MULTILINEAR OPERATOR-VALUED CALDERON-ZYGMUND
THEORY
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ABSTRACT. We develop a general theory of multilinear singular integrals with operator-
valued kernels, acting on tuples of UMD Banach spaces. This, in particular, involves
investigating multilinear variants of the R-boundedness condition naturally arising in
operator-valued theory. We proceed by establishing a suitable representation of mul-
tilinear, operator-valued singular integrals in terms of operator-valued dyadic shifts
and paraproducts, and studying the boundedness of these model operators via dyadic-
probabilistic Banach space-valued analysis. In the bilinear case, we obtain a T'(1)-type
theorem without any additional assumptions on the Banach spaces other than the nec-
essary UMD. Higher degrees of multilinearity are tackled via a new formulation of the
Rademacher maximal function (RMF) condition. In addition to the natural UMD lat-
tice cases, our RMF condition covers suitable tuples of non-commutative LP-spaces. We
employ our operator-valued theory to obtain new multilinear, multi-parameter, operator-
valued theorems in the natural setting of UMD spaces with property «.

1. INTRODUCTION

Singular integral operators (SIOs) take the form

(1.1) Tf(r) = RdK(w,y)f(y)dy, x & spt f,

and they are abundant in classical and applied harmonic analysis. On the other hand,
the UMD (unconditionality of martingale differences) property of a Banach space X is
a well-known necessary and sufficient condition for the boundedness of generic singular
integrals on LP(R%; X), see Burkholder [2] and Bourgain [1], or the recent book [24, Sec.
5.2.c and the Notes to Sec. 5.2|. Further progress on Banach space-valued singular integrals
i the linear setting has been intertwined with applications to rather disparate areas, such
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as the geometry of Banach spaces [29, 30|, the regularity theory of elliptic and parabolic
equations [3, 43|, and the study of quasiconformal mappings [13].

In the literature, classical singular integral operators with scalar-valued kernels K acting
on X-valued functions are usually referred to as vector-valued, or Banach-valued, singular
integral operators. On the other hand, operator-valued theory concerns the more general
case, where the kernel K itself takes values in bounded linear operators between two
Banach spaces X,Y. The systematic study of linear, operator-valued singular integrals
was first sparked by the operator-valued Fourier multiplier theorem of Weis [43], which
is the central tool in the author’s proof of maximal LP-regularity for parabolic equations.
In this setting, the requirement of uniform £(X,Y")-bounds of Hérmander-Mihlin type on
the multiplier must be replaced with the stronger R-boundedness condition; essentially,
{T,...,T,} is an R-bounded set in L(X,Y) if {f;:j=1,....n=>T;f;:j=1,...,n}
is a bounded operator from RadX to RadY, where Rad is the Rademacher space. This
approach has been later recast by Hytonen and Weis [26] into a T'(1)-type theorem for
operator-valued kernels. Our broad goal is to provide an extension of [26] to the multilinear
case. Therefore, a first essential difficulty we must deal with is to find a natural multilinear
analog of the R-boundedness condition. As we will see below, this requires additional care
when dealing with linearities of degree three and higher.

We now come to a more detailed description of our main object of study. At least
heuristically, we may think of an n-linear singular integral operator T acting on R? as
being given by,

T(fr, f)@)=U(fi® @ fu)(x,...,x), xR fi:RI—=C,

where U is a linear singular integral operator in R™®. More precisely, an n-linear SIO T
has a kernel K satisfying natural estimates that can be deduced from the above heuristic
via the linear estimates, and

T f)@ = [ K@) LA og Vst
=1 =1

The study of multilinear singular multipliers and kernel operators began with the seminal
articles of Coifman-Meyer [5| and Christ-Journé [4]. Motivation for this study comes
from applications to elliptic and dispersive partial differential equations, ergodic theory
and complex function theory, among others. We remark that the first general T'(1)-type
result for multilinear singular kernels, in the scalar case, is due to Grafakos—Torres [15].

1.1. Main results. Until recently, vector-valued extensions of multilinear Calderén-Zyg-
mund operators had mostly been studied in the framework of /P spaces and function
lattices, rather than general UMD spaces. Boundedness of (P extensions is classically
obtained through weighted norm inequalities, more recently in connection with localized
techniques such as sparse domination: see [14] and the more recent [6, 34, 33, 38| for a non-
exhaustive overview of their interplay. The paper [10] finally established LP bounds for the
extensions of n-linear SIOs to tuples of UMD spaces tied by a natural product structure
— for example, the composition of operators in the Schatten-von Neumann subclass of the
algebra of bounded operators on a Hilbert space.

Before [10], Di Plinio and Y. Ou [11]| considered operator-valued bilinear multiplier
theorems that apply to certain non-lattice UMD spaces. The results of [11] may be thought
of as a first attempt of generalization of Weis’ R-bounded multiplier theorem [43|; however,
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the treatment of [11] relies upon additional assumptions on the triple of Banach spaces
involved — some bilinear variants of the RMF conditions appearing in [23|. We return to the
role of RMF later. In the present article, we develop a complete multilinear operator-valued
theory in the non-translation invariant setting and our assumptions are less restrictive.
Firstly, our bilinear theory is completely free of any RMF assumptions, providing the
following complete generalization of the T'(1)-theorem of Hytonen and Weis [26], and in
particular of [43], to the bilinear case. The key notion for our statement is the R-bound
of a set of trilinear forms B € B, B : X7 x X9 x X3 — C. This is defined as the best
constant C' such that

N

(1.2) > IBr(@1 ks @ 23)| + [Br(w1, 2ok, 23p)| + [Br(a,p, w2, 235)| < C
k=1

for all choices {B1,...,By} C B and integers N, for all sequences {z;, € X; : k =
L..., N} with [[2)k|lRaa(x;) < 1 and vectors z; € X; with [lz;]lx;, <1, for j =1,2,3. A
satisfactory analogy with the usual notion of R-boundedness of bilinear forms (adjoint to
linear operators) [26] is the following: for each fixed x3 in the unit ball of X3, the bilinear
forms B(-,-,x3) are R-bounded on X; x X» in the usual sense.

