larger Bayes factors only. For β-values up to β ≈ 1 the simpler model has good chances
to decribe the data, often even better than the linear infection model. From β ≈ 3 on the linear infection model would
be near to exclusively been chosen. In the intermediate region, often it depends on the realization of the data, which of
the two models has better descriptive value.

In conclusion the present models, and especially the here presented aspect of model selection in the
Bayesian framework, can be applied to influenza data, namely those from InfluenzaNet, an internet based
surveillance system for influenza like illnesses which has been extended to various countries in Europe,
see [22]. Another application is in dengue fever where more extended models have been suggested with
potentially selective features which might be detectable with presently available empirical data or with future
data, see [23], [24], [25], [3] and references therein. When using such more complex models, however, most
of the steps which could be treated here analytically will have to be performed via simulations, see [21]. We
will demonstrate the numerical aspects of model evaluation and model selection on SHAR and effective SIR
models in the next section.

3. DENGUE FEVER TOY MODELS OF SHAR-TYPE AND EFFECTIVE SIR MODELS

3.1. Introduction
In this section we derive stochastic versions of epidemiological models with severe and asymptomatic

infection, which have previously been described as differential equation systems [1] for SHAR models. We
fit data output of these models with simpler SIR type models to obtain numerically effective infection rates.
The results can be compared with the previously stated simpler analytical arguments for the relation between
effective infection rate in the SIR models and more complex parameter combinations in the SHAR models
[1]. Namely, the relation between effective infection rate in the SIR system and the parameters of the SHAR
model is confirmed by numerically evaluating the likelihoods of initial infection rate of the SHAR model
and the effective infection rate of the SIR system, even outside stationarity of the respective processes, from
which the analytical results are obtained. Similar approaches as we use here for the numerical calulation of
likelihoods and Bayes factors have been used e.g. in [26], [27]. In our case study it turns out that the SHAR
model, from which the toy data were generated, appears to be not much more likely than the effective SIR
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model in terms of Bayes factors. For alternative approaches of model selection, based on the Kolmogorov-
Smirnov test, see e.g. [28]. However, such approaches are not as easily generalizable as the Bayes factor,
where simply probabilities are given to models based on data.

The present study of such initial models is well applicable to the situation of dengue fever infections in
which severity of disease is associated with antibody dependent enhancement (ADE) since a long time [29],
[30]. And recently field studies tried to clarify the question if asymptomatically infected are equally infectious
as severe cases with their high viral load [31]. These authors come to the conclusion that asymptomatically
infected can infect as much mosquitoes as severely infected, and there is the expectation that due to their
mobility, asymptomatically infected might even contribute more to the force of infection than severe cases.

However, the best notification data of dengue infections from Thailand use only severe cases being
hospitalized [6], which means that in relatively simple models which already can describe the empirical
data well we would expect a ”masked” effective infection rate as suitable rather than a ”bare” infection rate,
however this might be defined. Many present models of dengue fever have so complicated structures that any
systematic analysis in terms of Bayes factors would most likely prefer the simpler models due to the limited
number of empirical data. However, such effective models are the best tools for realistic predictions of future
disease levels [32], and even more in analysis of control measures like vaccination and its impact [33], [34],
[35]. In the present study we concentrate on rather simplified models like the SHAR and SIR model without
any serotype interactions, which would be needed to describe the empirical data more accurately [3], [36],
[37]. Since such multi-strain models show not only oscillations into stationary states, and eventually stabilized
by noise as we observe here in our simple models, but chaotic attractors, we will leave the study of such
models with the present techniques for future research. For chaotic systems up to now mostly random walks
toward the likelihood maximum are in technical reach, see [21] including further references.

3.2. The SHAR model

The SHAR model with severe infection or hospitalized cases H and mild or asymptomatic cases A in
an otherwise SIR-type epidemiological model, see [9] for more information on the notations and standart
analysis techniques, is given by

d

dt
S = αR− β

N
S(A+ φH)

d

dt
H = η

β

N
S(A+ φH)− γH (22)

d

dt
A = (1− η)

β

N
S(A+ φH)− γA

d

dt
R = γ(A+H)− αR

and R = N −S−A−H . Here η is the ratio of infection leading to severe disease cases and φ is the change
of infectivity of severe cases versus the ”natural” infectivity via asymptomatic cases.

The role of asymptomatic infection becomes more recognized recently, since many pathogens appear
as only accidentally pathogenic, see e.g. [9], [43] initially for bacterial meningitis [7], [10], [8], with
fluctuations similar to crossing a vaccination threshold [44]. Similarly, in dengue fever the virus is completely
asymptomatic in its animal reservoir, monkeys, and only turns occasionally pathogenic in humans, mostly in
secondary infections. The SHAR model is an oversimplified model for dengue fever in the sense that higher
viral load due to antibody dependent enhancement, ADE [29], [30], or lower infectivity due to hospitalization
gives a φ different from unity, and the majority of primary infections is asymptomatic, mild or sub-clinical
with ratio (1− η), but here we do not consider primary versus secondary infection nor any further serotype
interaction as done in [3], [37].

3.2.1. The stochastic SHAR model

We now want to generate ”toy data” via a stochastic version of the SHAR model via the Gillespie algorithm
[38], [39] from a master equation formulation [16], [17], [18], see in application to epidemiology explicitly
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[9] including further references, with transitions given by the following reaction scheme

S +A
ηβ−→ H +A

”
(1−η)β−→ A+A

S +H
φηβ−→ H +H (23)

”
φ(1−η)β−→ A+H

H
γ−→ R

A
γ−→ R

R
α−→ S

giving the master equation for the dynamics of the probabilities

d

dt
p(S,H,A, t) = η

β

N
(S + 1)A p(S + 1, H − 1, A, t)

+(1− η)
β

N
(S + 1)(A− 1) p(S + 1, H,A− 1, t)

+η
b

N
(S + 1)φ(H − 1) p(S + 1, H − 1, A, t)

+(1− η)
β

N
(S + 1)φH p(S + 1, H,A− 1, t) (24)

+γ(A+ 1) p(S,H,A+ 1, t)

+γ(H + 1)p(S,H + 1, A, t)

+α(N − (S − 1)−H −A) p(S − 1, H,A, t)

−
(
β

N
S(A+ φH) + γ(A+H) + α(N − S −H −A)

)
p(S,H,A, t) .

The master equation can be written in a generic form using densities x1 := S/N , x2 := H/N and x3 :=
A/N instead of the total numbers of individuals in the population classes S, H and A, hence state vector
x := (x1, x2, x3)tr, as

d

dt
p(x, t) =

n∑
j=1

(
Nwj(x+ ∆xj) · p(x+ ∆xj , t) −Nwj(x) · p(x, t)

)
(25)

with n = 5 different transitions and small deviation from state x as ∆xj := 1
N · rj , see [40], [41], [42].

