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Abstract

The two hallmark features of Brownian motion are the linear growth 〈x2(t)〉 = 2Ddt
of the mean squared displacement (MSD) with diffusion coefficient D in d spatial
dimensions, and the Gaussian distribution of displacements. With the increasing
complexity of the studied systems deviations from these two central properties have
been unveiled over the years. Recently, a large variety of systems have been reported
in which the MSD exhibits the linear growth in time of Brownian (Fickian) transport,
however, the distribution of displacements is pronouncedly non-Gaussian (Brownian
yet non-Gaussian, BNG). A similar behaviour is also observed for viscoelastic-type
motion where an anomalous trend of the MSD, i.e., 〈x2(t)〉 ∼ tα, is combined with a
priori unexpected non-Gaussian distributions (anomalous yet non-Gaussian, ANG).
This kind of behaviour observed in BNG and ANG diffusions has been related to
the presence of heterogeneities in the systems and a common approach has been
established to address it, that is, the random diffusivity approach.

This dissertation explores extensively the field of random diffusivity models.
Starting from a chronological description of all the main approaches used as an
attempt of describing BNG and ANG diffusion, different mathematical methodolo-
gies are defined for the resolution and study of these models. The processes that
are reported in this work can be classified in three subcategories, i) randomly-scaled
Gaussian processes, ii) superstatistical models and iii) diffusing diffusivity models,
all belonging to the more general class of random diffusivity models. Eventually, the
study focuses more on BNG diffusion, which is by now well-established and relatively
well-understood. Nevertheless, many examples are discussed for the description of
ANG diffusion, in order to highlight the possible scenarios which are known so far
for the study of this class of processes.

The second part of the dissertation deals with the statistical analysis of ran-
dom diffusivity processes. A general description based on the concept of moment-
generating function is initially provided to obtain standard statistical properties of
the models. Then, the discussion moves to the study of the power spectral analysis
and the first passage statistics for some particular random diffusivity models. A
comparison between the results coming from the random diffusivity approach and
the ones for standard Brownian motion is discussed. In this way, a deeper physical
understanding of the systems described by random diffusivity models is also outlined.

To conclude, a discussion based on the possible origins of the heterogeneity is
sketched, with the main goal of inferring which kind of systems can actually be
described by the random diffusivity approach.





Abstrakt

Die zwei grundlegenden Eigenschaften der Brownschen Molekularbewegung sind
das lineare Wachstum 〈x2(t)〉 = 2Ddt der mittleren quadratischen Verschiebung
(mean squared displacement, MSD) mit dem Diffusionskoeffizienten D in Dimension
d und die Gauß Verteilung der räumlichen Verschiebung. Durch die zunehmende
Komplexität der untersuchten Systeme wurden in den letzten Jahren Abweichun-
gen von diesen zwei grundlegenden Eigenschaften gefunden. Hierbei, wurde über
eine große Anzahl von Systemen berichtet, in welchen die MSD das lineare Wach-
stum der Brownschen Bewegung (Ficksches Gesetzt) zeigt, jedoch die Verteilung der
Verschiebung nicht einer Gaußverteilung folgt (Brownian yet non-Gaussian, BNG).
Auch in viskoelastischen Systemen Bewegung wurde ein analoges Verhalten beo-
bachtet. Hier ist ein anomales Verhalten des MSD, 〈x2(t)〉 ∼ tα, in Verbindung mit
einer a priori unerwarteten nicht gaußchen Verteilung (anomalous yet non-Gaussian,
ANG). Dieses Verhalten, welches sowohl in BNG- als auch in ANG-Diffusion beo-
bachtet wird, ist auf eine Heterogenität in den Systemen zurückzuführen. Um diese
Systeme zu beschreiben, wurde ein einheitlicher Ansatz, basierend auf den Konzept
der zufälligen Diffusivität, entwickelt. Die vorliegende Dissertation widmet sich aus-
führlich Modellen mit zufälligen Diffusivität. Ausgehend von einem chronologis-
chen Überblick der grundlegenden Ansätze der Beschreibung der BNG- und ANG-
Diffusion werden mathematische Methoden entwickelt, um die verschiedenen Modelle
zu untersuchen. Die in dieser Arbeit diskutierten Prozesse können in drei Kategorien
unterteil werden: i) randomly-scaled Gaussian processes, ii) superstatistical models
und iii) diffusing diffusivity models, welche alle zu den allgemeinen Modellen mit
zufälligen Diffusivität gehören. Der Hauptteil dieser Arbeit ist die Untersuchung
auf die BNG Diffusion, welche inzwischen relativ gut verstanden ist. Dennoch wer-
den auch viele Beispiele für die Beschreibung von ANG-Diffusion diskutiert, um die
Möglichkeiten der Analyse solcher Prozesse aufzuzeigen. Der zweite Teil der Disser-
tation widmet sich der statistischen Analyse von Modellen mit zufälligen Diffusivität.
Eine allgemeine Beschreibung basierend auf dem Konzept der momenterzeugenden
Funktion wurde zuerst herangezogen, um grundsätzliche statistische Eigenschaften
der Modelle zu erhalten. Anschließend konzentriert sich die Diskussion auf die Ana-
lyse der spektralen Leistungsdichte und der first passage Statistik für einige spezielle
Modelle mit zufälligen Diffusivität. Diese Ergebnisse werden mit jenen der nor-
malen Brownschen Molekularbewegung verglichen. Dadurch wird ein tiefergehendes
physikalisches Verständnis über die Systeme erlangt, welche durch ein Modell mit
zufälligen Diffusivität beschrieben werden. Abschließend, zeigt eine Diskussion mög-
liche Ursachen für die Heterogenität auf, mit dem Ziel darzustellen, welche Arten
von Systemen durch den Zufalls-Diffusivitäts-Ansatz beschrieben werden können.





Resumen

Las dos características distintivas del movimiento Browniano son el crecimiento lin-
eal 〈x2(t)〉 = 2Ddt del desplazamiento cuadrático medio (mean squared displacement,
MSD) con el coeficiente de difusión D en dimensiones espaciales d, y la distribución
Gaussiana de los desplazamientos. Con los continuos avances en tecnologías experi-
mentales y potencia de cálculo, se logra estudiar con mayor detalle sistemas cada vez
más complejos y algunos sistemas revelan desviaciones de estas dos propiedades cent-
rales. En los últimos años se ha observado una gran variedad de sistemas en los que
el MSD presenta un crecimiento lineal en el tiempo (típico del transporte Browni-
ano), no obstante, la distribución de los desplazamientos es pronunciadamente no
Gaussiana ( Brownian yet non-Gaussian diffusion, BNG). Un comportamiento sim-
ilar se observa asimismo en el caso del movimiento de tipo viscoelástico, en el que
se combina una tendencia anómala del MSD, es decir, 〈x2(t)〉 ∼ tα, con 0 < α < 2,
con distribuciones inesperadamente no Gaussianas (Anomalous yet non-Gaussian
diffusion, ANG). Este tipo de comportamiento observado en las difusiones BNG y
ANG se ha relacionado con la presencia de heterogeneidades en los sistemas y se
ha establecido un enfoque común para abordarlo: el enfoque de difusividad aleat-
oria. En la primera parte de esta disertación se explora extensamente el área de
los modelos de difusividad aleatoria. A través de una descripción cronológica de
los principales enfoques utilizados para caracterizar las difusiones BNG y ANG, se
definen diferentes metodologías matemáticas para la resolución y el estudio de estos
modelos. Los procesos expuestos en este trabajo, pertenecientes a la clase más gen-
eral de modelos de difusividad aleatoria, pueden clasificarse en tres subcategorías: i)
randomly-scaled Gaussian processes, ii) superstatistical models y iii) diffusing diffus-
ivity models. Fundamentalmente el enfoque de este trabajo se centra en la difusión
BNG, bien establecida y ampliamente estudiada en los últimos años. No obstante,
múltiples ejemplos son examinados para la descripción de la difusión ANG, a fin
de remarcar los diferentes modelos de estudio disponibles hasta el momento. En la
segunda parte de la disertación se desarolla el análisis estadístico de los procesos de
difusividad aleatoria. Inicialmente se expone una descripción general basada en el
concepto de la función generadora de momentos para obtener las propiedades es-
tadísticas estándar de los modelos. A continuación, la discusión aborda el estudio
de la densidad espectral de potencia y la estadística del tiempo de primer paso para
algunos modelos de difusividad aleatoria. Adicionalmente, los resultados del método
de difusividad aleatoria se comparan junto a los de movimiento browniano estándar.
Como resultado, se obtiene una mayor comprensión física de los sistemas descritos
por los modelos de difusividad aleatoria. Para concluir, se presenta una discusión
acerca de los posibles orígenes de la heterogeneidad, con el objetivo principal de in-
ferir qué tipo de sistemas pueden describirse apropiadamente según el enfoque de la
difusividad aleatoria.
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Chapter 1

Introduction

The systematic study of diffusion dates back to the 19th century, when Robert
Brown was performing experiments to observe the jiggly motion of granules extracted
from pollen grains suspended in water [1]. What is nowadays commonly known as
Brownian motion (BM) represents the classical model for diffusion established by
Einstein, Smoluchowski, Langevin, Fick and others [2–10]. The methodologies used
to describe and investigate diffusive motion can be divided in two classes:

• The stochastic formulation in terms of random walks and stochastic processes,
suitable for particle-based modelling and corresponding to a micro/mesoscopic
description;

• The deterministic description through partial differential equations represent-
ing diffusion equations, suitable for the study of distribution functions at a
macroscopic scale.

In the theory of standard diffusion, a clear connection exists between the two ap-
proaches. The Langevin equation (LE) represents a standard stochastic description
of the diffusive motion of a mesoscopic particle in a liquid and it reads

dx(t)

dt
= v(t); m

dv(t)

dt
= −γ v(t) +

√
2σ ξ(t), (1.1)

where m is the mass of the particle, γ is the damping coefficient and ξ(t) is a
stochastic forcing, mathematically represented by zero-mean, white Gaussian noise
with δ-correlation and noise intensity σ. The second equation in (1.1) is nothing but
Newton’s equation of motion, where both terms in the right-hand side represent the
effect of the liquid onto the particle. The stochastic forcing stands for the random
kicks that the particle receives from the surrounding molecules, due to thermal mo-
tion. The deterministic term accounts for the instantaneous dissipation back into
the environment of the energy transferred through each kick. If the system is in
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equilibrium, the two terms are linked through the fluctuation-dissipation relation,
that is σ = γkBT , where kB is the Boltzmann constant and T is the temperature of
the system. Starting from the LE, one can calculate the probability P (x, v, t)dxdv
of finding the diffusive entity in the interval (x, x + dx; v, v + dv) at a time t. Fi-
nally, the probability density function (PDF) P (x, v, t) is known to fulfil the bivariate
Fokker–Planck–Smoluchowski equation

∂P (x, v, t)

∂t
= −v∂P (x, v, t)

∂x
− γ

m

∂P (x, v, t)

∂v
+

σ

m2

∂2P (x, v, t)

∂v2
, (1.2)

which in this form for (x, v, t) is also known as Klein–Kramers equation. Starting
either from the LE in (1.1) or from the Fokker–Planck equation in (1.2), it is easy
to prove that standard diffusion shows two hallmark features in the limit t� γ−1:

i) the linear growth of the mean squared displacement (MSD)

〈x2(t)〉 = 2Dt, (1.3)

ii) the Gaussian distribution of displacements

G(x, t|D) =
1√

4πDt
exp

(
− x2

4Dt

)
, (1.4)

where D is the diffusion coefficient. For the sake of simplicity, here and through-
out the whole dissertation, one-dimensional models only are treated, nevertheless a
generalisation to higher dimensions can readily be achieved component-wise.

The presence of a Gaussian distribution implies in general that the environment
in which the diffusion occurs is homogeneous, such that, at any time t, larger than
the single jump time ∆t, the displacement performed by the particle is given by a
sum of steps which can be seen as independent and identically distributed (i.i.d.)
random variables. Then, the central limit theorem guarantees the convergence of the
displacement distribution to a Gaussian. If the environment were not homogeneous,
the assumption of i.i.d. steps would fail and, as a consequence, the displacement
distribution could deviate from a Gaussian. Moreover, the presence of temporal
correlations between each step, typical for instance of viscoelastic media (see figure
1.1), can cause the MSD to display a non-linear trend. Diffusion in viscoelastic en-
vironments is well understood when using the two prototypical models, fractional
Brownian motion (FBM) [12] and the fractional Langevin equation (FLE) [14–16]
(see Appendix A for more details). In their stochastic formulation both models con-
sider fractional Gaussian noise, characterised by a power-law correlation function,
instead of δ-correlated white Gaussian noise. A Gaussian displacement distribu-
tion is obtained for both FBM and FLE, but their variance scales as a power-law
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Figure 1.1: Macroscopic (top row) and microscopic (bottom row) representation of
viscoelastic materials, whose behaviour depends on the magnitude and the time scale
of the applied forces. The difference in the microscopic structures of the material
defines the different responses. On the left, high entanglement of the fibers corres-
ponds to elastic behaviour while, on the right, a lesser entanglement of the fibers
leads to a more viscous character (image from blog.biolinscientific.com).

at long times. From a more physical perspective, FBM represents an overdamped
non-equilibrium model where the particles are exposed to an external random force
with long-range correlation. Conversely, the FLE depicts an underdamped equilib-
rium description where a generalised fluctuations-dissipation relation can be defined.
This difference leads, for instance, to the fact that when fractional Gaussian noise
with positive correlation is introduced (persistent noise), for FBM one has a super-
diffusive behaviour, namely 〈x2(t)〉 ∼ tα with α > 1, while from the FLE one obtains
a subdiffusive behaviour, that is 〈x2(t)〉 ∼ tα with α < 1. This is due to the fact
that the fluctuation-dissipation relation in the FLE couples the persistent noise with
long memory in the damping term, leading to subdiffusion. Note that FBM and
FLE deviate from the models associated to the typical understanding of fractional
dynamics. The latter are models that emerge if one introduces broadly distributed
step lengths or waiting times (such that their variance does not exist), as in the
continuous time random walk formalism [17]. These processes are characterised by
displacement distributions that are inherently non-Gaussian and whose time evol-
ution is well described by the so-called fractional diffusion equations, in which the
concept of fractional derivatives is introduced (see Appendix B).

With continuous advances in experimental techniques and computational power,
more and more complex systems are being studied in great detail, unveiling devi-
ations from the a priori expected Gaussian bahaviour of BM and viscoelalstic-type
motion. In particular two specific classes of diffusive processes have been identified,
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Brownian (or Fickian) yet non-Gaussian diffusion (BNG) [18, 19] and, in analogy,
anomalous yet non-Gaussian diffusion (ANG) [65]. The former is characterised by a
linear trend of the MSD while the latter presents an anomalous trend of the MSD,
i.e., 〈x2(t)〉 ∼ tα, with 0 < α < 2, and both display an unexpected non-Gaussian
displacement distribution. The non-Gaussianity of the displacement distribution has
been associated to various sources of heterogeneity and it is often characterised by
exponential (Laplace) or stretched Gaussian shape.

The study of these processes has become increasingly relevant with the grow-
ing number of complex systems discovered to exhibit such statistical features. For
instance, for BNG diffusion one can mention soft matter and biological systems,
in which the motion of viruses, biological macromolecules, proteins and colloidal
particles along lipid tubes and through actin networks [18, 19] as well as along
membranes and inside colloidal suspension [20] and colloidal nanoparticles adsorbed
at fluid interfaces [21–23] are studied. Ecological processes, involving the charac-
terisation of organism movement and dispersal [24] also exhibit similar behaviour.
Moreover, there are processes, that are Brownian but non-Gaussian in certain time
windows of their dynamics. These concern the dynamics of disordered solids, such
as glasses and supercooled liquids [25–27] as well as interfacial dynamics [28, 29].
As far as ANG diffusion is concerned, the motion of tracer particles in the cellular
cytoplasm [30–32] and the motion of lipids and proteins in protein-crowded model
membranes [33] can be reported.

The most common approach employed over the last decade to describe BNG and
ANG diffusion is based on the concept of random diffusivity. It is worth mentioning
that two pioneering discussions of similar models are already present in the book by
Van Kampen [10] under the name of composite Markov processes and in the paper
by Kärger [11] on nuclear magnetic resonance self-diffusion in heterogeneous systems.
In the former a model is discussed starting from a composition of Markov processes,
which are obtained by randomly switching the diffusive dynamics, e.g. free motion
and oscillatory motion, and its parameters at any random time τi. This description
is useful in particular in solid-state physics. In the latter, instead, it is introduced
the idea of regarding a heterogeneous systems as consisting of several subregions of
different diffusivities, providing interesting results for the study of nuclear magnetic
resonance self-diffusion. This view of heterogenous systems will be largely discussed
along this dissertation. Finally, it is important to mention that similar processes are
ubiquitous in financial mathematics as well [34–37]. They are commonly known as
stochastic volatility models and their study is motivated by various aspects of the
observed financial market data concerning stock price. Recently these models have
been also expanded to fractional volatility models to include the fact that historical
volatility time series exhibit a much rougher behaviour than BM. This "roughness"
of the volatility dynamics can indeed be better described by FBM [38].

Figure 1.2 aims at providing a general understanding of how the presence of
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Figure 1.2: Artistic representation of a diffusivity map for heterogeneous systems.
Differently coloured areas denote regions of different diffusivity. A diffusing particle
is likely to eventually cross the boundaries and sample different diffusivities (image
from www.itermar.it – Infiorata di Spello, Umbria, Italy).

heterogeneity can be mapped into the concept of random diffusivity, by associating
each colour of a local region to a specific value of the diffusion coefficient. The main
assumption behind this approach is that fluctuations of the system that happen at a
micro- or mesoscopic scale reflect onto the value of a specific macroscopic observable,
that is the diffusion coefficient (or the noise intensity for FBM where the concept of
diffusion coefficient cannot be clearly defined). One could imagine that the variability
in the diffusion coefficient can be due to changes in the environment and/or in some
features of the diffusive entities. Indeed, the diffusion coefficient depends on both
environment and particle properties. Thus, not only can one have variability along a
single trajectory while the tracer explores the whole inhomogeneous space, but one
could also observe fluctuations in the diffusive entities themselves, for instance, in
terms of a distribution of bead sizes. Imagine the diffusion of tracers in artificial or
natural gels, such as mucin or mucus, in biofilms, or in the crowded cytoplasm of
cells. All these systems are heterogeneous in nature (see figure 1.1) and one cannot
avoid taking this into account when modelling transport properties and diffusive
motion.

This dissertation focuses on the description of the various models that have been
introduced in the last decade to address the study of motion in heterogeneous systems
through the random diffusivity approach. A Synopsis of the dissertation is initially
reported, where specific reference is made to the original contribution of the author
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to the field, which is otherwise directly integrated in the overall discussion.
The first part of this work is structured as a review and it aims at establishing

a general state-of-the-art of the topic. A collection of the main models developed
for the description of BNG and ANG diffusion is reported, with more emphasis on
BNG diffusion, as it is so far a wider discussed topic in comparison to ANG, which
still represents a quite unexplored field. This part of the dissertation is divided
in two Chapters (Chapter 2 and 3), accounting for models with different origins
and features. Chapter 2 reports two classes of models, randomly-scaled Gaussian
processes and the theory of superstatistics. Both models, which find their origins
in frameworks initially defined for other kinds of systems, have been revised only
recently to be included in the topic of random diffusivity models for the study of
BNG and ANG diffusion. In Chapter 3 an overview of what is called diffusing
diffusivity approach is reported. This model was introduced ad hoc to reproduce
BNG diffusion and, very recently, possible ways to extend it to the description of
ANG diffusion have been studied.

The second part of the dissertation, represented by Chapter 4, moves to the
study of different statistical aspects of random diffusivity models. While Chapter 2
and 3 are based on how one can mathematically reproduce BNG and ANG diffusion
features known form experiments, this fourth Chapter focuses on a more advanced
statistical study and characterisation of this class of models. Starting from the intro-
duction of a general framework, able to reproduce, among others, any (overdamped)
random diffusivity model for BNG diffusion, a detailed description of two specific
statistical analyses is reported, namely power spectral analysis and first passage
analysis. In this way, a more general view and understanding of random diffusivity
models is gained.

Chapter 5 is dedicated to final discussions, conclusions and outlook. In Appen-
dices A and B one can find some mathematical details concerning FBM, FLE and
fractional derivatives. Finally, the collection of the four publications contributing to
this cumulative dissertation is included in Appendix C.
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Synopsis

Before proceeding with the discussion, a comprehensive view of the ideas, methods,
and achievements discussed in this thesis is reported here, with the aim of highlight-
ing the novel results obtained during this research.

As largely discussed in the introduction, a growing number of systems are being
revealed which exhibit BNG and ANG dynamics. The comparison among observa-
tions coming from different systems shows that their complexity and inhomogeneity,
interpreted as the cause of the non-Gaussian behaviour, influences the particles dif-
fusive motion at different levels. In particular, for some systems the non-Gaussian
dynamics may persist throughout the entire observation window, while for others
one observes at long times a crossover to Gaussian diffusion.

In Chapter 2 and 3 of this work, three possible classes of models for the study
of the diffusive dynamics of particles in complex systems are considered: randomly-
scaled Gaussian processes (RSG) and superstatistical models (SupBM) in Chapter
2 and diffusing diffusivity models (DD) in Chapter 3. The overall review of these
random diffusivity models includes and integrates the results discussed by the author
and collaborators in:

Sposini V, Chechkin A V, Seno F, Pagnini G & Metzler R 2018 Random diffusivity
from stochastic equations: comparison of two models for Brownian yet non-Gaussian
diffusion New J. Phys. 20, 043044 – see Appendix C for the full text (page 62).

Note that the very structure itself of this part of the thesis, namely the division into
two Chapters, recalls the general message of the publication – a comparison of two
classes of models for BNG diffusion.

Focusing on the description of BNG diffusion, for the DD models, an operative
set of dynamic stochastic equations to define a time-dependent random diffusivity
is needed. In this way a description based on two coupled Langevin equations, one
for the dynamics of the particles and one for the fluctuations of the environment, is
obtained. The different mathematical methods that can be used to solve this set of
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equations are also included in the discussion. Of particular interest are those sets of
equations which are able to mimic the class of the generalised Gamma distribution for
the diffusivity. This class of distributions includes the Gamma and the exponential
distribution, which can properly reproduce the Laplace distribution for the particle
displacement observed in experiments. The same generalised Gamma distribution
was also chosen in the discussion of RSG and SupBM models, where a mathematical
description based on standard BM with a population of diffusivity emerges. It is
discussed that the main difference among the RSG, SupBM, and the DD models is
the description of the particle dynamics in the long time regime, corresponding to
different physical scenarios. The RSG model does not consider an active dynamics
of the environment, in contrast, the SupBM and DD models support the idea of ran-
domly varying diffusivity along single trajectories, corresponding to a dynamics for
the environment. Nevertheless, in the SupBM an explicit assumption is introduced,
that is the presence of a clear time scale separation between the characteristic time
of the medium fluctuations and the relaxation time of the system. As a result, two
observations can be drawn: i) the SupBM provides a mathematical description at the
ensemble level which is equivalent to the one given by RSG models; ii) the SupBM
can be used as a short time approximation of the DD model, which presents results
that are valid for any characteristic time of the medium fluctuations. The RSG
and SupBM models define a specific non-Gaussian dynamics for the entire diffusion
process, while DD models are able to describe a transition from a non-Gaussian to
a Gaussian diffusion in the long time regime, leading to an effective value for the
diffusivity. If one selects the same distribution of diffusivity for all three models, the
short times non-Gaussian dynamics is equivalent in each model.

The influence of non-equilibrium initial conditions for the diffusivity dynamics
is also briefly addressed. The main result emerges in the temporal evolution of the
MSD, which can present different intermediate regimes. In the long time regime one
obtains a description in agreement with the one for the equilibrium case, as expected.

References to models suitable for the study of ANG diffusion are also reported.
While for RSG models a direct parallel with BNG diffusion results can be drawn, in
the case of SupBM and DD models the mathematical and physical picture is not yet
clear. Indeed, the interplay between the dynamics of the environment and the long
range correlations typical of viscoelastic motion is still to be fully understood.

In Chapter 4 advanced statistical analyses of the random diffusivity models for
BNG diffusion discussed above are reported, including the results obtained by the
author and collaborators in:

Sposini V, Chechkin A V & Metzler R 2019 First passage statistics for diffusing
diffusivity J. Phys. A: Math. Theor. 52, 04LT01 – see Appendix C for the full text
(page 85).
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Sposini V, Grebenkov D S, Metzler R , Oshanin G & Seno F 2020 Universal spectral
features of different classes of random diffusivity processes New J. Phys. 22, 063056
– see Appendix C for the full text (page 114).

Initially, a general framework for the study of overdamped models for BNG diffusion
is introduced. This framework is able to reproduce all three classes of models dis-
cussed in Chapter 2 and 3. In addition, a range of previously unconsidered random
diffusivity processes, where the diffusivity is modelled as a functional of BM, can also
be studied. A description based on the concept of the moment-generating function is
provided for this general framework, such that standard statistical properties of the
models, such as the PDF and its moments, can be derived. Exact forms of the PDFs
span distributions in which the central part may be Gaussian or non-Gaussian, and
the tails may assume Gaussian, exponential, log-normal or even power-law forms.

Two insightful approaches to study time-dependent stochastic processes are then
reported, namely the single-trajectory power spectral analysis and the first passage
time statistics. The former is based on the characterisation of the power spec-
tral density (PSD) of a process. A textbook definition of the PSD provides an
ensemble-averaged property defined as the Fourier transform of the autocorrelation
function of the process in the asymptotic limit of long observation times. Due to
experimental and computational limitations, the observation time of typical single-
trajectory measurements or supercomputing studies is limited, and typically also re-
latively few trajectories are measured. To account for these limitations, the concept
of single-trajectory PSD was introduced. The latter is a standard concept in stat-
istical physics used to evaluate the instant in which a diffusing particle reaches a
reaction centre or a stochastic process exceeds a given threshold value.

In section 4.1 results on the single-trajectory power spectral analysis for random
diffusivity models are discussed. A universal scaling of the PSD as function of the
frequency f is established in all cases, showing in addition that this scaling can be
understood already from the single-trajectory PSD. It is shown that a first way to
discriminate among models lies in the study of the ageing behaviour of the PSD.
Indeed, the dependence of the PSD on the trajectory length appears only for those
random diffusivity models that are characterised by an anomalous scaling of the
MSD. Differences from one model to another appear in higher order moments of the
single-trajectory PSD distribution as well. In particular, exact expressions for the
coefficient of variation, defined as the ratio between standard deviation and mean
value of the single-trajectory power spectrum distribution, are obtained, proving that
the latter can be a good indicator of the specific model. Moreover, the probability
density for the amplitudes of the single-trajectory PSD is studied. This observable
reflects the very specific properties of the different random diffusivity models thus
providing insightful results. For instance, the coefficient of variation may be directly
calculated from its moments.
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In section 4.2 the first passage behaviour of the random diffusivity models is
studied. In particular, it is shown that at short times random diffusivity dynamics
leads to a faster decay of the survival probability and thus to faster first passage. In a
semi-infinite domain a universal crossover independent of the initial particle position
occurs. Beyond this crossover, random diffusivity models show a dynamic which is
slower than standard BM. Finally, the decay in the tails changes according the the
class of model that one selects. For DD models a convergence to the conventional
Lévy-Smirnov behaviour typical of BM is recovered. For RSG and SupBM models
heavier tails are observed. In finite domains, one obtains similar results as for semi-
infinite domains. The only difference is in the large time dynamics of DD models
where the first passage behaviour is dominated by an exponential decay with a
characteristic time, indicative of the mean first passage time, that is longer than
that the one for BM. Thus, it is found that in general the heterogeneity of the
environment does not improve the mean first passage result, in fact some of the
particles are slowed down. At the same time the heterogeneity also allows other
particles to have a diffusion coefficient greater than the average, and this is enough to
increase the speed of the reaction activation in diffusion-limited reactions, dominated
by the non-asymptotic part of the first passage time behaviour. In particular, the
amount of fast particles does not depend on the initial position, representing the
distance between particle and target. This suggests that the obtained results may
be qualitatively generalised to any distribution of the initial particle position.

Along the discussion of Chapter 4, more emphasis is put on the study of random
diffusivity models, yet one can also find comments on the results on the power
spectral analysis for scaled Brownian motion (SBM) obtained by the author and
collaborators in:

Sposini V, Metzler R & Oshanin G 2019 Single-trajectory spectral analysis of scaled
Brownian motion New J. Phys. 21, 073043 – see Appendix C for the full text (page
97).

This study was thought as a preliminary exercise to understand how to apply the
framework of single-trajectory spectral analysis to diffusing diffusivity models. How-
ever, the interesting comparison that emerged between SBM and FBM by itself
became worth of publication. The spectral content of SBM, which is a Markovian
but non-stationary diffusion process with Gaussian distribution and scaling of the
variance 〈x2(t)〉 ∼ tα, 0 < α < 2, showed that the frequency dependence has the
invariant scaling form ∼ 1/f 2, where f is the frequency, fully independent of the
anomalous scaling exponent α. The frequency dependence of the single-trajectory
PSD is thus the same as for standard BM. Furthermore, similar to BM is also the
behaviour of the coefficient of variation. However, a distinctive feature is shown to
be provided by the explicit dependence of the results on the measurement time. This
ageing property can be used to deduce the anomalous diffusion exponent. The res-
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ults for SBM were compared to the single-trajectory PSD behaviour of FBM. Note
that even if both FBM and SBM are Gaussian in nature, the former has station-
ary increments yet is non-Markovian due to its power-law correlated driving noise,
differently from what stated above for SBM. For both sub- and superdiffusion the
coefficient of variation for FBM provides different values from SBM. In addition,
subdiffusive FBM is non-ageing but has an α-dependent frequency scaling of the
single-trajectory PSD. In the superdiffusive regime the frequency dependence and
the ageing behaviour of the single-trajectory PSD for FBM is the same as for SBM,
leaving the coefficient of variation as the only way to distinguish the two processes
from each other. Concurrently, the PDF of the single-trajectory PSD is the same for
all cases.

Finally, in the conclusions, a discussion based on the possible origins of the hetero-
geneity is reported, with the main result that random diffusivity models are able to
describe systems that display time-dependent heterogeneity, weak space-dependent
heterogeneity and/or ensemble heterogeneity.
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Chapter 2

Superstatistics and randomly-scaled
Gaussian models

The intuition based on the idea that the concept of random diffusivity could be
employed in the description of diffusive motion in heterogeneous environments led to
a renewed interest in two models which were developed in the early 2000s, randomly-
scaled Gaussian models and the so-called superstatistical models. In this Chapter,
these two approaches are briefly introduced and discussed from a fresh perspective,
which will turn out to be convenient for later discussions and comparisons.

2.1 Randomly-scaled Gaussian processes
A general framework for the description of diffusion in complex environments is
provided by the class of stochastic processes identified as randomly-scaled Gaussian
processes (RSG). The basic idea of this approach is that the complexity or hetero-
geneity of the medium is completely described by the random nature of a specific
parameter, that is

X =
√

ΛXg, (2.1)

where Λ is an independent, non-negative and dimensionless random variable and Xg

is a Gaussian process. The distribution function of any RSG process can be recovered
following the results discussed in [39]:

Define with Z1 and Z2 two real independent random variables whose PDFs are P1(z1)
and P2(z2), with −∞ ≤ z1 ≤ +∞ and 0 ≤ z2 ≤ +∞, respectively, and with Z the
random variable obtained by the product of Z1 and Zα

2 , that is, Z = Z1Z
α
2 . Then,

the PDF of Z, denoted by P (z), is given by

P (z) =

∫ ∞

0

P1

( z
λα

)
P2(λ)

dλ

λα
. (2.2)
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In what follows a short excursion is reported with some examples that show how
this framework can be used to define models displaying fractional dynamics. Later
on, it is described how the same framework can be used to model heterogeneous
diffusion, namely BNG and ANG diffusion.

2.1.1 Fractional dynamics

Fractional dynamics is intended here as any process that allows for an evolution
equation of its PDF that presents fractional derivatives (see Appendix B for more
details on fractional derivatives).

The original generalised grey Brownian motion (GGBM) is a stochastic process
defined by [40]

Xβ,H =
√

ΛβXH , (2.3)

whereXH represents FBM with 0 < H < 1 and variance scaling as t2H , while Λβ is an
independent, non-negative random variable distributed according to the M-Wright
function (sometimes also called Mainardi function)

Mβ(λ) =
∞∑

k=0

(−λ)k

k! Γ(−βk + 1− β)
, 0 < β ≤ 1, λ ≥ 0, (2.4)

which is characterised by a Laplace transform expressed in terms of the Mittag–
Leffler function

∫ ∞

0

Mβ(λ)e−λsdλ = Eβ(−s) =
∞∑

k=0

(−s)k
Γ(βk + 1)

, 0 < β ≤ 1, λ ≥ 0. (2.5)

The model described in (2.3) includes grey Brownian motion [41], FBM and BM as
special cases when β = 2H, β = 1 and β = 2H = 1, respectively (see [40] for more
details). The evolution equation for the PDF of the GGBM can be expressed in
term of the Erdély–Kober Dε,µ

η fractional derivative with respect to t in the following
way [42]

∂P (x, t)

∂t
=
ν

β
tν−1Dβ−1,1−β

ν/β

∂2P (x, t)

∂x2
. (2.6)

Equation (2.6) defines a Green’s function given by

P (x, t) =
1

2tH
Mβ/2

( |x|
tH

)
, (2.7)

which presents the following asymptotic behaviour in the self-similar variable y =
|x|/tH

P (y) ∼ ya exp (−b yc) , y →∞, (2.8)

16



with a = (β − 1)/(2− β), b = (2− β)2−2/(2−β)ββ/(2−β) and c = 2/(2− β).
A RSG model was used also in [39] to derive a stochastic process whose one-point

one-time PDF is the solution of the symmetric space-time fractional diffusion

tD
β
?P (x, t) = xD

νP (x, t), (2.9)

where tD
β
? is the Caputo time fractional derivative and xD

ν is the symmetric Riesz–
Feller space fractional derivative. In this case we have that

Xν,β(t) =
√

Λν/2,βG2β/ν(t), 0 < β ≤ 1, 0 < ν ≤ 2, (2.10)

where G2β/ν(t) is FBM with Hurst exponentH = β/ν, such that its variance scales as
t2β/ν , and Λν/2,β is an independent constant non-negative random variable distributed
according to the distribution function

K
−ν/2
ν/2,β(λ) =

∫ ∞

0

L
−ν/2
ν/2

(
λ

y2/ν

)
Mβ(y)

dy

y2/ν
, 0 < β ≤ 1, λ ≥ 0, (2.11)

where L−αα (λ) is the extremal Lévy stable density, which can be related to the M-
Wright/Mainardi function in (2.4) as follows

L−αα

(
1

λα

)
1

αλ1/α+1
= Mα(λ), 0 < α ≤ 1, λ ≥ 0. (2.12)

The stochastic process described in (2.10) generalises Gaussian processes and it is
uniquely determined by its mean and autocovariance structure. Conversely to the
GGBM, it involves also stochastic processes fractional in space but, on the other
hand, it does not provide all the time fractional processes described by the GGBM.