1.3. Theorem. Let X1, Xo, X3 be UMD Banach spaces and Y3 be the Banach dual of X3.
Let T be a bilinear SIO on R* whose kernel K takes values in bounded bilinear operators
from X1 x Xy to Ys and satisfies R-boundedness versions, in the sense of (1.2) above, of

the kernel smoothness and weak-boundedness properties, and some T'(1) € BMO properties,
see Definition 6.2. Then

2
IT(f1, f2)ll s ravy) S [T I fmllpom mex):
m=1

1 1 1 1
V1<pi,p2 <00, 5 <gq3<o0, mw ot T e

Theorem 1.3 is a particular case of Theorem 6.4. For a detailed description of the
assumptions as well as for stronger sparse bound type variants, the reader should consult
these results in the main body of the article.

The RMF property of a Banach space X, involving LP estimates for a certain analogue
of the Hardy-Littlewood maximal operator obtained by replacing uniform bounds with R-
bounds, dates back to the work of Hytonen, McIntosh and Portal on the vector-valued Kato
square root problem [23]: see also [21, 31, 32]. The recent multilinear vector-valued (but not
operator-valued) setup of [10] avoids the use of RMF assumptions in all linearities, arguing
by induction on the multilinearity index. On the other hand, the inductive argument
of [10] relies on an abstract assumption modeling the Hoélder type structure typical of
concrete examples of Banach n-tuples, such as that of non-commutative LP spaces with the
exponents p satisfying the natural Holder relation. Operator-valued analogs of the Holder-
type structures of [10] is left for future work. In the present article, the n > 3 analog
of Theorem 1.3 requires that the (n + 1)-tuple of spaces involved obeys to a multilinear
version of the RMF assumption, which is described in detail in Subsection 3.2.

A precise statement of the 7'(1)-theorem for an n-linear SIO on R? with £(X; x --- x
Xn, X} 1)-valued kernel (see Section 2.3 for this notation), when n = 3 and higher, is
provided in Theorem 6.4. Here, we remark that the RMF setup of Subsection 3.2 applies
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in the following cases in addition to the trivial X; = C for all 1 < j < n+1, see Examples
3.27 and 3.28 for details:

o X; = LPi(Q; Z;), whenever 1 < p; < oo for all 1 < j < n+1is a Holder tuple
and Z; is a tuple of UMD Banach spaces for which RMF holds; by iterating this
observation, X; may be any tuple of reflexive Banach mixed norm LP spaces;

e let 7 C {1,...,n+1} be a subset of cardinality 3, and for j € 7, let X; = LPi(A),
where 1 < p; < oo are as before, and LP(A) is the noncommutative LP space
associated to the von Neumann algebra A equipped with a normal, semifinite,
faithful trace 7, while for j € {1,...,n+1}\ J, X; =C.

The restriction to having at most three non-commutative spaces in the second example
comes from the RMF assumption. Again, this is in contrast with in the recent vector-valued
(but not operator-valued) setting of [10] where such restriction is unnecessary regardless
of the multilinearity index.

1.2. Tools and techniques. Dyadic analysis is an extremely flexible tool, for example,
as shown by its role in the Banach space-valued singular integral theory [12], non-doubling
singular integral theory [37], and sharp weighted inequalities [17]. The dyadic represen-
tation theorem of Hytonen [17], which extends the Hilbert transform case of Petermichl
[39, 40], yields a decomposition of the cancellative part of a singular integral into so-called
dyadic shifts. These shifts have a very natural form generalising the Haar multipliers

F= (Fhodhg = Y Aol hodhg, ol < 1.

QeD QED

Hénninen and Hytonen [16] developed the theory of operator-valued shifts in their proof
of a T'l theorem and a representation theorem for linear singular integrals on UMD spaces
with operator-valued kernels. See also the paper by Hytonen, Martikainen and Vuorinen
[22] for further theory and applications of operator-valued shifts in the multi-parameter
setting. As an important technical component of this article, we prove an n-linear version
of the operator-valued representation theorem, Theorem 6.3. Theorem 6.3 is in fact a
multilinear, operator-valued generalization of the bilinear, scalar-valued representation
theorem which appeared in [35] by Li, Martikainen, Y. Ou and Vuorinen.

The next step in our analysis is to show the boundedness of these various multilinear
operator-valued dyadic model operators (Theorem 4.1 and Theorem 5.3). This is quite
involved, particularly when working in higher linearities, and requires the development
of new abstract theory concerning e.g. the correct notions of R-boundedness, cf. Section
3. As indicated above, a combination of the representation theorem with bounds for the
model operators yields our main result, Theorem 6.4, which is a boundedness criterion for
operator-valued multilinear SIOs.

1.3. Applications to multiparameter theory. The size of the singularity of the kernel
K in (1.1) is a fundamental classifying criteria for SIOs. In classical SIO theory, the
appearing kernels are singular exactly when z = y. This one-parameter theory differs from
the multi-parameter theory, where the singularities of the kernels are spread over all the
hyperplanes of the form z; = y;, where x,y € R? are written as x = ()i, € R% x. .. xR%
for a given partition d =dy + ... + ds.
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The basic philosophy of identifying bi-parameter operators as operator-valued one-
parameter operators dates back, at least, to Journé [27]. In general settings the R-
boundedness plays an important role. For instance, it is required as an input to apply
the abstract results on operator-valued dyadic shifts. Indeed, the R-boundedness of fam-
ilies of one-parameter operators is necessary for the boundedness (both with or without
R-) of the bi-parameter operators.