For the SHAR model we have explicitly the following transitions wj(x) and its vectors rj given by

w1(x) = ηβx1(x3 + φx2) , r1 = (1,−1, 0)tr

w2(x) = (1− η)βx1(x3 + φx2) , r2 = (1, 0,−1)tr

w3(x) = γx2 , r3 = (0, 1, 0)tr

w4(x) = γx3 , r4 = (0, 0, 1)tr

w5(x) = α(1− x1 − x2 − x3) , r5 = (−1, 0, 0)tr .

(26)

With these wj(x) and rj specified we also can express the mean field ODE system and in Kramers-Moyal
approximation of the master equation to a Fokker-Planck equation a stochastic differential equation system,
as will be shown below. From the SHAR model given as master equation we can now simulate realizations
of the stochastic process via the Gillespie algorithm, and in this way obtain a ”toy data set”

D := (H1, H2, ...,Hnd) (27)

of nd data points of hospital cases Hν at times tν . On this data set we can then test statistical methods to
fit parameters of various models including model comparison in a Bayesian framework, as described for the
analytically treatable case in the previous section. We will now try to describe the output of the SHAR model
D via an effective simpler model, the SIR model with new infection rate β̃.
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3.3. The effective SIR model
An effective SIR model tries to explain the observed number of infected via a simple infection class I

without any further distinction into more complex classes like asymtomatically infected, severe cases or any
other possible mechanisms like primary or secondary infection etc. The SIR model is given by

d

dt
S = αR− β̃

N
SI

d

dt
I =

β̃

N
SI − γI (28)

d

dt
R = γI − αR

with an initially unknown infection rate β̃ to be determined either from data as we will do below, or as was
done in [1], by assuming that the effective SIR system has the same stationary state value I∗ as a more
complex model, here the SHAR model with observed severe infected H∗.

3.3.1. Effective infection rate
In [1] we obtained for the effective infection rate β̃ as a function of the parameters of the more complex

model, the SHAR model, the expression

β̃ =
γ

1− η
(

1− 1
1+(φ−1)η ·

γ
β

) (29)

from assuming the condition that the stationary state I∗ of the effective SIR model is the same as the
stationary state value of the observed severe cases H∗ in the SHAR model, hence I∗(β̃) = H∗(β, η, φ). It
turned out that also outside stationarity the deterministic simulations of the SHAR model and the effective
SIR model with the above determined effective infection rate β̃ agree quite well, when using otherwise the
same parameters and initial conditions, as far as the SIR system has corresponding parameters in the SHAR
model.

Parameters for the initial study of the deterministic matching are given as follows: For the SHAR model we
use N = 1000, γ = 1, β = 3·γ, α = 0.1, η = 3/4, and for the moment φ = 1. Initial conditions are S0 = 200,
A0 = 30, H0 = η

1−ηA0, a relation which holds in stationarity H∗ = η
1−ηA

∗, and R0 = N − S0 −A0 −H0.
For the SIR system we use the same parameters if not otherwise stated, hence initially β̃ = β, and as initial
conditions S0,SIR = (β/β̃)S0,SHAR, I0 = H0 and R0 = N − S0 − I0. We use the analytically calculated
effective infection rate Eq. (29), which turns with the present η = 3/4 etc. out to be β̃ = 2 · γ. We also
changed the intial condition in the SHAR model to A0 = 100 to observe the effect of initial conditions far
away from the equilibrium, and still I(t) is quite well comparable with H(t) outside the condition I∗ = H∗,
see [2].

Next we look at the master equation formulation of the SHAR model to simulate toy data. The stochastic
fluctuations of the SHAR model itself go well beyond the differences between the SHAR model and the
effective SIR in their deterministic versions. In the present study we want to determine the effective infection
rate β̃ by comparing stochastic simulations of the effective SIR model with the data D obtained from a
stochastic simulation of the SHAR model. For this we vary values of β̃ and count the number of simulations
being close to the data, and the β̃ value with maximal number of simulations close to the data is the best
estimator of β̃ for this data set. Therefore, we now need the stochastic version of the effective SIR model,
and best a version which is quick in simulation time, since we need many simulations with varying β̃ values.

3.3.2. Stochastic versions of the effective SIR model
The master equation for the effective SIR model is given by the reaction scheme

S + I
β̃−→ I + I

I
γ−→ R (30)

R
α−→ S
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and explicitly for the dynamics of the probabilities we get

d

dt
p(S, I, t) =

β̃

N
(S + 1)(I − 1) p(S + 1, I − 1, t)

+γ(I + 1)p(S, I + 1, t)

+α(N − (S − 1)− I) p(S − 1, I, t) (31)

−

(
β̃

N
SI + γI + α(N − S − I)

)
p(S, I, t) .

For the master equation in densities x1 := S/N and x2 := I/N we have now transitions wj(x) and its
vectors rj given by

w1(x) = β̃x1x2 , r1 = (1,−1)tr

w2(x) = γx2 , r2 = (0, 1)tr

w3(x) = α(1− x1 − x2) , r3 = (−1, 0)tr .
(32)

We could use now simulations of the master equation directly to measure the effective infection rate β̃, but
for large population sizes N the simulations become very slow. So we will use the Kramers-Moyal expansion
to obtain a Fokker-Planck equation as approximation of the master equation, for which the corresponding
stochastic differential equation system can be simulated much faster.

3.4. Fokker-Planck approximation of the effective SIR model

From the master equation in densities, Eq. (25), now for the SIR system, we use Taylor’s expansion

wj(x+ ∆xj) · p(x+ ∆xj , t) =

∞∑
ν=0

1

ν!

(
∆xj · ∇x

)ν
wj(x) p(x, t) (33)

giving in Kramers-Moyal approximation to second order in 1/N a Fokker-Planck equation

∂

∂t
p(x, t) = −∇x

 n∑
j=1

(−rj · wj(x)) p(x, t)

 (34)

+
σ2

2

n∑
j=1

(rj · ∇x)2wj(x) p(x, t)

with

∇x =

( ∂
∂x1
∂
∂x2

)
= ∂x (35)

or in different notation

∂

∂t
p(x, t) = −∂x

(
f(x) p(x, t)

)
+
σ2

2

→
∂x

(
G2(x) p(x, t)

) ←
∂x (36)

using simply a quadratic form
→
∂x (G2(x) p(x, t))

←
∂x here with

→
∂x (G2 p)

←
∂x=

(
∂

∂x1
,
∂

∂x2

)
·
(
g11 g12

g21 g22

)2

p(x, t) ·


←
∂
∂x1

←
∂
∂x2

 (37)
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and

f(x) =

n∑
j=1

f
j
(x) =

n∑
j=1

(−rj · wj(x)) (38)

G2(x) =

n∑
j=1

G2
j (x) =

n∑
j=1

rj · rtrj wj(x) .

The Fokker-Planck equation gives a stochastic differential equation system with σ = 1/
√
N and in the

SIR model the two dimensional Gaussian normal noise vector ε(t) = (εx1
(t), εx2

(t))tr as

d

dt
x = f(x) + σG(x) · ε(t) (39)

and using matrix square root from eigenvalue-eigenvector decomposition G2(x) = TΛT−1 as G(x) =
T
√

ΛT tr to be numerically implemented easily, and much faster than the Gillespie algorithm [38], [39] for
the master equation. To further speed up the SDE simulations we can relax the condition of G being a
quadratic matrix, and allow a matrix B with BBtr = G2 the expressions in B can become quite simple and
fast to compute [45].