2.1.2 Brownian and anomalous yet non-Gaussian diffusion

The class of diffusion processes which is of main interest in this dissertation is repres-
ented by BNG and ANG diffusion. As already mentioned in the introduction, these
are processes characterised by a linear and anomalous trend of the MSD, respect-
ively, combined with an unexpected non-Gaussian distribution. Many experiments
have shown that these non-Gaussian PDFs often display exponential or stretched
Gaussian shape. Thus, the goal of this section is to show how RSG processes can be
used to reproduce this kind of behaviour.

Regardless of the Gaussian model that is chosen for (2.1), the probability density
function for the particle position solely depends on the distribution of the random
variable Λ, as shown in (2.2). It was proven by the author and collaborators in [43]
that an appropriate general choice for PΛ(λ) in order to obtain exponential and
stretched Gaussian shaped position PDFs is a generalised gamma distribution

PΛ(λ) =
η

Γ(ν/η)
λν−1 exp (−λη) , (2.13)
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where ν and η are positive dimensionless parameter. When η = 1, the gamma
distribution emerges as a special case

PΛ(λ) =
λν−1

Γ(ν)
exp (−λ) . (2.14)

In order to get a physical understanding and interpretation of the random variable Λ
in this model, one can think of it as related to the particle diffusivity. For instance,
one can choose Λ = D/D0, where D stands for a random diffusion coefficient and
where D0 is a dimensional parameter representing the scale. Then the result in (2.2)
reads

P (x, t) =

∫ ∞

0

PΛ (D/D0)√
4πD0σ2(t)

exp


−

(
x/
√
D/D0

)2

4D0σ2(t)


 dD

D0

√
D/D0

=

∫ ∞

0

1√
4πDσ2(t)

exp

(
− x2

4Dσ2(t)

)
PD(D)dD

=

∫ ∞

0

G(x, t|D)PD(D)dD, (2.15)

where σ2(t) is the variance of the Gaussian distribution, whose explicit form will
depend on the specific Gaussian process one selects, and with

PD(D) =
1

D0

PΛ (D/D0) . (2.16)

From the result in (2.15) it is then possible to understand the system described by
(2.1) as a population of particles with randomly-distributed diffusion coefficients. If
one calculates PD(D) from (2.16) by making use of (2.13), then the particle position
PDF in (2.15) presents the following asymptotic behaviour in the tails [43]

P (x, t) ∼ (x2/(4D0t))
(2ν−η−1)/(2(η+1))

Γ(ν/η)
√

4πD0σ2(t)
exp

(
−η + 1

η
η

1
η+1

(
x2

4D0σ2(t)

) η
η+1

)
, (2.17)

which, in the special case of gamma distributed Λ given in (2.14), simplifies as

P (x, t) ∼ |x|ν−1

√
π (4D0σ2(t))ν

exp

(
− |x|√

D0σ2(t)

)
. (2.18)

This result confirms the initial assumption that a RSG model defined as in (2.1)
with PΛ(λ) given by (2.13), which can be seen as a diffusive model with random
diffusion coefficient distributed according to (2.16), allows for a description of BNG
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and ANG diffusion. Note that from the results in (2.17) and (2.18) it is possible
to observe explicitly that within the framework of RSG models, the features of the
selected Gaussian model are the only ones responsible for the temporal spreading of
the position PDF, and thus of the MSD scaling. Indeed, the random parameter Λ
rescales the amplitude of each realisation, hence the reshaping of the ensemble PDF,
but does not affect at all the temporal trend.

Heterogeneous ensemble of Brownian particles

The most general stochastic model to define a Gaussian process is provided by the LE
reported in (1.1), where the particle position and velocity are here renamed as xg(t)
and vg(t), respectively, to make clear that they identify the Gaussian model in (2.1).
As already discussed in the introduction, it is well known that, with this description,
one observes an initial ballistic behaviour of the MSD for t� γ−1, during which the
system is equilibrating, followed by a linear trend when t� γ−1. By making use of
this Gaussian model, the RSG process in (2.1) can be written as

X =
√

ΛXg, (2.19)

V =
√

ΛVg, (2.20)

where it is clear that the velocity gets rescaled as well, with same coefficient as the
position. Then, by recalling that the random variable Λ is time independent, the
RSG model will fulfil the following stochastic differential equations

dx(t)

dt
=
√
λ
dxg(t)

dt
=
√
λ vg(t), (2.21)

dv(t)

dt
=
√
λ
dvg(t)

dt
=

√
λ

m

(
−γvg(t) +

√
2σξ(t)

)
, (2.22)

which finally lead to the following LE for the RSG process

dx(t)

dt
= v(t), (2.23)

m
dv(t)

dt
= −γv(t) +

√
2σλ ξ(t). (2.24)

This model was first introduced within a more general framework to study fractional
dynamics (see [44–46]) and it is referred to as heterogeneous ensemble of Brownian
particles (HEBP). For the purposes of this dissertation only a simple version of it
is needed, where (2.23)-(2.24) are combined with the distribution of Λ provided in
(2.13).

Once the stationary equilibrium is reached, represented by the linear trend of the
MSD, it is possible to define the diffusivity coefficient given by D = (σ/γ2) Λ = D0 Λ,
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with D0 = σ/γ2. This confirms the physical interpretation of the model explained
above: the introduction of a random scaling in a Gaussian model represents a way
to deal with systems where a population of diffusivities is observed.

For some systems, under the assumption that the equilibration process is so fast
that one is not able to observe it, i.e., γ−1 � ∆t, where ∆t represents the exper-
imental time resolution, it is possible to consider the overdamped limit of the LE.
This means that the Gaussian process can be described by the differential equation

dxg(t)

dt
=
√

2D0 ξ(t), (2.25)

which represents the Wiener process. In this model the MSD presents a linear trend
only. The RSG process associated to this Gaussian model becomes simply

dx(t)

dt
=
√

2D0 λ ξ(t) =
√

2D ξ(t), (2.26)

where the relation D = D0 Λ was introduced again. This description in the over-
damped limit, always combined with the distribution of Λ provided in (2.13), has
been largely employed for the study of BNG diffusion [43].

RSG models for ANG diffusion

By following the procedure described above for the HEBP, it is possible define a RSG
model for ANG diffusion starting from FBM as Gaussian process. In particular, one
can start from the stochastic differential equation

dxg(t)

dt
=
√

2σH ξH(t), (2.27)

where 0 < H < 1 is the Hurst exponent and ξH(t) is fractional Gaussian noise. Then,
with the introduction of a random scaling

√
Λ as defined in (2.1), it is possible to

obtain
dx(t)

dt
=
√

2σH λ ξ(t) =
√

2DH ξ(t), (2.28)

where DH = σH Λ. This model can indeed be used to model ANG diffusion. In
particular, by choosing Λ to be distributed according to the Weibull distribution,
which is a special case of the one in (2.13) with ν = η, it was shown [47] that it is
possible to properly reproduce the Golding-Cox data [48], a paradigmatic dataset in
the field of anomalous diffusion describing the random motion of individual molecules
inside bacteria cells.

Finally, it is worth mentioning that an interesting study was performed in [49]
following a similar approach but starting from a different dynamical equation, namely
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the generalised Langevin equation (GLE)

dx(t)

dt
= v(t), (2.29)

dv(t)

dt
= −

∫ t

−∞
γ(t− τ)v(τ)dτ +

√
2σξ(t), (2.30)

where a memory kernel γ(t) is introduced. In this description, the assumption of
equilibrium leads to a relation between the memory kernel and the stochastic for-
cing ξ(t) given by the Kubo fluctuation-dissipation relation, that is 〈ξ(t′)ξ(t+ t′)〉 =√
kBT γ(t). The standard LE can be obtained from the GLE considering an expo-

nential memory kernel, while the GLE with power-law kernel identifies the FLE that
is usually related to the study of viscoelastic systems, as an alternative description
to the one provided by FBM, as discussed in the introduction.

2.2 Superstatistics
The term superstatistics stands for "superposition of statistics" and it was coined
by Beck and Cohen in the early 2000s [50–52]. In fact, as already mentioned in the
introduction, pioneering discussions of this theory can be found in the book by Van
Kampen [10] and in the paper by Kärger [11].

The theory of superstatistics introduced by Beck and Cohen aims at describing
the dynamics of complex systems in a non-equilibrium state, hence displaying fluctu-
ations in space and/or time. If one assumes that the spatio-temporal inhomogeneities
of the systems happen on a large scale, effectively they can be represented via many
spatial cells or time slices, each presenting a different value of some relevant system
parameter β. Additionally, the theory of superstatistics is based on the assumption
that the relaxation time of the system is small compared to the typical time scale
of changes of β. Then, each cell, whose size can be associated with the correlation
length/time of the varying quantity β, can be approximately considered to be at
a local equilibrium. In this way, a stationary non-equilibrium complex system is
mapped into a superposition of inhomogeneous smaller systems at equilibrium.

If E represents an effective energy for each cell, the stationary distribution of a
superstatistical system can be written as a superposition of a local Boltzmann factor
e−βE weighted over the global probability Pβ(β) to observe some value β,

P (E) =

∫ ∞

0

Pβ(β)
1

Z(β)
ρ(E)e−βEdβ, (2.31)

where ρ(E) is the density of states and Z(β) is the normalisation constant of ρ(E)e−βE

for a given β. It is important to stress that the meaning of the variables at hand
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depend on the specific complex system under consideration. Thus, local equilibrium
is meant in a generalised sense and the result in (2.31) is valid for any corresponding
counterpart of the Boltzmann factor of the specific system dynamics.

In general, the distribution Pβ(β) is determined by the spatio-temporal dynam-
ics of the non-equilibrium system. Important examples usually considered in the
superstatistical framework are:

i) the χ2-distribution with integer degree k

Pβ(β) =
1

Γ(k/2)

(
k

2β0

)k/2
βk/2−1 exp

(
− kβ

2β0

)
, (2.32)

when one considers many independent microscopic random variables contrib-
uting to β in an additive way;

ii) the inverse χ2-distribution with integer degree k

Pβ(β) =
β0

Γ(k/2)

(
kβ0

2

)k/2
β−k/2−2 exp

(
−kβ0

2β

)
, (2.33)

when the same observation holds for random variables that contribute in an
additive way to β−1;

iii) a lognormal distribution

Pβ(β) =
a

β

(
−c(ln β − b)2

)
, (2.34)

when the random variable β may be generated by multiplicative random pro-
cesses.

2.2.1 Superstatistical Brownian motion

Coming back to the main topic of this dissertation, one can apply the theory of
superstatistics to model the motion of a Brownian particle of massmmoving through
a changing environment, hence introducing the superstatistical Brownian motion
(SupBM). The dynamics of the system can be described starting from the LE in
(1.1) that, for the sake of clarity, is recalled here

m
dv(t)

dt
= −γv(t) +

√
2σξ(t). (2.35)

Then, in order to account for the environment fluctuations, one can follow the su-
perstatistics theory discussed above and define the parameter

β =
γ

mσ
, (2.36)
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which will be fluctuating according to a certain probability Pβ(β). The superstatist-
ical description of the system is completely provided by (2.35), (2.36) and Pβ(β).

The effective energy of the system can be identified with E = 1
2
mv2 and the

local equilibrium assumption for each cell allows us to write the local stationary
distribution as a Gaussian

P (v|β) =

√
mβ

2π
exp

(
−1

2
βmv2

)
, (2.37)

where the local equilibrium correlation is given by

C(t− t′|β) = 〈v(t)v(t′)〉 =
1

mβ
exp(−γ|t− t′|). (2.38)

Finally, according to (2.31), the marginal distribution describing the superstatistical
system can be written as

P (v, t) =

∫ ∞

0

Pβ(β)P (v, t|β)dβ, (2.39)

which will lead to an analogous result for P (x, t), while, the supertatistical correlation
function is given by

C(t− t′) =

∫ ∞

0

Pβ(β)C(t− t′|β)dβ =
1

m

∫ ∞

0

Pβ(β)

β
exp(−γ|t− t′|)dβ. (2.40)

Note that in (2.39) no distinction between which of the parameters is fluctuating,
if γ, σ, and/or m, can be made, as there is no explicit dependence on the single
parameters. Conversely, the correlation function in (2.40) bares a clear and distinct
dependence on both β and γ, such that a larger amount of information can be
extrapolated from it. Note that, as the velocity correlation function provides the
MSD trend by

〈(x(t)− x(0))2〉 =

∫ t

0

∫ t

0

〈[v(t′)− v(0)][(v(t′′)− v(0)]〉dt′dt′′, (2.41)

insightful information can be extracted form the MSD beahviour as well. Here,
an observation is due concerning the local equilibrium of each cell in connection
to the fluctuations of the parameter β. First of all, as already mentioned in the
introduction, at equilibrium the fluctuation-dissipation relation, i.e., σ = kBTγ, must
be valid, hence there is no variability of γ without variability of σ, and vice versa.
By employing this relation in (2.36) one obtains that β = (mkBT )−1. Two important
conclusions can be drawn from this observation with respect to the superstatistical
Brownian motion formalism discussed in this section:

23



i) fluctuations of β are related to fluctuations in the temperature of the system
and/or to fluctuations in the mass of the particle;

ii) if one wants to relate the fluctuations of β to a random diffusion coefficient D =
σ/γ2, such that β = (mγD)−1, one must not forget to include in the description
the corresponding fluctuations of γ due to the fluctuation-dissipation relation,
i.e., γD = kBT , leading to possible variability in the MSD trend, according to
(2.41).

From the results reported in (2.39), (2.40) and (2.41) it is straightforward to no-
tice, after the discussion in section 2.1.2 for RSG models, that the superstatistical
Brownian motion can be used, under certain prescriptions for Pβ(β), to describe
BNG diffusion and that it can be interpreted, under the constraints described in
point ii), as a random diffusivity model.

2.3 Discussion
In this Chapter two models were introduced, namely RSG and SupBM models, with
the main goal of showing that the description that they provide for BNG and ANG
diffusion is based on common results with many similarities. This is why in the re-
cent literature on random diffusivity models, one often sees that the two approaches
are used interchangeably. In fact, even if they mathematically present some formulae
in common, the physical description provided by the two models is very different.
On the one hand, the theory of superstatistics represents an effective description of
diffusion in a non-equilibrium system and it is based on the strong assumption that
there is a clear time scale separation between the characteristic time of the medium
fluctuations and the relaxation time of the system. On the other hand, the RSG
models describe systems at equilibrium where a population of parameters can be
introduced, due to inherent variabilities of the system, for instance in the size of
the diffusive tracers (for more details see also the discussion in [46] on HEPB and
SupBM). Nevertheless, one could imagine taking a snap-shot of a system described
by the SupBM and compare it with one taken from a second system defined by a
RSG model: they would be indistinguishable. If one is interested in understanding
in more detail the physical properties of the system under consideration, and thus in
differentiating between the two models, one must consider the time evolution of single
realisations and extract, for instance, the single trajectory velocity autocorrelation
function and the single trajectory time-averaged mean squared displacement. This
observation opens the door to a standard discussion in statistical physics, concern-
ing ensemble average analysis versus time average analysis, leading to the concept of
ergodicity, which will be briefly addressed in Chapter 4. To conclude this discussion,
it is worth mentioning that, if one considers the system described in the SupBM,
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when the realisations are long enough, the allegedly large separation between the
relaxation time of the system and the characteristic time of the environment fluctu-
ations actually becomes small, if compared to the timescale at which the system is
observed, and then the superstatistical description may not be valid any longer. If
this is the case, the models discussed in the next Chapter could be of help in the
description of such systems.

Finally, before moving to the next Chapter, note that, in order to avoid misunder-
standings, throughout this dissertation the term superstatistics (or superstatistical)
refers to the theory introduced by Beck and Cohen and discussed above in section
2.2. Any other description with time-independent random parameters comes under
the framework defined as randomly-scaled Gaussian processes, introduced in section
2.1.
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Chapter 3

The diffusing diffusivity approach

In this Chapter, a short review on the diffusing diffusivity (DD) approach is reported.
The discussion evolves chronologically; starting from the model in which the term
diffusing diffusivity was coined, it then moves to different developments and expan-
sions, showing how the DD approach was able to drive the focus of the anomalous
diffusion community towards the study of random diffusivity processes.

3.1 In response to the experimentalists’ call: the
first DD model

The work from Granick’s group [18,19] brought to light the fact that in experiments
often no check is performed on the displacement distribution, given for granted that
whenever a linear trend of the MSD is observed, one is dealing with BM. In fact,
the authors showed that this is not always the case. Two independent systems were
reported to display a linear trend of the MSD combined with exponential tailed
distributions. As discussed already in the introduction, the same behvaiour was
later on observed by many other experimentalists in different systems, confirming
the universality of BNG diffusion. Moreover, in the discussions reported in [18, 19],
the idea of SupBM, described in Chapter 2, was invoked as a possible basis for
the understanding of this class of processes. The authors immediately came to
the conclusion that, while this model could be used for certain systems, it does
not provide a complete answer to the scenario at hand. Indeed, the invariance of
the displacement PDF at any time, typical of superstatistical models, is not able
to reproduce the final crossover to Gaussian diffusion and the recovered ergodicity
observed in many systems displaying BNG diffusion. Following these observations,
a call for new diffusive models able to describe BNG diffusion features was explicitly
placed.

In response to the experimentalists’ call, Chubinsky and Slater introduced the
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first DD model in 2014 [53]. The main idea behind their work is based on the
assumption that, when deviations from BM are observed, a clear discrimination
between the origin of non-linearity in time of the MSD and the non-Gaussianity can
be made. Starting from a simple one-dimensional unbiased random walk,

xN =
N∑

i=1

∆xi, (3.1)

Chubinsky and Slater proved that, in order to obtain a linear trend of the MSD,
what is needed are uncorrelated step directions only. Thus, the step lengths may
display correlations and still the MSD would be linear. Actually, correlations of such
kind are to be expected in heterogeneous environment and they can give rise to non-
Gaussian displacement distribution. Then, one can imagine to have a random walk
as in (3.1), where the steps ∆xi are distributed according to

P (∆xi) =
1√

4πDi∆t
exp

(
− ∆x2

i

4Di∆t

)
, (3.2)

and where it is assumed that the diffusivity Di varies slowly in time, such that
the correlation time τD � ∆t. Considering that small changes in D allow for a
continuous-time description, one can additionally consider the diffusivity to fulfil
the advection-diffusion equation (from here the name diffusing diffusivity) which, at
stationarity, reads

∂pD(D)

∂D
=

1

D0

pD(D), (3.3)

also known as the barometric formula. Reflecting boundary conditions in D = 0
and D = Dmax are needed to avoid the negativity of D. The solution of (3.3) for
Dmax →∞ is given by the exponential distribution

pD(D) =
1

D0

exp

(
− D

D0

)
. (3.4)

At short times (t � τD) the diffusivity of a particle can be assumed constant and
the displacement distribution can be obtained, as in the SupBM and RSG models,
by

P (x, t) =

∫ Dmax

0

pD(D)G(x, t|D)dD ∼ 1

2
√
D0t

exp

(
− |x|√

D0t

)
. (3.5)

At times large enough (t� τD) the particles have explored the whole diffusivity space
and the central limit theorem guarantees the convergence to a Gaussian distribution

P (x, t) =
1√

4〈D〉t
exp

(
− x2

4〈D〉t

)
. (3.6)
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The numerical results reported in [53] established the first model able to fully repro-
duced the BNG behvaiour observed in many systems.

To summarise, the key physical interpretation of any DD model reads:

When observing an ensemble of particles performing diffusion in a fluctuating, het-
erogeneous environment, at short times, each of them will present a different diffus-
ivity, depending on their local environment. Going on in time, the diffusivity will
change, either because the environment itself is changing or because the particle is
moving. When (and if) the particles will have experienced the whole diffusivity space,
the displacement distribution will eventually turn into a Gaussian.

3.2 Second generation models
Starting from the results obtained by Chubinsky and Slater [53], a wide interest
in the topic emerged. In particular, one can identify as second generation models
the work from two groups reported in [54] and [55, 56]. Published just a couple
of years after the paper by Chubinsky and Slater, the main idea behind these two
novel works was to provide a DD model which would be analytically treatable. Both
started from a common approach based on the idea of having two coupled stochastic
equations, one for the evolution of the particle position and one for the evolution of
the diffusivity. Eventually, the two works followed different mathematical methods
to solve the model, succeeding in reporting an explicit analytical derivation and
solution for the DD models considered. In what follows, a short description of the
two formalisms is reported.

Subordination approach

Chechkin and coauthors introduced [54] a model that they called minimal diffusing
diffusivity model (mDD), which can be solved analytically trough the Feller subor-
dination approach [58]. The system dynamics is defined starting from the coupled
Langevin equations

d

dt
x(t) =

√
2D(t) ξ1(t), (3.7)

D(t) = y2(t), (3.8)
d

dt
y(t) = −1

τ
y(t) + σξ2(t), (3.9)

where ξ1(t) and ξ2(t) are independent, white Gaussian noises with δ-correlation.
The auxiliary variable y(t) undergoes an Ornstein-Uhlenbeck process (OU) and the
time-dependent random diffusion coefficient D(t) is given by the squared of this
auxiliary variable. In this way, one avoids the need to introduce boundary conditions
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for the dynamic equation of D(t), hence simplifying the resolution of the set of
equations in (3.7)-(3.9). Note that in the original work in [54] an n-dimensional
overdamped LE in (3.7) and a d-dimensional OU in (3.9) were considered, with
independent dimensionalities n and d. Here only the 1-dimensional case for both
cases is discussed. A generalisation to the multi-dimensional description can readily
be obtained component-wise. For simplicity, dimensionless variables t → t/τ and
x→ x/(στ) are considered, such that y(t) is also renormalized according to y(t)→
y(t)/(στ 1/2). Then, following the subordination approach, one can introduce a path
variable (subordinator), which in this case can be defined as the integrated diffusivity

τ(t) =

∫ t

0

D(s)ds =

∫ t

0

y2(s)ds. (3.10)

Thanks to this new variable, it is possible to redefine the set of equations in (3.7)-
(3.9), in dimensionless units, as

d

dτ
x(τ) =

√
2 ξ1(τ), (3.11)

d

dt
τ(t) = D(t). (3.12)

One can immediately observe that equation (3.11) represents the equation for stand-
ard BM with D = 1, such that the Green’s function in the path variable τ(t) can
be written as a Gaussian, namely G(x, τ |D = 1). Then, in order to calculate the
probability density in the real time, one has to integrate over all possible path lengths

P (x, t) =

∫ ∞

0

G(x, τ |D = 1)T (τ, t)dτ, (3.13)

where T (τ, t) is the PDF of the process τ(t), defined via its Laplace transform

T̃ (s, t) =
exp(t/2)

[
1
2
(
√

1 + 2s2 + 1√
1+2s2

) sinh
(
t
√

1 + 2s2
)

+ cosh
(
t
√

1 + 2s2
)]1/2

. (3.14)

Starting from the subordination formula in (3.13), the probability density function
of the mDD is finally given, in the Fourier space, by

P̂ (k, t) =

∫ +∞

−∞
eikxP (x, t)dx =

∫ +∞

−∞
eikx

[∫ ∞

0

G(x, τ |D = 1)T (τ, t)dτ

]
dx

=

∫ ∞

0

T (τ, t)Ĝ(x, τ |D = 1)dτ =

∫ ∞

0

T (τ, t)e−k
2τdτ

= T̃ (k2, t). (3.15)
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This result can be explicitly evaluated in the limit of short and long times starting
from (3.14). By recalling that the description is reported in dimensionless variables,
the short and long time limits can be expressed as t� 1 and t� 1, respectively. In
the former case one has

P̂ (k, t) ∼ t−1/2

(
k2 +

1

t

)−1/2

→ P (x, t) ∼ 1

πt
K0

( x

t1/2

)
, (3.16)

where K0(z) is the modified Bessel function of second kind that for small arguments
presents an asymptotic behaviour K0(z) ∼

√
π/2z e−z. In the long time regime

instead one finds, considering the tails of the distribution, namely for k � 1, that
the PDF displays a Gaussian behaviour

P̂ (k, t) ∼ exp

(
−k

2t

2

)
= exp

(
−〈D〉stk2t

)
→ P (x, t) ∼ G(x, t|D = 〈D〉st). (3.17)

Phase space path integral approach

Jain and Sebastian [55,56] introduced a model that can be solved analytically through
the phase space path integral approach. Considering the description of simple BM

d

dt
x(t) = η(t), (3.18)

where 〈η(t1)η(t2)〉 = 2Dδ(t1− t2), they showed that the introduction of a stochastic
diffusivity in this framework is quite straightforward. Starting from the idea that
it is possible to characterise the noise through its characteristic functional defined
as [55] 〈

exp

(
i

∫ t

0

η(t′)p(t′)dt′
)〉

= exp

(
−D

∫ t

0

p2(t′)dt′
)
, (3.19)

it is possible to obtain the probability distribution functional for the noise as the
Fourier transform

P̂ [η(t)] =

∫
exp

(
−i
∫ t

0

η(t′)p(t′)dt′ −D
∫ t

0

p2(t′)dt′
)
dp(t). (3.20)

Using equation (3.18), it is then possible to write the probability distribution func-
tional for the Brownian path x(t) as

P [x(t)] =

∫
exp

(
−i
∫ t

0

ẋ(t′)p(t′)dt′ −D
∫ t

0

p2(t′)dt′
)
dp(t). (3.21)

Finally, the probability of finding a particle at x at time t, given that it started at
x0 = 0 at time t = 0, is given by

P (x, t) =

∫ ∫
exp

(
−i
∫ t

0

ẋ(t′)p(t′)dt′ −D
∫ t

0

p2(t′)dt′
)
dp(t) dx(t). (3.22)
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If one wants to consider a diffusing diffusivity picture describing an environment
that fluctuates in time, an effective time dependent and random diffusion coefficient
D(t), constrained to be positive, needs to be introduced in the formalism. For this
case, it is possible to generalise expression (3.22) as follows

P (x, t) =

∫ ∫ 〈
exp

(
−
∫ t

0

D(t′)p2(t′)dt′ + i

∫ t

0

ẋ(t′)p(t′)dt′
)〉

D

dp(t) dx(t),

(3.23)
where the angular brackets indicate the average over all realisations of D(t). The
easier way to introduce a random fluctuating, positive diffusion coefficient is to con-
sider the following assumption

D(t) = y2(t), (3.24)

where y(t) is a random vector (note that one can select a d-dimensional random
vector as well). In particular, Jain and Sebastian selected for y(t) the position vector
of a harmonic oscillator that undergoes overdamped Brownian motion. This choice
represents exactly the same set of equations described by the mDD above and, as
a consequence, by working out equation (3.23) with these assumptions for D(t) and
y(t), the authors found the exact same result reported in (3.15).

3.3 Third generation models
After having defined the building blocks of the DD approach, its physical interpret-
ation and how to analytically treat it, the evolution of the DD models moves to
the introduction and study of alternative descriptions. These further generalisations
are summerised in the class of third generation models that, based on similar meth-
odologies to the ones already discussed, provide new insights on random diffusivity
processes.

Lanoiselée and Grebenkov [59] proposed to model the time-dependent diffusivity
D(t) as a Cox-Ingersoll-Ross process (CIR) [34], also known as Feller’s process or
square root process. This model is equivalent to the mDD, as shown by Chechkin et
al. in [54], but presents a description where the introduction of the auxiliary variable
is avoided. In particular, the dynamics is defined by the coupled stochastic equations

d

dt
x(t) =

√
2D(t)ξ1(t) (3.25)

d

dt
D(t) =

1

τ
(D − D̄) + σ

√
2D(t)ξ2(t), (3.26)

where ξ1(t) and ξ2(t) are independent, white Gaussian noises with zero average and δ-
correlation. Thanks to this formalism, the connection with the stochastic volatility
models mentioned in the introduction and used in financial mathematics for the
modelling of stock price emerges naturally.
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Tyagi and Cherayil introduced [60] a simple alternative approach that not only
verifies the earlier findings on DD models, but also identifies another process for the
random diffusivity, i.e., the two-state white noise, that exhibits the same BNG be-
haviour. The mathematical methodology used in their work is a hybrid between the
subordination approach and the phase space path integral approach, both explained
in section 3.2. The set of coupled LEs is first expressed in its equivalent Fokker–
Planck form. Then, the solution of this FPE, which contains the time depend-
ent diffusion coefficient D(t), is represented as a Fourier integral. This expression
is finally averaged over the stochastic trajectories of D(t), using path integration
methods. The results reported by Tyagi and Cherayil allow for a broader under-
standing of DD models. Indeed, they proved that the modulation of white noise by
any stochastic process whose time correlation function decays exponentially presents
similar features, thus providing a motivation of why BNG behaviour appears to be
so widespread. In particular, they argued that the MSD of any particle whose dy-
namics is driven by randomly modulated white noise will vary linearly with time
(in some interval) if the time-correlation function of the modulating variable decays
exponentially. In order to see that explicitly, it is useful to recall some of their res-
ults. Consider the set of equations defined by the mDD, that is (3.7)-(3.9). It is
straightforward to check that the correlation function of y(t) is given by

〈y(t1)y(t2)〉 = y2(0)e−(t1+t2)/τ +
στ

2

[
e−|t1−t2|/τ − e−(t1+t2)/τ

]
, (3.27)

where y(0) represents the initial condition. Then, the MSD of the particle position
will be given by

〈x2(t)〉 = 2

∫ t

0

∫ t

0

〈y(t1)y(t2)〉〈ξ(t1)ξ(t2)〉dt1dt2

= (στ)t+ τ
(
y2(0)− στ

2

)
(1− e−2t/τ )

∼
{

2 y2(0) t, t� τ,
(στ)t, t� τ.

(3.28)

From this result one observes that the position MSD always shows a linear trend,
but with a slope that can vary, depending on the initial condition for y(t). It is
worth noticing that by selecting an equilibrium initial condition for y(t) one has that
y2(0) = στ/2, such that the two limits in (3.28) coincide and a single overall beha-
viour is observed for the particle MSD. Conversely, if one selects a non-equilibrium
initial condition for y(t) the two different trends become visible. See for instance the
discussion by the author and collaborators in [43] where a study on non-equilibrium
initial conditions for the diffusivity in the mDD model was explicitly addressed.

The result in (3.28) holds in general whenever y(t) presents a correlation with
an exponential decay, similar to the one in (3.27). Following this idea, Tyagi and
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Cherayil showed that there is at least one other stochastic process that could replace
D(t) in (3.8)-(3.9) and still produce BNG diffusion: the dichotomic or two-state noise.
Quite some literature is present on this kind of processes, which are often referred
to as switching models [10, 61–63]. Indeed, a two-state noise ζ(t) can be defined as
a process that fluctuates between two values c1 and c2 and is characterised by:

1. 〈ζ(t)〉 = ζ̄ = (ν12c2 + ν21c1)/(2ν̄), where ν̄ = (ν12 + ν21)/2 and νij is the
transition rate from i to j;

2. 〈ζ(t1)ζ(t2)〉 = ζ̄2 + (ν21ν12/(4ν̄
2))(c1 − c2)2 exp(−2ν̄|t1 − t2|);

3. ζ2(t) = (c1 + c2)ζ(t)− c1c2.

Then, by taking D(t) = ζ2(t) and by following the mathematical procedure described
above, Tyagi and Cherayil proved that BNG diffusion with features very similar to
the one of the mDD is obtained. A similar two-state model was also analysed in the
paper by Miyaguchi and coauthors in [64].

Finally, expanding the idea that any stochastic modulation of Brownian motion
with exponential relaxation can lead to BNG, in the work by the author and collab-
orators [43], a generalisation of the mDD was defined, where instead of a OU process
for the auxiliary variable, a more general non-linear stochastic equation was selected

d

dt
x(t) =

√
2D(t) ξ1(t), (3.29)

D(t) = y2(t), (3.30)

d

dt
y(t) =

σ2

2 y

[
2ν − 1− 2 η

(
y

y0

)2η
]

+ σ ξ2(t), (3.31)

where ν and η are positive constants and y0 is a dimensional constant defined by
D0 = y2

0. The correlation function of y(t) in (3.31) still behaves exponentially, hence
the linear trend of MSD is observed, yet this model is able to extend the formal-
ism of the DD approach to a more general class of distributions. In particular, all
the models discussed up until now provide a distribution of the diffusion coefficient
which is well described by a Gamma distribution. The latter leads to the character-
istic exponential tails for the particle displacement distribution in the non-Gaussian
regime. In the description reported in the set of equations (3.29)-(3.31), a broader
class of distributions for the diffusion coefficient is introduced, namely the generalised
Gamma distribution

pD(D) =
η

Dν
0 Γ(ν/η)

Dν−1e−(D/D0)η , (3.32)

whose moments are given by 〈Dn〉 = Dn
0 Γ(ν+n

η
)/Γ(ν

η
) and which was already men-

tioned in Chapter 2. Within this model, stretched Gaussian tails for the particle
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displacement distribution can be recovered, in addition to the more common Lapla-
cian shape obtained by setting ν = 0.5 and η = 1. Note that distributions of this kind
are indeed observed in experiments, see for instance the results for lateral diffusion
in lipid membranes reported in [33].

3.4 Most recent developments
In this section some insights on the most recent developments in the field of the
DD approach are reported. First of all, it is worth mentioning that, thanks to
the study reported in very recent works [69–71], a clear connection can be drawn
between DD models and the continuos time random walk approach (CTRW). This
interpretation can be seen as a more direct generalisation of the first DDmodel, where
a random walk approach was discussed. Indeed, while most of the studies preferred
to move towards a continuum description, as widely discussed above, in [69–71] a
different path was undertaken. In particular, the concept of fluctuating diffusivity is
replaced by fluctuations in the number of steps of the random walker and jump length
distributions. A large deviation description is employed to show that, under the
condition that the jump length distribution decays exponentially or faster (power-law
distributed jump lengths are excluded), and that the distribution of the waiting times
is analytic for short waiting times, the particle displacement distribution presents
exponential tails, with a logarithmic correction.

Before moving to the final discussion, it is worth reporting some details concern-
ing developments of the DD approach where the focus is shifted towards different
types of systems and/or diffusion behaviours. In particular two different but equally
interesting directions are chosen, i) models for ANG diffusion and ii) many-body
system descriptions.