In the multilinear setting this general idea is more involved to execute due to the nature
of the multilinear R-boundedness conditions — an interesting difference compared to the
linear theory. In fact, the notions of multilinear R-boundedness we use in our previously
discussed main results are so weak that they do not appear to be sufficient to conclude the
R-boundedness for families of dyadic model operators. This is why we develop stronger
R-boundedness notions in Section 7. These can be applied in the multi-parameter context,
as detailed in Section 8.

A somewhat loose description of our multi-parameter results is the following. Suppose
X1, Xs,Ys are UMD spaces with the Pisier’s property («). Then bilinear multi-parameter
operator-valued shifts (see Section 8) have the LP'(R%; X1) x LP2(R%; X3) — L% (R?; Y3)
bound whenever pi,ps,q3 € (1,00) with 1/p; + 1/p2 = 1/q3. While we do not anymore
explicitly pursue the corresponding (paraproduct free) SIO theory in the bilinear multi-
parameter operator-valued setting, this would simply follow from our result on the shifts
coupled with a suitable representation theorem.

2. DEFINITIONS AND PRELIMINARIES

2.1. Dyadic notation. We begin by defining the random dyadic grids that are needed
for the probabilistic—-dyadic techniques. These definitions are, for example, as in Nazarov—
Treil-Volberg [37] and Hytonen [18]. For each w € 2, where Q = ({0,1}%)%, we define the
lattice

D, ={Q+w: Q € Dy},
where Dy = {27%([0,1)¢ + m): k € Z,m € Z} is the standard dyadic lattice in R? and

RQ+tw:=Q+ Z w27k,

k: 2=k <0(Q)

Here the side length of @ is denoted by ¢(Q). The randomness to w +— D,, is induced by
equipping €2 with the natural probability product measure P.

Let X be a Banach space and D be some fixed dyadic lattice. Let LP(X) = LP(R%; X),
p € (0,00], be the usual Bochner space of X-valued functions. For a fixed @ € D and
f € L (X) we define as follows.

e If ke Z, k>0, then Q¥ denotes the unique cube R € D for which Q ¢ R and
Q) =27%(R).

The dyadic children of @ are denoted by ch(Q) = {Q' € D: (Q")V) = Q}.

An average over Q is (f)g = ﬁ fQ f. We also write Eqgf = (f)glo.

The martingale difference Ag f is defined by Ag f = ZQ’Ech(Q) Eqg f—Eqf.

For k € Z, k > 0, we define the martingale difference and average blocks

Abf= > Apf and EHf= > Egf.
ReD ReD
RF=Q RF=@Q
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Haar functions. Haar functions are useful for further decomposing martingale differences
Aqf in terms of rank-one operators. If I C R is an interval, denote by I; and I, the

left and right halves of the interval I, respectively. We define A = |I|~'/21; and h} =
|I|7Y2(17, — 17,). Let now Q = I x --- x I; € D, and define the Haar function A,

n=(m,...,na) € {0,1}4, by setting

If 7 # 0 the Haar function is cancellative: [h¢, = 0. We can now write Aqf =
Zn¢o<f ) h%)hg, where (f, h?g> = fhg Usually, we exploit notation by suppressing
the presence of 7, and simply write hg for some th n # 0. Similarly, we write Agf =
(f:hQ)hq-

2.2. Definitions and properties related to Banach spaces. We present the required
basics of Banach space theory now — for an extensive treatment see the books [24, 25| by
Hytonen, van Neerven, Veraar and Weis.

We say that {ey}r is a collection of independent random signs, if the following holds.
We have e: M — {—1,1}, where (M, p) is a measure space, the collection {ej}y is
independent and p({e, = 1}) = p({ex = —1}) = 1/2. In what follows, {ex}; will always
denote a collection of independent random signs.

Suppose X, equipped with the norm | - |x, is a Banach space. For all z1,...,zy € X
and p, ¢ € (0,00) there holds that

M pN\1/p M a\1/q
(2.1) (E’ Z Emﬂ:m’x) ~ (E’ Z gmxm‘x)
m=1 m=1
by the Kahane-Khintchine inequality. Motivated by this we set

) sy = (B S eman )"

where the choice of the exponent is thus of no consequence. The Kahane contraction
principle tells us that if (a,,)_, is a sequence of scalars and p € (0, o], then we have

b0 (o] Senenenf) s8] 3 o)

. 2 EmmTm| < max |am, 2 EmTm| ) -
A minor remark is that (2.2) holds with “<” in place of “<”, if p € [1,00] and a,,, € R (see
[24]).

A Banach space X is said to be a UMD space, where UMD stands for unconditional
martingale differences, if for all p € (1, 00), all X-valued LP-martingale difference sequences
(dj)?:1 and signs €; € {—1,1} we have

k k
(23) H ;Ejdj‘ Lr(X) S H j;dj‘

The LP(X)-norm is with respect to the measure space where the martingale differences
are defined. In fact, a standard property of UMD spaces is that if (2.3) holds for one
po € (1,00), then it holds for all p € (1, c0).

Lr(X)
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Sometimes, for example in multi-parameter analysis, the following property is also
needed: for all IV, all scalars a; ; and all ¢; ; € X, 1 <14,57 < N, there holds

Z , 2\1/2 < @i , , 2\1/2
€4€:04 € j ) S max |a; j (EE g €4€5€ j ) .
a2V A2V X i J 778 X

1<i,j<N 1<i,j<N
If this holds, the Banach space X is said to satisfy the property («) of Pisier.

(EE’

Random sums and duality. The reader can e.g. consult the section 7 of the book [25], if
he or she is unfamiliar with the notions of type and cotype of a Banach space. What is
important for us, though, is simply that all UMD spaces have non-trivial type. The next
lemma appears in Section 7.4.f of [25].