Now we can vary β̃ and compare in an η-ball method [46], [32] the simulations of the SIR model with the
data vector D, which gives the likelihood p(D|β̃). The η as a radius of a vicinity around the data vector D
should not be confused with one of the parameters in the SHAR model, which is also named η, a confusion
easily avoided by the very different contexts in which they appear. In case of doubt, we will call ηSHAR the
model parameter of the SHAR model, and η1 the η-ball radius around the data, used to evaluate simulations
from model M1, and η2 from model M2.
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Figure 2: Likelihood functions numerically obtained for a) model M1 with maximum in β ≈ 3 and b) model M2with
maximum in β ≈ 2 as expected from the analytical calculations of the effective β̃. We use in both cases the B-matrix
version of the stochastic differential equation system to obtain the likelihood functions due to its simulation speed.

3.5. Data and analysis, results and conclusions
From the SHAR model we now generate data sets, hoping that the data already contain so much information

about the system to find back parameters with not too large variance. Especially, we take a transient behaviour
and a long period in stationarity covered by the time interval of the data. The data are taken by the slow but
exact Gillespie algorithm.

Then we compare simulations of the SHAR model, with the data, where now the simulations are performed
with the much faster stochastic differential equations obtained by the Fokker-Planck approximation of the
master equation with its slow Gillespie algorithm for simulations. We find accurately the best estimate to be
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where expected, at β1 = 3 · γ, and values like β1 = 2 · γ or β1 = 4 · γ have already quite lower likelihood,
this in spite of using different algorithms for data generation and model fitting.

The next result is, when fitting the effective SIR model to the data generated from the SHAR model,
again using the stochastic differential equation approach, we obtain a best estimate from the maximum of the
likelihood for the effective infection rate β2 = β̃ = 2 · γ, in good agreement with out analytical result, Eq.
(29). This is a non-trivial result, since we obtained the analytic expression via comparing stationary states
I∗ = H∗ only, but now obtain the same relation from simulated data outside stationarity with a long and
oscillating transient and continued stochastically stabilized oscillations in stationarity. Also remarkable is that
for β2 = β̃ the value of 3 · γ, which is the one used in the SHAR model, can be statistically excluded, since
the likelihood funtion in Fig. 2 b) has values close to zero around β2 = 3 · γ as compared to the maximal
values near β2 = 2 · γ.

Finally, we investigate the Bayes factor k = p(M1|D)/p(M2|D) for a data set D generated from M1,
the SHAR model. See for the concepts the previous section again on the Bayes factor and analytic results
in simple cases. A Bayes factor of k = 1 would indicate equal probability of both models M1, the SHAR
model, and M2, the effective SIR model, whereas k � 1 would give much higher probability of model M1

over model M2, that the data could lead us to reject model M2 statistically. In our case, considering the
Bayes factor as

k =

∫ ∫
p(M1, β1, ηSHAR|D) dβ1dηSHAR

/∫
p(M2, β2|D) dβ2 (40)

due to the fact that we have to estimate in the SHAR model M1 not only β1 but also ηSHAR while in the
SIR model M2 we only need β2 to estimate (neglecting for the moment all other possible insecurities) with
a Bayes factor of around k ≈ 1.5 hence the two models have about equal probability to describe the toy data
set. But future studies have to be performed to investigate this point in more detail, including the question
of ensembles of realizations and their Bayes factors, hence the fluctuations of the Bayes factor, as could be
performed in the simpler analytically treatable case study shown in the previous section.

In the next section we will describe in more detail how to parametrize SHAR-type models, as recently
very detailed data on COVID-19 appeared, distinguishing between different severities of the disease, as rarely
seen in other diseases.

4. COVID-19 MODELS, SHARUCD
4.1. Introduction

The coronavirus disease 2019, COVID-19, was first identified in China [47] in December 2019, and human
to human transmission enabled the virus, called the severe accute respiratory syndrom coronavirus type 2,
SARS-CoV-2, to spread around the globe, with already in March 2020 affecting Europe severely, which by
then reported more infected cases and death cases than anywhere else in the world outside China [48]. While
case fatality ratios vary still a lot from country to country, a global case fatality ratio was reported at the end
of April of about 7% [49], and still continues to be around 4 %, where the decrease is mainly explained by
increasing testing capacities of infected worldwide.

Italy was the first country hard hit by the pandemic with national lockdown measures taken as soon as
beginning of March 2020 [50], while a large increase in Spain followed around 8 days later with lockdown
measures in mid March [51] and reinforcement of further measures at the end of March [52], [53]. Rather early
on, the autonomous cummunity of the Basque Country, Euskadi, with a population of 2.2 million residents
registered the first cases of infected, hospitalized, intensive care unit admitted cases and fatalities around 4th
of March 2020 on, and declared a public health emergency before any other part of Spain [54], followed by
further restrictions soon after [51], [52], [53], [55]. Only late in April some restrictions of public life started
to be loosened up [56] in the Basque country and elsewhere in Spain. In many countries epidemiological
evaluations of control startegies were discussed also with input from the academic world, see e.g. [57], [58],
[59] besides many others.

For informative mathematical modelling, high quality data is needed and collaborations between modellers
and public health authorities are essential [6], [60], [61], [62]. Hence in March 2020 the Basque Government
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established multidisciplinary task forces, and among those the Basque Modelling Task Force, BMTF, was
initiated to help the local public health managers and the government in evaluating the development of
the outbreak in the Basque Country. Among other complementary modellings we developed a SHAR based
modelling framework to describe the increasingly available data on positive tested, hospitalized, ICU admitted
and deceased cases, and later also recovered, the SHARUCD models with various different versions capturing
increasing information from the data and recent research on epidemiological and medical aspects of COVID-
19 [63], [64], [65], [66], [67], [68], keeping in the spirit of the above mentioned model parsimony the
models as simple as possible, with adjustments mainly given by the available empirical data from the Basque
Country. In this way we could describe the exponential phase of the outbreak and continue the analysis into
the phase when control measures took effects, mainly by adjusting and measuring momentary growth rates
of the observables with then time dependently decreasing infection rates [12], [13].

We use, similar to what was described in the previous sections, stochastic SHARUCD models with apart
from the already described variables S, H, A and R, now also ICU admitted U and deceased D, and further
for comparison with cumulative cases also cumulative classes for hospitalized CH , mildly infected CA, ICU
admitted CU and recovered CR, counting all incoming cases in the dynamical compartments but no outflows,
and in the case of mild/asymptomatic also including a notification ratio.