3.4.1 Viscoelastic-type motion

As discussed in the introduction, a behaviour similar to BNG diffusion has been
observed for viscoelastic-type motion as well, where an anomalous scaling of the
MSD is combined with an unexpected non-Gaussian displacement distribution [65].

Very recently, a work was published by Sabri and coauthors [66] in which a model
was developed for describing the heterogeneous anomalous diffusion in the cytoplasm
of mammalian cells. Through a comparison with simulations they showed that the
motion can be fully reproduced as an intermittent FBM, alternating between two
states of different motility Kon

α and Koff
α . The dichotomous switching between these

states was modeled as a Markov process with transition rates kon and and koff . This
resembles the two-state noise model described above in section 3.3, combined with
FBM-like motion instead of standard BM. Sabri and coauthors claimed a very good
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overlap with experimental data and thus, they showed that the resulting diffusion
heterogeneity does not require a full and elaborate model but rather a switching
between two modes of motion, which is sufficient to reproduce the experimental
results. Conversely, in the paper by Wang and coauthors [67], various possible ex-
tensions of the DD approach to viscoelastic-type motion and ANG diffusion were
reported. All these models show a crossover from non-Gaussian to Gaussian dis-
tributions, yet their MSDs exhibit very different behaviours. These observations
highlight the strong non-universality of random-diffusivity viscoelastic anomalous
diffusion and show the need for more studies in this direction, in order to arrive at
a full understanding of ANG diffusion.

3.4.2 Many-body systems – Rouse model in crowded envir-
onment

A recent development of the DD approach emerged in the direction of modelling
many-body systems. Indeed, all the models mentioned above are based on the study
of single particle systems. The work by Ahamad and Debnath [68] represents the first
attempt in this new direction. The authors studied and derived exact results for the
dynamics of Rouse model in crowded environment modeled by the concept of DD.
The Rouse model is a standard model describing the random motion of interacting
connected beads through a chain of harmonic oscillators and it represents the basis
of dynamics of dilute polymer solutions. The novelty of the work comes from the
idea that each Rouse mode is allowed to diffuse with stochastically varying time
dependent diffusivities. In this way, it is possible to model diffusion in the crowded
rearranging environment.

In the Rouse model, each bead follows a Langevin dynamics given by

∂

∂t
ri(τ, t) =

g

ζ

∂2

∂τ 2
ri(τ, t) +

√
2Dξi(τ, t), (3.33)

where r(τ, t) is the position vector of the bead at point τ along the chain contour at
time t and i represents the index for the Cartesian coordinates. The chain contour
length τ varies form 0 to N and free boundary conditions are considered, namely
∂
∂τ
ri(τ, t)

∣∣∣
τ=0,N

= 0. The compression modulus for the spring is identified with g

and ζ is the friction coefficient per unit length of the chain. Finally ξi(τ, t) are
white Gaussian noises with 0 average and δ-correlation, that is 〈ξi(τ1, t1)ξj(τ2, t2)〉 =
δijδ(τ1 − τ2)δ(t1 − t2). In order to proceed further with the study of the model, a
decoupling of the variable τ and t is obtained through the normal mode analysis. In
this way, the Rouse modes are defined as

Xp(t) =
1

N

∫ N

0

cos
(pπτ
N

)
r(τ, t)dτ, p ≤ 0, (3.34)
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such that r(τ, t) = X0(t)+2
∑N

p=1 Xp(t) cos
(
pπτ
N

)
. Note that the zeroth mode repres-

ents the center of mass of the chain X0(t) = 1
N

∫ N
0

r(τ, t)dτ = R(t). Then, equations
of motion for normal modes are given by

d

dt
Xp(t) = −gp

ζp
Xp(t) +

√
2Dpηp(t). (3.35)

In the standard Rouse model, all mode diffusion coefficients Dp are equal and re-
lated to zeroth mode diffusivity by Dp = D0/2. This relation holds for an isotropic
environment, as each bead is experiencing the same field. To account for a crowded
environment, following the idea introduced in the DD approach, it is possible to
model the square root of the diffusion coefficient Dp for each mode as an independ-
ent stochastic process

D0(t) = Y2
0(t) =

n0∑

i=0

Y 2
0i, (3.36)

2Dp(t) = Y2
p(t) =

np∑

i=0

Y 2
pi, p ≥ 1, (3.37)

where each Yp(t) is an independent np- dimensional OU process. Thus, following
the results of the DD approach, a non-Gaussian behavior of derived modes displace-
ment distributions is obtained. Finally, the authors explained how one can compare
predictions from this theory with experiments on polymeric liquids. Indeed, even if
normal modes are not resolved so readily in experiments, it is possible to relate them
to measurable quantities such as relaxation modulus, viscosity and others.

3.5 Discussion
This Chapter, even if far from being a complete review on the DD concept, presents
a quite general overview of this modelling approach. In a constructive way, it was
shown how, from a general idea and physical understanding of the class of systems
initially under study, a structured and detailed theoretical framework has emerged.
DD models are based on a very general statistical approach, whose flexibility has
been employed for the study of many physical systems.

Focusing on all of those DD models describing BNG diffusion, an interesting
observation is due. In the final discussion reported in Chapter 2 it was briefly men-
tioned that the DD approach would come at hand in the characterisation of those
systems where SupBM fails. After the detailed description reported in this Chapter,
it is now possible to elaborate on this idea. It was amply discussed that an expo-
nential relaxation of the diffusion dynamics is needed to be able to reproduce the
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linear trend of the particle MSD. In the presence of exponential relaxation, it is
immediate to identify the characteristic time τD of the environment fluctuations.
In order to use a superstatistical description, one must be able to identify a clear
distinction between τD and the relaxation time of the system. If one starts from an
overdamped Brownian motion description, the system relaxes instantaneously, such
that a realistic choice for its relaxation time can only be given by the experimental
(or numerical) time resolution ∆t. Moreover, one can imagine that any system will
be studied for an observation time T � ∆t. Then, it is possible to compare τD
with the observation time T and come to the conclusion that, whenever τD � T ,
a DD approach is needed, as at the timescale T at which the systems is observed
one actually has τD ∼ ∆t. Conversely, when τD & T , a SupBM description can be
employed. See for instance the analysis reported in [72] where a characterisation of
mDD single trajectories is reported for different values of τD and fixed T . Following
this argument one can better understand why SupBM can be used as a short time
approximation of the DD models, as widely discussed in literature. Finally, if one
starts from an underdamped Brownian motion description, the argumentation be-
comes more involved, but one can still arrive at similar conclusions. This, however,
is still work in progress.

To conclude, with this Chapter a full understanding of the emergence of BNG
diffusion in heterogeneous environments was reached. The discussion will now move
to more detailed statistical analyses based on this class of diffusion processes.
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Chapter 4

Statistical analyses of random
diffusivity models

A general framework to describe random diffusivity models, based on results and
discussions reported in the previous Chapters, is defined here. This framework is
given by the class of one-dimensional stochastic processes x(t) that obey the Langevin
equation

dx(t)

dt
=
√

2D0Ψ(t) ξ(t), (4.1)

where D0 is a constant, dimensional coefficient of units length2/time, ξ(t) denotes
a standard Gaussian white noise with zero mean and δ-correlation, and Ψ(t) is a
positive-definite random function, which multiplies D0 and thus introduces a (time-
dependent) randomness into the effective noise amplitude.

The representation in (4.1) was introduced in the work by the author and col-
laborators in [74] and is able to reproduce, among others (for instance, models in
which Ψ(t) is defined as a functional of BM–see [74] for more details), any of the
(overdamped) random diffusivity models that were defined along this dissertation to
describe BNG diffusion. On the one hand, the connection with DD models is clear
just by noticing that Ψ(t) represents the dimensionless counterpart of the random,
time-dependent diffusion coefficient D(t) extensively discussed in Chapter 3. On the
other hand, SupBM models can be introduced if one defines Ψ(t) as a jump process,
that is a process that attains a new random value after a fixed time interval. Then,
RSG models can be obtained as a limiting case in this representation, by considering
that the time interval for each draw is always equal to the length of the trajectory.
In this way the variability in time of Ψ(t) within each realisation is lost. Generally,
the models introduced in Chapter 2 can be described by dividing the interval (0, T )
into N equal subintervals of duration δ = T/N and supposing that Ψ(t) = ψk, where
k represents the different subintervals and where ψk are i.i.d. and positive-definite
random variables distributed according to a distribution ρ(ψ). In the case of RSG
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models one has that δ = T .
In addition, the framework defined in (4.1) allows also for the study of those

models in which Ψ(t) is a deterministic function of time. For instance, a choice of
the form Ψ(t) = tα−1 produces the so-called scaled Brownian motion [73, 76, 77].
Finally, by setting Ψ(t) ≡ 1, one simply obtains standard BM.

Regardless of the choice of Ψ(t), the Langevin equation in (4.1) can be solved for
any fixed realisation of the noise and of Ψ(t), to obtain

x(t) = (2D0)1/2

∫ t

0

Ψ1/2(t′)ξ(t′)dt′. (4.2)

Then, if one can calculate its characteristic function Φ(t, w), the PDF P (x, t) of the
model con be defined as

P (x, t) =
1

2π

∫ ∞

−∞
e−iwxΦ(t, w)dw. (4.3)

In general, starting from (4.2), the characteristic function of x(t) can be written as

Φ(t, w) =

〈
exp

(
iw(2D0)1/2

∫ t

0

Ψ1/2(t′)ξ(t′)dt′
)〉

Ψ

, (4.4)

where the bar stands for averaging over thermal histories while the angular brackets
denote averaging over the realisations of the random function Ψ(t). After performing
the thermal average, one readily obtains

Φ(t, w) =

〈
exp

(
−D0w

2

∫ t

0

Ψ(t′)dt′
)〉

Ψ

. (4.5)

From this result, it is possible to observe that the main character in defining the fea-
tures of any random diffusivity model is played by the integrated random diffusivity

τ(t) =

∫ t

0

Ψ(t′)dt′. (4.6)

Indeed, if one defines the moment generating function of τ(t) as

Υ(t, λ) = 〈exp (−λτ(t))〉Ψ , λ ≥ 0, (4.7)

it is straightforward to see that Φ(t, w) = Υ(t,D0w
2), such that the PDF in (4.3) is

solely defined by the integrated random diffusivity selected for the model. Note that,
within the subordination approach (and the phase space path integral approach) for
DD models discussed in Chapter 3, the same result was obtained just with a slightly
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different notation where Υ(t, λ) was identified as the PDF of the subordinator in
Laplace space—see equation (3.15).

In the following sections two kinds of advanced statistical analyses are reported,
namely power spectral analysis and first passage statistics, which discuss and in-
tegrate the studies performed by the author and collaborators in [73, 74] and [75],
respectively. The study is focused mainly on the class of processes defined in Chapter
2 and 3 for the description of BNG diffusion. Nevertheless, the general formalism
introduced above in this section allows for an easy generalisation of the presented
results to a broader class of random diffusivity models.

4.1 Power spectral analysis
The power spectral analysis of a stochastic trajectory x(t) is developed in the fre-
quency domain and provides important insights into short and long time behaviour
and temporal correlations [78]. Starting from standard textbook settings, this ana-
lysis is based on the study of the so-called power spectral density (PSD) of the
process, defined as

µ(f) = lim
T→∞

1

T

〈∣∣∣∣
∫ T

0

eiftx(t)dt

∣∣∣∣
2
〉
, (4.8)

where f denotes the frequency. From a more practical point of view, the PSD is
calculated by first performing a Fourier transform of an individual trajectory x(t)
over the finite observation time T ,

S(f, T ) =
1

T

∣∣∣∣
∫ T

0

eiftx(t)dt

∣∣∣∣
2

, (4.9)

then, by averaging S(f, T ) over a statistical ensemble of possible trajectories and
finally, by taking the asymptotic limit T → ∞. This definition involves averages
over a very large number of trajectories and it requires the trajectories to be very
long in order to be able to consider the limit in T . Often these two assumptions
are not possible to be implemented when dealing with experimental data. Indeed,
single particle tracking experiments are typically limited in the measurement time,
for instance, due to the lifetime of the employed fluorescent tags or to the time that
a particle stays in the microscope focus. Additionally, such experiments are often
limited to a relatively small number of individual trajectories. If these limitations are
to be taken into account when defining the statistical analysis, one must avoid taking
long time limits and ensemble averages. This is why the concept of single-trajectory
power spectral density was introduced [79–81].

The quantity S(f, T ) defined in (4.9) for a single trajectory x(t) and for finite
observation times T is, of course, a random variable. Thus, the most general inform-
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ation about its properties is contained in the moment-generating function (MGF)

φ(T, λ) = 〈exp (−λS(f, T ))〉 , λ ≥ 0. (4.10)

By considering expression (4.1), the MGF of single-trajectory PSD for random dif-
fusivity models presents the following exact analytic high-frequency form

φ(T, λ) ∼
〈[

1 +
8λD0

f 2T

∫ T

0

Ψ(t)dt+
12λ2D2

0

f 4T 2

(∫ T

0

Ψ(t)dt

)2
]−1/2〉

Ψ

, (4.11)

in which the vanishing terms were dropped and solely the leading terms in 1/f are
kept. This equation is valid for any fixed realisation of Ψ(t) and holds for arbitrary
T and arbitrary f . It also represents the form of the MGF in the case when Ψ(t) is
non-fluctuating: in particular, for Ψ(t) = 1 it describes the MGF in case of standard
Brownian motion [79], while the choice Ψ(t) = tα−1 corresponds to the case of scaled
Brownian motion studied in [73].

One can see that the Laplace parameter λ appears in (4.11) in the combination
D0λ/f

2 only, so that the high-f spectrum of a single-trajectory PSD has the universal
form

S(f, T ) ∼ 4D0

f 2
A, (4.12)

regardless of the specific choice of Ψ(t). Here A, with realisation A, is a dimen-
sionless, random amplitude, which differs from realisation to realisation. The result
in (4.12) shows that the characteristic high-frequency dependence of the PSD can
be learnt already at the single trajectory level, in agreement with the conclusions
in [73,79,80].

The MGF Φ(T, λ) of the random amplitude A follows from (4.11) and (4.12) and
can be written as

Φ(T, λ) =

∞∫

0

e−λAPA(A)dA

=
2√
3

∫ ∞

0

exp

(
−4p

3

)
I0

(
2p

3

)
Υ(T, λp/T )dp, (4.13)

where I0(z) is the modified Bessel function of the first kind and Υ(T, λ) is the MGF
of the integrated diffusivity defined in (4.7). Relation (4.13) links the MGF of A to
the one of τ(T ), showing how Υ(T, λ) controls the high-frequency behavior of the
PSD. By taking the inverse Laplace transform of (4.13) with respect to the parameter
λ one can evaluate the PDF of A, which then provides, thanks to the relation in
(4.12), the high-f expression of the PDF P (S(f, T ) = S) according to

P (S(f, T ) = S) ∼ f 2

4D0

PA

(
A =

Sf 2

4D0

)
, f →∞. (4.14)
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One can readily obtain the moments of S(f, T ), relate them to the moments of A
and thus to the behaviour of τ(T ). For instance, its average value is given by

〈S(f, T )〉 =
4D0C1

f 2T
〈τ(T )〉Ψ =

2C1

f 2T

〈
x2(T )

〉
Ψ
, (4.15)

where C1 = (3/4)3/2
2F1(1, 3/2; 1; 1/4), with 2F1(a, b; c; z) being the Gauss hypergeo-

metric function. This result shows that those random diffusivity models that display
anomalous scaling of the MSD, i.e., 〈x2(T )〉Ψ 6∼ T , will show ageing behaviour as
well, namely a dependence of the PSD properties on the trajectory length T (see,
for instance, the discussion in [73]). Moreover, starting from the results for the mo-
ments of S(f, T ), one can also calculate the coefficient of variation γ of the PDF
P (S(f, T ) = S) in the high-f limit, which is given by

γ =




〈
S2(f, T )

〉
Ψ
−
〈
S(f, T )

〉2

Ψ〈
S(f, T )

〉2

Ψ




1/2

≈
(

9

4

∂2
λΥ(T ;λ)|λ=0

(∂λΥ(T ;λ)|λ=0)2 − 1

)1/2

.

This implies that the effective broadness of P (S(f, T ) = S) is entirely defined by the
first two moments of the random variable τ(T ) in (4.6) and, more specifically, that
the value of γ is independent of D0 and f , when f is large enough.

The results reported until now are valid regardless of the choice of Ψ(t). One
can now focus on the analysis of the BNG models introduced in Chapter 2 and 3,
recalling the connection established at the beginning of this Chapter between them
and the general formalism used here.

Results for the SupBM and RSG models are reported in figure 4.1, where Ψ(t)
is selected to be a jump process with values drawn anew any δ time from a gamma
distribution

ρ(ψ) =
ψν−1

Γ(ν)ψν0
exp(−ψ/ψ0), (4.16)

with shape parameter ν = 0.5 and scale parameter ψ0 = 1. Recalling that δ rep-
resents the duration of each subinterval during which Ψ(t) remains fixed before ex-
tracting a new value from (4.16), the RSG models is obtained in the limiting case
δ = T , while for the SupBM one can in principle choose any value of δ. The MGF
of τ(t) for a jump process with gamma distributed values is given by

Υ(T, λ) = (1 + λδψ0)−νT/δ , (4.17)

and its average value is given by 〈τ(T )〉 = T 〈ψ〉 = Tνψ0. Then, by making use
of (4.15) one easily gets that 〈S(f, T )〉 = 2D0C1/f

2, where the values ν = 0.5 and
ψ0 = 1 have been considered. Indeed, in figure 4.1 (top and central panels) one can
observe that the average value of the power spectrum is not affected by the value
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Figure 4.1: Ψ(t) modelled as a jump process with Gamma distribution (ψ0 = 1 and
ν = 0.5), for varying subinterval size δ and with trajectory length T = 100. When
δ = T = 100, the results can be associated to a RSG model. Top & central panels:
few realisations of the power spectra from individual trajectories and its mean value
for δ = 1, 50, and 100. Bottom-left panel: coefficient of variation for the three values
of δ were the black dashed lines represent the analytical trend in (4.20). Bottom-
right panel: distribution of the random amplitude A in linear and semi-log scale
(inset). Black dashed lines correspond to theoretical results for BM [79], showing
that for δ = 1 the limiting behaviour found in (4.19) for δ → 0 already dominates.
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of δ. Nevertheless, the scattering among single-trajectory realisations is greater for
larger values of δ. This may be detected in the distribution of the random variable A
as well, which is broader for larger values of δ—see the bottom-right panel of figure
4.1. The expression for the distribution of the random variable A can be obtained by
Laplace inverting the result in (4.13), considering the specific MGF of τ(t) defined
in (4.17). This leads to

PA(A) =
2√
3

∫ ∞

0

J0

((
1 + 1/

√
3
)√

2zA
)

(1 + zψ0δ/T )νT/δ
J0

((
1− 1/

√
3
)√

2zA
)
dz, (4.18)

which, in the limit δ → 0 and N →∞, with δN = T , becomes

PA(A) =
2√

3νψ0

exp

(
− 4A

3νψ0

)
I0

(
2A

3νψ0

)
, (4.19)

representing the same behavior as for standard BM [79], however, with renormalised
coefficients. As a consequence of the different broadness of PA(A) for changing δ, the
coefficient of variation shows different limiting values—see the bottom-left panel of
figure 4.1. Indeed, by recalling the result in (4.16), for this specific case one obtains

γ =

[
9

4

(
1 +

δ

νT

)
− 1

]1/2

. (4.20)

To conclude, it was shown that, for these models, the fluctuations of the power
spectral behaviour are sensitive to different parameter values of the distribution
(4.16), while the average trend is not. Moreover, the smaller the value of δ, the more
the results approach a trend similar to the BM one, with properly rescaled coefficients
as defined in (4.19). A similar result will be obtained for the DD model below and
this is due to the final homogeneisation of the process which does not happen, for
instance, if one selects a heavy-tailed distribution for ψk, as shown in [74].

Moving to the DD models, an example is treated here where Ψ(t) is defined,
according to the mDD description, as the squared Ornstein-Uhlenbeck process y(t)
given by

dy(t)

dt
= − 1

τ?
y(t) + σ?ξ(t), (4.21)

with time scale τ? and noise amplitude σ?. In this case the MGF of τ(T ) is expressed
in (3.14) with a slightly different notation (the exact form in the current notation is
reported in [74]). Focusing on the numerical results reported in figure 4.2, top-left
panel, one can see that the 1/f 2 scaling is recovered, as expected, but in this case
the value of τ? does affect the average power spectrum. Indeed, one can start by
showing that in this case 〈τ(T )〉 = σ2

?τ?T/2, which then, thanks to the expression in
(4.15), leads to 〈S(f, T )〉 = 2D0C1σ

2
?τ?/f

2, where an explicit dependence on both σ?
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Figure 4.2: Ψ(t) modelled as the squared Ornstein-Uhlenbeck process reported in
(4.21), for three different values of τ?. Other parameters are T = 100 and σ? = 1.
Top-left panel: few realisations of the power spectra from individual trajectories and
its average value for τ? = 1, 10, 100. Top-right panel: coefficient of variation; blacked
dashed lines represent the analytical result in (4.22). Bottom panel: distribution
of the random amplitude A in linear and semi-log scale (inset). Black dashed lines
correspond to theoretical results for BM [79], showing that for small values of τ? one
approaches a trend comparable with that for BM.
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and τ? is present. Because of this dependence, the coefficient of variation γ converges
to different values when τ? is changed, namely

γ =

[
3

4

(
3 +

3τ?
νT

(
1− τ?

2T
(1− e−2T/τ?)

))
− 1

]1/2

, (4.22)

as shown in the top-right panel of figure 4.2. Consequently, different degrees of
broadness of the PDF of the random amplitude A are also observed—see the bottom
panel of figure 4.2. Note that for τ? � T one obtains results that are very similar to
the ones of BM (see [79]), while for increasing τ?, the PDF of the random amplitude
A becomes increasingly broader, similarly to what discussed above for the jump
process model with the Gamma distribution for ψk.

To conclude, it is possible, first of all, to define a general result from this analysis:
regardless of the different properties of the random diffusivity model, a universal
high-f behaviour of the PSD is obtained. This behaviour is characterised by a 1/f 2

scaling, in analogy with BM [79] and SBM [73]. A first way to discriminate among
different diffusion models lies in the study of the ageing behaviour of the PSD.
Indeed, it was shown that the dependence of the PSD on the trajectory length T
appears only for those random diffusivity models characterised by anomalous scaling
of the MSD. This is still not of help when dealing with BNG diffusion models, which
are all defined by a linear trend of the MSD. Then, differences from one model to
another will appear in higher order moments of P (S = S(f, T )), for instance when
studying the coefficient of variation γ. Finally, it was established that the PDF of
the random amplitude A carries most of the meaningful information. Indeed, the
coefficient of variation may be directly calculated from its moments. Moreover, the
MGF of A is tightly related to the one of the integrated diffusivity τ(t) as shown in
(4.13), underlining the observation that in the study of random diffusivity models
the integrated diffusivity appears to act as the main player.

4.2 First passage statistics
The concept of first passage is ubiquitously used in statistical physics and its applic-
ations lie, for instance, in the quantification of the moment in time when a diffusing
particle reaches a reaction centre or a stochastic process exceeds a given threshold
value [82,83]. Mathematically this is treated starting from the diffusion equation of
the specific random walk and assuming absorbing boundary conditions in the posi-
tion where the target or threshold is located. In addition to this simple setting, many
factors enter in the analysis, starting from the domain geometry, the kind of target
and its interaction with the diffusive entities. The easiest configuration is to consider
a point target and to assume that the diffusive entity interacts with probability 1
with the target as soon as it finds it. Finally, one can start from a one-dimensional

47



Figure 4.3: Schematic representation of two diffusive entities (large spheres) per-
forming direct and indirect trajectories, red and blue respectively, towards the target
(small sphere). While direct trajectories are typical and quite alike, indirect ones
display a large dissimilarity (image adapted from reference [86]).

description, where only 2 choices can be considered: a semi-line and an interval.
Already in this very simple problem set up, the first passage problem is not an easy
one. The main difficulty is due to the fact that the first passage time is a stochastic
variable itself and thus not easy to quantify deterministically. As a first attempt,
one can consider the mean first passage time (MFPT) to quantify the first passage
behaviour of the system. Nevertheless, depending on the specific diffusive process,
the MFPT could be either a good or a bad estimator. Often fluctuations around this
average value are significant and thus the best way to proceed is to consider the full
distribution instead of its first moment only. The first passage time density function,
℘(t), is directly linked to the survival probability

S(t) =

∫ t

0

P (x, t′)dt′, (4.23)

through its negative derivative, that is ℘(t) = −dS(t)/dt. In (4.23), P (x, t) rep-
resents the solution of the diffusion equation with absorbing boundary conditions
at the targets, as discussed above. Another important element of the first passage
analysis is the dependence on the initial position x0 (see figure 4.3). The diffusive
entities starting very close to the target will most likely perform a direct motion
towards it, while those starting far away from the target will have to explore a large
part of the domain before locating the target, or they may even not find it at all
as they keep diffusing away from it. The MFPT is representative for the latter set
of trajectories, namely the indirect ones, for which the dependence on the initial
position is eventually lost. The former set of trajectories, the direct ones, instead
strongly depend on the initial position and they are responsible for the so-called most
likely first passage time, defined by the maximum of the first passage time PDF, i.e.,
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d℘(t)/dt = 0 [84–86].
Focusing on the analysis of random diffusivity models, it is reported here a study

on the first passage behaviour of the RSG/SupBM models and the DD models, with
comparison to standard BM results as well. Note that in this analysis the study of
RSG and SupBM models will provide the same results as it starts from the definition
of the probability P (x, t) that can be expressed in the same way for both models,
as discussed in Chapter 2. Thus, for simplicity, hereafter the results for both RSG
and SupBM models are associated to the subscript −S, while the ones for the DD
models are identified by the subscript −DD.

Starting from a semi-infinite domain with a target located at the origin and with
initial position x0 > 0, the corresponding diffusion equation with absorbing boundary
conditions at the target can be solved by making use of the method of images [75,82].
In particular, by recalling the results from Chapter 2 and 3, one readily obtains

PDD(x, t|x0) =

∫ ∞

0

[G(x, τ |x0, D = 1)−G(x, τ | − x0, D = 1)]T (τ, t)dτ,

(4.24)

PS(x, t|x0) =

∫ ∞

0

[G(x, t|x0, D)−G(x, t| − x0, D)] pD(D)dD, (4.25)

where T (τ, t) represents the PDF of the subordinator corresponding to the specific
DD model and pD(D) is the diffusivity distribution. Note that an explicit dependence
on the initial position x0 is introduced in the notation for clarity. The survival
probability defined in (4.23) is then given by

SDD(t|x0) =

∫ ∞

0

SBM(τ |x0, D = 1)T (τ, t)dτ, (4.26)

SS(t|x0) =

∫ ∞

0

SBM(t|x0, D)pD(D)dD, (4.27)

where SBM(t|x0, D), defined as

SBM(t|x0, D) = G(x, t|x0, D)−G(x, t| − x0, D) = erf

(
x0√
4Dt

)
, (4.28)

stands for the result of BM in the same problem set up. This corresponds to a FPT
density function for BM that is given by the well-known Lévy-Smirnov distribution

℘BM(t) =
x0√

4πDt3
exp

(
− x2

0

4Dt

)
, (4.29)

which shows an interesting dichotomy: despite the certain return to the origin
(
∫∞

0
℘BM(t|x0)dt = 1), the MFPT 〈tBM〉 =

∫∞
0
t℘BM(t|x0)dt is infinite.
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Following a similar procedure one can obtain results for the finite interval [0, L]
with absorbing boundaries at both x = 0 and x = L

SBM(t|x0) =
4

π

∞∑

n=0

sin

(
π(2n+ 1)

L
x0

)
exp(−Dλ2

2n+1t)

(2n+ 1)
, (4.30)

SDD(t|x0) =
4

π

∞∑

n=0

sin

(
π(2n+ 1)

L
x0

)
T̃ (λ2

2n+1, t)

(2n+ 1)
, (4.31)

SS(t|x0) =
4

π

∞∑

n=0

sin

(
π(2n+ 1)

L
x0

)
1

(2n+ 1)
√
λ2

2n+1t+ 1
, (4.32)

where λn = nπ/L are the eigenvalues coming from the solution of the diffusion equa-
tion for the displacement PDF in a finite domain [75,82]. From the results in (4.30)
it is immediate to see that the FPT density function for BM can be approximated,
at long time, by its eigenstate with smallest eigenvalue,

℘BM(t) ∼ exp (−t/τ1) , τ1 = L2/π2D, (4.33)

such that a finite MFPT is guaranteed in the finite domain.
Note that similar results for the random diffusivity models can be obtained by

using the formalism of MGFs discussed in the sections above, see for instance the
results in [91]. While the formalism based on the MGF is more useful for generalising
the results to different random diffusivity models, as shown above for the power
spectral analysis, the framework used here, based on the results obtained in Chapter
2 and 3, is more suitable for a clear comparison with BM first passage behaviour, as
one can see, for instance, from the results in (4.26) and (4.27).

Results for the survival probability behaviour from this analysis are depicted in
figure 4.4. Focusing first on the top panels, while for BM one observes a universal
rescaling variable, i.e., x0/

√
t, when introducing heterogeneity in the system through

a random diffusivity, the universal rescaling is partially lost—see especially the top-
left panel of figure 4.4. In particular, the effect of direct trajectories, which acts on
the short time trend of the survival probability, appears to be stronger for random
diffusivity models than for BM and it varies when changing initial position and kind
of heterogeneity (identified by the diffusivity distribution). By using a random walk
description it is possible to understand this effect more easily. In a random walk
picture, each particle will perform jumps with random directions, each with a jump
length ∆x = (D∆t)1/2. By assuming the time interval between each jump to be
constant, e.g. ∆t = 1, the jump length ∆x will be defined solely by the diffusion
coefficient. Then, considering a target located at a distance N∆x from the initial
position x0, the direct trajectories will be those that perform N consecutive jumps
in the direction of the target. If D does not change in time and it is the same
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Figure 4.4: Top-left panel: numerical estimation of the analytical result for the
survival probability in the semi-infinite domain as defined in (4.26) as function of
x0/
√
t. Different colours represent different initial positions x0, the pink dashed

line represents the BM result in (4.28). In the inset the short time behaviour of
S(t|x0) is reported, the universal crossover at S ≈ 0.93 is distinct. Top-right panel:
numerical results for the survival probability for fixed initial value x0 = 1.5 obtained
from simulations of the DD model discussed in section 3.3 in the expressions (3.29)-
(3.31) and defined in [43], where different kinds of heterogeneity can be introduced.
The black dashed line represents the BM result in (4.28). In the inset the short
time behaviour of S(t|x0) is reported; the crossover level is different when varying
the kind of heterogeneity. Bottom panel: survival probability for the finite interval
[0, 1], showing a comparison of the results coming from simulations of BM, mDD,
and RSG/SupBM. Different colour shades represent different initial positions x0.
The solid lines represent the analytical results in (4.30) - (4.32). Note that since all
the three results in (4.30), (4.31) and (4.32) present the same dependence on the
initial condition x0, the curves are normalised over this dependence, evaluated at the
leading eigenvalue. Indeed, different colour shades eventually merge into a common
curve for large times.
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for each trajectory (BM case), one will observe a specific average number of direct
trajectories that corresponds to the BM case. If one introduces a distribution of
diffusivity values, each particle will have its own jump length and the particles with
greater D will need less jumps to reach the target. In this way, one can understand
that, on the ensemble level, the number of direct particles increases with respect to
the BM case if one introduces a distribution of diffusivities. Moreover, this effect will
depend on the kind of heterogeneity considered, which is responsible for the specific
diffusivity distributions, as depicted in figure 4.4, top-right panel.

Note that the random walk description for the interpretation of direct traject-
ories is valid for both RSG/SupBM models and DD models, since the latter can
be approximated, at short times, by SupBM with a description based mainly on
realisation-to-realisation variability. Nevertheless, for RSG/SupBM models the ar-
gument concerning larger or smaller jump lengths holds for the entire time window,
playing a crucial role in the behaviour of indirect trajectories as well. If one instead
considers DD models, the fluctuations of the diffusion coefficient along the single
trajectory will lead the particles to explore the whole diffusivity space and eventu-
ally to homogeneise. Then, the argument above will not be valid any longer, and
one sees that the indirect trajectories present results similar to the BM ones (see the
long time behaviour in figure 4.4, top panels). Indeed, in the long time behaviour
the two classes of random diffusivity models, that is RSG/SupBM models and DD
models, show large discrepancies. To describe more details about the last observa-
tion one can focus on the bottom panel of figure 4.4, where results from simulations
of both classes of random diffusivity models in a finite interval [0, L] with boundary
conditions at both x = 0 and x = L are reported. Similarly to the discussion re-
ported for the semi-infinite domain, the homogeneisation process in the DD model
allows the survival probability to reach a long time trend which is exponential, as for
BM, yet a slower rate is observed. This corresponds to the behaviour in figure 4.4,
top-left panel, where the initial faster drop of S(t|x0) is followed by an increase due
to the fact the all the particles with intial greater diffusivities have already reached
the target. If in the DD models this is just a transient behaviour that for a domain
large enough (or for τD small enough, see [91]) disappears, for RSG/SupBM models
this influences the long time trend as well. Indeed, as no variations (or very few in
the case of SupBM) of D along each trajectory are expected in these models, the
longer the time the more the system is left with particles with very low diffusivity
values. These particles are responsible for the heavy-tailed behaviour of the survival
probability in RSG/SupBM models.

Many of the results discussed above about the survival probability can also be
argued in terms of the first passage time density function. In order to do so, one
can focus on figure 4.5, where the first passage time PDF is displayed for both
semi-infinite and finite domain (left and right panel, respectively). For the sake of
simplicity, results for one initial position only are reported. One can immediately see
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Figure 4.5: Comparison between BM, mDD, and RSG/SupBM first passage time
distributions obtained from simulations. The black solid lines represent the analytical
results for BM in (4.29) and (4.33), while the black dashed lines depict a power-law
fit identifying the long time trend for SupBM. Left panel: semi-infinite domain with
initial condition x0 = 1.5; right panel: finite interval [0, 1] with initial condition
x0 = 0.5.

that both classes of random diffusivity models (RSG/SupBMmodels and DDmodels)
show the same behaviour at short times. In particular, the peak of the distribution
is shifted to the left, towards shorter first passage times, if compared with the BM
result. In the case of a semi-infinite domain, it is interesting to observe that a plateau
emerges instead of a peak. Moving towards the tails of the distributions, one again
observes a discrepancy between the two classes of models, as amply discussed above.
As a general result, one can conclude that the effect of the heterogeneity is to stretch
the first passage time distribution.