2.4. Lemma. Let X be a Banach space with non-trivial type and let F C X* be a closed
subspace of X* which is norming for X. Then for all finite sequences e1,...,exy € X we

have
N N
E‘ Z;&'@i o SUP{‘ Z;<€i7€:> },
1= 1=

where the supremum is taken over all choices (ef)Y., in F such that

N
E) Z 61'6:
=1

The decoupling inequality. The following decoupling estimates originate from McConnell
[36], but in their current form they essentially appear in Hytonen [18] and Hanninen—
Hytonen [16]. We record a special case of the decoupling estimate that is of relevance for
us.

Let D be a dyadic lattice and @ € D. With Vg we mean the probability measure space

Vo = (Q.Leb(Q), Q! dz|Q),

where |Q| ™! dz|Q is the normalized Lebesgue measure restricted to @ and Leb(Q) stands
for the Lebesgue measurable subsets of (). We define the product probability space V =
HQeD Vg, and let v be the related measure. If y € V, we denote the coordinate related to
Q@ by yq-

Let k € {0,1,2,...}, j € {0,...,k} and define the sub-lattice D;j C D by setting

<1
X*

(2.5) Dir={Q eD: 4Q) = omE+14 for some m € Z}.
If X is UMD, p € (1,00) and f € LP(X), Theorem 6 in [16] implies that

20 [ |3 asbrafiar~ [ [| 3 colo@abse)], v ds

QE’DJ'JC QE'Dj’k
for any [ € {0,1,...,k}. The point of the subcollections Dj j, is that now Ale is constant
on every Q' € D such that Q" C Q. This is required by the abstract decoupling theorems.
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Pythagoras’ theorem. A collection S of cubes in R? is said to be n-sparse (or just sparse),

€ (0,1), if the following holds. For all Q € S there exists a subset Fg C @ so that
|Eq| > n|Q| and the sets Eg are mutually disjoint. The point of the following theorem is
that sparse collections are essentially as good as disjoint collections for some LP estimates.

Let D be a dyadic lattice, S C D be sparse and X be a Banach space, and suppose
that for every S € S we have a function fg: R¢ — X such that fg is supported in S,
[ fsdz =0 and fs is constant on those S’ € S such that S C S. Then, Lemma 4 in [16]
— Pythagoras’ theorem for functions adapted to a sparse collection — says that

p
(2.7) H Sezsfs\ oo ™ 2 sl

2.3. Multilinear operator-valued singular integrals. We specify the class of opera-
tors that we study. First, we define the operator-valued basic kernels. Let 2 < n € Z and
let X1,...,X,,Y,+1 be Banach spaces. We denote by £(X; x -+ x X,,,Y,+1) the space
of n-linear operators B: X1 x --- x X,, — Y, 11 satisfying

|B(x1,...,Ty |Yn+1 <C H T Xom

and the best constant C' is denoted by ||BHX1><"'><X71_)Y77,+1' We will sometimes write B
acting on (z1,...,2,) as above and sometimes like Blz1,...,zy].
Suppose K is a function

K: RAFIN\A — 5( H Xm7Yn+1)> A={(z1,...,2p01) ERI gy = =14},
m=1

such that for all e,, € X,,, m € {1,...,n}, the function
x— K(z)ler,...,en] € Yoiq1

is strongly measurable. Define the collection of n-linear operators

n+1 n
Cane(B) = { (3 o1 =l K1, ani): (1, i) € RIOD\ AL
m=2

For av € (0,1] and j € {1,...,n+ 1} let Co j(K) be the collection of the operators

!l l—« s dnta /
(2.8) 2y =25 (D o —wal) (K (@) - K@),
m=2
where z = (z1,...,2541) € RITD\ A and 2/ = (zl,...,xj,l,x;,:cjﬂ,...xn+1) €

RUHD) gatisfy

z; — 2| < 271 max |1 — 2.
2<m<n+1

We say that K is an operator-valued n-linear basic kernel if there exists a € (0, 1] so that
the families Csjye(K) and Com(K), m € {1,...,n+ 1}, are uniformly bounded. We also
write Caz,a(K) = Ceige(K) N L, Com (K).

If X is a Banach space, we denote by L(X) the functions in L*°(X) with compact
support. Let K be an operator-valued basic kernel as above. Let T be an n-linear operator
defined on tuples of functions (fi,..., fn), where f,, € L>(X,,), so that T'(f1,...,fn) €
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Llloc(YnH). We say that T is an n-linear operator-valued singular integral operator (SIO)
related to the kernel K if

<T(f17 ceey fn): fn+1> = /d( . <K($n+17 Tlye-- >$n)[f1(~751)> ceey fn(l'n)]: fn+1($n+1)> dz
R n

whenever fp, € L¥(X,;,), m = 1,...,n+ 1, are such that spt f; Nspt f; = 0 for some

i # j. Here we use the convention X, ;1 := Y, | that is in force from this point on. We

are quite relaxed with the bracket notation (-,-) — it means the natural duality pairing in

each situation.

2.4. BMO,(X) and T'(1). The representation theorem involves a certain BMO assump-
tion related to “T'1”. Since, as usual, T'1 is not necessarily well defined as a function the
BMO condition is stated in terms of the pairings (17'1, hg) (we recall below how to define
these pairings). Therefore, we define the BMO conditions for collections of elements of a
Banach space.