For the qualitative analysis we also consider the mean field approximation as ordinary differential equation
system, but keeping initially all freedom of varying dynamically all variables, including susceptibles, since
discussions on eventually soon developing herd immunity were ignited in the research community rather
early on, but we could not find any signs of this up to now in the modelling framework, even with large
numbers of asymptomatic spreading. For the exponential growth phase we hence can assume that still nearly
the whole population was susceptible, but have to be careful with stochastic differential equation systems as
described above via Kramers-Moyal approximations of the Markov processes given by the master equation
in the initial pre-exponential phase and when control measures took place, in both cases because of low
numbers of cases, and now observed localized outbreaks, which are more prone to power law distributions
than to Gaussian fluctuations around the mean field solutions [9]. This is because the mean field solutions
tend to go to very low numbers while the stochastic models still notice the weak contraction to the mean field
solution close to any threshold behaviour and show large fluctuations away from the mean field solution.

4.2. The basic model, SHARUCD model 1

Besides the transitions and variables already introduced in the basic SHAR models we have in addition
here the disease induced mortality µ, which affects mainly the severely diseased cases, and ICU admission
rate ν, both modelled here in the basic SHARUCD model, also refered to as SHARUCD model 1, as exits
from the hospitalized class. As opposed to the above mentioned SHAR models, where e.g. in dengue fever
only data on severe and hence hospitalized cases are available e.g. in Thailand [6], we now consider that
part of the milder case are detected by testing, hence the number of positive tested infections is larger than
the notified hospiltalized cases, the detection ratio denoted by ξ.

The stochastic version of the basic SHARUCD model 1 can be formulated through the master equation in
the generic form described above using densities, see Eq. (25), now of all variables x1 := S/N , x2 := H/N ,
x3 := A/N , x4 := R/N , x5 := U/N , x6 := CH/N , x7 := CA/N , x8 := CU/N and x9 := D/N and
x10 := CR/N , hence state vector x := (x1, ..., x10)tr, giving the dynamics for the probabilities p(x, t) again
as

d

dt
p(x, t) =

n∑
j=1

(
Nwj(x+ ∆xj) · p(x+ ∆xj , t) −Nwj(x) · p(x, t)

)
(41)

with n = 10 different transitions wj(x), as described by the mechanisms above, and small deviation from
state x as ∆xj := 1

N · rj . For the basic SHARUCD model we have explicitly the following transitions wj(x)
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and its shifting vectors rj given by

w1(x) = ηβx1(x2 + φx3 + %) , r1 = (1,−1, 0, 0, 0,−1, 0, 0, 0, 0)tr

w2(x) = ξ(1− η)βx1(x2 + φx3 + %) , r2 = (1, 0,−1, 0, 0, 0,−1, 0, 0, 0)tr

w3(x) = (1− ξ)(1− η)βx1(x2 + φx3 + %) , r3 = (1, 0,−1, 0, 0, 0, 0, 0, 0, 0)tr

w4(x) = γx2 , r4 = (0, 1, 0,−1, 0, 0, 0, 0, 0,−1)tr

w5(x) = (1− ξ)γx3 , r5 = (0, 0, 1,−1, 0, 0, 0, 0, 0, 0)tr

w6(x) = γx5 , r6 = (0, 0, 0,−1, 1, 0, 0, 0, 0,−1)tr

w7(x) = νx2 , r7 = (0, 1, 0, 0,−1, 0, 0,−1, 0, 0)tr

w8(x) = µx2 , r8 = (0, 1, 0, 0, 0, 0, 0, 0,−1, 0)tr

w9(x) = µx5 , r9 = (0, 0, 0, 0, 1, 0, 0, 0,−1, 0)tr

w10(x) = ξγx3 , r10 = (0, 0, 1,−1, 0, 0, 0, 0, 0, 0,−1)tr .

(42)

With these wj(x) and rj specified we also can express the mean field ODE system. The deterministic
version of the model is given by a differential equation system for all classes, including the recording classes
of cumulative cases CH , CA, CR and CU by

d

dt
S = −β S

N
(H + φA+ %N)

d

dt
H = ηβ

S

N
(H + φA+ %N)− (γ + µ+ ν)H

d

dt
A = (1− η)β

S

N
(H + φA+ %N)− γA

d

dt
R = γ(H + U +A) (43)

d

dt
U = νH − (γ + µ)U

d

dt
CH = ηβ

S

N
(H + φA+ %N)

d

dt
CA = ξ · (1− η)β

S

N
(H + φA+ %N)

d

dt
CR = γ(H + U + ξA)

d

dt
CU = νH

d

dt
D = µ(H + U)

in complete form as mean field approximation, also obtainable as the drift part of the diffusion approximation
from the master equation to the Fokker-Planck equation as described in detail above in the SHAR/SIR part.
We give now a first analysis of the exponential phase of the epidemic, along the lines of our analysis of the
COVID-19 data from the Basque Country [12], [13], and will then improve, based on the present analysis
extended to the control measure effect phase, this basic SHARUCD model 1 to a new model, SHARUCD
model 2, see [12].

For the presentation of the analytic results used in the SHARUCD model 1 and gave rise to the developement
of the SHARUCD model 2 we will now first introduce a model with the main features of both models and
which is still close to the SIR limiting case, but goes well beyond this limit. This is the SHAR-C model, which
includes the SHAR part and the cumulative observables CH , CA and CR, but considering the transitions
to ICU admission and to deceased as negligible, hence µ, ν → 0. The final limit of φ → 1 towards the
SIR-limiting case will be considere only later, since the explicit consideration of φ 6= 1 turned out to be
important in analyzing differences between hospitalized and asymptomatic.

Here we show the complete analysis of this model for the first time, and analogously results can be obtained
for the various versions of the SHARUCD models we developed over the time during the analysis of the
unfolding epidemic. The corresponding results for the here presented two versions of SHARUCD model 1
and 2 will be given as needed during the description of the model development and improvement.
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4.3. Analytical calculation of growth rate and reproduction ratio from the active infection classes H
and A in the SHAR-C model

In this subsection we summarize some basic notions of epidemiological spreading, using the SIR model
as guiding tool, and then analyse the dynamically active compartments H and A of the SHAR-type models
in more detail. We concentrate here on the formulation of the SHAR-C model as it has all common features
of the SHARUCD model 1 and model 2.

The dynamic equations for the SHAR model in mean field approximation, as obtained from the full
SHARUCD models in the limit of small disease induced mortality µ → 0 and small ICU admission ratio
ν → 0 and not considering for the moment any import %, are given by

d

dt
S = −β S

N
(H + φA)

d

dt
H = ηβ

S

N
(H + φA)− γH (44)

d

dt
A = (1− η)β

S

N
(H + φA)− γA

d

dt
R = γ(H +A)

and we also can calculate the cumulative cases for hospitalized CH , and asymptomatic CA for comparison
with the data of hospitalized and of positive infected as Icum := CH + CA, and finally the at some point
also available cumulative notified recovered CR

d

dt
CH = ηβ

S

N
(H + φA)

d

dt
CA = ξ · (1− η)β

S

N
(H + φA) (45)

d

dt
CR = γ(H + ξA)

completing the SHAR-C model.