4.3 Discussion
In this Chapter, the effect of the system heterogeneity in diffusion models through
the introduction of a random diffusivity was addressed and extensively discussed
from a statistical point of view. Quite typically stochastic processes are evaluated in
terms of their displacement distribution, i.e., P (x, t), and by defining their ensemble
averaged MSD and/or time-averaged MSD,

〈x2(t)〉 =

∫ ∞

−∞
x2P (x, t)dx, (4.34)

δ2(∆) =
1

T −∆

∫ T−∆

0

(x(t−∆)− x(t))2 dt, (4.35)
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where T is the measurement time and ∆ is referred to as lagtime, with ∆ � T .
Note that for ergodic processes, in the limit T → ∞, the two quantities in (4.34)
and (4.35) coincide. The models described in Chapter 2, namely RSG and SupBM
models, are clearly non-ergodic, yet the DD approach allows for a recovery of the
ergodicity, as already mentioned along this dissertation (note that studies about
statistical properties typical of DD models, among which the ergodicity, are reported
in [59]). Finally, the general framework defined in (4.1) describes models which can
be both ergodic or non ergodic, depending on the choice of Ψ(t).

The study performed here slightly deviates from this standard methodologies and
focuses more on other statistical analyses, with relation to power spectral densities
and first passage statistics. This is of help not only for the classifications of the
models in data analyses, but also for gaining a deeper physical understanding of
those systems which can be potentially described by random diffusivity models, as
widely discussed in sections 4.1 and 4.2. At the same time, a general procedure to
obtain the MGF for all the random diffusivity models that can be defined through
the definition in (4.1) is provided. Starting from the expression of the MGF in (4.5),
the position PDF P (x, t) and all its moments can be derived.

Finally, before concluding, it is worth noticing that other approaches and studies
focused on the role of heterogeneity in the target location are present in literature,
both for SupBM [87] and DD models [88–93], showing results in agreement with the
discussion reported here.
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Chapter 5

Conclusions

Random diffusivity processes have gradually established themselves as a new paradigm
in the modelling of diffusion beyond Brownian motion. Extensively studied by the
community of stochastic processes in the last ten years, this class of models aims
at the description of complex systems where new experimental techniques have dis-
played the presence of heterogeneities that appear or manifest themselves on a meso-
scopic scale, comparable with the one at which the diffusion occurs. The randomness
responsible for the diffusive dynamics is thought to obey standard stochastic pro-
cesses, namely BM or FBM-like for diffusion in viscoelastic media, yet fluctuations
are observed for the main parameters of the driving diffusive model. The origin of
these fluctuations and their timescale result to be the key aspects in defining an
appropriate modelling approach for this kind of systems.

In this dissertation a pathway from individual models to a general framework to
address diffusion in heterogenous systems through the concept of random diffusivity
was presented. Proceeding in chronological order, a review of the main models
leading to the state-of-the-art on the random diffusivity approach was provided.
Thanks to this step-by-step description the reader had the chance to both get a
closer look at those particular models that have been successful in the description
of experimental data and, at the same time, to understand the potential of this
approach in a broader sense. Indeed, it is worthwhile to emphasise the great number
of different mathematical methodologies that have been used to develop, study and
analyse this class of diffusion processes. Furthermore, an attempt to introduce a
general methodology for the study and description of random diffusivity models was
made, in order to finally report results obtained from the statistical analysis of this
class of stochastic processes. In particular, it was shown how fluctuations along single
trajectories and realisation-to-realisation fluctuations of a stochastic process turn out
to be relevant in establishing its power spectral behaviour and in many scenarios of
first-passage time statistics as well. The interplay between the relaxation time of
the systems and the timescale of the fluctuations represents an essential feature in
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the study of these models. Recent works by Hartich and Godec [94, 95] reported a
link between relaxation and first-passage phenomena in Markovian dynamics and it
would be compelling to see what similar studies can tell about random diffusivity
models.

From the overall discussion reported in this dissertation, it is clear that random
diffusivity models are able to fully describe BNG diffusion, yet the study of ANG
diffusion remains to be fully understood. To address the latter, a few directions have
been tested in literature by making use of the random diffusivity approach. Results
on this topic were discussed in this dissertation, with the main goal of emphasising
both strong points and shortcomings of the theory to foster future developments.
One interesting direction for future work in this topic could be to extend the general
framework introduced in Chapter 4 to the case of fractional Gaussian noise, in order
to understand whether the statistical features of the model after introducing long-
range correlation would still show some kind of universality, as was shown for BNG
diffusion. Eventually one could relate this study to the results obtained in [66, 67],
briefly discussed in section 3.4.

Before concluding, a discussion on the possible origin of those heterogeneities
responsible for the emergence of random diffusivity models is due. As a first step,
one must identify the kind of heterogeneity that one is dealing with. Two main
distinctions can be considered, ensemble heterogeneity vs medium heterogeneity and
time-dependent heterogeneity vs space-dependent heterogeneity. Not always it is
possible to differentiate between these two sets, and even more, a clear distinction
between medium and ensemble heterogeneity is not always well defined. Neverthe-
less, one can still try to create a sort of classification of heterogeneities.

On the one hand, whenever one considers ensemble heterogeneity the presence
of space-dependent heterogeneity can be excluded. In other words, from the point
of view considered in this dissertation, it is assumed that ensemble heterogeneity is
not caused by space-dependent heterogeneity, but rather it emerges from inherent
realisation-to-realisation variability of the system configuration, for instance, from
changes in specific a priori features of the diffusive entities. Still, ensemble hetero-
geneity can be both time-dependent and time-independent. In the latter case, on has
realisation-to-realisation fluctuations only, leading to non-ergodic behaviour, while
in the former case the ergodicity can be recovered if one thinks of a system in which,
for instance, the diffusive entities are characterised by features that fluctuates in
time (see the case of polymerisation [96]).

On the other hand, the medium heterogeneity can be mapped into both time-
dependent and space-dependent heterogeneity. Despite the quite involved picture,
there are some general observations that can be made. The random diffusivity ap-
proach mathematically describes fluctuations that vary in time and not in space.
However, this does not mean that the physical origin of those fluctuations must be
found in time-dependent heterogeneity only, but rather it implies that if, and when,

56



those fluctuations come from space-dependent heterogeneity, a process of homo-
geneisation, which one could think of as a coarse-graining procedure, can be defined,
such that a direct link can be drawn between variability in space and variability in
time [97]. This connection is of course not always possible, as it depends on which
kind of space-dependent heterogeneity the system presents. For simplicity, one could
identify with weak space-dependent heterogeneity the one in which this process of ho-
mogeneisation can be defined and with strong space-dependent heterogeneity the one
in which it cannot. Consider for instance the model described by Spakowitz in [98]
where Brownian simulations are performed with a diffusion coefficient that presents
an explicit dependence on the space-variable. In particular, focusing on the 1D case,
D(x) is modelled as a superposition of M Gaussian pockets located randomly in the
domain, that is

D(x) = 1 +
M∑

i=1

δi exp

(
−(x− ci)2

2σ2
i

)
. (5.1)

where ci identifies the random locations of the Gaussian pockets, σi their size and δi
their magnitude. In this description the diffusivity map is indeed similar to the pic-
ture reported in figure 1.2, where one can imagine the different colours to correspond
to the different δi values and the different region sizes to the different values of σi. In
the study reported in [98] a fixed size σ was selected and the same value was chosen
for every δi = δ, emphasising also that small values of δ lead to a weak heterogeneity
while large values lead to a strong heterogeneity. Then, the weak heterogeneity case
was studied and the results show a very interesting behaviour, close to the one of
BNG diffusion treated in this dissertation. In particular, the authors claim that the
MSD is slightly affected by the heterogeneity, while the displacement distribution
displays a clear non-Gaussian behaviour at short times that eventually crosses over
to a Gaussian. This shows that systems with weak space-dependent heterogeneity can
be described quite well by time-dependent random diffusivity models.

With such concepts, it is possible to conclude that random diffusivity models
describe systems that display time-dependent heterogeneity, weak space-dependent
heterogeneity and/or ensemble heterogeneity.

It would be interesting to study the model represented by the expression in (5.1)
and defined in [98], in the case of strong heterogeneity to see whether it is still
possible to draw a mapping between space-dependence and time-dependence and,
if not, to understand where in the parameter space the critical behaviour appears.
Moreover, it would be interesting to study the case in which, instead of random
location of the pockets one introduces a random magnitude or a random size for
them, meaning selecting a randomly distributed δi and/or σi. Finally, also a study
to understand the role of randomness in the location of the pockets by changing the
distribution in space of ci could be interesting. This study could then be linked to
the experiments performed by Chakraborty & Roichman in [99]. Indeed, in order
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to characterise quantitatively the effect of spatial heterogeneities they studied the
diffusion of fluorescent colloidal particles in a matrix of micropillars having a range
of structural configurations: from completely ordered to completely random.

To conclude, understanding the role of heterogeneity is of great relevance for the
study of transport properties in many systems, such as, biological systems, poly-
mers, gels, and porous materials and surely there is still much to be explored. This
dissertation is thought to represent a step forward in this direction.
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Appendix

A Fractional Brownian motion
Fractional Brownian motion was originally introduced by Mandelbrot and Van Ness
in [12]. If one defines XH(t), where t ≥ 0, with values in R as a Hurst Self-Similar
with stationary Increments (H-SSSI) process if:

(i) it is a self-similar process, X(at) = aHX(t);

(ii) it has stationary increments, namely X(t + t′) −X(t) is invariant under time
shift transformation,

then FBM represents the only H-SSSI Gaussian process. The Hurst exponent for
FBM varies between 0 < H ≤ 1 and its correlation function is given by

〈XH(t)XH(t′)〉 =
1

2

(
|t|2H + |t′|2H − |t− t′|2H

)
, (5.2)

such that FBM describes processes with an antipersistent behavior if 0 < H < 1/2
and with persistent behaviour if 1/2 < H ≤ 1. Note that for H = 1/2 one obtains
standard BM.

A common description of FBM is given by the stochastic differential equation

dxH(t)

dt
=
√

2KHξH(t), (5.3)

where ξH(t) is the so-called fractional Gaussian noise [13]. This is a Gaussian noise
with zero mean and power-law correlation function 〈ξH(t)ξH(t′)〉 = H(2H − 1)|t −
t′|2(H−1), such that the antipersistent behaviour (0 < H < 1/2) correspond to neg-
ative correlated noise while the persistent behaviour (1/2 < H ≤ 1) is related to
positive correlation of the noise. The probability density function of FBM follows
the evolution equation

∂P (x, t)

∂t
= 2HKt(2H−1)∂

2P (x, t)

∂x2
. (5.4)
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and it is given by the Gaussian

P (x, t) =
1√

4πKHt2H
exp

(
− x2

4KHt2H

)
, (5.5)

where KH = 2HK, with variance 〈x2(t)〉 = 2KHt
2H .

Note that fractional Gaussian noise is also employed in the definition of the
fractional Langevin equation (FLE). More specifically, the FLE is a special case
of the GLE defined in (2.29)-(2.30) where the fractional Gaussian noise is used as
stochastic forcing. The PDF of both its velocity and its position are Gaussian and
the MSD crosses over from ballistic behavior at short times to anomalous diffusion
at long times.

B Fractional derivatives
The Riesz–Feller space-fractional derivative xD

ν
θ is defined by its Fourier transform

according to
∫ +∞

−∞
e+iκx {xDν

θ u(x, t)} dx = −|κ|ν ei(signκ)θπ/2 û(κ, t) , (5.6)

with 0 < ν ≤ 2, |θ| ≤ min{ν, 2− ν} and where θ = 0 represents the symmetric case.
The Caputo time-fractional derivative tD

β
? is defined by its Laplace transform as

∫ +∞

0

e−st
{
tD

β
? u(x, t)

}
dt = sβ ũ(x, s)−

m−1∑

n=0

sβ−1−n u(n)(x, 0+) , (5.7)

with m − 1 < β ≤ m and m ∈ N. In literature the time-fractional derivative
is sometimes considered in the Riemann–Liouville sense, which is identified as tD

β.
The relation between the time-fractional Riemann–Liouville derivative and the time-
fractional derivative in the Caputo sense is given by

tD
β
? u(x, t) = tD

β u(x, t)− t−β

Γ(1− β)
u(x, 0) . (5.8)

The difference between the two definitions stands in the initial condition. For in-
stance, the Caputo and Riemann–Liouville fractional derivatives of an exponential
function u(t) = eλt, are given by

tD
β
? e

λt = λmtm−βE1,m−β+1(λt), (5.9)

tD
βeλt = t−βE1,1−β(λt), (5.10)
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with m − 1 < β ≤ m and m ∈ N and where Eα,β(z) is the two parameter Mittag–
Leffler function defined as

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, z ∈ C. (5.11)

The Erdélyi-Kober time-fractional derivative is defined as

Dγ,µ
η φ(t) =

n∏

j=1

(
γ + j +

1

η
t
d

dt

)
(Iγ+µ,n−µ
η φ(t)) , (5.12)

where n−1 < µ ≤ n and Iγ,µη is the Erdélyi–Kober fractional integral operator given
by

Iγ,µη φ(t) =
t−η(µ+γ)

Γ(µ)

∫ t

0

sηγ(tη − sη)µ−1φ(s)d(sη) , (5.13)

with µ > 0, η > 0 and γ ∈ R. In the particular case if µ = η, the Erdélyi–Kober
time-fractional derivative can be related to the Riemann–Liouville derivative through

D−µ,µ1 u(x, t) = tµtD
µu(x, t) . (5.14)
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Abstract
Aconsiderable number of systems have recently been reported inwhich Brownian yet non-Gaussian
dynamics was observed. These are processes characterised by a linear growth in time of themean
squared displacement, yet the probability density function of the particle displacement is distinctly
non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour
observed in very different physical systems has been interpreted as resulting fromdiffusion in
inhomogeneous environments andmathematically represented through a variable, stochastic
diffusion coefficient. Indeed differentmodels describing afluctuating diffusivity have been studied.
Herewe present a new view of the stochastic basis describing time-dependent randomdiffusivities
within a broad spectrumof distributions. Concretely, our study is based on the very generic class of the
generalisedGamma distribution. Twomodels for the particle spreading in such randomdiffusivity
settings are studied. Thefirst belongs to the class of generalised grey Brownianmotionwhile the
second follows from the idea of diffusing diffusivities. The two processes exhibit significant
characteristics which reproduce experimental results fromdifferent biological and physical systems.
Wepromote these two physicalmodels for the description of stochastic particlemotion in complex
environments.

1. Introduction

The systematic study of the diffusivemotion of tracer particles influids dates back to the 19th century,
particularly referring to Robert Brown’s experiments observing the erraticmotion of granules extracted from
pollen grains whichwere suspended inwater [1]. Since then numerous scientists contributed by improving the
experiments [2–4] as well as in defining the basis of the theory of diffusion [5–9]. In brief, Brownian or standard
diffusion processes aremainly characterised by two central features: (i) the linear growth in time of themean-
squared displacement (MSD),

á ñ =( ) ( )x t Dt2 , 12

whereD is the diffusion coefficient, and (ii) theGaussian probability density function (PDF) for the particle
displacement,
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= -
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Here and in the followingwe focus on a one-dimensional formulation of themodel, a generalisation to higher
dimensions can be achieved component-wise.

Discoveries of deviations from the linear time dependence (1) have a long history. Thus, Richardson already
in 1926 reported his famed t-cubed law for the relative particle diffusion in turbulence [10]. Scher andMontroll
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uncovered anomalous diffusion of the power-law form

á ñ a
a�( ) ( )x t D t , 32

with the anomalous diffusion exponent 0<α<1 and the generalised diffusion coefficientDα [11], for the
motion of charge carriers in amorphous semiconductors [12].With the advance ofmodernmicroscopy
techniques, in particular, superresolutionmicroscopy, as well asmassive progress in supercomputing,
anomalous diffusion of the type (3) has been reported in numerous complex and biological systems [13, 14].
Thus, subdiffusionwith 0<α<1was observed for submicron tracers in the crowded cytoplasmof biological
cells [15–19] aswell as in artificially crowded environments [20–23]. Further reports of subdiffusion come from
themotion of proteins embedded in themembranes of living cells [24–26]. Subdiffusion is also seen in extensive
simulations studies, for instance, of lipid bilayermembranes [27–30] and relative diffusion in proteins [31].
Superdiffusion, due to activemotion ofmolecularmotors, was observed in various biological cell types for both
introduced and endogenous tracers [16, 17, 32, 33].

Most of the anomalous diffusion phenomenamentioned here belong to twomain classes of anomalous
diffusion: (i) the class of continuous time randomwalk processes, inwhich scale-free power-lawwaiting times in
betweenmotion events give rise to the law (3) [12, 34], alongwith a stretchedGaussian displacement probability
densityG(x, t) [11, 12, 34] aswell as weak ergodicity breaking and ageing [35, 36].We note that similar effects of
non-Gaussianity, weak non-ergodicity, and ageing also occur in spatially heterogeneous diffusion processes
[37–40]. (ii)The second one is the class of viscoelastic diffusion described by the generalised Langevin equation
with power-law friction kernel [41, 42] and of fractional Brownianmotion (FBM) [43]. These processes are both
fuelled by long-range, power-law correlated noise. Its distribution is Gaussian, so that the displacement
probability densityG(x, t) is Gaussian, as well.Moreover, these are ergodic processes [23, 42, 44–46].

Over the last few years a new class of diffusive processes has been reported, namely, so-called Brownian yet
non-Gaussian diffusion [47, 48]. This class identifies a dynamics characterised by a linear growth (1) of theMSD
combinedwith a non-Gaussian PDF for the particle displacement. The emergence of a non-Gaussian
distribution, despite the BrownianMSD scaling, suggests the presence of an inhomogeneity that can be located
both on the single tracer particle and on the ensemble levels. The study of these processes is becoming
increasingly relevant with the growing number of complex systems discovered to exhibit such statistical features.
For instance, wemention softmatter and biological systems, in which themotion of biologicalmacromolecules,
proteins and viruses along lipid tubes and through actin networks [47, 48], as well as alongmembranes and
inside colloidal suspension [49] and colloidal nanoparticles adsorbed at fluid interfaces [50–52] are studied.We
alsomention ecological processes, involving the characterisation of organismmovement and dispersal [53, 54],
as well as processes, that are Brownian but non-Gaussian in certain timewindows of their dynamics. These
concern the dynamics of disordered solids, such as glasses and supercooled liquids [55–57] as well as interfacial
dynamics [58, 59]. Also anomalous diffusion processes of the viscoelastic class that typically are expected to
exhibit Gaussian statistic of displacements, were reported to have non-Gaussian displacements alongwith
distinct distributions of diffusivity values. These concern themotion of tracer particles in the cellular cytoplasm
[60–62] and themotion of lipids and proteins in protein-crowdedmodelmembranes [29].

Here we study two alternative stochastic approaches to non-Gaussian diffusion due to randomdiffusivity
parameters, namely, generalised grey Brownianmotion (ggBM) and diffusing diffusivities (DD).We analyse
their exact behaviour and relate these approaches to the idea of superstatistics. To prepare the discussion,
section 2 presents a primer on the approach of superstatistics andwhat has been done in the context of ggBM
andDDmodels. In section 3we then study the ggBMmodel with a randomdiffusivity distributed according to
the generalisedGammadistribution. In particular, ggBMwill be shown to represent a stochastic description of
the superstatistics approach and is equivalent to the short time (ST) limit of theDDmodel. In section 4we
formulate a set of stochastic equations for the dynamics within theDD framework, inwhich the diffusivity
statistic is governed by the generalisedGammadistribution. This is then incorporated in the framework of the
minimalmodel ofDD in section 5. In section 5.4we describe the behaviour of the kurtosis of the twomodels, an
important quantity for data analysis. Section 6 introduces an analysis for an initial non-equilibrium setting for
the randomdiffusivity, relevant, for instance, for the description of single particle trajectories. To transfer this
concept to the ggBMapproachwe propose a non-equilibrium version of ggBM. Finally our conclusions are
reported in section 7. In the appendices somemathematical details are collected.

2. Pathways to Brownian yet non-Gaussian diffusion: superstatistics andDD, and ggBM

Whenwe talk about an ensemble of particles, we could imagine that non-Gaussian statistic in this ensemble
sense emerges due to the fact that different particles are located in different environments with different
transport characteristics, such as the diffusion coefficient. If during the observation time each particle remains in
its own environment characterised by a given valueD of the diffusivity, the ensemble of particles shows a
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mixture of individual Gaussians, weighted by some distribution p(D) of local diffusivities. This is the idea behind
superstatistics, an approach promoted byBeck andCohen [63], see also [64]. As a result, the ensemble dynamics
is still Brownian yet the PDF of particle displacements will correspond to a sumor integral of single Gaussians
with specific value ofD, weighted by the distribution p(D). For instance, an exponential form for p(D)will
produce an exponential shape of the ensemble displacement PDF, sometimes called a Laplace distribution.We
note that there also exist superstatistical formulations on the basis of the stochastic Langevin equation, leading to
Brownian yet non-Gaussian behaviour [65]. A quite general superstatistical formulation in terms of the gamma
distributionwas put forward byHapca et al [53].

More recently, similar concepts have been sought to describe non-Gaussian viscoelastic subdiffusion. Thus,
Lampo et al [61] observed exponential distributions of the generalised diffusivityDα for themotion of
submicron tracers in living bacteria and eukaryotic cells. As a theoretical description they used a superstatistical
formulation of the stochastic equation for FBM [61]. Following the observation of stretchedGaussian shapes of
the displacement PDF in protein-crowded lipid bilayermembranes [29], more general forms for the distribution
of the generalised diffusion coefficient were introduced, see, for instance, [66, 67]. Viscoelastic, non-Gaussian
diffusionwas also described in terms of the generalised Langevin equationwith superstatistical distribution of
the friction amplitude [68, 69].

Some othermodels instead introduce afluctuating diffusivity, for instance to describe segregation in solids
[70] or to analyse data fromdiffusion processes assessed bymodernmeasurement techniques [71]. Brownian
motion influctuating environments, or governed by temperature or friction fluctuations has been studied in
[72–74] andmodels with intermittency between two values of the diffusivity are considered in [75, 76].
Anomalous diffusion in a disordered systemwas also described in terms of a superstatisticalmodel based on a
Langevin equation formulation, combining a Rayleigh-shaped diffusivity distributionwith deterministic
power-law growth or decay of themean diffusivity [77].

A general framework for the description of diffusion in a complex environment is provided also by the class
of stochastic processes identified as ggBM [78–82]. The basic idea of this approach is that the complexity or
heterogeneity of themedium is completely described by the randomnature of a specific parameter. Choosing
this parameter to be the diffusivity leads to a stochastic interpretation of the system thatmay be viewed as
complementary to the superstatistics concept and thus suitable for the description of the class of Brownian yet
non-Gaussian processes.Wewill define ggBMwith a randomdiffusivity inmore detail in the next section 3, and
in the following demonstrate that ggBM is equivalent to the ST limit of theDDmodel.

Recently the idea ofDDhas received considerable attention. According to this approach, in addition to the
introduction of a population of diffusivities, each particle during itsmotion is affected by a continuously
changing diffusivity. Chubynsky and Slater first introduced thismodel describing the dynamics of the diffusion
coefficient by a biased, stationary randomwalkwith reflecting boundary conditions [83].With this assumption
the diffusivity changes slowly step by step, in the ST limit giving rise to normal diffusionwith exponential
displacement PDF6. In the long time (LT) regime simulations showed a crossover toGaussian diffusionwith a
single, effective diffusion coefficient [83]. In amore recent work a direct test of theDDmechanism for diffusion
in inhomogeneousmedia is reported [86].

TheDD concept was further studied by Jain and Sebastian [87, 88] andChechkin et al [67].While Jain and
Sebastian use a path integral approach, Chechkin et al invoke the concept of subordination and an explicit exact
solution for the PDF in Fourier space. Despite the differentmathematical approach, bothmodels recover the
linear trend of theMSD and a distribution of displacements that at ST is exponential, while, at LT, it crosses over
to aGaussianwith effective diffusivity, in agreementwith the results in [83]. Tyagi andCherayil [89] present a
hybrid procedure between the two approaches, finding that themodulation of white noise by any stochastic
process, whose time correlation function decays exponentially, is likely to have features similar to the ones
obtained in [67, 83, 87, 88]. As a recent result we also report thework by Lanoiselée andGrebenkov inwhich the
concept ofDD is further investigated, for instance, with respect to time averages and ergodicity breaking
properties [90].

In this paperwe present a detailed comparison between the concept of ggBMwith randomdiffusivity and
theDDmodel. Themain difference between theDDand ggBMmodel is represented by the interaction between
environment and particles. On the one hand, in theDDmodel two different statistical levels are taken into
account, one for themotion of the environment and one for themotion of the particles. The relation between
these two gives rise to specific characteristics. Thus, at ST the slow variability of the environment guarantees the
superstatistical limit. In the LT regime the diffusivity reaches a stationary average value leading the particles to
develop aGaussian statistic. On the other hand, the ggBMmodel does not directly involve an environment
dynamics but only implies a dynamics inwhich the statistical features of the environment continuously drives
the particles in theirmotion, see below formore details.

6
This approach has some commonalities in spirit with the correlated continuous time randomwalkmodel [84, 85].
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Concretely, for both ggBMandDDmodels a set of stochastic equations is introduced to generate a random
diffusivity with awell defined stationary distribution. Until nowmainly exponential orGammadistributions
have been considered for the randomdiffusivity.We here base the discussion on the generalisedGamma
distribution, which represents an even broader class of distributions including the onesmentioned above, as
particular cases.We define the generalisedGammadistribution by

� �
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n h
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whereDå is a positive and dimensional constant and ν and η are positive constants. This distribution encodes the
nth order stationarymoments
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The choice of the generalisedGammadistribution is based on experimental evidence demonstrating its role as a
versatile description for generalised distributions in various complex systems. Indeed, in the context of
superstatistics the generalisedGammadistributionwas studied by Beck in [91]. Importantly, the generalised
Gammadistribution includes those cases labelled as Gammaor exponential distribution that have already
shown good agreement with several systems [53, 55–57].Moreover it comprises the cases of stretched and
compressed exponential distributionswhichmay be useful for the interpretation of various systems
[26, 53, 92, 93].

In the followingwe generalise the ggBMmodel from [78–82] to incorporate the generalisedGamma
function (4).We then demonstrate how to reformulate theOrnstein–Uhlenbeck picture of theDDminimal
model [67] and the closely relatedDDmodels [83, 87, 88] to include the distribution (4).With this extension
bothmodels are considerablymore flexible for the description ofmeasured data.Moreover, wewill show that
the ggBMmodel is a powerful stochastic representation of the superstatistics approach, and that the ggBM
model equals the ST limit of theDDmodel. Finally, we consider non-equilibrium conditions in theDDmodel
and propose a non-equilibrium extension of the ggBMmodel to consider similar effects in the stochastic setting
of superstatistics. Such non-equilibrium initial conditions represent an important extension of the random
diffusivitymodels, especially for experimentally relevant cases of single particle trajectorymeasurements.

3.Generalised grey Brownianmotionwith randomdiffusivity

GgBM is defined through the stochastic equation [78–82]

= ´( ) ( ) ( )X t D W t2 , 6ggBM

for the particle trajectory ( )X tggBM , inwhich ò x= ¢ ¢( ) ( )W t t td
t

0
is standard Brownianmotion, theWiener

process defined as the integral over thewhiteGaussian noise ξ(t)with zeromean.Moreover,D is a random
diffusivity, here taken to be distributed according to the generalisedGammadistribution (4). The idea is that
different, but physically identical particlesmove in disjointed environments, inwhich they experience different
diffusivities, the essential view of the superstatistics approach. Alternatively, we could also think of physically
different particles, with different diffusion coefficients,moving in an identical environment. The latter could, for
instance, correspond to an ensemble of tracer beadswith varying radius or different surface properties.

Moremathematically speaking, ggBM is defined through the explicit construction of the underlying
probability space based on self-similar increments, and it can be represented by the stochastic equation

= LX XgggBM , whereΛ is an independent, non-negative randomvariable, andXg is a Gaussian process
[78–82]. The characterisation of this class has also been studied for the casewhenXg is a standard FBMandΛ is
distributed according to the quite general class ofM–Wright functions [81, 94].We note that the definition (6) is
similar to the superstatistical Langevin equationmodels in [65, 77].

Figure 1 shows trajectories obtained fromdirect simulations of the scheme (6), for which the diffusivity
valuesD are chosen from the generalisedGammadistribution (4). As a result we obtain a Brownianmotion
characterised by a randomamplitude, as demonstrated explicitly by theMSDplots for the same trajectories
shown in the bottompanel offigure 1. For the value n = 1.5 (right panels) largerD values are observed, in
accordancewith the shape of the distribution (4). The ggBMdescription is indeed close to the superstatistical
concept and fundamentally different from the time evolution of the sample paths for theDDmodel, compare
figure 7.However, at very ST both processes lookmuch alike, as theDDmodel at STwill be shown to reduce to
the ggBMmodel.

The particle displacement distribution can be recovered following Pagnini and Paradisi [94]. If we define
withZ1 andZ2 two real independent random variables whose PDFs are p1(z1) and p2(z2)with - --¥ +¥z1

and - - +¥z0 2 , respectively, andwith the randomvariableZ obtained by the product ofZ1 andZ2
γ, that is,
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= gZ Z Z1 2 , then, if we denote the PDF ofZwith p(z), we find that
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In the present casewe identifyXggBM(t),W(t), and the randomdiffusivityDwithZ,Z1, andZ2, respectively.
The PDF for the particle displacement encoded by equations (6) and (7) is given by
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where ( ∣ )G x t D, is theGaussian distribution (2) for givenD. Such a representation of the PDF corresponds to
the one of the superstatistical approach, proving the similarity of the twomethods. The distribution pD(D) is
defined in (4) and the integral in (8), which can be solved exactly through differentmethods (appendix), provides
the result (A.6) in terms of a FoxH-function (see appendix, where also the series expansion is given). The
asymptotic behaviour of this result acquires the generalised exponential shape
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In particular, the choice η=1 leads us back to exponential distributions, with power-law prefactor. Figure 2
demonstrates the agreement between the analytical result (9) for the PDF and the result of stochastic simulations
of the underlying ggBMprocess, for different times and afixed set of the parameters ν and η. In particular, we see
that the shape of the distribution remains invariant—as for the superstatistical approach—and in contrast to the
DDmodel analysed below.

Figure 1.Top: trajectories governed by the ggBMmodel for η=1.3 and two different parameters ν (seefigure legend). Bottom: time
averagedMSD for the respective traces shown in the top panel, with identical colour coding. The different trajectories exhibit random
diffusivity values and thus random slopes in the time averagedMSDplots.Within each trajectory the value ofD remainsfixed.
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TheMSD follows immediately from the following transformations,
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where, according to (5), the effective diffusivity becomes

� n h n há ñ = G + G([ ] ) ( ) ( )D D 1 . 11stat

Figure 3 demonstrates the linearity of the variance. Thefitted parameters are consistent with themodel
prediction, á ñ =D 0.20stat comparing to the values chosen in the simulations.

Bymeans of the ggBMapproach andwith the introduction of a generalisedGammadistribution for the
diffusivity we are able to reproduce a diffusivemotionwith a linear scaling of theMSDand a PDF characterised
by a stretched or compressedGaussianwith a power-law prefactor. This is ourfirstmain result.

4.Diffusing diffusivity: stochastic equations for randomdiffusivity

Wenow consider the diffusion coefficientD(t) to be a random function of time, defined bymeans of the
auxiliary variableY(t) throughD(t)=Y2(t), similarly to theDDminimalmodel introduced earlier [67]. Our
goal is to construct a stochastic equation for the additional variableY(t) such that the stationary PDF for its
square is the generalisedGammadistribution in (4). Thus, our presentmodel is represented by the following set
of stochastic equations

s= + ´( ) ( ) ( )Y a Y t W t ad d d 12

Figure 2. Short (a) and long (b) time behaviour of the PDF of the ggBMprocess for the parameters η=1.3 and ν=0.5, as well as
� =D 1 2. Solid lines represent the asymptotic behaviour (9), while symbols are obtained from stochastic simulations of the ggBM

process.

Figure 3.Variance of the ggBMmodel (blue line) and linear fit (solid line). The corresponding fit parameters are indicated in thefigure
legend. The value of � =D 1 2.
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=( ) ( ) ( )D t Y t b, 122

where ( )a Y is a nonlinear functionwhose explicit shape is obtained below, s is a constant andW(t) is aWiener
process with variance á ñ =( )W t t2 . The physical dimension of the auxiliary variable is = -[ ]Y cm s 1 2 and for
the constant s wehave s = -[ ] cm s 1.

Our approach is based on the central idea that it is possible to establish a direct relation between the PDFs of
the two variablesY(t) andD(t). This allows us to introduce a completely new dynamics for the auxiliary variable.
Such a dynamics, even thoughmore complex, allows to reproduce amore general class of PDFs for the random
diffusivity and thus provides a significant extension of theDDmodel, whichwill be our secondmain result.

To proceedwe set p(Y, t) to represent the PDF of the processY(t) described in (12a). It fulfils the Fokker–
Plank equation [9]
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Considering the stationary situation the corresponding time independent PDF pY(Y) fulfils the equation
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fromwhichwe infer the relation
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directly relating the drift coefficient a(Y)with the stationary distribution ofY(t) [95].
We then recall that, given two random variablesZ1 andZ2 related byZ2=g(Z1), for appropriate functions

g(z)we have [96]
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This implies that the distributions of the variablesY(t) andD(t) are related via

=( ) ∣ ∣ ( ) ( )p Y t Y p Y t, , . 17Y D
2

Based on this we construct a set of stochastic equations for the desired quantityD(t). Starting from the
chosen stationary distribution pD(D) of the randomdiffusivity we define the stationary distribution pY(Y) for the
auxiliary variableY(t) bymeans of equation (17). Finally relation (15) allows us to recover the suitable coefficient
a(Y) in equation (12a). Following the described scheme for the generalisedGammadistribution (4)we obtain
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Thisfinally leads us to the desired drift coefficient
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The stochastic equations (12a) together with the explicit form (20) of the drift coefficient for the diffusivity
fluctuations provide a complete and generalised analogue of theDDmodel, which is extremelyflexible for the
modelling of experimental data.

We notice that in the particular case of ν=0.5 and η=1we recover theOrnstein–Uhlenbeckmodel
(diffusion in an harmonic potential) considered in the originalminimalDDmodel [67]. As already remarked in
[67] in this setting the resulting stochastic equation forD(t) is nothing else than theHestonmodel, that is widely
used infinancialmathematics and specifies the time evolution of the stochastic volatility of a given asset
[90, 97, 98].