Let X be a Banach space and D be a dyadic lattice. Suppose a = (ag)gep C X is a
collection of elements of X and let D’ C D be a finite subcollection. Let p € (0,00). We

define
P ) 1/p

LP(X)

1 1g
lallniog, 0 = sup (=Bl D ceaois2y]
2o guen \[Qul Q%; “gne

QCQo

and then we define [lalpmo, ,(x) to be the supremum of ”@HBMOD/I,(X) over all finite

subcollections D’ C D. Notice that if D’ and D" are two finite subcollections such that
D' ¢ D", then by Kahane’s contraction principle (2.2) there holds that [|allgyo,, (x) <

||a”BMOD//7p(X)'
The X-valued John-Nirenberg inequality for adapted sequences, Theorem 3.2.17 in [24],
implies that

(2.9) lallBymosp., (x) ~ llallBmop ,(x), 0 <p,g < oo,

Indeed, let D' C D be finite. Fix some 0 < ¢ < p < oo such that p > 1. Let {eg}gep
be a collection of independent random signs on a probability space Q. Let Y = LP(Q; X).
From Theorem 3.2.17 in [24| we deduce that

1 1Q p\1/p
(2.10) sup  sup (— sQaQ7‘>
keZ Qoep M Qol Jo, QZe;J’ Q2 1y
6(Qo)>27* QCQo

(Q)>27"*

is comparable to

1 lg |7\
(2.11) sup  sup (— eQaQ7‘> .
keZ Qoep M Qol Jo, Q%, Q2 ly
t(Qo)227" QCQo
(Q)=2*

In view of Kahane’s contraction principle (2.2) (it allows to remove the restriction ¢(Q) >
2% inside the Y-norm) we have that (2.10) is equal to lallBymo,, L(x)- Likewise, (2.11) is
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equal to

1 1 Y
2 (o | 2 canagitaly)” ~ o, o

Qo€D QeD’
QCQo
where we applied the Kahane-Khintchine inequality (2.1).

Let X1,...,X,, and Y, 41 be Banach spaces. With respect to these spaces, suppose T’
is an n-linear SIO with a basic kernel K as in Section 2.3. We turn to define the pairings
(T'1, hg) and other similar pairings.

Let ® = (¢1,...,¢yn) be an n-tuple of scalar-valued bounded functions. Assume that
Q C R?is a cube, and that 0Q: R? — C is a bounded function supported in @ with
[¢gdz =0. Let C > 2Vd. If e, € X5y, m € {1,...,n}, we define

n

<T(¢1€1a cee v¢n€n)7 SOQ> = Z <T($T61) RS azben)’ @Q>

m=1

+ <T(1CQ¢161) B 1CQ¢n€n)7 SOQ>7

(2.12)

where 5{” = leg@; for 1 <1 < m, {Zm = 1(cQ)c¢¥m and qglm = ¢; for m < [ < n, and
<T($71”el, cee anmen), (pQ> € Y41 is defined using the kernel K by the formula

/Rd Rdn(K(-’L% y) — K ()7 (y1)ers - - - 67 (yn)en) o (x) dy dz.

The uniform boundedness of the operators (2.8) combined with spt 52 C (CQ)° imply
that this integral is absolutely convergent. The definition of <T(q§1el, . .,¢nen),g0Q> is
independent of the constant C' > 2v/d.

Now, we define the n-linear operator (T'®, pq): X1 X -+ x X, = Y41 by

(2.13) (TP, pq)[e1; ... en) = (T(dr€1,...,Pnen), ©Q)-

By (T'1,hg) we mean the operator (I'®, hg) with & = (1,...,1). The BMO condition
related to the pairings (T'1, hg) which appears in the representation theorem will be for-
mulated in Definition 6.2.

2.5. Multilinear operator-valued shifts. Let 2 < n € Z and suppose X1, ..., Xy, Ynt1
are Banach spaces. Assume k = (ki,...,kny1), 0 < k; € Z. Let D be a dyadic lattice in
R?. An n-linear dyadic shift S% is an operator of the form

S%(flavfn) = Z Z aK,(Qi)Kfl?%Ql)?'"7<fna%Qn>]EQn+1’
KeD Q1,..,Qn+1€D
Q,Eki)ZK

where fp, € Ll (Xm) and ag (@,) = aK,Q1,..Qui1 € L([Th—1 Xm, Yns1). In addition, we
demand the following. There exist two indices jo,j1 € {1,...,n + 1}, jo # j1, so that
iNzQZ. = hg, if ¢ € {jo,j1} and ﬁ@i = hOQZ_ if © € {jo,71}; in other words there are two
specified slots where the Haar functions are cancellative and in all the other slots they
are non-cancellative. One may think that only finitely many of the operators ag (g,) are
non-zero so that the shift is well defined for locally integrable functions. If S’% is a shift as
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above, we denote by C(S%) the family of the normalized coefficient operators

K" (o)
{WKQZ 7Q17"‘7QTL+1€DaQi :K}
In Section 4 we show the boundedness of shifts under certain conditions on C(S%) and the
underlying Banach spaces.

(2.14) C(Sk) =

2.6. Multilinear operator-valued paraproducts. Let D be a dyadic lattice in R%.
Suppose X1, ..., Xy, Y,11 are Banach spaces and ag € L([[,,_1 Xm, Ynt1), Q € D, are
given. Let a = (CLQ)er An operator-valued n-linear paraproduct is an operator of the
form

WD,(I(fla"wf'ﬂ . ZaQ fl ;<fn>Q]hQa

QeD

where f,, € Lloc(Xm)‘ As with dyadic shifts, this is well defined for example if only
finitely many of the operators ag are non-zero. In Section 5 we consider the boundedness
of paraproducts.

2.7. Bounding dyadic operators by sparse operators. The boundedness of shifts and
paraproducts will be considered in Sections 4 and 5. Here, we formulate an analogue of the
sparse domination results of [6, 7, 35] in multilinear, operator-valued setting of Theorem
6.4 below. The proof follows exactly the outline of the multilinear version of [35]. We refer
to the above references for the, by now standard, definitions and generalities on sparse
collections and forms.

2.15. Lemma. Let 1 <n € Z. Let X1,...,X, and Y,4+1 be Banach spaces and X, 1 :=
Y, 1. Suppose we have functions fy, € L° (Xm), m=1,...,n+1. Let D be a dyadic grid
and n € (0,1). Then there exists an n-sparse collection S = S((fm),n) C D so that the
following holds.