4.3.1. Growth rate
After an introductory phase, which we will analyse in more detail later, the epidemic entered into an

exponential growth phase with all observables with essentially the same growth rate, which started in the
Basque Country around March 10, 2020, and due to the effects of the imposed control measures has left
the exponential growth phase to a slower growth around March 27, 2020. This exponential growth phase is
typical for any outbreak with disease spreading in a completely susceptible population, as observed already
in the SIR-system, Eq. (28) with omitting the tilde above the infection rate β, from the dynamics of the
infected dI

dt =
(
β S
N − γ

)
· I when S(t) ≈ N , such that a linear differential equation dI

dt = (β − γ) · I =: λ · I
with an exponential growth factor λ is obtained. This growth factor then can be measured again from disease
data via λ = 1

I ·
dI
dt = d

dt ln(I) giving a straight line in a semi-logarithmic plot of the data, see Fig. 3.
For larger compartmental models we obtain similarly an exponential growth factor. For the present basic

SHAR-C model we have the active disease classes H and A with the dynamics given by

d

dt

(
H
A

)
=

[(
ηβ S

N φηβ S
N

(1− η)β S
N φ(1− η)β S

N

)
−
(
γ 0
0 γ

)]
·
(
H
A

)
. (46)

For an epidemic in its initial phase S(t) ≈ N we now have constant matrices

B = β

(
η φη

(1− η) φ(1− η)

)
(47)

for entries into the disease classes and

G =

(
γ 0
0 γ

)
(48)
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for exits from the disease classes, where we had infection rate β and recovery rate γ in the SIR case.
With x = (H,A)tr we now have with J = B − G the dynamics d

dtx = Jx and its solution via
eigenvalue/eigenvector decomposition JT = TΛ of the matrix J

x(t) = TeΛ(t−t0)T−1x(t0) (49)

with matrix exponential including the eigenvalue matrix Λ and the transformation matrix T = (u1, u2) from
the eigenvectors ui of matrix J . The eigenvalues of the matrix J are given by

λ1/2 =
1

2
β · ((1− η)φ+ η)− γ ± 1

2
β · ((1− η)φ+ η) (50)

The dominating growth factor is given by the largest eigenvalue λ = λ1. Hence the eigenvalues are explicitly
for the SHAR-C model

λ1 = β · ((1− η)φ+ η)− γ (51)

and
λ2 = −γ . (52)

For the limiting cases of infected being hospitalized, η = 1, we have

λ1 = β − γ (53)

and for zero hospitalization ratio, η = 0,
λ1 = βφ− γ (54)

hence for φ > 1 we have a larger growths for small hospitalization/severity η than for large η, hence a
competition of asymtopmatic/mild for better spreading than the hospitalized. So when we consider for the
future mutations, the less pathogenic strains will spread faster and eventually outcompete the overly harmful
ones, making new harmful mutations only short-lived accidental pathogens [7], [8], [9], [10].

4.3.2. Complete solution of the dynamic compartments H and A
To calculate the complete time dependent solution of the dynamic HA-system d

dtx = Jx with x(t) =
(H(t), A(t))tr, which is important for the transitory phase called ”pre-exponential”, since not all vaiables
follow initially the same exponential growth with the same growth factor,

x(t) = eJ(t−t0)x(t0) = TeΛ(t−t0)T−1x(t0) (55)

with matrix J , which is now given by

J =

(
ηβ − γ φηβ

(1− η)β φ(1− η)β − γ

)
=:

(
a11 a12

a21 a22

)
(56)

we need to calculate the eigenvector matrix T with JT = TΛ. With the eigenvalues λ1 = β·((1− η)φ+ η)−γ
and λ2 = −γ we have

T =

(
λ1 − a22 λ2 − a22

a21 a21

)
= (1− η)β

( η
(1−η) −φ

1 1

)
(57)

but then removing the constant in front and

T̃ =

(
c1 ·

(
u11

u21

)
, c2 ·

(
u12

u22

) )
=

(
η −φ

1− η 1

)
(58)

with convenient factors c1 := 1− η and c2 := 1 give equally valid transformations, diagonalizing J . Then T̃
has the inverse with det(T̃ ) = ((1− η)φ+ η) =: κ

T̃−1 =
1

(1− η)φ+ η

(
1 φ

η − 1 η

)
. (59)
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Hence we have(
H(t)
A(t)

)
= T̃ eΛ(t−t0)T̃−1

(
H0

A0

)
=

1

(1− η)φ+ η

(
η −φ

1− η 1

)(
eλ1(t−t0) 0

0 eλ2(t−t0)

)
·
(

1 φ
η − 1 η

)(
H0

A0

)
=

1

(1− η)φ+ η

(
ηeλ1(t−t0) −φeλ2(t−t0)

(1− η) eλ1(t−t0) eλ2(t−t0)

)
·
(

H0 + φA0

(η − 1) H0 + ηA0

)
with the result now for the composition of the exponentials of both eigenvalues(

H(t)
A(t)

)
=

1

(1− η)φ+ η

[(
η(H0 + φA0)

(1− η)(H0 + φA0

)
· eλ1(t−t0) +

(
(1− η)φH0 − ηφA0)
ηA0 − (1− η)H0

)
· eλ2(t−t0)

]
(60)

as explicit result for the general solution of the form(
H(t)
A(t)

)
=

(
KH1

KA1

)
· eλ1(t−t0) +

(
KH2

KA2

)
· eλ2(t−t0) . (61)

For the time limiting cases the solution gives for the intial conditions at t = t0(
H(t0)
A(t0)

)
=

1

(1− η)φ+ η

(
(η + (1− η)φ)H0

((1− η)φ+ η)A0

)
=

(
H0

A0

)
(62)

as expected and for large times, hence formally for t→∞, long after the pre-exponential phase, where still
both eigenvalues might have mattered,(

H(t→∞)
A(t→∞)

)
=

1

(1− η)φ+ η

(
η(H0 + φA0)

(1− η)(H0 + φA0)

)
· eλ1(t−t0) . (63)

4.3.3. Solutions for cumulative cases from the general solution and explicit calculation for the SHAR-C
model

With the general solution, Eq. (61), we can now also calculate cumlative cases, e.g. the cumulative
hospitalized CH for a general case close to the complete SHARUCD model via

d

dt
CH = ηβ(H + φA) (64)

giving

CH(t)− CH(t0) = ηβ

∫ t

t0

(H(t̃) + φA(t̃)) dt̃ (65)

with the result

CH(t) = CH(t0) + ηβ(KH1 + φKA1) · 1

λ1

(
eλ1(t−t0) − 1

)
+ ηβ(KH2 + φKA2) · 1

λ2

(
eλ2(t−t0) − 1

)
(66)

giving the structure of the solution as

CH(t) = CH(t0) + ηβ · κ1 · f(λ1) + ηβ · κ2 · f(λ2) (67)

with κi := (KHi + φKAi) and f(λi) := 1
λi

(
eλi(t−t0) − 1

)
for i ∈ {1, 2} and similarly for other cumulative

variables like e.g. CA and CR. It is interesting to observe that for large positive λ1 e.g. the function
1
λ1

(
eλ1(t−t0) − 1

)
≈ 1

λ1
eλ1(t−t0) the exponential phase approximation holds as we described above, always

assuming λ1 � λ2. On the other hand in a controlled situation with negative growth 0 > λ1 > λ2 we have
due to the change of sign of λ1 = −|λ1| the dynamic behaviour 1