Equation (12a) can be readily solved numerically with initial conditions taken randomly from the
equilibriumdistribution (18). Figures 4 and 5 show sample time evolutions of the auxiliary variableY and the
diffusivityD=Y2 for theDDprocess based on the steady state generalisedGammadistribution, as obtained
below.We note that for the case ν=0.5 infigure 4 the sample paths of the variableY(t) frequently cross the zero
line, while for the case ν=1.5 infigure 5 the zero line is avoided, corresponding to the uni- and bimodal shapes
of the PDFs of the variableY(t) evaluated infigure 6. The existence of a pole in the generalisedGamma
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Figure 4.Top: trajectories and bottom: autocorrelation functions (21), of the auxiliary variableY(t) and the randomdiffusivityD(t) in
theDDmodel. The green solid lines in the autocorrelation function plots represent exponential fits.We took ν=0.5 and η=1.3.

Figure 5.Top: trajectories and bottom: autocorrelation functions (21), of the auxiliary variableY(t) and the randomdiffusivityD(t) in
theDDmodel. The green solid lines in the autocorrelation function plots represent exponential fits.We took ν=1.5 and η=1.3.
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distribution (4) atD=0 for the case ν=0.5 thus creates a very different behaviour than for the case ν=1.5
without singularity. For the diffusivity variableD(t) in figures 4 and 5 the regions ofY(t) close to the zero line lead
to smallerD(t) values in the same regions. Finally, figures 4 and 5 demonstrate the exponential shape of the
autocorrelation functions for bothY(t) andD(t),

¢ = á - á ñ + ¢ - á ñ ñ( ) ( ( ) )( ( ) ) ( )t t Y t Y Y t t YACF , 21Y

and an analogous expression for ( )D t .
We know fromprevious studies ofDDmodels that the correlation time of the randomdiffusivity represents

a key factor in the study of the particle dynamics. The correlation time τc is evaluated both bymeans of a two-
parametric numericalfit to the exponential function and through the integral

òt t t~
¥

( ) ( ) ( )1

ACF 0
ACF d , 22c

0

which is exact for pure exponential autocorrelation functions. The results obtained by the twomethods are
reported infigure 4 and 5 and they are in excellent agreement, fromwhichwe conclude that the diffusivity
autocorrelation is exponential to leading order and thus the correlation time τcwell defined.

It is interesting to notice that the auxiliary function ( )Y t in the case of a bimodal distribution possesses a
non-zero correlation function in the stationary state. This is due to the fact that despite a vanishing globalmean
of the PDF, depending on the initial setting each trajectory is representative of only one side of the bimodal PDF.

5. A generalisedminimalmodel forDD

With the set of equations defined in section 4we can consider the generalisation of theDDminimalmodel
described in [67], and obtain the process in position space, ( )X tDD . Recalling the idea of introducing an analytic
description for the dynamics of the randomdiffusivity, we take that themotion of the particle is defined by the
integral version of the overdamped Langevin equation,

ò x= ¢ ´ ¢ ¢( ) ( ) ( ) ( )X t D t t t2 d , 23
t

DD
0

where x ( )t is whiteGaussian noise andD(t) is the random time-dependent diffusivity obtained in section 4. This
dynamics based on the above results for the diffusivity dynamics generalises the idea introduced in [67], where
anOrnstein–Uhlenbeck process was selected for the auxiliary variable. Figure 7 shows trajectories obtained from
the stochastic equation (23)where the diffusivity was generated from (12a)with initial conditions taken
randomly from the stationary distribution. In ggBMeach trajectory has the sameD value, while in theDDmodel
the value ofD changes as function of time. In turn, individual trajectories of theDDmodel are quite similar.

Since theDDmodel is a direct generalisation of theminimalDDmodel we expect a crossover to aGaussian
displacement PDF for times longer than the correlation time τc.We thus carry on our analysis for the ST and LT
regimes separately, before analysing theMSD and kurtosis of this DDprocess.

5.1. Short time regime
Since the dynamics of the environment is determined by the correlation time τcwe expect that on ST scales with

t�t c the diffusion coefficient is approximatelyfixed for each particle andwe thus suppose the validity of a
superstatistical description at ST,

Figure 6.PDFs of the auxiliary variableY(t) and the randomdiffusivityD(t) for two different sets of parameters, as indicated in the
figure legends.
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ò x~ ¢ ¢ = ´( ) ( ) ( )X D t t D W t2 d 2 . 24
t

DD
ST

0

The existence of the superstatistical regime at t�t c is consistent with themodel considered in [67] andwith the
results reported in [89] concerning themodulation of white noise by any stochastic process whose time
correlation function decays exponentially. The superstatistical approach allows us to estimate the ST distribution
of the particle displacement bymeans of

ò~
¥( ) ( ) ( ∣ ) ( )f x t p D G x t D D, , d . 25DDD

ST

0

This representation corresponds to the ggBM scenario established above, whichmeans that we can borrow its
results in equations (A.6) and (9), considering that ~( ) ( )f x t f x t, ,DD

ST
ggBM .

The expected behaviour (9) is confirmed by extensive numerical simulations. Figures 8(a) and 9(a) show the
STPDFs for two different sets of the parameters ν and η, and in both cases we observe excellent agreementwith
the asymptotic behaviour (9).

Comparing figure 2with figure 8(a)wenotice that the ggBMmodel allows one to describe a process that
preserves the exact non-Gaussian PDF,which is exactly the same PDFwe obtain in theDDmodel in the ST
regime. Both approaches describe the same superstatistical frame but theDDmodel then crosses over to a
Gaussian beyond the correlation time τc, see below the discussion of the kurtosis. The establishment of the
relation between theDDmodel and the previously devised ggBMat ST is our thirdmain result.

5.2. Long time regime
At LT, again taking our clue from [67] and from the general results in [89], we expect that eventually a crossover
to aGaussian distribution is observed (as already anticipated infigures 8 and 9). Above the correlation time, that
is, for times t�t c we thus look for a PDF given by

p
~

á ñ
-

á ñ

⎛
⎝⎜

⎞
⎠⎟( ) ( )f x t

D t

x

D t
,

1

4
exp

4
, 26DD

LT

stat

2

stat

with the effective diffusivity (11). The numerical results reported infigures 8(b) and 9(b) prove the validity of this
behaviour. At sufficient LT the particles have explored all the diffusivity space and aGaussian behaviourwith an
effective diffusivity emerges. This leads to a standard Brownian diffusive behaviour.We stress again that the

Figure 7.Top: trajectories of theDDmodel for two different sets of parameters ν and η, as indicated in thefigure legend and bottom:
corresponding time averagedMSDs. In contrast to the behaviour of the ggBMmodel shown infigure 1, the temporal variation of the
diffusivityD(t) is distinct.
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transition from anon-Gaussian to aGaussian profile depends on the value of the correlation time τc of the
diffusivity process.

5.3.Mean squared displacement
For theDDmodel we found a crossover of the PDF of the spreading particles. An initial non-Gaussian behaviour
is slowly replaced by aGaussian one. The superstatistical behaviour of theDD approach at ST is equivalent to the
ggBMmodel and is characterised by the non-Gaussianity. Nevertheless, as expected fromprevious studies [67],
theMSDdoes not change in the course of time and is the same at ST and LT regimes. Direct calculation indeed
produces the invariant form

á ñ = á ñ( ) ( )X t D t2 . 27DD
2

stat

This continuity of theMSD is demonstrated infigure 10, together with a linearfit proving the validity of the
linear trend.

5.4. Kurtosis
Inwhat follows the second and fourthmoments of the non-Gaussian PDF identified in equations (8) and (25)
are studied in terms of the kurtosis that represents one of the first checks for non-Gaussianity.We recall the
second ordermoment calculated in (10) and in a similar waywe obtain the fourth ordermoment

á ñ = á ñ = á ñ( ) ( ) ( )X t X t D t12 , 28ggBM
4

DD
4

ST
2

stat
2

where á ñD2
stat is the secondmoment of the diffusivity in the stationary state. Bymeans of results (10) and (28)

and recalling the definition of the diffusivitymoments in equation (5), the kurtosis = á ñ á ñ( ) ( )K x t x t4 2 2 is
given by

Figure 8. Short time (a) and long time (b)PDFof theDDmodel for η=1.3 and ν=0.5. The solid lines represent the asymptotic
behaviour (9)while the dashed lines represent theGaussian behaviour (26) expected at sufficiently long times.

Figure 9. Short time PDF (a) and long time PDF (b) of theDDmodel for η=1.3 and ν=1.5. The solid lines represent the asymptotic
behaviour in (9)while the dashed lines represent theGaussian behaviour in (26) at long times.
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for ggBMand the short-timeDDprocess. The non-Gaussian PDF represents a leptokurtic behaviour as can be
observed infigure 11, showing the kurtosis of theDD and ggBMmodels. The value for the kurtosis at ST is in
agreementwith the value reported in (29). At LT theDDkurtosis approaches the value 3 characteristic of the
Gaussian distribution, while the ggBMone keepsfluctuating around the same initial value.

6.Non-equilibrium initial conditions

The results discussed above consider equilibrium initial conditions for the diffusivity fluctuations. In particular,
results (10) and (27) for the particleMSD exhibit the invariant form á ñ = á ñ( )X t D t22

stat in both cases. Such
equilibrium initial conditionswill in general not be fulfilled for particles that are initially seeded in a non-
equilibrium environment. For instance, in single particle tracking a tracer bead can be introduced into the
system at t=0, or similar in computer simulations. After this disturbance the environment equilibrates again.
To accommodate for such a case we here study aminimalmodel for the case of non-equilibrium initial
conditions, which leads to anothermain result of this work. Aswe are going to see, this non-equilibrium
scenario gives rise to differences in the characteristics of the two studiedmodels. In particular, we observe an
initial ballistic behaviour. The LT behaviour, of course, does not showdifferences since in this range the
diffusivity reaches its stationary state andwe can again consider the results obtained in the previous sections for
the LT limit.

We illustrate the role of non-equilibrium conditions by taking a specific, and in fact the simplest, set of
parameters, ν=0.5 and η=1. This defines the stochastic dynamical equation in (12a) as

=( ) ( ) ( )D t Y t a302

Figure 10.Variance of theDDmodel. The solid green line represents a linearfit and the corresponding slope is reported in the plot. It
is consistent with the expected value 0.40 according to equation (11).

Figure 11.Kurtosis of theDDprocess (green) and ggBM (blue) for 10,000 realisations. For the indicated value of η and ν equation (29)
yields »K 7.74ggBM .
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s
s= - + ( ) ( )Y

D
Y t W t bd d d , 30

2

that corresponds to thewell knowndynamics of theOrnstein–Uhlenbeck process for the study in [67]with the
correlation time �t s= Dc

2.We start considering the related Fokker–Planck equation

�

s s¶
¶

=
¶
¶

+
¶
¶

( ) ( ) ( ) ( )
t

p Y t
D Y

Yp Y t
Y

p Y t, ,
2

, . 31
2 2 2

2

Wecan solve this equationwith a non-equilibrium condition, for instance, p(Y, 0)=δ(Y−Y0), using the
method of characteristics in Fourier space.We readily derive the general solution

� �
�

� �
p s

s
s

= - - -
- -

- -
-

⎛
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⎞
⎠⎟( ∣ ) ( [ ( )]) ( ( ))

( ( )) ( )p Y t Y D t D
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D t D
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exp

1 exp 2
. 320

2 1 2 0
2 2

2

Recalling relation (16) for the diffusivity PDFwe then obtain
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2
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Wepoint out that in the limit of LT this result provides exactly the stationary distribution described in (4)with
the specific set of parameters defined above. This is also verified by the trend of the average value

� � �á ñ = - +s s- -( ) ( ( ) ) ( )D t D D
1

2
1 e 2 e , 34t D t D2

0
22 2

in agreementwith result (4).
In contrast to the previous analysis, we observe an explicit dependence on time of pD(D, t), whichmakes the

calculationsmore involved. Thus, we select an initial condition for the diffusivity,D0=0, which is convenient
for the study of the particles displacement distribution. This leads to a reduction in (33), namely,

� �
� �

p s
s

= = - -
- -

-
⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ( ( ))) ( ( )) ( )p D t D D D t D

D

D t D
, 0 1 exp 2 exp

1 exp 2
. 350

2 1 2
2

Wenow study the twomodels in this particular case of a non-equilibrium initial condition for the diffusivity.

6.1.Diffusing diffusivities with non-equilibrium initial diffusivity condition
The dynamics for the diffusivity encoded in equations (30a) and (30b)when choosing the specific set of
parameters ν=0.5 and η=1 is the same as described in [67]when d=n=1. Thus, in this paragraph, we
extend the description of theminimal DDmodel studied in [67] to the case of non-equilibrium initial conditions
for the diffusivity. In order to proceedwith the same notationwe introduce dimensionless units for relations
(30a) and (30b) as well as for the overdamped Langevin equation describing the particlemotion [67], such that
the full set of stochastic equations reads

ò x= ¢ ¢ ¢

=
= - +

( ) ( )
( ) ( )

( ) ( )

X D t t t

D t Y t
Y Y t W t

2 d

d d d . 36

t

DD
0
2

A subordination approach can then be used to obtain the distribution of the particle displacement [67], namely,

ò t t t=
¥( ) ( ) ( ) ( )f x t T t G x, , , d , 37DD

0

whereG(x, τ) is theGaussian (2) andT(τ, t) represents the PDF of the process òt = ¢ ¢( ) ( )t Y t td
t

0
2 . Starting

from the subordination formula (37)we obtain the relation

= =ˆ ( ) ˜( ) ( )f k t T s k t, , 38DD
2

wherewith the symbols ·̂ and ·̃ we indicate the Fourier and Laplace transforms, respectively. For the particular
initial conditionD0=0, which is equivalent to y0=0, the solution is known [99, 100],
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This latter quantity is directly related to theMSDof the particles through [67]

á ñ = -
¶

¶ =

( ) ˜( ) ( )X t
T s t

s
2

,
. 40

s
DD
2

0

We readily obtain the closed form result

= - - ~- �
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. 41t
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The resulting dynamics is thus no longer Brownian at all times. In contrast, at times shorter than the correlation
time (in the dimensionless units used here t = 1c )we obtain a ballistic scaling of theMSD. This behaviour
reflects the fact that the diffusivity equilibration in this case withD0=0 leads to an initial acceleration.

Starting from equations (38) and (39)we consider approximations of the PDF for ST and LTwhich, sincewe
are in dimensionless units, correspond to �t 1and �t 1 respectively. In the ST limit, the Fourier transformof
the PDF becomes

~
+ +

+ + +
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Note that this expression is normalised, = =ˆ ( )f k t0, 1DD . After taking the inverse Fourier transformwefind
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Re-establishing dimensional units, this result becomes
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HereKν(z) is themodified Bessel function of second type. The asymptotic behaviour of this distribution for
¥∣ ∣x is the Laplace distribution
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In the LT limit equations (38) and (39) yield
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that again is normalised. If we focus on the tails of the distribution in the limit �k 1we obtain theGaussian
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in Fourier space, corresponding to theGaussian
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in direct space. Restoring dimensional units and recalling that �á ñ =D D 2stat , eventually provides
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where in the last stepwe identified the equilibrium value á ñD stat of the diffusivity. From the approximations (45)
and (49)we readily recover the two limiting scaling laws for the variance in equation (41).

Figure 12 nicely corroborates thesefindings, comparing the non-equilibriumDDmodel results for the PDF
obtained abovewith results from stochastic simulations. The crossover behaviour of the associatedMSD is
displayed infigure 13, again showing very good agreementwith the theory.
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6.2. Non-equilibrium ggBM
The ggBMmodel discussed in section 3 is based on the static distribution pD(D) of the diffusivity. In order to
explore non-equilibrium effects as discussed above for theDDmodel alsowithin the superstatistical approach,
we here propose a non-equilibrium generalisation of the ggBMmodel. Thus, we generalise the standard ggBM
definition (6) and introduce a variability ofD in time, according to the stochastic equation

= ´( ) ( ) ( ) ( )X t D t W t2 . 50ggBM

Physically, this new conceptmay be interpreted as fluctuations of the disjointed environments experienced by
the different particles or to temporal changes of the particle size, for instance, due to agglomeration-separation
dynamics.

Based on the definition (50) it is then straightforward to take the dynamics of ( )D t to be the same as the one
considered for theDDmodel. This guarantees that the ensemble properties of this generalised process (50) are

Figure 12.PDFs of theDD (left) and ggBM (right)models with non-equilibrium initial conditionD0=0 of the diffusivity. Top: short
time behaviour. Bottom: long time behaviour. For theDDmodel, the dashed–dotted lines represent the asymptotic behaviour (45) at
short times, while the dashed lines areGaussian fits. For the ggBMmodel the solid lines represent the analytical result (52).

Figure 13.MSDof theDDmodel (green) and ggBM (blue). On the left � =D 1 andD0=0while on the rightwe have � =D 4 and two
different values ofD0, �= á ñ =D D D 20 stat andD0=0.04. The first value generates a linear trend of the variance for bothmodels, as
we saw for the equilibrium case. In the second case, where ��D D0 , we observe three regimes. Nice agreement with the analytical
results is observed.
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exactly the same as the ones of the standard ggBMmodel studied in section 3. In particular, the dependence on
time of the diffusivity does not affect the validity of equation (7), so in order to estimate the PDF of the particle
displacement of the ggBMmodel, we consider the distribution (35) in the calculation of the integral

ò=
¥( ∣ ) ( ∣ ) ( ∣ ) ( )f x t D p D t D G x t D D, , , d , 51DggBM 0

0
0

whichmay be defined in general as a dynamic superstatistics because of the dependence of pD(D, t) on t.We
obtain an explicit solution bymeans of theMellin transform following the same procedure as described in
appendix A.2,
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whereKν(z) is themodified Bessel function of second type. The asymptotic behaviour for ¥∣ ∣x is given by
the exponential
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However, in comparisonwith the result (9) in the equilibrium situationwe nowobserve a different time scaling
in the exponent. For STwe see that
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while at LT
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Comparing the STPDF in (54)with theDDmodel obtained in (45)wenotice that they show a difference in the
time scaling of a factor 2 which is exactly whatwe observe infigure 12.

Starting from equation (51) theMSD can bewritten as
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Note that this result is valid for any initial conditionsD0, not only for the caseD0=0. As already suggested
above, the scaling of the variance is no longer linear at all times. According to the relation between the parameters
it is possible to observe the different scaling behaviours
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Thus, when ��D D0 we observe three regimes for theMSD.WhenD0=0 orwhen the relationD0=Dådoes
not holdwe directly observe an initial ballistic behaviour followed by the stationary linear trend. This behaviour
is nicely corroborated infigure 13.

7. Conclusions

Agrowing range of systems are being revealedwhich exhibit Brownian yet non-Gaussian diffusion dynamics.
Often, an exponential (Laplace) shape of the displacement PDF is observed, however, also stretchedGaussian
shapes have been reported. The comparison of diffusion processes recorded by new experimental techniques
suggests that the complexity and inhomogeneity of themedium, interpreted as the cause of non-Gaussian
behaviour,may influence the spreading of particles in specific fashion and at different levels. In particular,
experiments have demonstrated that a non-Gaussian dynamicmay persist throughout the observationwindow
and that there are systems that, instead, at LT, exhibit a crossover toGaussian diffusion. In this article we
introduced an analytic approach to generate a randomand time-dependent diffusivity with specific features and
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weproposed two possiblemodels for the spreading dynamics of particles in complex systems: one belonging to
the class of ggBMand the other supporting the idea ofDD.

We saw that the twomodels have in common the idea that the non-Gaussianity of the PDF is a direct
consequence of an inhomogeneity of the environment, represented by a population of diffusivities. The same
PDF for the randomdiffusivity was introduced for bothmodels.We defined an operative set of dynamic
stochastic equations to study randomdiffusivity effects within the broad class of generalisedGamma
distributions. This includes theGammadistribution, or the exponential PDFwhich produces the Laplace
distribution for the particle displacements.

Weobserved that themaindifferencebetween the ggBMand theDDmodel is the descriptionof theparticle
dynamics in theLTregime, corresponding todifferent physical scenarios for the environment.GgBMdoesnot
consider an active dynamics of the environment, and the characteristic thatmainly influences theparticlemotion is
the randomness of themedium.Thismeans that the statistical features of themediumcompletely drive theparticles
in their entiremotion. In contrast theDDmodel supports the idea of randomly evolving diffusivity corresponding to
adynamics also for the environment. In thisway theparticles evolve experiencing both a continuous variability in
timeanda stochasticity in the ensemble. Thefirstmodel delineates a specificnon-Gaussiandynamics for the entire
diffusionprocess,while the secondallows todescribe a transition fromanon-Gaussian to aGaussiandiffusion. In
fact, itwas shown that the STnon-Gaussiandynamics is the same in the twomodels,whereas at longer times the
ggBMmodel retains thediffusivity distribution and theDDmodel leads to an effective value for thediffusivity.

We here also studied the influence of non-equilibrium initial conditions for the diffusivity dynamics and
found twomain effects. First, the non-equilibrium case breaks the equivalence of theDD and the dynamic
generalisation of the ggBMmodels at ST and, second, it causes changes in the temporal evolution of theMSD. In
this case the ggBMmodel, which in the static case we showed to represent a stochastic interpretation of
superstatistical Brownianmotion, describes whatwemay call a dynamical superstatistics that leads to the
presence of different time scaling regimes in the process. TheDDmodel, whichwe investigated in this case via a
subordination approach, at ST can no longer be described through a superstatistic approximation, since the
subordination results in that regime diverge from the behaviour of ggBM. Furthermorewe observed different
time scaling regimes for theDDmodel, as well. Nevertheless, we note that for bothmodels we never obtained an
anomalous time scaling for theMSD, only a crossover between ballistic and linear (Brownian or Fickean)
behaviour. In the LT regimewe obtained a description of the twomodels which is in agreement with the one for
the equilibrium case, as it should be.

It will be interesting to generalise the present findings to anomalous dynamics with stochastic diffusivity by
implementing different types of noise.Maintaining the same population of diffusivities the results obtained for
the PDF of the particle displacement will not be affected, yet theMSD scalingwill become anomalous.
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Appendix. Computation of the superstatistical integral

In this appendixwe provide differentmethods to solve the integral representing the non-Gaussian PDFof the
twomodels discussed in this work,

ò=
¥¯ ( ) ( ) ( ∣ ) ( )P x t p D G x t D D, , d , A.1D

0

where ( ∣ )G x t D, represents aGaussian distribution and pD(D) is the generalisedGammadistribution (4).

A.1. Computation via FoxH-function
Recalling equation (A.1)wehave

�

�

�

�

ò

ò

h
n h p

h
n h p

=
G

=
G

n
n

n
n l

¥
- - -

¥
- - -

h

h

¯ ( ) ( )

( ) ( )

( )P x t
D

D
Dt

D

D t
D D

, e
1

4
e d

4
e e d , A.2

D D

D D D

0

1

0

3 2

x
Dt
2

4

17

New J. Phys. 20 (2018) 043044 V Sposini et al

79



wherewe set �l = x D t42 . Changing the variable of integration to �= h( )y D D we get
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With the identification

ðA:4Þ

with the FoxH-function and exploiting some (very convenient) properties of theH-function [101]we then
obtain

ðA:5Þ

The Fox function is defined as a generalisedMellin-Barnes integral and has very convenient properties under
integral transformations. The Fox function comprises a large range of special functions, includingMejer’sG-
function, hypergeometric functions, or Bessel functions [102]. In the notation used here the vertical line
separates the argument from the function’s parameters, and the horizontal line denotes the lack of upper
parameters [102].

Recalling that �l = x D t42 , we finally obtain

ðA:6Þ

The series expansion of this function reads [102]
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The asymptotic behaviour is then obtained in the form [102]
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A.2. Computation viaMellin transform
It is possible to rearrange the integral in equation (A.1) as a convolution integral,
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wherewe defined =x̄ x t1 2 and x = D1 2, andM1/2 denotes theM-Wright functionwith parameterβ=1/2
[78]. Considering the convolution formula for theMellin transform
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and remembering the property
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we compute theMellin transformof the obtained integral in equation (A.9), recovering
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TheMellin transforms for theM-Wright function [78] and the generalisedGammadistribution [102] are known
and given by
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Nowwe notice that theMellin transformof theH-function is [102]
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Thus, recalling also the property of theMellin transform in equation (A.11)we obtain that

ðA:17Þ

andfinally

ðA:18Þ

The result here recovered is consistent with equation (A.6).

A.3. Asymptotic trend via Laplacemethod
Starting again from equation (A.1) it is also possible to calculate directly the asymptotic behaviour through the
Laplacemethod.We introduce the new variable �=y D D in equation (A.1),
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Now the integral looks like a Laplace integral of the form

òl = l
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In order to apply the Laplacemethodwe need f (0)¹0which is not our case since f (0)=0 together with all its
derivatives. Thus, to evaluate the asymptotics, we define themaximumof the function,

f l= - - h-( ) ( )y y y , A.21
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for ¥∣ ∣x . This result is, up to a numerical prefactor, identical to the asymptotic behaviour obtained in (A.1).
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Abstract. A rapidly increasing number of systems is identified in which the

stochastic motion of tracer particles follows the Brownian law ⟨r2(t)⟩ ≃ Dt yet the

distribution of particle displacements is strongly non-Gaussian. A central approach

to describe this effect is the diffusing diffusivity (DD) model in which the diffusion

coefficient itself is a stochastic quantity, mimicking heterogeneities of the environment

encountered by the tracer particle on its path. We here quantify in terms of analytical

and numerical approaches the first passage behaviour of the DD model. We observe

significant modifications compared to Brownian-Gaussian diffusion, in particular that

the DD model may have a more efficient first passage dynamics. Moreover we find a

universal crossover point of the survival probability independent of the initial condition.

1. Introduction

Since its original systematic study 190 years ago by Robert Brown [1], diffusion of

molecular and (sub-)micron-sized entities has been identified as the dominant form

of thermally driven, passive transport in numerous biological and inanimate systems.

The two hallmark features of diffusion is the linear growth ⟨r2(t)⟩ = 2Ddt of the

mean squared displacement (MSD) with diffusion coefficient D in d spatial dimensions,

and the Gaussian distribution of displacements [2]. With increasing complexity of

the studied systems deviations from these two central properties have been unveiled

over the years. Thus, anomalous diffusion with an MSD of the form ⟨r2(t)⟩ ≃ tα was

observed in a large range of systems [3, 4]. Along with such observations a rich variety of

generalised stochastic processes has been developed [5, 6]. The displacement distribution

of anomalous diffusion processes may be inherently Gaussian (such as for fractional

Brownian motion [7]) or non-Gaussian (for instance, for processes characterised by scale-

free trapping time distributions [8] or space-dependent diffusivity models [9]).

Recently a lage variety of systems have been reported in which the MSD exhibits

the linear growth in time ⟨r2(t)⟩ ≃ Dt of Brownian (Fickian) transport, however,

the distribution of displacements P (r, t) is pronouncedly non-Gaussian [10]. Pertinent

examples include the motion of tracer beads along tubular or membrane structures or in
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gels and colloidal suspensions [10, 11, 12], and the motion of nematodes [13] and single

cells on substrates [14]. As long as the displacement distribution P (r, t) has a fixed

shape for any times t, one possible way to model the non-Gaussianity is the concept of

superstatistics [15, 16] which introduces a distribution pD(D) of the diffusion coefficient

and then averages individual Gaussian distributions with one given D value over this

pD(D). However, this approach does not work when eventually a crossover to an effective

Gaussian is observed [10, 11]. For the latter case Chubynsky and Slater introduced

the diffusing diffusivity (DD) model [17], see also [18, 19, 20, 21, 22, 23, 24]: In this

popular approach the diffusion coefficient is assumed to be a stochastic variable itself,

described by a stationary process. Consequently the system is initially described by a

non-Gaussian displacement distribution. Beyond a characteristic time scale a crossover

occurs to a Gaussian behaviour characterised by an effective value of the diffusivity.

We here study the first passage behaviour of the DD model. The concept of first

passage is ubiquitously used in statistical physics and its applications, for instance,

to quantify when a diffusing particle reaches a reaction centre or a stochastic process

exceeds a given threshold value [25, 26]. Based on the minimal model for DD [22] we

derive the first passage behaviour in both semi-infinite and finite systems. We find that

the DD dynamics may outperform Brownian-Gaussian normal diffusion at intermittent

times in a semi-infinite domain while the long time behaviour matches exactly the

Brownian-Gaussian result with an effective diffusivity. We also observe an interesting

universal crossover point of the survival probability which is independent of the initial

particle position. In finite domains the mean first passage time of the DD model is longer

than in the Brownian-Gaussian case. Concurrently, in the DD model the divergence of

the mean first passage time observed in the superstatistical approach is rectified.

In section 2 we briefly recall the basic properties of the minimal diffusing diffusivity

model [22]. The survival probabilities for the semi-infinite and finite domains are then

derived in section 3 along with their short and long time asymptotes. Section 4 provides a

detailed discussion of the results including a relation to the standard Brownian-Gaussian

first passage behaviour. A short conclusion is presented in section 5.

2. Minimal model for Brownian yet non-Gaussian diffusion

The model we study is the so-called minimal diffusing diffusivity (DD) model which

was introduced to describe diffusion in heterogeneous environments [22]. In this model

the diffusivity is defined as a stochastic process itself, in terms of the squared Ornstein-

Uhlenbeck process, guaranteeing the stationarity of D(t). In dimensionless units the

minimal DD model is defined by the set of Langevin equations [22]

d

dt
r(t) =

√
2D(t)ξ(t)

D(t) = Y2(t),
d

dt
Y(t) = −Y + η(t), (1)
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where the components of ξ(t) and η(t) are independent white Gaussian noises and Y

represents an d-dimensional Ornstein-Uhlenbeck process. The dimensionless Ornstein-

Uhlenbeck process here has a characteristic crossover time of unity. We assume the

diffusivity to start from equilibrium initial conditions (the non-equilibrium case is

discussed in [23]). This leads to the superstatistical short time diffusivity distribution

pD(D) =

⎧
⎪⎨
⎪⎩

(
√

πD)−1e−D, d = 1

e−D, d = 2

(2
√

D/π)e−D, d = 3

, (2)

for 1, 2 and 3 dimensions. While the dominating exponential tail is common to all d,

there is a pole at D → 0 in d = 1 [22]. As we showed previously, the minimal DD model

can be written using the concepts of subordination [27] through the relation [22]

P (r, t|r0) =

∫ ∞

0

G(r, τ |r0, D = 1)Td(τ, t)dτ, (3)

of the probability density function (PDF) P (r, t|r0) of displacement and the Gaussian

G(r, t|r0, D) = (4πDt)−d/2 exp
(
(r − r0)

2/[4Dt]
)

(4)

with fixed diffusion coefficient D. The subordinator Td(τ, t) represents the PDF of the

process τ(t) =
∫ t

0
Y2(t′)dt′ and is defined through its Laplace transform [22]

T̃d(s, t) = exp(dt/2)

[
1

2
(
√

1 + 2s +
1√

1 + 2s
) sinh

(
t
√

1 + 2s
)

+ cosh
(
t
√

1 + 2s
)]−d/2

(5)

with short and long times limits

T̃d(s, t) ∼ t−d/2 (s + 1/t)−d/2 , t ≪ 1, (6)

T̃d(s, t) ∼ 2d/2 exp

(
dt

2
(1 −

√
1 + 2s)

)(
1 +

1

2

(√
1 + 2s +

1√
1 + 2s

))−d/2

, t ≫ 1. (7)

At short times the diffusivity varies slowly and we can assume it to be almost constant.

In this limit the DD model thus reduces to the superstatistical approximation of the DD

model in which each particle has a constant random diffusion coefficient with distribution

pD(D) [15, 16]: on the ensemble level this implies that the PDF can be written as

Psup(r, t|r0) =
∫∞
0

G(r, t|r0, D)pD(D)dD, such that the short time PDF explicitly reads

PST(r, t|r0) = Psup(r, t|r0) =

⎧
⎪⎨
⎪⎩

(πt1/2)−1K0

(
|x − x0|/t1/2

)
, d = 1

(2πt)−1K0

(
|r − r0|/t1/2

)
, d = 2

(2π2t3/2)−1K0

(
|r − r0|/t1/2

)
, d = 3

(8)

where K0(x) is a modified Bessel function of the second kind with exponential asymptote

K0(z) ∼
√

π/(2z)e−z [30]. At long times the DD process crosses over to a purely

Gaussian process with PDF PLT(r, t|r0) = G(r, t|r0, D = ⟨D⟩st) with the stationary

diffusivity ⟨D⟩st = d/2 [22]. For all t the MSD is given by ⟨(r(t) − r0)
2⟩ = 2d⟨D⟩stt.

We showed in [23] that there is a stochastic counterpart to this superstatistical

approximation, defined through the generalised grey Brownian motion (ggBM)

formalism [28], r(t) =
√

2D × W(t), where D is the random and constant diffusion
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coefficient and W(t) is the d-dimensional Wiener process or standard Brownian motion.

Note that while the DD model represents the heterogeneity of the medium in some mean

field sense [22] the ggBM model describes an heterogeneous ensemble of particles [29] .

3. Results for the survival probabilities

The first passage time PDF of a stochastic process is the negative time derivative of

the survival probability, ℘(t) = −dS(t)/dt. We here obtain the survival probability for

semi-infinite and finite domains using the above subordination relation.

3.1. Survival of diffusing diffusivity model in semi-infinite domain

We begin our study with the semi-infinite interval d = 1. Following the approach for

standard diffusion [25] we use the method of images for the initial particle position x0.

Combined with the subordination principle (3) we get the image propagator

P (x, t|x0) =

∫ ∞

0

(G(x, τ |x0, D = 1) − G(x, τ | − x0, D = 1))T1(τ, t)dτ. (9)

After Fourier transform we obtain

P̂ (k, t|x0) =

∫ ∞

0

T1(τ, t)e
−k2τ

(
eikx0 − e−ikx0

)
dτ = (eikx0 − e−ikx0)T̃1(s = k2, t). (10)

Here ·̂ and ·̃ indicate the Fourier and Laplace transforms of the functions, respectively.

We then calculate the survival probability in the semi-infinite domain,

S(t|x0) =

∫ ∞

0

P (x, t|x0)dx =

∫ ∞

0

dx

∫ +∞

−∞

dk

2π
e−ikxP̂ (k, t|x0). (11)

To check normalisation, we first see from expression (5) that T̃1(s, 0) = 1. Then,

S(0|x0) =

∫ ∞

0

dx

∫ +∞

−∞

dk

2π
(e−ik(x−x0) − e−ik(x+x0)) = 1, (12)

where we used that
∫∞

−∞ dk/(2π) exp(−ikx) = δ(x). Moreover, plugging the long time

limit for T̃1(s = k2, t) in (7) into the expression for S(t|x0) one can readily show that

S(t → ∞|x0) = 0, as it should.