Let k = (k1,...,kn+1), 0 < k; € Z, and assume p1,...,pn+1 € (1,00) are such that
S 1 /pm = 1. Suppose that we have operators arg,Q,,..Qne € L1 Xms Ynt1),

where K,Q1,...,Qnt1 € D and Ql = K, such that ag (q,) = KQ,...Qny1 SOlisfies

+1
[T, 1Qml 2
rK—\nm 1L lenlx...

m=1

’<aK,(Qi)[elv SRR €n], en+1>’ <A

m=1
Suppose further that for some scalar-valued functions um g = ZQ’Gch(Q) cm,@ 1o satisfying
[um.q| < |Q|~Y/? the operators

UD’ (gl7 e ,gn) = Z Z aK7(Qi)[<gl7 u17Q>, ey <gn, un7Q>]un+1,Q, D’ - D,
KeD' Q1,...,Qn+1€D
ngz):K

satisfy

n+1
’<UD’(917 <. agn)mgn-l-l)’ < Ay H HgmHLPi(Xm)7 gis-- -, 9n41 € Lpl(Xm)

m=1
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Then we have
n+1

(2.16) (UD(f1, s )y Fri)| S (A1 + Ars+ A2) D 1QL [T (Ifmlxn )0

QES m=1

where kK = max k.

We conclude this preliminary section by recalling the well-known fact that (weighted)
boundedness in the full range of expected exponents follows from a sparse estimate of the
type stated in Lemma 2.15. A proof of this exact statement is given in [10], and further
consequences in the weighted setting are formulated in [8, 35| and references therein. Let
X1,..., X, and Y,y be Banach spaces. If T is an operator such that for all tuples
fm € L2°(X,,), there exists a dyadic lattice D = D((fn,)) and a sparse collection S =
S((fm)) C D so that

n+1
(T(frsee s fa)s Far)] S D 1QLTT (il )0
QES m=1
then
(2.17) IT(f1s- -5 )l Lonsr vy S H | fonll Lom (X1
m=1

where p,, € (1,00] are such that 1/g,41:=> 1 1 1/pm > 0.

3. RANDOMIZED BOUNDEDNESS AND THE RMF PROPERTY

3.1. Randomized boundedness. In this section we discuss randomized boundedness
conditions for families of multilinear operators. First, we recall the well-known concept of
R-boundedness of linear operators. If X; and Y are Banach spaces and T C L£(X1, Y2),
we say that T is R-bounded if there exists a constant C' such that for all integers [ > 1,
all T, € T and for all ey 1 € X1, ep2 € Xo :=Y5, k=1,...,[, the inequality

l
’Z (Trek,q, 6k,2>‘ < Cll(er,1) [Radx )l (er,2) [Rad(x2)
k=1
holds. The smallest constant C' is denoted by R(7), and called the R-boundedness con-
stant of 7. If 7 is not R-bounded we set R(T) = oc.

3.1. Remark. Suppose that Y5 has non-trivial type (e.g. Y3 is a UMD space). Let ﬁ(T)
denote the best constant C' such that
2 2 \1/2
)

l 1/2 !
(3.2) (E‘ ZEkaek Yz) < C(E‘ Zakek
k=1 k=1
holds for all e, € X;. Then we have by Lemma 2.4 that
R(T) S R(T) < R(T).

In fact, (3.2) is the most commonly appearing standard definition of R-boundedness.
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For a positive integer n, we write 7, for the discrete interval {1,...,n+1}. Throughout
this section, let X71,..., X, X;,41 be reflexive Banach spaces and denote Y; = X7. Below,
we customarily enumerate J C 7, increasingly so that 1 < j; < --- < jp <n+ 1. We use
the tuple notation

(ej)jeg = (eji, ... €5,) € Xg = H X
JjeT

The following discussion pertains to the case n > 3. We set some notation for the

multilinear R-boundedness condition associated to an (n + 1)-linear contraction

n+1
(3.3) w: Xz, =+ C,  |wler,.. . ent) < [ lemlxn,  em € X

m=1
This condition will involve suitable partitions of the set of indices 7,. We say that P =
({57}, Prad, Prm) is an admissible partition of 7, if {jp}, Praa, Prm C Jn are pairwise
disjoint, their union is J, and #Pry < n — 2. Let now J C J, with 1 < #J <n —2
and v € J, \ J. For aset A C X7, define

K
(3.4) Al o7y = 50D | D2 lerps o oseun s eninil],
k=1

where the supremum is taken over all K € N and over all choices of
o tuples (ejr)jes € A, 1 <k <K,
e clements e, € X, with |e,|x, <1,
e sequences (e; ;)X | C X; with ||(€j,k)kK:1||Rad(Xj) < 1, where

J € JRad = {1,,’[’L—|—1}\(jU{U})

Here (ej7k)£(:1 denotes the sequence e 1,...,¢e; k of elements of X;, and this should not
be confused with the notation (e;x)jes € X7 meaning a tuple of elements; later, this
distinction should be clear from the context. Let also [|A[lgyy (w,7) be defined just as
| AlljM, (w,0) In (3.4), except that in addition there is the requirement that the tuples

(ejk)jeg € A satisfy (ejr)jes # (ejr)jeq if k # K.

3.5. Lemma. There holds that ||Allga (w,7) = I AllRM, (w,7), that is, when testing the
constant || Allrm, (w,7) 7t is enough to consider a sequence of distinct elements of A.