λ1

(
eλ1(t−t0) − 1

)
= 1
|λ1| (1−e

−|λ1|(t−t0)) ≈
1
|λ1| = const., such that the cumulative cases become constant, not increasing any more, as to be expected.
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For the present SHAR-C model we have explicitly given, with abbreviation κ := (1− η)φ+ η,(
KH1

KA1

)
=

1

κ

(
η(H0 + φA0)

(1− η)(H0 + φA0)

)
(68)

and (
KH2

KA2

)
=

1

κ

(
(1− η)φH0 − ηA0

ηA0 − (1− η)H0

)
(69)

such that we obtain
κ1 = KH1 + φKA1 = H0 + φA0 (70)

and
κ2 = KH2 + φKA2 =

1

κ
η(φ− 1)A0 =

η(φ− 1)

(1− η)φ+ η
A0 . (71)

Hence for the SIR-limiting case φ = 1 with have κ2 = 0, such that λ2 has no influence on the cumulative
cases. This reflects the fact that the SIR system has only one growth factor λ and not two different eigenvalues.
So any chance to obtain information about λ2 only is possible for φ 6= 1.

For the cumulative mild/asymptomatic cases CA with dynamics

d

dt
CA = ξ(1− η)β(H + φA) (72)

taking explicitly a detection ratio ξ into account we have analogously to the calculations for CH now the
solution

CA(t) = CA(t0) + ξ(1− η)β · κ1 · f(λ1) + ξ(1− η)β · κ2 · f(λ2) (73)

with the same constants κi and eigenvalue dependent functions f(λi) as in CH . While for the initial condition
of the cumulative hospitalized CH(t0) we can start with zero as for the dynamically active prevalence value
H(t0) at an initial stage of the epidemic, for CA(t0) we have more possible choices, depending on the
epidemiological situation. One choice is simply the proportion of detected to overall asymptomatic, hence
CA(t0) = ξ · A0. On the other hand, if a public health system only starts to respond with testing when the
first severe cases appear in hospital, hence at a time tH , with CH(tH) = 1, we would have CA(t0) = 0 for
any time t < tH , hence no recording starting before the first severe case.

Then really recorded are the cumulative positive cases Icum(t) := CH(t)+CA(t), such that finally we only
can consider ratios Icum(t)/CH(t) for further informations at vaious times t, e.g. t = t0 or t = tH in the
initial phase of the outbreak or later in the exponential phase at a time t where we only have the exponential
function of the positive eigenvalue λ1 active, hence in our linearly approximated system for t→∞.

Finally, for the notified recovered cases CR we have because of the dynamic equation

d

dt
CR = γ(H + ξA) (74)

now the solution
CR(t) = CR(t0) + γ · κ̃1 · f(λ1) + γ · κ̃2 · f(λ2) (75)

with the same eigenvalue dependent functions f(λi) as in CH , but different initial condition dependent
constants κ̃i. Namely, we have

κ̃1 = KH1 + ξKA1 =
1

κ

[
((1− η)ξ + η)(H0 + φA0)

]
(76)

and
κ̃2 = KH2 + ξKA2 =

1

κ

[
(φ− ξ)(1− η)H0 + (ξ − 1)ηA0)

]
(77)

completing the calculations for the whole SHAR-C model in approximation of S ≈ N and time independent
parameters.

Hence we obtain that the growth factor of all really observable quantities CH , CA and CR is λ = λ1,
since the term

(
eλ2(t−t0) − 1

)
= (1−e−|λ2|(t−t0))→ 1 for all cumulative cases, giving no further increment
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of cases after the short ”pre-exponential” phase until the initial condition information becomes irrelevant as
e−|λ2|(t−t0) → 0 while

(
eλ1(t−t0) − 1

)
→ eλ1(t−t0) increases exponentially as long as λ1 > 0, as we observe

for the dynamical varaibles

H(t)→ KH1 · eλ1(t−t0) , A(t)→ KA1 · eλ1(t−t0) (78)

for large times t. Hence with this complete analysis of the SHAR-C model we have described the dynamics as
well for the ”pre-exponential phase”, where the initial conditions still matter in the interplay between λ1 and
λ2, and for the ”exponential phase”, when only the common growth factor λ = λ1 matters for all variables.
We will use the present notions below for further numerical studies of the currently best SHARUCD model
2, which will be developed below, again based on the analysis of growth factors, for examining especially
the pre-exponential initial phase, which has not been characterized well up to now.

4.3.4. SIR-limiting case

For cross checks and the basic understanding of the dynamics of the epidemic we now investigate
simplifications to obtain an SIR-type system, where now we assume I := H + A, hence no impact of
eventual recording problems of detecting mild/asymptomatically infected. We can immediately construct a
limiting SIR system by considering φ→ 1, which gives

B = β

(
η η

(1− η) (1− η)

)
(79)

for entries into the disease classes and

G = γ

(
1 0
0 1

)
(80)

for exits with eigenvalues for J = B −G given by

λ1/2 =
1

2
· tr ±

√
1

4
· tr2 − det (81)

with the parameter dependent trace

tr = β − 2γ (82)

and determinant

det = −βγ + γ2 (83)

such that the eigenvalues are in this SIR-limiting case

λ1/2 =
1

2
β − γ ± 1

2
β (84)

giving

λ1 = β − γ (85)

and

λ2 = −γ . (86)

From the above system we obtain now a plain SIR system, when considering in this case I := H + A and
dI/dt = dH/dt + dA/dt = β(S/N)(H + A) − γ(H + A) = β(S/N)I − γI , with its only growth factor
λ = β − γ which is the largest eigenvalue λ1 of the HA-system in the SIR-limit.
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4.4. Reproduction ratio
Since the concept of reproduction numbers of infected are in the main public media by now often refered to

we describe the concept breifly here, with the caution that as single number cannot give as good information
as the analysis of all growth rates of the available observables, as we frequently used in the BMTF in the
Basque Country to monitor the situation after the effects of the lockdown became visible, and since we enter
now in an again more stochastic phase of isolated outbreaks.