The direct calculation of the integral (11) is not easy to perform, we here focus on

the short and long time regimes. At short times, T̃1(s = k2, t) is given by (6) and thus

SST(t|x0) =

∫ ∞

0

dx

∫ ∞

−∞

dk

2π
e−ikx(eikx0 − e−ikx0)

t−1/2

√
k2 + 1/t

=
1

2π
√

t

(∫ ∞

0

dx

∫ ∞

−∞
dk

e−ik(x−x0)

√
k2 + 1/t

−
∫ ∞

0

dx

∫ ∞

−∞
dk

e−ik(x+x0)

√
k2 + 1/t

)

=
1

π
√

t

∫ ∞

0

[
K0

( |x − x0|√
t

)
− K0

( |x + x0|√
t

)]
dx, (13)
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Splitting the integral and changing variables we obtain

SST(t|x0) =
1

π
√

t

[∫ x0

0

K0

(
x0 − x√

t

)
dx +

∫ ∞

x0

K0

(
x − x0√

t

)
dx −

∫ ∞

0

K0

(
x + x0√

t

)
dx

]

=
2

π

∫ x0/
√

t

0

K0(z)dz. (14)

Using
∫ a

0
K0(z)dz = aπ/2 (K0(a)L−1(a) + K1(a)L0(a)), with the modified Struve

function Lν(z) [30],

SST(t|x0) =
x0√

t

[
K0

(
x0√

t

)
L−1

(
x0√

t

)
+ K1

(
x0√

t

)
L0

(
x0√

t

)]
. (15)

The same result can be obtained both inserting directly the short times approximation

(8) of the propagator in the result of the images method of images and calculating

directly the superstatistical integral valid for the survival probability.

At long times, when in equation (7) we only consider the tails of the distribution,

T̃1(s = k2, t) ∼ exp (−k2t/2). This approximation leads to

SLT(t|x0) =

∫ ∞

0

dx

[∫ ∞

−∞

dk

2π
exp

(
−ik(x − x0) − k2t

2

)
− exp

(
−ik(x + x0) − k2t

2

)]

=
1√
2πt

∫ ∞

0

dx

[
exp

(
−(x − x0)

2

2t

)
− exp

(
−(x + x0)

2

2t

)]

= erf

(
x0√
2t

)
= erf

(
x0√

4⟨D⟩stt

)
. (16)

This result equals the one for Brownian diffusion in a semi-infinite domain, in agreement

with the fact that at long times the DD model shows a crossover to Gaussian diffusion

with effective diffusivity ⟨D⟩st. In analogy with Brownian diffusion, this particularly

leads to the divergence of the mean first passage time, ⟨t⟩ = ∞.

3.2. Survival of diffusing diffusivity model in finite domain

We now turn to a finite domain [0, L] with absorbing boundaries at x = 0 and x = L.

Drawing on the subordination approach again, we map the images result for the finite

domain to obtain the DD propagator,

P (x, t|x0) =
2

L

∞∑

n=1

sin
(πn

L
x0

)
sin
(πn

L
x
)

T̃1(λ
2
n, t). (17)

By integration we obtain the survival probability

S(t|x0) =
4

π

∞∑

n=0

sin

(
π(2n + 1)

L
x0

)
T̃1(λ

2
2n+1, t)

(2n + 1)
, (18)

from which we obtain the limiting behaviours for short times,

SST(t|x0) ∼ 4

π

∞∑

n=0

sin

(
π(2n + 1)

L
x0

)
1

(2n + 1)
√

λ2
2n+1t + 1

, (19)
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and for long times,

SLT(t|x0) ∼ 4
√

2

π

∞∑

n=0

sin

(
π(2n + 1)

L
x0

)
exp

(
− t

2

[√
1 + 2λ2

2n+1 − 1

])

× (2n + 1)

(
1 +

1

2

(√
1 + 2λ2

2n+1 +
1√

1 + 2λ2
2n+1

))1/2

. (20)

Note that, as in the previous case, the asymptotic behaviour at short times can also be

found through direct calculation of the superstatistical integral.

4. Discussion of results

Figures 1 and 2 show a comparison of the results obtained for the DD model with the

classical ones for Brownian-Gaussian motion in the semi-infinite and finite domains,

respectively. In figure 1 (left) and figure 2 we include results from simulations,

demonstrating excellent agreement with our analytical results. As expected, we observe

significant dissimilarities between the two models mostly in the short time limit. At

intermediate time scales the DD model shows a crossover from short time superstatistical

behaviour to the limiting Brownian-Gaussian behaviour with effective diffusivity ⟨D⟩st.

For the semi-infinite domain figure 1 demonstrates that in the short time regime the

DD process exhibits a faster decay of the survival probability and thus a more efficient

first passage dynamics. This effects is particularly visible in the right panel, in which

short times correspond to large values on the abscissa x0/
√

t. To clarify this effect we

express result (15) and the one for Brownian motion in terms of elementary functions,

SBM(t|x0) ∼ 1 −
√

2e−(x2
0/2t)

√
πx0

t1/2, x0/
√

t → ∞, (21)

SST(t|x0) ∼ 1 −
√

2e−(x0/
√

t)

√
πx0

t1/4 +
5e−(x0/

√
t)

4
√

2πx3
0

t3/4, x0/
√

t → ∞. (22)

Comparing the asymptotes (21) with (22) along with the inset in figure 1 (right), we

observe that for a fixed initial position x0 the DD survival probability initially indeed

drops faster than the one for Brownian-Gaussian motion. This behaviour is more visible

for larger x0 and becomes less and less relevant when x0 approaches the absorbing

boundary. From a physical point of view, this can be understood due to the fact that

the closer to the boundary we place the particle initially the more likely it is that the

particle is absorbed immediately, independently from the underlying diffusive model.

Figure 1 (right) demonstrates two universalities. First, we observe that at

intermediate times the survival probabilities for any initial position show a universal

convergence to a common crossover point at around S(t|x0) ≈ 0.925, including the

Brownian-Gaussian survival probability. At times shorter than this crossover point

Brownian-Gaussian motion is outperformed by the DD model, which assumes smaller

values of S(t|x0). At times longer than the crossover time the decay of Brownian-

Gaussian motion is the fastest. Second, the initial advantage of the DD first passage
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Figure 1. Left: Comparison of numerical and analytical results for the survival

probability S(t|x0) in the semi-infinite interval. Different colours represent the initial

positions x0 = 0.5, 1, 1.5, 2, and 5. Dashed lines in both panels represent the results of

the corresponding Brownian-Gaussian motion. The numerical results (dots) obtained

through Monte Carlo simulations are in full agreement with the analytical trend (solid

line) obtained from numerical integration of the inverse Fourier transform (11). Right:

analytical results for the survival probability in rescaled units in the semi-infinite

domain as function of x0/
√

t. In the inset the short time behaviour of S(t|x0) is

reported, the universal crossover at S ≈ 0.925 is distinct.

dynamics over Brownian-Gaussian motion which reverts after the universal crossover

point, appears to balance out: at long times the survival probability in all cases converges

to the exact result of Brownian-Gaussian motion with effective diffusivity ⟨D⟩st. This

can be seen directly from result (16), the associated first passage density of which is

exactly the well-known Lévy-Smirnov form ℘(t) = (x0/
√

4π⟨D⟩stt3) exp(−x2
0/[4⟨D⟩stt]).

Qualitatively a similar behaviour is observed for finite domains at short times. As

shown in figure 2, in contrast, the long time behaviour is dominated by the exponential

shoulder (20) corresponding to the lowest non-zero eigenvalue in the DD model. The

corresponding characteristic time scale τ in figure 2 is longer than for Brownian-Gaussian

motion. This is due to the fact that in the finite interval the particles will reach the

boundary before experiencing the entire diffusivity space, and so the effective Brownian

limit is not recovered. The larger the interval L is the smaller the difference between

the characteristic times of DD and Brownian-Gaussian models will be. In the limit

of L → ∞ the same long time behaviour is observed. Figure 2 also demonstrates an

interesting behaviour of the superstatistical model. When the diffusivity distribution

(2) governs the particle motion at all times t, even in the finite domain a power law

scaling of the survival probability emerges, and thus a diverging mean first passage time

is produced. This behaviour is caused by appreciable fraction of immobile particles

manifested in the divergence or nonzero value of pD(D = 0) in d = 1 and d = 2,

respectively. This behaviour is rectified in the DD model.
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Figure 2. Survival probability for the finite interval [0, L], showing a comparison

between Brownian-Gaussian diffusion, DD, and superstatistical dynamics. Different

colour shades represent different initial positions x0, and the solid lines represent the

analytical trends. The normalisation is chosen considering that all 3 models present the

dependence on the initial position through the sinusoidal function reported in the y-axis

and that at long times just the first eigenstate dominates. Indeed we observe that at

long times all lines approach a quasi-master curve which is different for each model and

in agreement with the analytical results: a power law asymptotic for the superstatistical

model and exponential tails for the DD and Brownian-Gaussian models, the latter with

two different τ values of the dominant exponential tail.

5. Conclusions

We studied the first passage behaviour of the popular DD model used as a mean field

proxy for diffusion of test particles in heterogeneous environments, in which the particle

experiences varying diffusivities. Our analysis demonstrated that at short times the

DD dynamics leads to a faster decay of the survival probability and thus to more

efficient first passage. In a semi-infinite domain, fully independent of the initial particle

position a universal crossover occurs, beyond which the DD dynamics becomes less

efficient than pure Brownian-Gaussian motion, and the ultimate decay is determined by

the conventional Lévy-Smirnov behaviour for initial particle position x0 and effective

diffusivity ⟨D⟩st. The initial advantage of the DD dynamics may be particularly relevant

in cases of molecular regulation processes at very low concentrations (few-encounter

limit) [31]. At long times in finite domains the DD first passage behaviour is dominated

by an exponential shoulder with a characteristic time (approximately the mean first

passage time) that is longer than that for Brownian-Gaussian motion.

These results are in agreement with the expectation that rare events, represented

by the exponential tails of the particles displacement distribution at short times, may

dominate triggered actions. Thus, even if in general heterogeneity in the environment

does not improve the mean first passage result (in fact some of the particles are slowed

down) it allows some other particles to have a diffusion coefficient greater than the

average, and this is enough to increase the efficiency of the reaction activation. Moreover,

we proved that the amount of fast particles is independent on the initial position,
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representing the distance between particle and target. This suggests that the obtained

results may be qualitatively generalised to any distribution of the initial particle position.

The study developed here is not limited to the one-dimensional case. First of

all, we know that in the semi-infinite domain the results of the survival probability of

Brownian-Gaussian motion in d = 2 and d = 3 are the same as the one in d = 1. Then,

the same analysis of the first passage problem can be performed by solely changing to

the corresponding d-dimensional subordinator. For finite domains the analysis is also

similar since, for all d we have an exponential behaviour in time of the propagator

which allows us to relate the DD survival probability to the Laplace transform of the

corresponding subordinator, as we did for the one-dimensional case.

We finally note that similar non-Gaussian effects have been reported for systems,

in which the (subdiffusive) motion is dominated by viscoelastic effects. With a fixed

diffusivity this would be a Gaussian process, and the non-Gaussianity was shown to

stem from varying diffusivity values [32, 33, 34]. It will be interesting to study the

associated first passage behaviour in this case, as well.
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Abstract
A standard approach to study time-dependent stochastic processes is the power spectral density
(PSD), an ensemble-averaged property defined as the Fourier transformof the autocorrelation
function of the process in the asymptotic limit of long observation times,T ¥. Inmany
experimental situations one is able to garner only relatively few stochastic time series offiniteT, such
that practically neither an ensemble average nor the asymptotic limitT ¥ can be achieved. To
accommodate for ameaningful analysis of suchfinite-length datawe here develop the framework of
single-trajectory spectral analysis for one of the standardmodels of anomalous diffusion, scaled
Brownianmotion.We demonstrate that the frequency dependence of the single-trajectory PSD is
exactly the same as for standard Brownianmotion, whichmay lead one to the erroneous conclusion
that the observedmotion is normal-diffusive. However, a distinctive feature is shown to be provided
by the explicit dependence on themeasurement timeT, and this ageing phenomenon can be used to
deduce the anomalous diffusion exponent.We also compare our results to the single-trajectory PSD
behaviour of another standard anomalous diffusion process, fractional Brownianmotion, andwork
out the commonalities and differences. Our results represent an important step in establishing single-
trajectory PSDs as an alternative (or complement) to analyses based on the time-averagedmean
squared displacement.

1. Introduction

The spectral analysis ofmeasured position time series (‘trajectories’)X(t) of a stochastic process provides
important insight into its short and long time behaviour, and also unveils its temporal correlations [1]. In
standard textbook settings, spectral analyses are carried out by determining the so-called power spectral density
(PSD)μ( f ) of the process. The PSD is classically calculated byfirst performing a Fourier transformof an
individual trajectoryX(t) over thefinite observation timeT

S f T
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X t t,
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T

ft

0

i
2

ò=( ) ( ) ( )

where f denotes the frequency. The quantity S( f,T) forfinite observation timesT is, of course, a randomvariable.
The standard PSD yields from S( f,T) by averaging it over a statistical ensemble of all possible trajectories. After
taking the asymptotic limitT ¥, one obtains the standard PSD
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where the angular brackets denote the statistical averaging. In the second line of (2), taking into account thatX(t)
is real-valued, we took the absolute square and used the summation relation for trigonometric functions [2] to
obtain the cosine functionwith the difference of the two times and the autocorrelation function X t X t1 2á ñ( ) ( ) of
the processX(t); see [1, 3, 4] formore details.

The PSD (2) is widely used to evaluatemeasured time tracesX(t), especially in experimental setups
measuring in frequency domain, such as spectroscopicmethods. The PSDprovides information
complementary to the autocorrelation X t X t1 2á ñ( ) ( ) , and the relation between the PSDμ( f ) and X t X t1 2á ñ( ) ( ) is
in fact the famedWiener–Khinchine theorem.Moreover, in physical terms the PSD corresponds to the spectral
net power (energy per unit time). Following definition (2), the standard, ensemble-averaged PSDwas
determined for various processes acrossmany disciplines. This includes, for instance, the variation of the
loudness ofmusical performances [5], the temporal evolution of climate data [6] and of thewaiting-times
between earthquakes [7], the retention times of chemical tracers in groundwater [8] and noises in graphene
devices [9], fluorescence intermittency in nano-devices [10], current fluctuations in nanoscale electrodes [11], or
ionic currents across nanopores [12]. The PSDwas also calculated analytically for individual time series in a
stochasticmodel describing blinking quantumdots [13], for non-stationary processes taking advantage of a
generalisedWiener–Khinchine theorem [14, 15], for the process of fractional Brownianmotion (FBM)with
random reset [16], the runningmaximumof a Brownianmotion [17], as well as for diffusion in strongly
disordered Sinai-type systems [18], to name but a few stray examples.

An alternative approach geared towards realistic experimental situationswas recently proposed—based
directly on thefinite-time, single-trajectory PSD (1) [3, 4] (see also [19]). The need for such an alternative to the
standard PSD (2) is two-fold. First, while the asymptotic limitT ¥ canwell be taken inmathematical
expressions, it cannot be realistically achieved experimentally. This especially holds for typical,modern single
particle tracking experiments, inwhich the observation time is limited by themicroscope’s focus or the
fluorescence lifetime of the dye label tagging themoving particle of interest [20]. In general, apart from the
dependence on the frequency f the single-trajectory PSD (1) therefore explicitly is a function of the observation
timeT.Moreover, fluctuations between individual results S( f,T) of the single-trajectory PSDwill be observed,
even for normal Brownianmotion [3]. Second, andmaybe evenmore importantly, while suchfluctuations
between trajectoriesmay, of course, bemitigated by taking an average over a statistical ensemble, inmany cases
the number ofmeasured trajectories is too small for ameaningful statistical averaging. Indeed, for the data
garnered in, for instance, in vivo experiments [20], climate evolution [21], or the evolution of financialmarkets
[22] one necessarily deals with a single or just a few realisations of the process. Aswewill show, despite the
fluctuations between individual trajectories relevant information can be extracted from the frequency and
observation time-dependence of single-trajectory PSDs. Evenmore, the very trajectory-to-trajectory amplitude
fluctuations encode relevant information, that can be used to dissect the physical character of the observed
process.

Howwouldwe understand an observation time-dependence? This is not an issue, of course, for stationary
randomprocesses, but apart fromBrownianmotion, only very few naturally occurring randomprocesses are
stationary. AT-dependent evolution of the PSD can in fact be rather peculiar and systemdependent. For
instance, the PSDmay be ageing and its amplitudemay decaywithT, as it happens for non-stationary random
signals [15], or conversely, it can exhibit an unbounded growthwithT, a behaviour predicted analytically and
observed experimentally for superdiffusive processes of FBM type [4]. As a consequence, the standard textbook
definition (2) of the PSDwhich emphasises the limitT ¥, can become rathermeaningless.

Motivated by the two arguments in favour of using a single-trajectory approach to the PSD—the lack of
sufficient trajectories in a typical experiment in order to form an ensemble average and insufficiently long
observation timesT—[3, 4] concentrated on the analysis of the randomvariable S( f,T) defined in (1) for
arbitrary finiteT and f. Both for Brownianmotion and FBMwith arbitraryHurst index (anomalous diffusion
exponent, see below) a range of interesting, and sometimes quite unexpected features were unveiled, as detailed
in the comparative discussion at the end of section 3.

While FBM,whose single-trajectory PSD is studied in [4] is a quite widespread anomalous diffusion process,
it is far from the only relevant example of naturally occurring randomprocesses with anomalous diffusive
behaviour. As, in principle, S( f,T)may behave distinctly for different stochastic processes, in order to get a
general and comprehensive picture of the evolution in the frequency domain, one needs to study systematically
the single-trajectory PSDs of other experimentally-relevant processes, such as, scaled Brownianmotion (SBM),
the continuous time randomwalk, or diffusing diffusivitymodels, to name just a few. In all these examples the
microscopic physical processes underlying the global departure from standard Brownianmotion are different,
andwewould expect that this difference in themicroscopic behaviour translates into the behaviour in the
frequency domain.

Here we concentrate on trajectoriesXα(t) generated by SBM, a class of non-stationary anomalous diffusion
processes encoding themean squared displacement (MSD) X t t2á ña

a�( ) with anomalous diffusion exponentα.

2
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SBMwas formally studiedwithin different contexts in the last two decades [23–25]. Historically, it was
introduced already by Batchelor in 1952 in the context of the turbulentmotion of clouds ofmarked fluids [26],
originally studied byRichardson in 1926 [27]. An important application of SBM is for particlemotion in the
homogeneous cooling state of force-free cooling granular gases, inwhich the continuously decaying
temperature (defined via the continuously dissipating kinetic energy) effectively leads to a time-dependence of
the self-diffusion coefficient of the gas [28]. SBMalso describes the dynamics of a taggedmonomer involved in
processes of irreversible polymerisation [29]. Similar dynamics emerge in the analysis offluorescence recovery
after photobleaching (FRAP) data [30], as well as offluorescence correlation spectroscopy data [31], which are
bothwidely used techniques tomeasure diffusion ofmacromolecules in living cells and theirmembranes. Lastly,
essentially the same type of anomalous diffusionmodellingwas used for the analysis of potential water
availability in a region due to precipitation (snow and rain) [32].

As an application of SBM in a broader sense, onemay envisage amaterial undergoing an annealing process—
a slow, externally imposed decrease of the temperature used inmetallurgy or in preparations of glasses to get rid
of internal defects. Effectively, the dynamics of the latter can be considered as an SBM—a Brownianmotionwith
a diffusion coefficient being a slowly decreasing function of the temperature. In a similar way, one uses such a
slow annealing in computer search for a globalminimumof a complex energy landscape, which prevents
trapping by localminima.Here, as well, if the search process proceeds by jumps of afixed length, one encounters
effectively an SBM-type process.Moreover, SBMmay be used to describe the effective diffusion in an expanding
medium [33]. Finally, SBMmay be considered as amean field description of continuous time randomwalks
with scale-free waiting time densities [24].

A different perspective for applications of our PSD analysis are areas, inwhich the time variable represents
other, complementary quantities. Thus, the height profile of an effectively one-dimensional surfacemay be
thought of as a time series.While suchmodelling typically involves FBM-type statistics [34], itmay be of interest
to compare the predictions to those of theMarkovian yet non-stationary SBM.We alsomention the connection
of time series to the visibility graph in complex networks [35].

The outline of the paper is as follows. In section 2we present the basics of SBM, introduce our notation, and
define the properties under study. Section 3 is devoted to the spectral analysis of single-trajectory PSDs governed
by SBM.Here, we first derive an exact expression for themoment-generating function of the randomvariable S
( f,T) and evaluate the exact formof the associated probability density function (PDF). The formof the latter
turns out to be entirely defined by itsfirst twomoments, in analogy to the parental processXα(t).We then
present explicit forms of these twomoments, valid for arbitrary anomalous diffusion exponentα, frequency f,
and observation timeT. Section 3 ends with a comparative discussion of our results with the behaviour of the
single-trajectory PSD for FBM, the only anomalous diffusion process for which the behaviour of a single-
trajectory PSD is known exhaustively well at present [4]. Finally, we concludewith a brief summary of our results
and a perspective in section 4.

2.Model and basic notations

SBMXα(t) is anα-parametrised family of Gaussian stochastic processes defined by the (stochastic) Langevin
equation [23–25]

X t

t
D t t

d

d
2 , 3x= ´a

a
( ) ( ) ( ) ( )

where ξ(t) denotes Gaussianwhite-noise with zeromean and variance 1/2, such that

t t t t . 41 2 1 2x x dá ñ = -( ) ( ) ( ) ( )
Moreover,Dα(t) is the diffusion coefficient, that follows the deterministic power-law in time5

D t K t , 0 2, 51a a= < <a a
a-( ) ( )

where the coefficientKα has physical dimension cm s2 a. In general, SBMdescribes anomalous diffusion, such
that the ensemble-averagedMSD scales as a power law in time

X t K t2 . 62á ñ =a a
a( ) ( )

When 0<α<1 one observes subdiffusive behaviour, while for 1<α<2 SBMdescribes superdiffusion.
Standard Brownianmotion is recovered in the limitα=1. Infigure 1we depict four representative trajectories
ofXα(t) for the subdiffusive, normal-diffusive, and superdiffusive cases.We note that, especially for the
subdiffusive caseα=1/2 the non-stationary character is not immediately obvious from the graph ofXα(t)6,

5
The limitα=0 corresponds to the case of ultraslow diffusionwith a logarithmicMSD, as studied in [36].

6
Onemay infer the slower spreading rather from comparison of the span ofXα(t) on the vertical axis.

3
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while the character of the process becomes somewhatmore obviouswhenwe plot the square process,Xα
2 (t).

Concurrently, in the superdiffusive case the growing fluctuations and large excursions away from the origin
appear relativelymore pronounced.

Beforewe proceed, it is expedient to recall other salient properties of SBM. In particular, its autocorrelation
function can be readily calculated to give

X t X t K t t2 min , . 71 2 1 2á ñ =a a a
a( ) ( ) [ { }] ( )

Hence, the covariance ofXα(t) has essentially the same form as the one for standard Brownianmotion, except
that the time variable is ‘scaled’7. A basic quantity to analyse the behaviour of individual trajectories is the time-
averagedMSDof the time seriesXα(t) in the time interval [0,T] [38]

T
X t X t t

1
d , 8

T
2

0

2òd D =
- D

+ D -a a
-D( ) ( ( ) ( )) ( )

and its ensemble-averaged counterpart, which, taking into account expression (7), can be explicitly calculated as
[25]

Figure 1. Four individual realisationsXα(t) for SBMwith different anomalous diffusion exponent for subdiffusion (α=0.5, top),
normal diffusion (α=1,middle), and superdiffusion (α=1.5, bottom). In the left columnwe show the processXα(t) itself, while in
the right columnwe display its square, X t2

a ( ).

7
The definition of SBMwould allow us to transform (subordinate [37]) time t such that themain calculations could be done for normal

Brownianmotion.However, as this would change themeaning of the frequency, we prefer to proceed in terms of the non-transformed time
(and frequency).

4
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In the limitΔ=Twe thusfind K T22 1á ñd D ~ Da a-( ) , a behaviour fundamentally different from the

ensemble-averagedMSD (6), a feature of so-calledweak ergodicity breaking: X2 2á ñd D ¹ á D ña( ) ( ) [38].We
display the behaviour of individual time-averagedMSDs 2d D( ) in figure 2, alongwith their ensemble average

2á ñd D( ) and the standardMSD X t2á ña ( ) . The non-ergodic behaviour of SBM is clearly highlighted by the

different slopes of 2á ñd D( ) and X t2á ña ( ) .
Equippedwith all necessary knowledge on the properties of SBMXα(t), we now turn to the question of

interest here, the analysis of its single-trajectory PSD. As S( f,T) is a randomvariable, themost general
information about its properties is contained in themoment-generating function

Figure 2. SBMmean squared displacements (MSDs) for three differentα values (subdiffusionwithα=0.5, top; normal diffusion
withα=1,middle; superdiffusionwithα=1.5, bottom). Blue lines represent time averagedMSDs 2d D( ) for individual trajectories.
For smallΔ=T the individual 2d D( ) are fully reproducible, while for longer lag timeΔ the statistics becomesworse and the
trajectory-to-trajectory spread is appreciable. The light blue line represents the trajectory-average 2d D( ) of the time averagedMSD
while the orange line depicts the ensemble averagedMSD x t2á ñ( ) .

5
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S f Texp , , 0. 10.l lF = á - ñl ( ( )) ( )
OnceΦλ is determined, the PDF P(S( f,T)=S) of the randomvariable S( f,T) can be simply derived from
equation (10) by an inverse Laplace transformwith respect to the parameterλ. Aswe proceed to showbelow,
bothΦλ and P(S( f,T)=S) are entirely defined by thefirst twomoments, due to theGaussian nature of the
processXα(t). Themean value, which represents the standard time-dependent PSD, is given by

f T S f T, , , 11m = á ñ( ) ( ) ( )
while the variance of the randomvariable S( f,T) obeys

f T S f T f T, , , . 122 2 2s m= á ñ -( ) ( ) ( ) ( )
The quantitiesμ( f,T) andσ2( f,T) define the coefficient of variation

f T
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of the PDF of the single-trajectory PSD. As such, γ is ameasure for the ‘broadness’ of a given distribution: when
γ>1 the spreadσ( f,T) of the distribution exceeds itsmean valueμ( f,T), and then themean value can no
longer be considered representative for the actual distribution. The calculation of the exact explicit forms of the
properties defined in equations (10)–(13) represents the chief goal of ourwork.

3. Spectral analysis of individual trajectories of SBM

The single-trajectory PSDs S( f,T) for four different sample trajectories for the three anomalous diffusion
exponentsα=1/2,α=1, andα=3/2 are shown infigure 3 (top).While, naturally, we observe distinct
fluctuationswithin S( f,T) and between different realisations, all data clearly show a S( f,T);1/f 2-scaling.
Themiddle and bottompanels offigure 3 demonstrates the apparent scaling of the trajectory-averaged single-
trajectory PSD as function of the observation timeT (ageing behaviour) for two different frequency values—the
respectiveT-scaling laws are derived below.We are now going to quantify these behaviours in detail.

3.1.Moment-generating function of the single-trajectory PSD
We start fromdefinition (1) of the single-trajectory PSD and rewrite it in the form

S f T
T

f t t X t X t t t,
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T T
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which is just a formal procedure sinceXα(t) is a real-valued process. Relegating the intermediate steps of the
derivation to appendix A, we eventually find the exact result
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whereμ andσ2 are defined in equations (11) and (12), respectively. Result (15) shows that the PDF of the single-
trajectory PSD for SBM is fully defined through itsfirst and secondmoment, and that it has exactly the same
functional form as the results for Brownianmotion and FBMderived in [3, 4]. Aswe have already remarked, this
is a direct consequence of theGaussian nature of the parental processXα(t) of SBM.

Inverting the Laplace transformwith respect toλwe obtain the PDF of the randomvariable S( f,T),
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where Iν is themodified Bessel function of thefirst kind. This function is known to be a distributionwith
heavier-than-Gaussian tails.

Infigure 4we present a comparison of the analytical result (16) forP(S( f,T)=S)with simulations. The
agreement is excellent. Thewidth of the PDF P(S( f,T)=S) becomes narrower for increasingα (note the
different scales on the axes). In particular, the insets show the exponential shape of the PDFP(S( f,T)=S) in the
semi-logarithmic plots.

3.2. Ensemble-averaged PSD
Wenowproceed further and calculate the firstmoment of the PSD, defined in equation (11). Recalling the
expression for the autocorrelation function (7) of SBM,we perform the integrations explicitly in appendix A, to
find thefinal expression
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wherewe introduced the functions g1 and g2 defined in appendix A. It is straightforward to check that forα=1
equation (17) yields the standard expression of the PSD for Brownianmotion
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whereK1 is the normal diffusion coefficient of dimensionality cm s2/ .

Figure 3. Left: single trajectory power spectra S( f,T) for subdiffusion (α=1/2, top), normal diffusion (α=1,middle), and
superdiffusion (α=3/2, bottom) as function of frequency f. The thick lines represent themeanof the simulatedPSDsS( f,T). The
1/f 2 trend is indicated by the dashed line.Centre: zero-frequency behaviour ofS( f,T), averaged over individual trajectories, as function
of the observation timeT. The dashed lines represent the analytical result in equation (19). Right: large-frequency behaviour of the
S( f,T), averagedover individual trajectories, as functionof the observation timeT. The dashed lines represent the analytical result in (20).
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Next, we focus on the asymptotic behaviour of the general expression (17) in the limit f T  ¥, which is
equivalent to either the limit f ¥withTfixed, or vice versa.We get
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Interestingly, the f-dependence of the leading term is the same for anyα, in particular, it is equal to the one for
Brownianmotion. The fact that we are not able to distinguish SBM fromBrownianmotion by just looking at the

Figure 4.Amplitude PDFP(S( f,T)=S) of single-trajectory PSDs for different values of the anomalous diffusion exponent:
subdiffusive (α=1/2, top), normal diffusive (α=1,middle), and superdiffusive (α=3/2, bottom). In the plots, ‘Theo’ stands for
the analytical result (16), while ‘Sim’ is the histogramobtained from simulations, corresponding to averages over 106 realisations for
eachα. The insets report the same quantities on a semi-logarithmic scale, demonstrating that the large-S tail of the PDF in
equation (16) is an exponential function. Analytical and numerical results are in an excellent agreement.
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frequency domain can lead, when analysing data, to thewrong conclusion that one deals with standard
Brownianmotion. Onlywhenwe have sufficiently precise data over a large frequencywindow, we could use the
α-dependent subleading term to identify the anomalous diffusion exponentα. The only explicitα-dependence
in the leading order of expression (19) is in the ageing behaviour encoded by the dependence onTα−1 in the
prefactor, which therefore becomes a relevant behaviour to check. The dependence onα of the ageing factor
leads to the convergence of the limitT ¥ in the subdiffusive case and to a divergence in the superdiffusive
case. A second interesting limit is given by the low-frequency limit f=0. In this casewe obtain

f T
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+ +
a
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This result represents the averaged squared area under the random curveXα(t).

3.3. Variance and the coefficient of variation
The variance of the single-trajectory PSD is defined in equation (12). It can be calculated exactly for arbitraryα, f
andT, and the details of the intermediate steps are presented in appendix A.Herewe report the asymptotic
behaviour for f T  ¥, reading
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As for themean value, the f-dependence of the leading termdoes not involveα, and it has the same scaling as
Brownianmotion. Similarly, the explicit dependence onα of the frequence appears only in subleading order.
Once again, studying the leading frequency scaling onlywe are not able to distinguish SBM fromBrownian
motion. Instead, we should pay attention to the ageing behaviour of the amplitude.

We summarise the results for themean and variance of the single-trajectory PSD in the behaviour of the
coefficient of variation, γ. It was shown that for FBM this dimensionless factor plays the role of a delicate key
criterion to identifying anomalous diffusion.Namely γ assumes three different values in the limit of large
frequency depending onwhetherwe have sub-, normal or superdiffusion, but independent of the precise value
ofα. In the SBMcase, recalling the asymptotic results for themean and variance in equations (19) and (21)
respectively, we obtain atfixed observation timeT (see figure 5 for the behaviour for arbitrary f )

f5 2, 22g ~ ¥ ( )
for anyα.Moreover in the limit of f T→0we obtain

f T
K T

0,
32

1 2
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2 2 2

2 2
s
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Figure 5. Left panel: analytical behaviour of γ for 3 different values ofα corresponding to sub-, normal and super-diffusion. Right
panel: γ obtained from103 realisations of SBM, each consisting ofN=106 time steps.
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In this limit themoment-generating function simplifies and the PDF is the gammadistributionwith scale 2μ
( f=0,T) and shape parameter 1/2.

Infigure 5 analytical and numerical results for the coefficient of variation γ are shown. Analytically, in the
case of subdiffusionwe observe heavier oscillation of γ as function of the frequency, while in the superdiffusive
case the convergence to the limiting value (22) is faster. Such a distinction is not so clear in the numerics, where
the behaviour of γ is essentially the same for the three different values ofα, showing again the difficulties in
differentiating SBM fromBrownianmotion.

3.4. Comparisonwith FBM
Aswe have already remarked, the behaviour of the single-trajectory PSD is well-understood only for the
anomalous diffusive processes of the FBM-type. The results obtained for SBM showboth similarities and
dissimilarities with the ones for FBMreported in [4]. In fact, both processes share the same form for the PDFP(x,
t) in an infinite space and are therefore often confusedwith one another in literature, see the caveats raised in
[25, 38]. However, while both processes are obviously Gaussian, FBMhas stationary increments with long-
ranged, power-lawnoise correlations. In contrast, SBM is non-stationary but driven by uncorrelated noise. After
our results above a natural question is whether in terms of the single-trajectory PSD the two processes can be told
apart.

For the frequency dependence of the single-trajectory PSD S( f,T), and thus also themeanμ( f,T), SBM
shares the 1/f 2 scalingwith that of Brownianmotion for any value of the anomalous diffusion exponentα in the
range 0<α<2. Subdiffusive FBM, in contrast, exhibits a completely different behaviourwith the explicitlyα-
dependent frequency scaling f1 1a+ .Moreover, while in the subdiffusive regime SBMshows the ageing
dependenceμ;Tα−1, FBM is independent ofT. Thus, SBMandFBMcan be told apart quite easily fromboth f
andT dependencies. In contrast, in the superdiffusive regime the results for SBMand FBMare the same for the
functional behaviours with respect to both f andT, and the processes therefore cannot be told apart from each
other by use of the single-trajectory PSDor itsmean.However, indeed there exists a difference whenwe consider
the coefficient of variation γ. Namely, for SBM γ always converges to the value 5 2g ~ at high frequencies,
the value sharedwith Brownianmotion. FBM, in contrast, assumes three distinct values in the high frequency
limit: γ∼1 for subdiffusion (0<α<1), 5 2g ~ for normal diffusion (α=1), and 2g ~ for
superdiffusion (1<α<2). These predictions are confirmed by numerical and experimental data [3, 4]. The
coefficient of variation therefore provides a suitable tool to distinguish SBM fromFBM.Wenote that it is not
necessary that the value of γ has fully convergedwithin the frequencywindowprobed by experiment or
simulation. It is sufficient to see from the datawhether a clear trend for a departure from the value 5 2
assumed by Brownianmotion and SBM.