Proof. Let P be the admissible partition with jp = v, Prm = J. Fix elements e;; €
X, where k € {1,...,K}, as in the definition (3.4). Write {1,..., K} as a disjoint
union U%Zl K, so that (ejx)jes = (eju)jes if k and k' belong to the same K,,, and
(ejr)jes # (ejw)jer if k and k' belong to different sets KCp,. If j € J and k € K,y,, we
denote e; =: fjm. Write Praa = {i1,...,%}, where i; < ij11. To ease the notation,
for m € {1,..., M} let A, be the u-linear form obtained from w by keeping the elements
fim, j € J, and e, fixed. We have

K M
D(e1pr - lnith) = D D Aml€iy ey i)
k=1 m=1kekm
Fix one m for the moment. Let {Ei}le, j €{1,...,u—1}, be collections of independent

random signs. We denote the expectation with respect to the random variables z-:i by E7,
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and write E = E!...E*~!. Then we have the identity

Z Am(eil,k‘a o 7eiu,k)

kem
_ Z 1.1 .2 2 -1 A A
(36) =K €k15k26k26k‘3 Ek A (6117k1,...,€zu7ku)
k1, kn €ECm
1 1 2 u—1
E €k Cir k1o E €roChkoCin ks E €ku eiu,ku)'
k1elm ko€ Km ku€Xm

Now, we combine the last two equations and use the definition of [|Al|gp (e, 7). This
gives that

K
‘ Zw(el,k, e 7€n+1,k)‘
k=1

< HAHRM;(w,J)EH( ) Eieil”“) ’

Rad(X. H H( Z o 8"36”’ ) ‘

kERm =2 keKm 11 Rad(Xi,)
(X e,
el m=11Rad(X;,)’
where the expectation is less than
M 1724 . A o M 2 1/2
(5 o) o) TS 40 )
( kgc:m kZiak Rad(X 1;[ ;m ke SRCGR) Rad(X;, )

<03 o), |

Denote the expectation and the random signs related to the Rad-norms by E and {E M
We have

i1 =14 M2 Ami—1mg -1
EE ZE €16 k =EE'"E Z Zsms Eez,
ke ok ) 1 llRad (X)) ko CkC
ke, K m=1kek,,

= ”(eij,k)£(=1||Rad(Xij) <L

/
2Racl( ))1 2'

’Lu

m=1"

The remaining last two terms satisfy the corresponding estimate. Thus, we have finished
the proof of [|Allrm,(w,7) < [|AllRM,(w,7)- As the reverse estimate is immediate, the
conclusion of the lemma follows. O

3.7. Remark. We record an observation based on Lemma 3.5, which will later be used
without explicit mention. Let again J C Jp, 1 < #J <n—2and v € 7, \ J. Suppose
that K € N and we have elements e;, € X;, j € J, k€ {1,...,K}. Then

(3.8) 1{(ej.1)je HimrllRM, (.7) = SUP ‘ Zw(el,kz» s €y Eng1 k)|

k=1
where the supremum is taken over elements e;, € X;, j € 7, \ (JU{v}), k€ {1,..., K},
such that ||(€j,k)1§:1||Rad(Xj) < 1 and over e, € X, with |e,|x, < 1. Indeed, “>" is
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clear just by definition. On the other hand, the right hand side of (3.8) clearly satisfies
RHS(3.8) > [{(ejr)jeq e llrm (w,0)-

3.9. Remark. In the same setup as in the previous remark, assume J = Jy U J1, where
Jv # @ and Jy N J1 = &. Suppose we have elements e;, € X;, j € J, k€ {1,...,K}.
Then

(3.10)  [{(ej0)jer i lrntu(e.ay < IH(€50) 50 Moot IRntu (o) LT (€500 A1 IRaacx, )
JET
To see this, we use Remark 3.7. Let P = {{v}, Prad, J } be the corresponding admissible

partition and e, € X for j € PraqU{v}, k =1,..., K, and assume that e, , = €, i =: €y.
Assume first that Jy # @. Then, by definition, we have

K
‘ Z w(eLk, ey €n+1,k)‘
k=1

K K
< H{(ejmiemticillmmea [T Iese)ic lraacx,)leolx,
JE€J1UPRad

which proves the claim.
On the contrary, if Jy = &, then using random signs as in (3.6) and boundedness of w
(Equation (3.3)) we get that

K
‘ Z w(el,k, ceey 6n+1,k)‘ < H | (ej,k)kK:1 ||Rad(X]-) lev] X,
k=1 JETUPRad

which gives the claim.
3.11. Example. Let (Xi,..., X,,11) be a tuple of reflexive Banach spaces and wy: X7, —
C be as in (3.3). Let (2, 1) be a measure space and associate the tuple

n+1
(Lpl(Q;Xl)v s 7Lpn+1 (Q7Xn+l))7 Pm € (].,OO), Z 1/pm = 17

m=1

with the (n + 1)-linear mapping w: H’Tfj:ll Lrm(Q; X,,) — C,

(3.12) (f1y e fon) = /Q 0@, s Fapr (o)) duw).

We obviously have
n+1

@ (frs e Far DL T 1l o @ix,0)-
m=1

Suppose J C Jn, 1 <#J <n—2and v € J,\ J. It is not hard to see that

{(fin)iea Fiallrau(e,q) S lw = Ik @))jeq i lra, o, | ot )

where

1p(T)=>_1/p;.
jeJ
We now demonstrate that the corresponding lower bound also holds. We will show that

(3.13) I{(fin)seq ozt IRy (,7) 2 HH{(fj,k(W))jeJ}fﬂHRMU(WOJ)HLW)(Q)
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and the claim follows by monotone convergence.
Write Z = 7, \ J. Using Remark 3.7, for w € Q let p;1(w) € X;, i € Z, k €