Starting point is the basic reproduction number R0, the number of secondary cases Is from a primary case
Ip during its infectiveness before recovering in a completely susceptible population. In its simplest version
for SIR models a primary case, Ip(t0) = 1, recovers via

dIp
dt

= −γIp (87)

hence
Ip(t) = Ip(t0)e−γ(t−t0) . (88)

The number of secondary cases from the primary case is given by

dIs
dt

= β
S

N
Ip(t) (89)

with Is(t0) = 0, a simple inhomogeneous linear differential equation in case of a entirely susceptible
population S(t) = N . The solution is

Is(t) =
β

γ
· Ip(t0)

(
1− e−γ(t−t0)

)
+ Is(t0) (90)

and gives the total number of secondary cases from a primary case as the long time limit as Is(t→∞) = β
γ ,

hence the basic reproduction number is simply R0 = β
γ . So we have the relation between R0 and the growth

rate λ here as R0 = β
γ = 1 + λ

γ . Generalized to a population of primary cases Ip(t0) > 1, the reproduction
ratio is given by

r := Is(t→∞)/Ip(t0) =
β

γ
(91)

as the ratio of secondary cases produced by primary cases during their infectiousness.
This concept can be also extended to larger compartmental models, with the notions of matrices B and

G as introduced above, replacing the single parameters β and γ in the simple SIR model. For any primary
cases Hp or Ap we have with xp = (Hp, Ap)

tr the decay dynamics

d

dt
xp = −G · xp (92)

with solution
xp(t) = e−G(t−t0) · xp(t0) (93)

using again the matrix exponential. For secondary cases Hs and As we have the dynamics of xs = (Hs, As)
tr

given by
d

dt
xs = B · xp(t) (94)

with solution analogously to the SIR case as

xs(t)− xs(t0) = BG−1
(

1− e−G(t−t0)
)
xp(t0) (95)

with
F := BG−1 (96)

the next generation matrix, since
xs(t→∞) = F · xp(t0) (97)
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or from generation xn to generation xn+1 the discrete iteration

xn+1 = F · xn . (98)

For the present case we have the next generation matrix given as

F =
β

γ
·
(

ηβ φη
(1− η) φ(1− η)

)
(99)

with its dominant eigenvalue for the basic SHARUCD-model

r1 = (η + (1− η)φ) · β
γ

(100)

and the other one being zero. In the limiting case of a simple SIR-type model, with φ ≈ 1 and µ, ν � γ,
we obtain again r1 = β/γ as can be easily seen.

This concept of the reproduction ratio can be extended into the phase when effects of the control measures
become visible and parameters slowly change. The momentary reproduction ratios r(t) can be analyzed,
as frequently done for the COVID-19 epidemics, but often called “basic reproduction number”. While the
momentary growth rate follows directly from the time continuous data at hand, the momentary reproduction
ratio depends on the notion of a generation time γ−1. In many countries now the reproduction ratios are
discussed in the wider public in the context of COVID-19, but using various often quite different generation
times, and hence the reproduction ratios are as single numbers not always the most informative measures.
The growth factors of various variables as used here often give a better picture, especially when increasing
testing capacities suggest larger reproduction ratios but severe disease, like hospitalization, ICU admission
and deceased case are less affected. For deceased e.g. there is no ”reproduction” or ”generation time”, but
well a growth factor.

4.5. Growth rate of the full SHARUCD model 1
We now have for the full SHARUCD model 1 the constant matrices

B = β

(
η φη

(1− η) φ(1− η)

)
(101)

for entries into the disease classes and

G =

(
(γ + µ+ ν) 0

0 γ

)
(102)

for exits from the disease classes. With J = B −G the eigenvalues are given by

λ1/2 =
1

2
· tr ±

√
1

4
· tr2 − det (103)

with the parameter dependent trace

tr = (η + φ(1− η)) · β − (2γ + µ+ ν) (104)

and determinant
det = γ(γ + µ+ ν)− ((γ + µ+ ν)φ(1− η) + γη) · β . (105)

In the limiting case of a simple SIR-type model we obtain again λ1 ≈ β − γ = λ where λ ≈ β − γ is not
a bad initial guess also for SHARUCD models, but deviates slightly from parallel behaviour of all variables
during their exponential phases in the semi-logarithmic plots shown in Fig. 3. As light blue line in Fig. 3 is
the growth rate, λ1 in Eq. (103), of the complete model given.

The concept of the growth rate can be extended into the phase when effects of the control measures
become visible and parameters slowly change, such that for short times the above analysis holds as for
constant parameters [12]. The momentary growth rates are analyzed below.
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Figure 3: Semilogarithmic plot of all variables of the exponential growth phase of the epidemic in the Basque Country,
namely positive tested (yellow), hospitalized cases (red), ICU admitted (violet), deceased cases (black) and recovered
(green), and in comparison the growth factor λ as light blue line.

4.6. Momentary growth rates and momentary reproduction ratios and improvement of the basic
SHARUCD model 1

To obtain the momentary growth rates from the COVID-19 data at hand available for the Basque Country
we use λ = d

dt ln(I) at first applied to the cumulative tested positive cases Icum(t) obtaining, via a smoothing
window, the new cases after time τ as

Inew,τ (t) := Icum(t)− Icum(t− τ) (106)

and hence, the growth rate

λ =
1

∆t

(
ln(Inew,τ (t))− ln(Inew,τ (t−∆t))

)
. (107)

From the growth rate, the reproduction ratio is calculated with the recovery period γ−1 obtained from
underlying models and recent literature about SARS-CoV-2 interaction with human hosts [67], [68].

The concept of growth rates can be extended to the other measured variables, hospitalizations, deceased
cases, recovered cases and ICU admitted cases. The sigmoidal shape of decreasing growth rates is well visible
in the hospitalized and the tested positive infected, whereas the deceased and the recovered are following
only later with a delay of about 8 to 10 days, and a much slower sigmoidal curve or near to linear decline.
Notably, the ICU admitted cases follow the sharp sigmoidal decline of growth rate of hospitalized and tested
positive cases rather than the growth rate of deceased and the recovered [12]. These results let to information
about how to refine the model in order to capture the dynamics of the ICU admissions, better than in the
present model. We now describe the refinements to the SHARUCD model 2.

4.7. The refined model, SHARUCD model 2
The refined model is given by changes in the transition rates of the stochastic version, see [12], such

that now the transition to ICU admission is in synchrony with the transition to hospital. Given the observed
synchronization of the ICU admission cases with the cumulative tested positive cases and hospitalizations,
the SHARUCD model is hence refined as follows. We change the transition into ICU admissions from the
previous assumption of hospitalized patients recovering with recovery rate γ, being admitted to ICU facilities
with rate ν or dying with disease induced death rate µ by the assumption that ICU admissions are consequence
of disease severity prone to hospitalization analogously to rate η.

The updated transitions are changed from the previously used form

w1(x) = ηβx1(x2 + φx3 + %) , r1 = (1,−1, 0, 0, 0,−1, 0, 0, 0, 0)tr

w7(x) = νx2 , r7 = (0, 1, 0, 0,−1, 0, 0,−1, 0, 0)tr
(108)

into
w1(x) = η(1− ν)βx1(x2 + φx3 + %) , r1 = (1,−1, 0, 0, 0,−1, 0, 0, 0, 0)tr

w7(x) = ηνβx1(x2 + φx3 + %) , r7 = (1, 0, 0, 0,−1,−1, 0,−1, 0, 0)tr
(109)
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with the parameter ν adjusted from the ICU-admission rate in units of d−1 into an ICU-admission ratio
ν ∈ [0, 1]. By changing and fixing ν = 0.1, we obtain immediately a very good agreement between the
available cumulative ICU data and model simulations, with only small deviations in the other variables [12].
The deterministic version of the model is given by a differential equation system for all classes, including
the recording classes of cumulative cases CH , CA, CR and CU by

d

dt
S = −β S

N
(H + φA+ %N)

d

dt
H = η(1− ν)β

S

N
(H + φA+ %N)− (γ + µ)H

d

dt
A = (1− η)β

S

N
(H + φA+ %N)− γA

d

dt
R = γ(H + U +A) (110)

d

dt
U = νηβ

S

N
(H + φA+ %N)− (γ + µ)U

d

dt
CH = ηβ

S

N
(H + φA+ %N)

d

dt
CA = ξ · (1− η)β

S

N
(H + φA+ %N)

d

dt
CR = γ(H + U + ξA)

d

dt
CU = νηβ

S

N
(H + φA+ %N)

d

dt
D = µ(H + U)

which gives the improved SHARUCD model 2. With this improved model we could describe the dynamics
of the ICU admissions as well as the ones for hospitalized and deceased cases, which was not possible earlier
with the basic model in that quality [12].