4. Conclusions

The textbook definition of the PSD takes the Fourier transformof a time seriesX(t) over an (ideally) infinite
observation time, averaged over an ensemble of trajectoriesX(t) [1]. Due to experimental and computational
limitation, the observation time of typical single-trajectorymeasurements or supercomputing studies is limited,
and typically also relatively few trajectories aremeasured. To account for these limitation, we introduced the
concept of the single-trajectory PSD in [3] and studied it for both normal Brownianmotion and FBM in [3, 4].
Apart from themore suitable definition in view ofmodern single particle experiments, another feature of the
single-trajectory PSD S( f,T) are the amplitude fluctuations of of S( f,T): instead of being considered as a
nuisance, thesefluctuations indeed provide important information about the specific stochastic process
generating the data [3, 4]—similar to the amplitude fluctuations of the time averagedMSDofX(t) [38–40].

We here studied the spectral content of SBM, a standardmodel for anomalous diffusionwhich isMarkovian
but non-stationary, in terms of the single-trajectory PSD and its full distribution. From analytical and numerical
analyses we showed that the frequency dependence has the invariant scaling form∼1/f 2, fully independent of
the anomalous scaling exponentα.We also showed that the coefficient of variation for anyα practically has the
same frequency dependence as for Brownianmotion. Themain difference between SBMandBrownianmotion
is the ageing behaviour of single-trajectory PSD and itsmean, that is, their dependence on the observation time
T. Similar to Brownianmotion, the single-trajectory PSDof SBMwas shown to be broad in the sense that its
coefficient of variation is larger than unity, such that the information of the textbook definition (2) of the PSD
has a limited information content, and relevant additional information can be obtained from the single-
trajectory analysis.

FBM, in contrast, has stationary increments yet is non-Markovian due to its power-law correlated driving
noise. Both FBMand SBMareGaussian in nature, andwe found both emerging similarities and dissimilarities.
For both sub- and superdiffusion the coefficient of variation for FBMprovides different values fromSBM. In
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addition, subdiffusive FBM is non-ageing but has anα-dependent frequency scaling of the single-trajectory
PSD. The situation is different in the superdiffusive regime: here the frequency dependence and the ageing
behaviour of the single-trajectory PSD for FBM is the same as for SBM, leaving the coefficient of variation as the
onlyway to distinguish the two processes from each other. Concurrently, the PDF of the single-trajectory PSD is
the same for all three cases. Taking together all observables, we conclude that the single-trajectory PSD is able to
distinguish SBM, FBM, andnormal Brownianmotion. In addition to its ability to identify SBMas aGaussian
diffusion process, we note that the single-trajectory PSDprovides afinite-time analogue of theWiener–
Khinchine relation, that can be tested based on experimental data.

The results reported here for SBMadds an important additional piece to the development of a complete
picture for single-trajectory PSD analysis ofmodern single particle tracking data.We demonstrated that it is a
suitable tool to identify the anomalous scaling exponentα from an individual particle trajectoryXα(t).
Moreover, within theGaussian processes studied so far, the single-trajectory PSD framework allows one to tell
the different processes apart from each other, and is thus an outstanding physical observable, providing
complementary information to the (more) standard analyses in terms of ensemble and time averagedMSDs.
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AppendixA.Moment-generating function of the single-trajectory PSD

Themoment-generating function is calculated as
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Appendix B. Ensemble-averaged single-trajectory PSD

Recalling definition (19)wehave
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Plugging in the explicit expressions of g1(α,ω) and g ,2 a w( ) andworking out the integrals we arrive at
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which can be simplified to the form (17).
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AppendixC. Variance of the single-trajectory PSD

In order to obtain the PSDvariance, given in (12)wefirst focus on the calculation of the secondmoment
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Following the same procedure used above for calculating themeanwe can show that the integrals are given by
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Abstract
Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are
popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of
these models typically focus on the moments and the displacement probability density function.
Here we develop the complementary power spectral description for a broad class of
random-diffusivity processes. In our approach we cater for typical single particle tracking data in
which a small number of trajectories with finite duration are garnered. Apart from the
diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity
processes, for which we obtain exact forms of the probability density function. These new
processes are different versions of jump processes as well as functionals of Brownian motion. The
resulting behaviour subtly depends on the specific model details. Thus, the central part of the
probability density function may be Gaussian or non-Gaussian, and the tails may assume
Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive
analytically the moment-generating function for the single-trajectory power spectral density. We
establish the generic 1/f 2-scaling of the power spectral density as function of frequency in all cases.
Moreover, we establish the probability density for the amplitudes of the random power spectral
density of individual trajectories. The latter functions reflect the very specific properties of the
different random-diffusivity models considered here. Our exact results are in excellent agreement
with extensive numerical simulations.

1. Introduction

Diffusive processes came to the attention of the broader scientific community with the experiments on
‘active molecules’ by Brown, who reported the jittery motion of granules of ‘1/4000th to 1/5000th of an
inch in length’ contained in pollen grains as well as control experiments on powdered inorganic rocks [1].
In the mid-19th century physician-physiologist Fick published his studies on salt fluxes between reservoirs
of different concentrations connected by tubes [2]. To quantify the observed dynamics Fick introduced the
diffusion equation (‘Fick’s second law’) for the spatio-temporal concentration profile. A major
breakthrough was the theoretical description of ‘Brownian motion’ and the diffusion equation in terms of
probabilistic arguments by Einstein [3], Smoluchowski [4], and Sutherland [5]. Concurrently Pearson
introduced the notion of the ‘random walk’ [6], and Langevin proposed the intuitive picture of the random
force and the stochastic Langevin equation [7].

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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More recently, major advances in experimental techniques such as superresolution microscopy continue
to provide unprecedented insight into the motion of submicron and even fluorescently tagged molecular
tracers in complex environments such as living biological cells [8–11]. Concurrently, simulations are
becoming ever more powerful and reveal the molecular dynamics in systems such as lipid
membranes [12] or internal protein motion [13]. The data resulting from such complex systems unveil a
number of new phenomena in the stochastic particle motion and thus call for new theoretical concepts
[14–16] on top of already known approaches [17–19].

Among these new insights is that endogenous and introduced tracers in living biological cells perform
anomalous diffusion of the form

〈
r2(t)

〉
≃ Kαtα in a wide range of systems [8,9,20]. For instance,

subdiffusion with 0 < α < 1 was measured for messenger RNA probes in bacteria cells [21,22], for DNA
loci and telomeres in bacteria and eukaryotic cells [22–24], for granules in yeast and human cells [25,26], as
well as for the stochastic motion of biological membrane constituents [27,28]. In these cases the
slower than Brownian, passive tracer motion is effected by the highly crowded nature of the environment, as
can be studied in in vitro systems [29,30]. In fact, even small green fluorescent proteins of some 2 nm in size
were shown to subdiffuse [31]. Conversely, superdiffusion with 1 < α < 2 in biological cells is caused by
active motion of molecular motors due to consumption of biochemical energy units. Examples include the
motor motion itself [32,33], the transport of introduced plastic beads in fibroblast cells [34], RNA cargo in
neuron cells [35], and of granules in amoeba [36].

However, even when the mean squared displacement seemingly suggests Brownian motion based on the
observation that α = 1, remarkable effects have been reported recently. Thus, the motion of micron-sized
tracer beads moving along nanotubes as well as in entangled polymer networks was shown to be ‘Fickian’
(α = 1) yet the measured displacement distribution exhibited significant deviations from the expected
Gaussian law: namely, an exponential distribution of the form P(r, t) ∝ exp(−|r|/λ(t)) with
λ(t) ∝ t1/2 was observed [37,38]. Similar ‘Fickian yet non-Gaussian’ diffusion was found for the tracer
dynamics in hard sphere colloidal suspensions [39], for the stochastic motion of nanoparticles in nanopost
arrays [40], of colloidal nanoparticles adsorbed at fluid interfaces [41–43] and moving along membranes
and inside colloidal suspension [44], and for the motion of nematodes [45]. Even more complicated
non-Gaussian distributions of displacements were recently observed in Dictyostelium discoideum cells
[46,47] and protein-crowded lipid bilayer membranes [48]. While in some experiments the non-Gaussian
shape of P(r, t) is observed over the entire experimental window, others report clear crossover behaviours
from a non-Gaussian shape at shorter time scales to an effective Gaussian behaviour at longer time scales,
for instance, see [37,38].

A non-Gaussian probability density along with the scaling exponent α = 1 of the mean squared
displacement can be achieved in the superstatistical approach, in which it is assumed that individual
Gaussian densities are averaged over a distribution of diffusivities [49–53]. A microscopic realisation of
such a behaviour was proposed for a model of diffusion during a polymerisation process [54].
However, in superstatistics (and in the related process called generalised grey Brownian motion [55–57])
the distribution is a constant of the motion and thus no crossover behaviour as mentioned above can be
described. In order to include such a non-Gaussian to Gaussian crossover models were introduced in which
the diffusion coefficient is considered as a stochastic process itself. In this diffusing-diffusivity picture,
originally proposed by Chubynsky and Slater [58], the stochastic dynamics of the diffusivity is characterised
by a well-defined correlation time above which the diffusivity becomes equilibrated. Concurrently to this
equilibration the ensuing form of P(r, t) becomes effectively Gaussian. Random-diffusivity models have
since then been developed and analysed further, and their application is mainly the diffusive dynamics in
heterogeneous systems [59–70].

In fact, stochastic models based on random diffusivities are ubiquitous in financial mathematics for the
modelling of stock price dynamics. They are commonly known as stochastic volatility models and many
different examples have been analysed in order to identify a proper description for the volatility [71].
Among them, one can find diffusion-based models, where the volatility is described with continuous
sample paths, as well as more complicated dynamics where, for instance, jumps are also allowed or where
the volatility is defined as a function of separate stochastic processes [72]. Financial mathematics hosts a
rich variaty of random-diffusivity models, motivated by various aspects of the observed financial market
data. Here we present a range of additional, new random-diffusivity models in the context of time series
analysis, extending the range of available models beyond the diffusing-diffusivity model developed for
Fickian yet non-Gaussian diffusion processes. These may in turn be useful for financial mathematics. As
both fields are quickly expanding and new facets are being continuously unveiled, we are confident that the
different models introduced here and their detailed features offer the necessary flexibility to account for the
new observations.
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The central purpose of our study here is twofold. First we analyse several new classes of
random-diffusivity models, divided into two groups, jump models and functionals of Brownian motion.
For both groups we consider several concrete examples and derive analytic solutions for the probability
density function (PDF) Π(x, t). The PDF turns out to delicately depend on the precise formulation of the
model: the central part may be Gaussian or non-Gaussian, and the tails may be of Gaussian,
exponential, log-normal, or even power-law shape. The second goal we pursue here are the spectral
properties of random-diffusivity processes. Namely, while earlier studies of the random-diffusivity
dynamics were mainly concerned with the PDF and the mean squared displacement encoded in the process
we assume a different stance and derive the spectral properties of single particle trajectories with finite
observation time, geared for the description of contemporary single particle tracking experiments. Such an
analysis was worked out in detail for specific systems of normal and anomalous diffusion [73–78], and we
here study the commonalities and differences emerging for random-diffusivity scenarios.

Traditionally, power spectral analyses are based on the textbook definition of the spectral density

µ(f ) = lim
T→∞

1
T

〈∣∣∣∣
∫ T

0
eiftx(t)dt

∣∣∣∣
2
〉
. (1)

This definition involves taking the limit of infinite (practically, very long) measurement times as well as
averaging over an ensemble (practically, a large number of) of particles, here and in the following denoted
by angular brackets, ⟨·⟩. Typical single particle tracking experiments, however, are limited in the
measurement time, for instance, due to the lifetime of the employed fluorescent tags or the time a particle
stays in the microscope focus. At the same time, such experiments are often limited to a relatively small
number of individual trajectories. To cater for this common type of experimental situations we avoid
taking the long time and ensemble limits by considering the single-trajectory power spectral density (PSD)

ST(f ) =
1
T

∣∣∣∣
∫ T

0
eiftx(t)dt

∣∣∣∣
2

(2)

as functions of frequency f and measurement time T. We previously analysed the behaviour of ST( f ) for
different diffusion scenarios [76–78] and demonstrated that it is practically useful in the analysis of
experimental data [76,77]. In what follows we derive the moment-generating function (MGF) of the PSD
(2) for different classes of random-diffusivity processes, including several cases not yet studied in literature.
In particular, we obtain the probability density P(A) of the single PSD amplitude, an intrinsically random
quantity for a finite-time measurement of a stochastic motion that was demonstrated to be a very useful
quantity for the analysis of measured particle trajectories. In addition to analytical derivations we present
detailed numerical analyses. This study provides a quite general approach to obtain the PDF for any
diffusing-diffusivity model, providing new insights on this class of processes.

This work is structured as follows. We start from section 2 with a description of the model and in
section 3 we report general results on the spectral properties of this class of processes. Specific examples of
diffusing-diffusivity models are described in sections 4–6. The first example is the well known case in
which the diffusivity is modelled as the squared Ornstein–Uhlenbeck process. In the second group of
examples we analyse two cases in which the diffusivity is defined as a jump process. The third and last group
shows three examples in which the diffusivity is described as a functional of Brownian motion. Finally, in
section 7 we draw our conclusions. In the appendix we report details on the explicit derivations of our
results.

2. Random-diffusivity processes

We consider a class of one-dimensional stochastic processes xt that obey the Langevin equation in the Itô
convention,

ẋt =
√

2D0Ψtξt . (3)

Here D0 is a constant, dimensional coefficient in units length2/time, and in our analysis we will assume the
initial condition x0 = 0. In equation (3) ξt denotes a standard Gaussian white noise with zero mean and
covariance function ξtξt′ = δ

(
t − t′

)
. The bar here and henceforth denotes averaging with respect to the

noise ξt. Lastly Ψt is a positive-definite random function, which multiplies D0 and thus introduces a
time-dependent randomness into the effective noise amplitude. In the following we stipulate that Ψt is
Riemann-integrable on a finite interval (0, T) such that

∫ T
0 dtΨt exists with probability 1.

Note that the case Ψt ≡ 1 corresponds to standard Brownian motion, while a deterministic choice of the
form Ψt = tα−1 produces so-called scaled Brownian motion [79,80]. We will here discuss several particular
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choices for the random function Ψt. In addition to the previously made choice of a squared
Ornstein–Uhlenbeck process we will consider the case when Ψt is a jump-process, that attains independent,
identically distributed random values. We also present several examples when Ψt is subordinated to
standard unbiased Brownian motion Bt: namely, Ψt = B2

t /a2, where a is a model parameter, Ψt = Θ(Bt),
where Θ(x) is the Heaviside theta function, and geometric Brownian motion Ψt = exp(−Bt/a).

Regardless of the choice of the random function Ψt, we can solve the Langevin equation (3) for the
trajectory xt for a fixed realisation of the noise and a given realisation of Ψt, to obtain

xt = (2D0)1/2
∫ t

0
dτΨ1/2

τ ξτ . (4)

The characteristic function of xt can be written down in the form

Φw =

〈
exp

(
iw(2D0)1/2

t
∫
0

dτΨ1/2
τ ξτ

)〉

Ψ

, (5)

where the bar stands for averaging over thermal histories, while the angular brackets denote averaging over
the realisations of the random function Ψt. The thermal average can be performed straightforwardly to give

Φw =

〈
exp

(
−D0w

2
∫ t

0
dτΨτ

)〉

Ψ

. (6)

The desired PDF Π(x, t) can then be written as

Π(x, t) =
1

2π

∫ ∞

−∞
dwe−iwxΦw. (7)

In the following section 4 we provide several examples with explicit expressions for the probability density,
and we will see how different choices of Ψt may lead to PDFs of considerably different shapes.

3. General theory

We first obtain exact expressions for the PSD (2) and then study the limiting behaviour for high
frequencies.

3.1. Exact expressions for arbitrary frequency and observation time
We investigate the PSD of an individual trajectory xt encoded in the stochastic dynamics (3) with t ∈ (0, T),

ST(f ) =
1
T

∫ T

0
dt1

∫ T

0
dt2 cos

(
f (t1 − t2)

)
xt1 xt2 , (8)

as function of the frequency f and the observation time T. We determine the MGF and the PDF of the
random variable ST( f ).

The MGF of the single-trajectory PSD in (8) is defined as

φλ =

〈
exp

(
−λ

T
∫T

0 dt∫T
0 dt′ cos

(
f (t − t′)

)
xtxt′

)〉

Ψ

(9)

with λ ! 0. Relegating some intermediate calculations to appendix A we find the following expression for
φλ in (9) averaged over thermal noises,

φλ =
1

4πλ

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2 exp

(
− z2

1 + z2
2

4λ

)〈
exp

(
−D0

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2
)〉

Ψ

, (10)

where

Qt = z1
cos(ft)√

T
+ z2

sin(ft)√
T

. (11)

Performing the inverse Laplace transform of expression (10) we find the general result for the PDF

p(ST(f ) = S) =
1

4π

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2J0

(√(
z2

1 + z2
2

)
S

)〈
exp

(
−D0

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2
)〉

Ψ

, (12)

where J0(z) denotes the Bessel function of the first kind. A more explicit dependence on the frequency f can

4

118



New J. Phys. 22 (2020) 063056 V Sposini et al

be obtained in the form (see appendix A for more details)

φλ =

〈[
1 +

8λD0

f 2T

∫ T

0
dtΨt

(
1 − cos

(
f (T − t)

))

+
16λ2D2

0

f 4T2

∫ T

0
dt1Ψt1

∫ T

0
dt2Ψt2

(
3
4
+ Lf (t1, t2)

)]−1/2
〉

Ψ

, (13)

where Lf(t1, t2) is defined by the somewhat lengthy expression (A.6).
The expression within the angular brackets in relation (13) is the exact MGF of the PSD of the

process xt in (3) for any fixed realisation of Ψt and holds for arbitrary T and arbitrary f. It also represents
the exact form of the MGF in the case when Ψt is non-fluctuating: as mentioned, in particular, for Ψt = 1 it
describes the MGF in case of standard Brownian motion [76], while the choice Ψt = tα−1 corresponds to
the case of scaled Brownian motion recently studied in [78].

3.2. Exact high frequency limiting behaviour
As already remarked we here concentrate on random processes Ψt which, for any finite T, are
Riemann-integrable with probability 1, which implies that in the limit f →∞ certain integrals vanish, as
shown in appendix B. As a consequence, expression (13) attains the following exact analytic high-frequency
form

φλ ∼
〈[

1 +
8λD0

f 2T

∫ T

0
dtΨt +

12λ2D2
0

f 4T2

(∫ T

0
dt Ψt

)2
]−1/2〉

Ψ

, (14)

in which we dropped the vanishing terms and kept only the leading terms in 1/f.
We note that the Laplace parameter λ appears in the combination D0λ/f 2 so that the high-f spectrum of

a single-trajectory PSD has the universal form

ST(f ) ∼ 4D0A
f 2

, (15)

regardless of the specific choice of Ψt. Here A is a dimensionless, random amplitude, which differs from
realisation to realisation. This means that the characteristic high-frequency dependence of the PSD
can be learned, in principle, from just a single trajectory, in agreement with the conclusions in [76–78].

The MGF Φλ of the random amplitude A follows from (14) and can be written as

Φλ =

∫ ∞

0
dAe−λAP(A)

=
2√
3

∫ ∞

0
dp exp

(
−4p

3

)
I0

(
2p
3

)
Υ(T;λp/T), (16)

where I0(z) is the modified Bessel function of the first kind, and

Υ(T;λ) =

〈
exp

(
−λ

∫ T

0
dtΨt

)〉

Ψ

(17)

is the MGF of the integrated diffusivity (see [64,66])

τT =

∫ T

0
dtΨt . (18)

Relation (16) links the MGFs of A and τT. Moreover, note that the characteristic function of the
diffusing-diffusivity model in (6) is tightly related to the MGF of τT in (17), specifically

Υ(T;D0w
2) = Φw. (19)

As shown in [64] the function Υ(T;λ) determines the first-passage time properties of the stochastic process
xt. Here we show how this function controls the high-frequency behaviour of the PSD.

Taking the inverse Laplace transform with respect to the parameter λ
we evaluate the PDF of A,

P(A) =
2√
3

∫ ∞

0
dzJ0

((
1 +

1√
3

)√
2zA

)
J0

((
1 − 1√

3

)√
2zA

)
Υ(T; z/T). (20)

This exact expression determines the high-f behaviour of the PDF p(ST( f ) = S),
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p(ST(f ) = S) ∼ f 2

4D0
P

(
A =

Sf 2

4D0

)
(21)

as f →∞. The exact high-f forms in (16) and (20) will serve as the basis of our analysis for several
particular choices of the process Ψt in section 4.

Before proceeding, we stop to make several general statements.

(a) Expanding the exponential function on the right-hand side of (16) into the Taylor series in
powers of λ we obtain straightforwardly the relation between the moments of A and the moments of
the integrated diffusivity τT, which is valid for any n,

E{An} =

(
3
4

)n+1/2

n!2F1

(
n + 1

2
,

n + 2
2

; 1;
1
4

)〈
τn

T

Tn

〉

Ψ

, (22)

where 2F1(a, b; c; z) is the Gauss hypergeometric function. Since the moments of τT are related to the
moments of the process xT [66] we also find

E{An} =

(
3
4

)n+1/2 (n!)2

(2n)! 2F1

(
n + 1

2
,

n + 2
2

; 1;
1
4

)〈
x2n

T

(D0T)n

〉

Ψ

. (23)

(b) Starting from the results in (22) and (23) we can readily obtain the moments of ST( f ) as well. In
particular, if we focus on its average value, we have

⟨ST(f )⟩ = 4D0C1

f 2T
⟨τT⟩Ψ =

2C1

f 2T

〈
x2

T

〉

Ψ
, (24)

where C1 = (3/4)3/2
2F1(1, 3/2; 1; 1/4). This suggests that those random-diffusivity models that

display anomalous scaling of the MSD, i.e.,
〈

x2
T

〉

Ψ
≄T, exhibit ageing behaviour, namely, a

dependence of the PSD properties on the trajectory length T.

(c) Equations (15) and (22) permit us to directly access the coefficient of variation γ of the PDF
p(ST( f ) = S) in the high-f limit. We get straightforwardly

γ =

⎛

⎝

〈
S2

T(f )
〉

Ψ
−
〈

ST(f )
〉2

Ψ
〈

ST(f )
〉2

Ψ

⎞

⎠
1/2

≈
(〈

A2
〉
Ψ
− ⟨A⟩2

Ψ

⟨A⟩2
Ψ

)1/2

=

(
3
4

〈
x4

T

〉
Ψ〈

x2
T

〉2

Ψ

− 1

)1/2

=

(
9
4

〈
τ 2

T

〉
Ψ

⟨τT⟩2
Ψ

− 1

)1/2

=

(
9
4

∂2
λΥ(T;λ)|λ=0(

∂λΥ(T;λ)|λ=0
)2 − 1

)1/2

, (25)

which implies that the effective broadness of p(ST( f ) = S) is entirely defined by the first two
moments of the random variable τT in (18). Specifically, it is independent of D0 and f when f is only
large enough.

(d) The behaviour of the left tail of p(ST( f ) = S) can be assessed in the following way. Note that the
product of the two Bessel functions in (20) can be represented as a power series with an infinite
radius of convergence (see (C.1) in appendix C). Inserting the expansion in (C.1) in (20) and
integrating over z we find

P(A) =
2√
3

∞∑

n=0

(−1)n

n!

(√
3 + 1√

6

)2n

2F1

(
−n,−n; 1;

1 −
√

3/2

1 +
√

3/2

)〈
Tn+1

τn+1
T

〉

Ψ

An, (26)

if the inverse moments of the variable τT exist (and do not grow too fast with n). Therefore, the PDF
P(A) is an analytic function of A in the vicinity of A = 0, with

P(0) =
2√
3

〈
T
τT

〉

Ψ

. (27)

We note that below we will encounter both situations when P(A) is analytic and when it is not.
In the latter situation we will show that p(ST( f ) = S) diverges as S → 0, which can be already inferred
from (27).
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4. Diffusivity modelled as squared Ornstein–Uhlenbeck process

In this and the following sections we apply the above general theory to several random-diffusivity models.
According to our main results (16) and (20) one first needs to evaluate the MGF Υ (T;λ) of the integrated
diffusivity τT for a chosen diffusivity process Ψt. To illustrate the quality of the theoretical predictions in the
high-frequency limit we also performed numerical simulations using a Python code.
The Euler integration scheme is used to compute (3), where Ψt is obtained by a numerical integration of
the proper stochastic equation for each case. The PSD is obtained by fast Fourier transform for each
trajectory. Starting from the single-trajectory power spectra the random amplitude A is calculated according
to (15).

Concretely when Ψt in the diffusing-diffusivity model is defined as a stochastic process satisfying some
Langevin equation, the distribution of A is determined by (16) and (20) through the MGF Υ (T;λ) of the
integrated diffusivity τT that can be obtained by solving the associated backward Fokker–Planck equation
(see [66] for details). Here we consider the common example of squared Ornstein–Uhlenbeck process and
related models.

The Ornstein–Uhlenbeck process Yt defined by the stochastic equation

Ẏ t = −τ−1
⋆ Yt + σ⋆ξ

′
t (28)

is a stationary Gaussian process mean-reverting to zero at a time scale τ⋆ and driven by standard Gaussian
white noise ξ′t with volatility σ⋆. The process Ψt = Y2

t is one of the most common models of
diffusing-diffusivity, which satisfies, due to Itô’s formula,

Ψ̇t = τ−1(Ψ̄−Ψt) + σ
√

2Ψtξ
′
t , (29)

where τ = τ⋆/2, σ =
√

2σ⋆, and Ψ̄ = σ2
⋆τ⋆/2 = σ2τ/2. This model was extended in [59–61] by

considering Ψt as the sum of n independent squared Ornstein–Uhlenbeck processes, when (29) still holds
with Ψ̄ = nσ2τ/2. More generally, setting Ψ̄ to be any positive constant, the Langevin equation (29)
defines the so-called Feller process [81], also known as square root process or the Cox–Ingersoll–Ross
process [82], and related in the Heston model [83]. This process was used to model the diffusing-diffusivity
in [63,64], see also the discussion in [61].

The MGF Υ (T;λ) for the integrated squared Ornstein–Uhlenbeck process was first computed by Dankel
[84] and employed in [59–61]. Its computation for the Feller process in (29) was presented in [63],

Υ(T;λ) =

(
4ωe−(ω−1)T/(2τ)

(ω + 1)2 − (ω − 1)2e−ωT/τ

)ν

, (30)

where ω =
√

1 + 4σ2τ 2λ and ν = Ψ̄/(τσ2). In particular, setting Ψ̄ = σ2τ/2 (and thus ν = 1/2) one
retrieves the MGF for the squared Ornstein–Uhlenbeck process. A detailed discussion on the PDF of this

model is presented in [59–61,63,64]. Using the explicit formulas for
〈

x2
T

〉

Ψ
and

〈
x4

T

〉

Ψ
from [61,63] we get

from (25) that

γ =

[
3
4

(
3 +

6τ
νT

(
1 − τ

T
(1 − e−T/τ )

))
− 1

]1/2

. (31)

Moreover, as the second moment
〈

x2
T

〉
shows a linear trend in time [61,63], no ageing of the PSD occurs,

as suggested in (24).
The PDF of A is determined via (20). Since an explicit calculation of this integral is not straightforward

we perform a numerical integration. The results are shown in figure 1, in which we observe excellent
agreement between the simulations and the theoretical results. The 1/f 2 scaling is recovered for any value of
τ⋆. The coefficient of variation γ converges to different values when we change τ⋆, according to (31).
Note that this result reflects the different degrees of broadness of the PDF of the random amplitude A. In
particular for τ⋆ ≪ T we obtain a result that is very similar to the one of Brownian motion, while for
increasing τ⋆ the PDF of the random amplitude A becomes increasingly broader.

5. Diffusivity modelled as a jump process

We divide the interval (0, T) into N equal subintervals of duration δ = T/N and suppose that Ψt is a jump
process on these intervals, of the form

Ψt = ψk on t ∈ ([k − 1]δ, kδ) , k = 1, . . . , N. (32)
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Figure 1. Diffusing-diffusivity defined as the squared Ornstein–Uhlenbeck process, for three different values of τ⋆. Other
parameters are T = 102 and σ⋆ = 1. Panels (a)–(c) show a few realisations of the power spectra from individual trajectories and
the average value for τ⋆ = 100, 101, and 102, respectively. Panel (d) shows a comparison of the mean power spectrum. Panel (e)
shows the coefficient of variation, the black dashed lines correspond to the theoretical result in (31). Panel (f) shows the
distribution of the random amplitude A, the black dashed lines correspond to (20) with the explicit expression of the MGF from
(30).

Furthermore we stipulate that the ψk are independent, identically distributed, positive-definite random
variables with PDF ρ(ψ). In other words, we take that Ψt at each discrete time instant (k − 1)δ attains a new
random value, taken from the common distribution, and stays constant and equal to this value up to the
next discrete instant kδ. For a given realisation of the process Ψt we thus have

τT =

∫ T

0
dtΨt = δ

N∑

k=1

ψk, (33)

and hence

Υ(T;λ) =

(∫ ∞

0
dψρ(ψ)e−λδψ

)T/δ

. (34)

Evaluating explicitly the derivatives ∂λΥ(T;λ) and ∂2
λΥ(T;λ) at λ = 0, we get

⟨τT⟩ = T E{ψk}, (35)

when the first moment E{ψk} exists. From this we infer
〈

x2
T

〉

Ψ
and thus the respective ageing behaviour.

Moreover, the coefficient of variation becomes

γ =

[
9
4

(
1 − δ

T
+

δ

T
E{ψ2

k}
E{ψk}2

)
− 1

]1/2

, (36)

when the first two moments E{ψk} and E{ψ2
k} exist.

Modelling the diffusivity as a jump process can be seen as a way to describe the model in section 4
through a different parametrisation. Indeed, we define a time scale, which is given by the duration δ of each
step interval, and we then introduce a random variability of the diffusivity from one interval to the next.
These diffusivity fluctuations are chosen according to the PDF ρ(ψ). Of course, the main difference comes
from the fact that in this model we do not have any correlation between successive diffusivities. In what
follows we analyse two examples in detail. In the first one we select a Gamma distribution for ρ(ψ), in
analogy with the diffusing-diffusivity model in section 4, where the diffusion coefficient shows a Gamma
distribution as well. In the second example we select a Lévy–Smirnov distribution for ρ(ψ). This allows us
to model a system in which a high probability of having small values of the diffusivity is combined with the
presence of few outliers, which can be related, for instance, to values of the diffusivity at boundaries of the
system.

8

122



New J. Phys. 22 (2020) 063056 V Sposini et al

5.1. Example I: Gamma distribution
First, we consider the Gamma distribution,

ρ(ψ) =
ψν−1

Γ(ν)ψν
0

exp
(
−ψ/ψ0

)
(37)

with the shape parameter ν > 0 and the scale parameter ψ0 > 0. From (34), we deduce

Υ(T;λ) = (1 + λδψ0)−νT/δ. (38)

Position-PDF Π(x, t)
A direct calculation of the PDF for this model can be performed. Starting from (7) and recalling that

Φw = Υ(T;D0w2), we get

Π(x, t) = Nt

(
|x|

2
√

D0δψ0

) νt
δ − 1

2

K 1
2 −

νt
δ

(
|x|√

D0δψ0

)
, (39)

where the normalisation coefficient is

Nt =

√
2
π

/(
(D0δψ0)3/4Γ

(νt
δ

))
. (40)

With the properties

zνK−ν(z) ∼ 2ν−1Γ(ν) − 2ν−3Γ(ν)
ν − 1

z2 (41)

for |z|→ 0 and ν > 1, as well as

K−ν ∼
√

π

2z
e−z (42)

for |z|→∞, the asymptotic behaviours of the PDF are given by

Π(x, t) ∼ Nt 2
νt
δ − 3

2 Γ

(
νt
δ

− 1
2

)[
1 − x2

4
(
νt
δ − 3

2

)
D0δψ0

]
(43)

for |x|→ 0 and νt > 3δ/2, as well as

Π(x, t) ∼ 2√
D0δψ0Γ

(
νt
δ

)
(

|x|
2
√

D0δψ0

) νt
δ −1

exp

(
− |x|√

D0δψ0

)
(44)

for |x|→∞.
The functional behaviour of the PDF Π(x, t) is shown in figure 2. We see that by changing δ we can

observe different shapes of Π(x, t). When δ = 1 [panels (a) and (c)] the Gaussian approximation (51)
already provides a good estimate of the PDF over a wide range. We start observing discrepancies only far
out in the tails, for values which can hardly be reached with real data. When δ = 100 [panels (b) and (d)],
in contrast, the exponential tails are distinct. The behaviours at small and large x are well described by the
asymptotic expansions in (43) and (44). Note that the value of δ in here plays a role similar to the
correlation time τ⋆ in the diffusing-diffusivity model defined in section 4. The only difference is that by
changing τ⋆ in the model above we also change the average diffusivity while, in this case, changes in the
value of δ do not affect the average diffusivity, which is fixed once we choose the jumps PDF in (37).
Amplitude-PDF P(A)

The MGF of the amplitude A of the jump process-diffusivity model is given by

Φλ =
2√
3

∫ ∞

0
dp

exp
(
−4p/3

)
I0(2p/3)

(
1 + pψ0λδ/T

)νT/δ , (45)

so that

P(A) =
2√
3

∫ ∞

0
dz

J0
((

1 + 1/
√

3
)√

2zA
)

(
1 + zψ0δ/T

)νT/δ J0

((
1 − 1/

√
3
)√

2zA
)
. (46)

In particular one has E{ψk} = νΨ0 and E{ψ2
k} = Ψ2

0ν(ν + 1), thus from (35) we readily obtain〈
x2

T

〉

Ψ
≃ T, demonstrating that in this process no ageing behaviour is displayed. Moreover, from (36) we

get

γ =

[
9
4

(
1 +

δ

νT

)
− 1

]1/2

. (47)
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Figure 2. Position-PDF at a fixed time t = 50 for diffusivity modelled as a jump process with Gamma distribution (ψ0 = 1 and
ν = 0.5). Panels (a) and (c) correspond to δ = 1, and panels (b) and (d) to δ = 100. Panels (a) and (b) show a comparison
between the numerical and the analytic result in (39) (black dashed lines). Panel (c) shows a comparison between the analytic
result (39) for δ = 1 and its Gaussian approximation (51). Panel (d) compares between the analytical result (39) for δ = 100 and
its asymptotic behaviours in (43) and (44).

In the limit δ → 0 and N →∞, with δN = T fixed, we have

Υ(T;λ) ∼ exp (−νψ0Tλ) . (48)

Hence,

Φλ =
2√
3

∫ ∞

0
dp exp

(
−
(

4
3
+ νψ0λ

)
p

)
I0

(
2p
3

)

=

(
1 + 2νψ0λ+

4
3

(νψ0λ)2

)−1/2

(49)

and

P(A) =
2√
3

∫ ∞

0
dzJ0

((
1 + 1/

√
3
)√

2zA
)

J0

((
1 − 1/

√
3
)√

2zA
)

e−νψ0z

=
2√

3νψ0
exp

(
− 4A

3νψ0

)
I0

(
2A

3νψ0

)
. (50)

This means that we have essentially the same behaviour as for standard one-dimensional Brownian motion,
however, with renormalised coefficients (compare with the result in [76]), in agreement also with what we
obtained for the diffusing-diffusivity model in section 4, when selecting τ⋆ ≪ T. Indeed, if we use (48) and
recall that Φw = Υ (T;D0w2), we readily obtain

Π(x, t) ∼ 1
2
√
πνψ0D0t

exp

(
− x2

4νψ0D0t

)
. (51)

In figure 3 we show a direct comparison between the numerical and theoretical results for the Gamma
distribution with ψ0 = 1 and ν = 0.5. We observe that the average value of the power spectrum is not
affected by the value of δ. Nevertheless, when we plot some sample single-trajectory power spectra we
notice a larger amplitude scatter for larger values of δ. This may be clearly seen in the distribution of the
random variable A, which is broader for larger values of δ, and consequently in the different limiting
values of the coefficient of variation. Thus, the fluctuations are sensitive to different parameters of the
distribution (37), while the mean behaviour is not.

10

124



New J. Phys. 22 (2020) 063056 V Sposini et al

Figure 3. Diffusivity modelled as a jump process with Gamma distribution (ψ0 = 1 and ν = 0.5), for varying δ and with
trajectory length T = 102. Panels (a)–(c) show a few realisations of the power spectra from individual trajectories and the mean
value for δ = 102, 5 × 101, and 100, respectively. Panel (d) shows the coefficient of variation for three values of δ—the black
dashed lines represent the theoretical result (36). Panels (e) and (f) depict the distribution of the random amplitude A in linear,
semi-log (inset) and log–log scale. Here the black dashed line corresponds to the theoretical result (50).

Figure 4. Position-PDF at fixed time t = 50 for diffusivity modelled as a jump process with Lévy–Smirnov distribution,
Ψ0 = 0.5, for a) δ = 1 and b) δ = 100. The black dashed line represents the analytical result (54).

5.2. Example II: Lévy-Smirnov distribution
In our second example we consider the Lévy–Smirnov distribution

ρ(ψ) =

√
ψ0

π

exp
(
−ψ0/ψ

)

ψ3/2
, (52)

for which equation (34) yields

Υ(T;λ) = exp
(
−2T

√
ψ0λ/δ

)
. (53)

Note that in this case E{ψk} and E{ψ2
k} are not defined, such that

〈
x2

T

〉

Ψ
does not exist either. This

suggests that a clear ageing behaviour cannot be defined and that fluctuations are what dominates the
system.

Position-PDF Π(x, t)
As a consequence, we obtain the following analytical expression for the PDF,

Π(x, t) =
2t
√

D0ψ0/δ

π

1
4t2D0ψ0/δ + x2

, (54)

where we recognise the power-law behaviour, that is already built into relation (52). Note that expression
(54) represents the Cauchy distribution, whose median grows with time t.

The PDF is shown for two different values of δ in figure 4. We observe that, differently from the case
with the Gamma distribution above, we do not see significant changes in the shape of the distribution when
varying δ. For both cases, δ = 1 and δ = 100, the power-law behaviour (54) is readily discernible.

Amplitude-PDF P(A)
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Figure 5. Diffusivity modelled as a jump process with Lévy–Smirnov distribution with ψ0 = 0.5, for varying δ and with
trajectory length T = 102. Panels (a)–(c) show a few realisations of the power spectra from individual trajectories and the mean
value for δ = 102, 101, and 100, respectively. Panel (d) compares the mean values of the power spectrum. Panels (e) and (f) show
the distribution of the random amplitude A in linear, semi-log (inset) and log–log scale—the black dashed line corresponds to
the analytical result (56).

The MGF for the random amplitude A reads

Φλ =
2√
3

∫ ∞

0
dp exp

(
−4

3
p − 2

√
pψ0λT/δ

)
I0

(
2p
3

)
(55)

and

P(A) =
2√
3

∫ ∞

0
dzJ0

((
1 + 1/

√
3
)√

2zA
)

J0

((
1 − 1/

√
3
)√

2zA
)

exp
(
−2

√
zψ0T/δ

)

=
δ√

3ψ0T

1
(1 + ξ)3/2 2F1

(
3
4

,
5
4
; 1;

ξ2

4(1 + ξ)2

)
, (56)

with ξ = (4Aδ)/(3ψ0T). Note that in the limit A →∞, the leading behaviour of P(A) follows

P(A) ∼ 1
A3/2

. (57)

Thus, the PDF P(A) inherits the property of diverging moments from the parental Lévy–Smirnov
distribution.

Figure 5 summarises the properties of the PSD for the jump process with Lévy–Smirnov distribution
(ψ0 = 0.5). We observe that, despite the fat-tailed PDF in (54) we still observe the universal 1/f 2 scaling of
the PDF. Concurrently, the PDF of the random amplitude A features the power-law behaviour according to
(56). Note that the non-existence of the moments of P(A) generates a pronounced scatter in the amplitude
of the average power spectrum.

6. Diffusivity modelled as a functional of Brownian motion

We now focus on the case when Ψt is a genuine ‘diffusing-diffusivity’ in the sense that it is subordinated to
Brownian motion Bt starting at the origin at t = 0, with zero mean and covariance function

⟨BtBt′ ⟩ = 2DB min{t, t′}. (58)

We here choose Ψt = V[Bt], where V is some prescribed, positive-definite function. Note that random
variables of the form

∫ T
0 dtV[Bt] appear across many disciplines, including probability theory, statistical

analysis, computer science, mathematical finance and physics. Starting from earlier works [87–92], much
effort has been invested in the analysis of the PDF and the corresponding Laplace transforms of these
processes. A large body of exact results has been obtained within the last seven decades (see, e.g., [93–98]
and further references therein). In the following, we consider three particular examples of V[Bt],
for which we can carry out exact calculations and obtain insightful results.
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6.1. Example I: Ψt = Θ(Bt)
First, we choose the cut-off Brownian motion

Ψt = Θ(Bt), (59)

where Θ(x) is the Heaviside theta function. The process xt exhibits standard diffusive motion, once Bt > 0,
and pauses, remaining at the position it has reached when Bt goes to negative values. The random variable∫ T

0 dtΨt defines the time spent by a Brownian trajectory, starting at the origin, on the positive
real line within the time interval (0, T). The time intervals between any two ‘diffusion tours’, as well as their
duration, are random variables with a broad distribution.

This example is of particular interest as it represents an alternative to other standard models describing
waiting times and trapping events. One could think, for instance, of the comb model, where a particle,
while performing standard Brownian motion along one direction, gets stuck for a random time in branches
perpendicular to the direction of the diffusive motion [99,100].

The MSD of the process xt, as one can straightforwardly check, is just
〈

x2
t

〉

Ψ
= D0t, (60)

that is, a standard diffusion law in which the diffusion coefficient is reduced by the factor 1/2. This means
that no ageing behaviour is observed. For higher order moments one expects, of course, significant
departures from the standard diffusive behaviour.

Position-PDF Π(x, t)
The MGF of the random variable τT =

∫ T
0 dtΘ(Bt), which has a bounded support on (0, T), was first

derived by Kac [90], and Erdös and Kac [91]. Rewriting their result in our notation we have

Υ(T;λ) =

〈
exp

(
−λ

∫ T

0
dtΘ(Bt)

)〉

Ψ

= e−λT/2I0

(
λT
2

)
. (61)

Note that the inverse Laplace transform of this expression produces the celebrated Lévy arcsine law [101].
With result (61), the desired PDF is given by

Π(x, t) =
1
π

∫ ∞

0
dw cos(wx) exp

(
−D0t

2
w2

)
I0

(
D0t

2
w2

)

=
exp

(
−x2/(8D0t)

)

2
√
π3D0t

K0

(
x2

8D0t

)
. (62)

Recalling that K0(z) ∼ −ln(z/2) − γEM for |z|→ 0, where γEM is the Euler–Mascheroni constant, for small
x we have

Π(x, t) ∼
− ln

(
x2

8D0t

)
− γEM

2
√
π3D0t

, |x|→ 0. (63)

For large x we use (42) and obtain the asymptotic behaviour for the PDF,

Π(x, t) ∼ 1
π|x| exp

(
− x2

4D0t

)
, |x|→∞. (64)

The PDF for this process is shown in figure 6. We see that the central part of the PDF is strongly
non-Gaussian, while the tails are Gaussian, in agreement with the asymptotic behaviours (63) and (64).

Amplitude-PDF P(A)
Inserting expression (61) into (16) and performing the integration over z, we arrive at the following,

remarkably compact expression for the MGF,

Φλ =
2
√

2

π
√

2 + 3λ
K
(

2λ
2 + 3λ

)
(65)

where K(x) is the complete elliptic integral of the first kind,

K(x) =
∫ π/2

0

dφ√
1 − x sin2(φ)

. (66)

Note that the high-f asymptotic form in (65) is independent of the observation time T.
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Figure 6. Position-PDF at fixed time t = 50 for diffusivity modelled as Heaviside function of Brownian motion, with DB = 1.
Panel (a) compares the numerical results with the analytical expression (62) (black solid line). Panel (b) shows a comparison
between the analytical result and its asymptotic behaviours (63) and (64).

To proceed we take advantage of the definition of the complete elliptic integral and perform the inverse
Laplace transform of (65). After some formal manipulations this yields the following expression for the
PDF,

P (A) = 2

√
2

3π3 A

∫ π/2

0

dφ√
1 − 2

3 sin2(φ)
exp

(
− 2A

3
(
1 − 2

3 sin2(φ)
)
)
. (67)

Multiplying both sides of the latter equation by An and integrating over A from 0 to ∞, we get the following
simple expression for the moments of the random amplitude A of arbitrary order,

E{An} =
Γ
(
n + 1

2

)
√
π

(
3
2

)n

2F1

(
−n,

1
2
; 1;

2
3

)
. (68)

Then, from (25), we readily get the coefficient of variation, γ =
√

19/8.
Note that the integrals

∫∞
0 dλλnΥ(T;λ) diverge for any n > 0, which means that τT does not have

negative moments. One therefore expects that P(A) is a non-analytic, diverging function in the limit A → 0.
The small-A asymptotic behaviour of P(A) can be deduced directly from (67). Expanding the exponential
function in the integral into the Taylor series in powers of A and expressing the emerging generalised elliptic
integrals via their representations in terms of the toroidal functions Pn−1/2 (cosh(η)) (see (C.3) in appendix
C), we get

P (A) =

√
2√
3πA

∞∑

n=0

(−1)n

n!

(
2√
3

)n

Pn−1/2

(
2√
3

)
An. (69)

For the opposite limit A →∞, we conveniently rewrite equation (56) in the form

P(A) = 2

√
2

3π3 A
exp

(
−2A

3

)∫ π/2

0

dφ√(
1 − 2

3 sin2(φ)
) exp

(
−2A

3

2
3 sin2(φ)

1 − 2
3 sin2(φ)

)

= 2

√
2

3π3 A
exp

(
−2A

3

) ∞∑

n=0

(∫ π/2

0
sin2n(φ)

)(
2
3

)n

L(−1/2)
n

(
2A
3

)

=
2

3π

√
3

2A
exp

(
−2A

3

) ∞∑

n=0

Γ(n + 1/2)
n!

(
2
3

)n

L(−1/2)
n

(
2A
3

)
, (70)

where L(−1/2)
n (x) are associated Laguerre polynomials. We focus next on the asymptotic behaviour of the

function

g(u) = u−1/2
∞∑

n=0

Γ(n + 1/2)
n!

(
2
3

)n

L(−1/2)
n (u) (71)

in the limit u →∞. Performing a Laplace transform of g(u) we readily get

Ls {g(u)} =

∫ ∞

0
du exp (−su) g(u)

=
1

s1/2

∞∑

n=0

Γ2(n + 1/2)
(n!)2

(
2(s − 1)

3s

)n

=
2

s1/2
K
(

2(s − 1)
3s

)
, (72)
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Figure 7. Diffusivity modelled as Heaviside theta function of Brownian motion, with DB = 1 and trajectory length T = 102.
Panel (a) shows the mean power spectrum along with a few realisations of power spectra from individual trajectories. In the inset
the coefficient of variation is shown, the black dashed line indicates the theoretical value

√
19/8 ≈ 1.54. Panel (b) shows the

distribution of the random amplitude A. Here the black dashed line corresponds to the numerical evaluation of (67).

where K is the complete elliptic integral defined in equation (66). In the limit s → 0 (corresponding to
A →∞),

Ls {g(u)} ∼ 2
s1/2

K
(
− 2

3s

)
= 2

∫ π/2

0

dφ√
s + 2

3 sin2(φ)
. (73)

Inverting the Laplace transform and integrating over φ, we find

g(u) ∼ π√
u

exp
(
−u

3

)
I0

(u
3

)
→

√
3
2

1
u
. (74)

Thus, in the limit A →∞, the leading behaviour of the PDF P(A) yields in the form

P(A) ∼ 1
πA

√
3
2

exp

(
−2A

3

)
. (75)

Figure 7 summarises the numerical results for this case. Again we observe excellent agreement with the
theoretical results.

6.2. Example II: Ψt = exp(−Bt/a)
As the second example, we link the process Ψt to so-called geometric Brownian motion. Random variables
of this form have been widely studied in the mathematical finance literature (see, e.g., [93]). Within the
latter domain, they emerge very naturally as representation of the solution of the celebrated Black–Scholes
equation. Their time-averaged counterpart is related to the so-called asian options [102–104] (see also
[105,106]) and also appears in different contexts in the analysis of transport phenomena in disordered
media (see, e.g., [107–113]) as well as characterises some features of the melting transition of
heteropolymers [114].

In our notation, we set

Ψt = exp

(
−Bt

a

)
, (76)

where a is a parameter of unit length. In this case, xt exhibits an anomalously strong superdiffusion such
that

〈
x2

t

〉
= 2D0

∫ t

0
dτ⟨Ψτ ⟩Ψ = 2D0

∫ t

0
dτ exp

(
DBτ/a2

)

=
2D0a2

DB

(
exp

(
DBt/a2

)
− 1

)
. (77)

Note that when DBt/a2 ≪ 1 we have
〈

x2
t

〉
∼ 2D0t. These results for the MSD demonstrate that for this

model, in general, we observe ageing behaviour, though the latter may be hidden while analysing very short
trajectories.

Position-PDF Π(x, t)
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Figure 8. PDF at time t = 50 for diffusivity modelled as geometric Brownian motion, with DB = 1 and a = 10. Panel (a)
compares the numerical result and the analytical expression (79) (black solid line). Panel (b) shows a comparison between the
analytical result and its asymptotic behaviours (81) and (82).

The Laplace transform of the time-averaged geometric Brownian motion in our notation reads
[108–110]

Υ(T;λ) =

〈
exp

(
−λ

∫ T

0
dt exp

(
−Bt

a

))〉

Ψ

=
2a√
πDBT

∫ ∞

0
dx exp

(
− a2x2

DBT

)
cos

(
2a

√
λ

DB
sinh(x)

)

=
2
π

∫ ∞

0
dx exp

(
−DBT

4a2 x2

)
cosh

(πx
2

)
Kix

(
2a

√
λ

DB

)
, (78)

where Kix is the modified Bessel function of the second kind with purely imaginary index. As a
consequence, the PDF is given by

Π(x, t) =

(
2
π

)3/2∫ ∞

0
dz exp

(
−DBt

4a2
z2

)
cosh

(πz
2

)∫ ∞

0
dw cos(wx)Kiz

(
2a|w|

√
D0

DB

)

=
1

2
√
πb2t(b2

1 + x2)
exp

(
−arcsinh2(x/b1)

4b2t

)
, (79)

where

b1 = 2a

√
D0

DB
, b2 =

DB

4a2
. (80)

Recalling that arcsinh(z) ∼ z for z → 0 and arcsinh(z) ∼ ln(2z) for z →∞, we express the asymptotic
behaviour of the PDF as

Π(x, t) ∼ 1

2
√
πb2t(b2

1 + x2)
exp

(
− x2

4b2tb2
1

)
(81)

for |x|→ 0 and

Π(x, t) ∼ 1

2
√
πb2t(b2

1 + x2)
exp

(
− ln2(2x/b1)

4b2t

)
(82)

for |x|→∞.
The PDF is shown in figure 8. In this case, according to the asymptotic expansions (81) and (82) we

observe that the central part of the PDF is approximately Gaussian, while the tails follow a log-normal
shape.

Amplitude-PDF P(A)
Evaluating explicitly ∂λΥ(T;λ) and ∂2

λΥ(T;λ) at λ = 0, we get

γ =

[
3
8

(
3 + eDBT/a2

(
2 + eDBT/a2

))
− 1

]1/2

. (83)

Figure 9 summarises our numerical results, which show excellent agreement with the theoretical prediction.
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Figure 9. Diffusivity modelled as geometric Brownian motion, with DB = 1, a = 10, and trajectory length T = 102. Panel (a)
shows the mean power spectrum and a few realisations of the power spectra from individual trajectories. In the inset the
coefficient of variation is shown—the black dashed line corresponds to the theoretical result (83). Panel (b) shows the
distribution of the random amplitude A. Here the black dashed line corresponds to the numerical evaluation of (20), by making
use of (78) also.

6.3. Example III: Ψt = B2
t /a2

Finally, we consider squared Brownian motion

Ψt =
B2

t

a2
, (84)

where a is a parameter of unit length. Note that here the process xt in (3) is superdffusive, such that its
mean-squared displacement obeys 〈

x2
t

〉

Ψ
=

2D0DB

a2
t2, (85)

and thus a pronounced ageing behaviour occurs.
This example, similarly to the diffusing-diffusivity model in section 4, defines the diffusivity as the

squared of an auxiliary variable, though in this case the variable follows a Brownian motion instead of the
OU process. This choice implies that there is no crossover time, in contrast to the standard
diffusing-diffusivity model, and thus we obtain a model which is always non-stationary. In particular, we
introduce a larger separation between small and large values of the diffusivity, which may be interpreted as
non-linear effects of the heterogeneity. Note that, if we were to define a random duration δ of the intervals,
this model could be linked to a correlated CTRW [85,86].

Position-PDF Π(x, t)
The Laplace transform of the PDF of integrated squared Brownian motion was first calculated in the

classical paper by Cameron and Martin [88,89] (see also [90]). In our notation,

Υ(T;λ) =

〈
exp

(
− λ

a2

∫ T

0
dtB2

t

)〉

Ψ

=
1√

cosh
(√

4DBT2 λ/a2
) , (86)

and the PDF Π(x, t) for this process is given by

Π(x, t) =
1
π

∫ ∞

0

dw cos (wx)√
cosh

(
w
√

4DBD0t2/a2
)

=
1√
2ct

sech
(πx

ct

)
P ix

ct −
1
2

(0) , (87)

where c = 2
√

D0DB/a and Pν(z) is the Legendre function of the first kind. The latter admits the
representation

Pix/ct−1/2(0) =
√
π

/[
Γ

(
ix
2ct

+
3
4

)
Γ

(
− ix

2ct
+

3
4

)]
, (88)

such that

Π(x, t) =
√
π

ct
√

2

sech( πx
ct )

Γ
(

ix
2ct +

3
4

)
Γ
(
− ix

2ct +
3
4

) . (89)
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Figure 10. Position-PDF at fixed time t = 50 for diffusivity modelled as squared Brownian motion, with DB = 1 and a = 1.
Panel (a) compares between the numerical result and expression (87) (black solid line). Panel (b) shows a comparison between
the analytical result and its asymptotic behaviour (92) and the small x behaviour of sech(z) form discussed in the text.

In the limits,

Γ

(
ix
2ct

+
3
4

)
Γ

(
− ix

2ct
+

3
4

)
∼ Γ

(
3
4

)2

(90)

for |x|→ 0, and

Γ

(
ix
2ct

+
3
4

)
Γ

(
− ix

2ct
+

3
4

)
∼ π

√
2|x|
ct

exp

(
−π|x|

2ct

)
(91)

for |x|→∞. As a consequence, the behaviour of the PDF for small x is approximately Gaussian,
≃ exp(−const.x2), where const. is a constant that can be expressed via the polylogarithm function.
Conversely,

Π(x, t) ∼ 1
πct|x| exp

(
−π|x|

2ct

)
(92)

for |x|→∞. The shape of the PDF is shown in figure 10. We clearly observe that the central part is
approximately Gaussian while the tails have an exponential trend, as expressed explicitly by the asymptote
(92).

Amplitude-PDF P(A)
Using (86) we then find that the MGF of the random amplitude A and the corresponding PDF are given

by the integrals

Φλ(A) =
2√
3

∫ ∞

0
dp

exp
(
−4p/3

)
I0(2p/3)√

cosh
(√

4DBTλp/a2
) (93)

and

P(A) =
2√
3

∫ ∞

0
dz

J0
(
(1 + 1/

√
3)
√

2Az
)

√
cosh

(√
4DBTz/a2

) J0

(
(1 − 1/

√
3)
√

2Az
)
. (94)

The series representation of P(A) in (94) can be found directly by taking advantage of expansion (C.2) in
appendix C and our result (56), to yield

P(A) =
1

2
√

6π

a2

DBT

∞∑

n=0

(−1)nΓ
(
n + 1/2

)
(
n + 1/4

)2
n!(1 + ξn)3/2 2F1

(
3
4

,
5
4
; 1;

ξ2
n

4(1 + ξn)2

)
(95)

with

ξn =
a2A

3
(
n + 1/4

)2
DBT

. (96)

Note that the integrals ∫ ∞

0
dλλnΥ(T;λ) (97)

exist for any n > 0 and, hence, all negative moments of
∫ T

0 dtB2
t exist, as well. As a consequence, P(A) is an

analytic function of A. We immediately obtain the coefficient of variation from (25) as γ =
√

17/2.
Figure 11 displays numerical results for which we observe excellent agreement with the theoretical
expressions.
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Figure 11. Diffusivity modelled as squared Brownian motion, with DB = 1, a = 1, and trajectory length T = 102. Panel (a)
shows the mean power spectrum along with a few realisations of power spectra from individual trajectories. In the inset the
coefficient of variation is displayed—the black dashed line indicates the theoretical value

√
17/2 ≈ 2.06. Panel (b) shows the

distribution of the random amplitude A. Here the black dashed line corresponds to the numerical evaluation of (94).

Table 1. Collection of the main results for the different random-diffusivity models with respective equation numbers. Next to the
definitions of the models we refer to the MGF of the integrated diffusivity τT, the coefficient of variation γ, which can play the role of an
indicator for each model, and the ageing behaviour.

Random-diffusivity model MGF of τT γ Ageing

Ψt = Y2
t , Yt = OU process equation (30) equation (31) ×

Ψt = ψk ρ(ψ) gamma distr. equation (38) equation (47) ×
ρ(ψ) Lévy–Smirnov distr. equation (53) not defined not defined

Ψt = V[Bt] V[Z] = θ(Z) equation (61)
√

19/8 ×
V[Z] = exp(−Z) equation (78) equation (83) "
V[Z] = Z2 equation (86)

√
17/2 "

7. Conclusions

Quite typically stochastic time series are evaluated in terms of the ensemble averaged MSD
〈

x2
t

〉

Ψ
. It has

the advantage that fluctuations are reduced due to the averaging over many individual trajectories.
However, this is not always possible. Namely, for the by-now routine results from single particle tracking
experiments typically rather few, finite time series are obtained. These are then evaluated in terms of the
time-averaged MSD. While this quantity may also be averaged over the available individual trajectories, it is
increasingly realised that the amplitude fluctuations between individual trajectories in fact harbours
important quantitative information characteristic for a given stochastic process [14,15,115–117].

Similar to the consideration of time averaged MSDs for trajectories of finite measurement time T, we
here analysed the single-trajectory PSD of stochastic trajectories characterised by random diffusivities.
Following our previous work on standard Brownian motion [76], as well as fractional [77] and scaled
Brownian motion [78], we here investigated the detailed behaviour of single-trajectory PSDs of a broad
class of diffusing-diffusivity models. These have recently gained considerable attention as simple models for
diffusion processes in heterogeneous media. We described a general procedure to obtain the position PDF
Π(x, t) for all such models. The main ingredient in the calculation is the MGF of the integrated diffusivity,
showing explicitly that different choices of the underlying diffusivity Ψt lead to distinctly different emerging
behaviours, as summarised in table 1.

We started our discussion from the by-now well-established and widely studied model of
‘diffusing-diffusivity’, namely the case when Ψt is chosen as the squared of the Ornstein–Uhlenbeck
process. We then discussed the second case, in which Ψt is defined as a jump process. The properties of this
model depend strongly on the exact distribution chosen for the increment variables. We considered two
examples, a Gamma distribution and a Lévy–Smirnov distribution. Finally, three cases in which the
diffusivity is modelled as a functional of Brownian motion were discussed.

The main result of this work is that, regardless of the different properties of all these diffusing-diffusivity
models we obtained a universal high-f asymptote of the PSD. This behaviour is characterised by a 1/f 2

scaling, in analogy to Brownian motion [76] and scaled Brownian motion [78]. A first way to discriminate
among models lies in the study of the ageing behaviour of the PSD, as already discussed in [78]. Indeed, we
showed that the dependence of the PSD on the trajectory length T appears only for those
random-diffusivity models that are characterised by an anomalous scaling of the MSD. We also showed that
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differences from one model to another appear in higher order moments. In particular, we obtained exact
expressions for the coefficient of variation in all cases, proving that the latter can be a good indicator of the
specific model (see table 1).

Finally, we established that the PDF of the random amplitude A carries most of the meaningful
information. Namely, the coefficient of variation may be directly calculated from its moments. Moreover, its
MGF is tightly related to that of the integrated diffusivity, thus reflecting the particular properties of the
process Ψt. As we showed before [76,77], the distribution P(A) can even be evaluated meaningfully from
experimental data of fairly short trajectories. In its useful role in data analysis the single-trajectory PSD
approach thus complements other methods such as the time-averaged MSD and its amplitude variation
[14,115,118–124], ageing analyses [77,115], or, in the context of non-Gaussian diffusion, the codifference
methods [125].

The role of distinguishing different physical processes from measured single trajectory data therefore
heavily lies on the amplitude fluctuations and the coefficient of variation encoded in them. This improved
understanding of the single-trajectory PSD should therefore replace a common claim in many textbooks
according to which the 1/f 2-dependence of the spectrum was a fingerprint of Brownian motion. In line to
previous works [76–78], in which we already alerted that this may be a deceptive concept, we have shown
here that a wide range of random-diffusivity models with distinctly different behaviour and showing
anomalous diffusion, exhibit precisely the 1/f 2-dependence. Therefore, any experimental observation of the
spectral density varying as 1/f 2 alone cannot be taken as proof of standard Brownian motion. One
necessarily needs to consider the ageing behaviour of the spectral density, as in the case of superdiffusive
fractional Brownian motion or scaled Brownian motion, evaluate the coefficient of variation of the spectral
density, or determine the functional form of the PDF P(A) of the amplitude fluctuations.

In light of this the relevance of the presented results is twofold. First, they provide new and useful
insights into the increasingly popular class of stochastic processes with random diffusivity used in the
description of Fickian yet non-Gaussian diffusion in heterogeneous systems. Second, the results continue
our ongoing analysis based on the single-trajectory PSD for different classes of stochastic processes, showing
in particular the persistence of the 1/f 2-scaling of the PSD, which appears to be robust—as long as we do
not introduce correlations in the driving noise of the system, as studied in [77].

We note that if we redefine ẋt in the Langevin equation (3) as Ṡt/St, we recover the seminal
Black–Scholes (or Black–Scholes–Merton) equation for an asset price St with zero-constant trend and
stochastic volatility

√
D0Ψt used in financial market models [126–128]. The relevance of

diffusing-diffusivity approaches to economic and financial modelling was also discussed for the case of the
squared Ornstein–Uhlenbeck process [61]. Namely, the resulting stochastic equation for D0Ψt in this case is
nothing else than the Heston model [83], a special class of the Cox–Ingersson–Ross model [82,129], and as
such specifies the time evolution of the stochastic volatility of a given asset [63,83,130]. We note in this
context that diffusing-diffusivity models are intimately related to random-coefficient autoregressive
processes used in financial market analysis [131].

We finally note that realisation-to-realisation fluctuations of a stochastic process also turn out to be
relevant in many scenarios of first-passage time statistics [132,133]. These fluctuations are connected to the
typically broad (‘defocused’) PDFs of first-passage times even in simple geometries and the related feature
of geometry-control [134–136]. It will be interesting to extend the existing first-passage time analyses of
diffusing-diffusivity models [64,68] to the different processes studied herein, and to more complex
geometries. In particular, given that for fractional Brownian motion the first-passage time distributions and
the return-intervals distribution (the times between consecutive crossings of the diffusion process through a
given level) have power-law exponents that are directly related to the scaling exponent of the power
spectrum [137,138], one might speculate whether the corresponding distributions here are universal.
However, the universal spectral behaviour predicted in this paper for a variety of random-diffusing models
does not necessarily imply that the first-passage time properties will be the same for all the models. In fact,
we expect that the first-passage time densities will exhibit different behaviours for the various models, to the
same extent as the position PDFs unveiled here are significantly different from each other. The detailed
analysis of the first-passage time properties of the new random-diffusivity models studied here constitutes
one of the main directions of our future research.
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Appendix A. Derivation of the moment-generating function of the power spectral
density

It is convenient to rewrite formally the definition of the PSD in (8) in the form

ST(f ) =
1
T

(∫ T

0
dt cos(ft)xt

)2

+
1
T

(∫ T

0
dt sin(ft)xt

)2

. (A.1)

Our first step then consists in a standard linearisation of the expression in the exponential in (9). Taking
advantage of the integral identity

exp
(
−b2/(4c)

)
=

√
c
π

∫ ∞

−∞
dz exp(−cz2 + ibz) (A.2)

for c > 0, we formally recast (9) into the form

φλ =
1

4πλ

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2 exp

(
− z2

1 + z2
2

4λ

)〈
exp

(
i∫T

0 dtQtxt
)〉

Ψ
, (A.3)

where Qt is defined in (11). Now, the averaging over thermal noise realisations can be performed
straightforwardly, yielding

exp
(
i∫T

0 dtQtxt
)
= exp

(
i
√

2D0∫T
0 dt

√
Ψtξt∫T

t dτQτ

)

= exp

(
−D0

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2
)

, (A.4)

where we integrated by parts and used (3). Combining (A.3) and (A.4) we arrive at our general result (10).
The derivation of our main result (13) takes advantage of the explicit form of Q in (11) and the

following calculation,

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2

=
z2

1

f 2T

∫ T

0
dtΨt

(
sin(f T) − sin(ft)

)2
+

z2
2

f 2T

∫ T

0
dtΨt

(
cos(ft) − cos(f T)

)2

+
2z1z2

f 2T

∫ T

0
dtΨt

(
sin(f T) − sin(ft)

) (
cos(ft) − cos(f T)

)
. (A.5)

Inserting the latter expression into (10) and performing the integrations over z1 and z2 we find the
expression in (13) with Lf(t1, t2) explicitly defined by

Lf (t1, t2) =
1
2

cos(2f t2) − 1
2

cos(2f t1) − 1
2

cos(f (T − t1)) − 1
2

cos(f (T − t2)) − 1
4

cos(2f (T − t1))

− 1
2

cos(2f (T − t2)) +
1
4

cos(f (3T − t2)) − 1
4

cos(f (3T − t1)) +
3
4

cos(f (T + t1)) − 3
4

cos(f (T + t2))

− 1
2

cos(f (t1 − t2)) − 1
4

cos(2f (t1 − t2)) +
1
4

cos(f (T − 2t1 − t2)) − 1
4

cos(f (T − t1 − 2t2))

+
1
2

cos(f (T + t1 − 2t2)) +
1
2

cos(f (T − 2t1 + t2)) +
1
4

cos(f (T + 2t1 − t2))

− 1
4

cos(f (T − t1 + 2t2)) +
1
2

cos(f (2T − t1 − t2)) − 1
2

cos(f (2T + t1 − t2))

+
1
2

cos(f (2T − t1 + t2)). (A.6)
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Appendix B. High-f behaviour of the Riemann-integrable diffusivities

For Riemann-integrable functions, according to the Riemann–Lebesgue lemma we have

lim
f→∞

∫ T

0
dtΨt cos(f (T − t)) = 0 (B.1)

with probability 1 (however, nothing can be said about how fast zero is approached in the general case).
Once (B.1) holds, one finds that for Lf(t1, t2) defined in (A.6),

lim
f→∞

∫ T

0
dt1Ψt1

∫ T

0
dt2Ψt2 Lf (t1, t2) = 0. (B.2)

Appendix C. Useful formulae

Our expression for the PDF P(A) in (26) and (27) rely on the following series expansion of the product of
two Bessel functions,

J0

((
1 +

1√
3

)√
2zA

)
J0

((
1 − 1√

3

)√
2zA

)
=

∞∑

n=0

(−1)n

(n!)2

(√
3 + 1√

6

)2n

2F1

(
−n,−n; 1;

1 −
√

3/2

1 +
√

3/2

)
(zA)n.

(C.1)
The form of the PDF in (95) stems from the expansion

1√
cosh

(√
4DBTz/a2

) =
√

2
∞∑

n=0

(
−1/2

n

)
exp

(
−2

√
DBTz

a2

(
2n +

1
2

))
. (C.2)

The result in (69) involves toroidal functions defined by

Pn−1/2 (cosh(η)) =
2
π

e−(n+1/2)η
∫ π/2

0

dφ
(

1 − 2e−η sinh(η) sin2(φ)
)n+1/2 . (C.3)

Setting exp(−η)sinh(η) = 1/3, i.e., η = ln(
√

3), we obtain expression (69).
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