4.7.1. Analytical results for SHARUCD model 2 for the exponential phase
For the improved model, SHARUCD model 2, we have now

B = β

(
η(1− ν) φη(1− ν)
(1− η) φ(1− η)

)
(111)

and
G = γ

(
(1 + µ/γ) 0

0 1

)
(112)

with the eigenvalues in a form resembling the SIR-limiting case, see above. It is again λ1/2 = 1
2 · tr ±√

1
4 · tr2 − det with the parameter dependent trace tr = β(η(1− ν) +φ(1− η))− (2γ+µ) and determinant

det = −β(γη(1− ν) + (γ + µ)φ(1− η)) + γ(γ + µ) such that the eigenvalues are

λ1/2 =
1

2
β((1− η)φ+ η(1− ν))− (γ +

µ

2
)± 1

2
β ·
√
c (113)

with a small perturbation in case of parameters close to µ→ 0, ν → 0, and φ→ 1 given by

√
c :=

√(
(1− η)φ+ η(1− ν)

)2

+ 2
µ

β
((1− η)φ− η(1− ν)) + 4

ν

β
γη +

(
ν

β

)2

(114)

hence with the structure of the solution well visible in the limiting case of the SIR system, Eq. (84), for
µ = 0, ν = 0, and φ = 1.



SHAR AND EFFECTIVE SIR MODELS 85

a)

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48  50  52  54  56  58  60

lo
g
 c

u
m

u
la

ti
v
e
 c

a
s
e
s
 I

c
u

m
(t

),
 C

H
(t

),
 C

U
(t

),
 D

(t
)

t

b)
 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48  50  52  54  56  58  60

lo
g

 c
u

m
u

la
ti
v
e

 c
a

s
e

s
 I

c
u

m
(t

),
 C

H
(t

),
 C

U
(t

),
 D

(t
)

t c)
 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48  50  52  54  56  58  60

lo
g

 c
u

m
u

la
ti
v
e

 c
a

s
e

s
 I

c
u

m
(t

),
 C

H
(t

),
 C

U
(t

),
 D

(t
)

t

Figure 4: Semilogarithmic plots of the analysis of the initial phase of the epidemic before all observables enter into the
same exponential growth. Parameter values and zero initial conditions for all but one variable, the mild/asymptomatic
infected are given in the text. In all graphs we plot observables Icum = CH + CA + CU (yellow), CR (green), CH

(red), CU (violet) and D (black), and in blue the growth factor λ. In a) we assume intially A0 = 10 mild/asymptomatic
infected and all mild/asymptomatic infected detected CA(t0) = A0. The first severe/hospitalized infected appears after
two days, ICU admitted after 12 days and deceased cases after 22 days. For reference we also show the results for b)
A0 = 2 and c) A0 = 100, observing when the various observables cross from below to in mean 1 case, i.e. ln(1) = 0.

4.7.2. Numerical analysis of full system including the pre-exponential phase

For any numerical perturbational analysis we use the parameters close to the ones obtained from the data
analysis of the Basque COVID-19 data, but occasionally stay closer to the limiting SIR system, hence µ� γ,
ν � 1 and φ ≈ 1. Hence we have γ = 0.05 d−1 and β = 3 · γ during the onset of the epidemic, close
to what was estimated during the exponential phase. For a clear distinction between mild/asymptomatic and
smaller numbers of hospitalized we take η = 1/4 slightly lower than the value obtained from the Basque
data. For any stochastic considerations we take the population size N = 2 ·106 close to the actual population
of the Basque Country of 2.2 million inhabitants. For the perturbational parameters we take µ = (1/10) · γ
which is a bit lower than the actually measured mortality, whereas for ν = 0.1 we have the actual value, and
finally we have φ = 1.1 which is lower than what to expect from the data, but closer to the perturbational
situation of a value of 1. Of course the actually best values from the data can then be used as well, ones the
directions of perturbational effects are explored. The first results in the semilogarithmic plots with intially A0

mild/asymtomatic infected are shown in Fig. 4 to investigate the pre-exponential phase. Of special interest
is the onset of severe infection for various levels of initial mild/symptomatic infected.

Hence with results like the ones shown in Eq. (66) we have characterized for SHARUCD model 2 the
complete onset of the epidemic, with Eq. (61) also holding for the complete model starting its dynamics
from initial conditions e.g. as some mild or asymptomatic index cases A0 > 0 and no as yet infected severe
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cases H0 = 0 as well as all the other compartments. This would be a situation of introduction of the disease
before the first known cases in the pre-exponential phase. We still would have to consider in a stochastic
framework the role of import creating randomly initial infected which either might recover without further
transmission or cause a fist outbreak which by chance might terminate on its own or spark the exponential
phase with explosive growths. Such random fluctuations would become most pronounced with large variations
of system size in an eventual re-entry phase after lockdown and lifting to a situation of β ≈ γ or momentary
reproduction ratio of around 1, and due to increasing travel randomly incoming index cases, see [9], [10] e.g.
for the description of such critical fluctuations and similar scenarios in vaccinated populations hovering around
the vaccination threshold [44]. Controlled systems in general seem to tend to operate around situations where
the control just works but does not harm too much other aspects of life affected by interventions. However,
this stage is most vulnerable to large fluctuations, hence critical, and the system evolved to it.

4.8. Conclusions and discussion
We investigated after the general discussion on model comparison of different models on the same data

and the introduction and qualitative behaviour of basic SHAR models, including their description by effective
SIR models, the possibilities to actually parametrize well such models with severe/potentially hospitalized
and mild/asymptomatic and potentially undetected infecteds with sufficient detail to account for all relevant
data features but not introduce uninformed mechanisms where we do not have data to support in the present
and unprecedented pandemic of COVID-19. Uppon empirical data model refinements could be performed
and now such currently best minimalistic models can be used for further analysis of various management
questions, as exercised here for re-entry of infection or entry into new areas of the world after analysing the
initial pre-exponential phase of the epidemic in a given territory.

Preparation for a possible second wave of transmission of COVID-19 are on the way, as the influence of
seasonality and the extend of acquired immunity and its duration against SARS-CoV-2 are not clear nor well
measurable yet. This will be specially important when the lockdown is completely being lifted, under the
danger of re-emergence, likely starting with localized outbreaks of various sizes.
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