{1,..., K}, be such that H(cpi7k(w))kK:1||Rad(Xi) < 1fori # v and p,p(w) = pyr(w) =
@y(w) satisfies |@,(w)|x, < 1. Furthermore, let the elements ¢; ;(w) be such that wy
acting on f;jx(w) and ¢; ;(w) is non-negative for all £ and such that the sum over k of

these is 2 ‘|{(fj7k(W))j€j}§:1||RMU(WO7\7). For ¢ € T write

By = [[I{(£())sea Mt It (o, ) iy

define
Fi(@) = B i @) 1{(fi6 (@) jes Hor B e )

and write f, = f, . For ¢ € Z\ {v} there holds that

<1

I(fie) bt IRad(zri @:x)) ~ |I1CFik (@) izt IRaa(x:) ri) <

and || fyl|ro (;x,) < 1. Define the exponent p(Z) by 1/p(Z) = >,z 1/pi- We also have
that

K
oSl = [ D o) ol

7
2TLB [ IHUaDesHalir s

1€

GE

£
I

1

= H ||{ fj,k(w))jej}llle HRMU(WO,J) HLp(J>(Q)-

This proves (3.13) concluding our demonstration.
In the special case that X1 = --- = X,,11 = C and wy(e1,...,epnt1) = Hﬁ:;ll em it 1s
not hard to see that

1{(e5%)je ezt [IRM, (w0,) = = sup I lesel-
jeJ

Therefore, the above gives in this case that

(3.14) (i) Helnmty ) ~ Hsup [T 15t i

L;D(J)

Next, we define a related multilinear R-boundedness condition for families of opera-
tors. Due to the invariance under permutation of the spaces X;, j € J, of the previous
and upcoming definitions, we do not lose in generality by working with n-linear operators
on H?:1 X, with range in Y, ;1. Also, it will be convenient to define the notion of tight
admissible partition P: an an admissible partition P of 7, is tight if #Praq =2 .

3.15. Definition. Let n > 2 and suppose that 7 C L([["_; X, Yn41) is a family of
operators. Assume that w is an (n + 1)-linear mapping satisfying (3.3) and P is a tight
admissible partition. We say that 7 is R p-bounded if there exists a finite constant C
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so that

M=

(Tkleik - - enkls en+1,k>‘

b
Il

1

< C|’{(€j7k)jEPRM}£:(:1||RM]',P(W,77RM) H ||(ej,k)llc(:1||Rad(Xj)‘ejP‘ij
JE€PRad
holds for all K € N, all choices of T, € T, {ejx: k=1,...,K} C X}, j € Jp, such that
€ipk = €jp k! = €jp for all k and k. The smallest possible constant C' is denoted by
Rep(T). If T is Re p-bounded for all tight admissible partitions P, we say that 7 is
R -bounded and write R4(7T) for the supremum over all tight admissible partitions P of
R p(T). Otherwise, we set R (T) = 0.

Notice that if n = 2, then the R-boundedness condition does not depend on w at all,
and it reduces to a more simple estimate as in Equation (1.2). Therefore, in the case n = 2
we will just talk about R-boundedness.

3.16. Remark. Suppose T C L(J[ _; Xim, Yn+1) is an Ry-bounded family. Suppose P is

m=1

a non-tight admissible partition. Let Tj, € T and e;, € X for k =1,..., K, and as usual
assume that e;, :=e;, = e, pr. Write Prag = Jo U J1, where #J1 = 2. Then

K
‘ > (Thlern: s ennl; 6n+1,k>’
k=1

(3.17) < Ra(T)I{(esk) jePrnudo oot llrmy . (wpraiugo) L1 1000kt [Raa(x,) €501,
JjEI

K K
< Reo (T (€5k) jePrar te=1IRM, , (. Pran) [T Itein)ioillraacx,less |x;,
J€PRad

where in the last step we applied Equation (3.10). We will apply this form of the R-
boundedness (where not necessarily P is a tight partition) later.

In the representation theorem we will need the fact that R-boundedness is preserved
under averages in the sense of the following lemma.

3.18. Lemma. Let T C L[] _; X, Ynt1) be an Ry-bounded family of operators. Let

m=1

A(T) € L(IT =1 Xom, Yng1) be the collection of operators of the form

/ L(y)A(y) dy,
Rd(n+1)

where L: RA™HD — L(TT7" _y X, Yoy1) is such that L(y) € T for a.e. y and \: RY+D

m=1

C satisfies [ |\ < 1. Then we have
Re(A(T)) S Rea(T).-

3.19. Remark. The space RU+1) plays no role here (it could be some measure space), but
this is what appears later. Moreover, we have by definition that

( /R oy LOA@) ) e, ea) 1= /R o DA
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and the assumption on L is that the mappings

y — L(y)e1, ..., en]

are strongly measurable.

Proof of Lemma 3.18. This result could be reduced to the corresponding linear result. For
the linear theorem, see for example Theorem 8.5.2 in [25]. We give another self contained
proof.

Suppose T, = [ LgA, € A(T) for k = 1,..., K. We may assume that Lj(y) € T for
every y € R¥"t1) and that [ IAk| =1 for every k. For each k define the probability space
Vi := (RUHD 1), where py, := |A\g|dy. Let (), 1) be the product probability space

(Hfﬂ ks Hszl Mk) .

Fix a tight admissible partition P, and let {e;;}<, C X; be such that ej, := ej, 1 =
€jp k- Now, we have that

Z(Tk[el k- -0 €nk)s Entl k) Z/ k(0) Li(y)lerk, - - - aen,k]7€n+1,k> dpk(y)

|)\k )l
g O

where in the last line we denoted by y; the coordinate of y € ) related to ). For each
y € Y the absolute value of the integrand in the last line is dominated by

|)\k k(yk)[el,ka skl 6n+1,k> du(y),

K K
Rep(T) H{(ej,k)jePRM}k:1 HRMjP (@, PrM) H ||(€j,k)k:1 ||Rad(Xj) lejp \ij-
jePRad

Since (), pt) is a probability space this proves the claim.
O

3.2. The RMF, property. Related to the R, condition we will need a certain RMF
condition of the tuple of spaces (X7, ..., X, 11). This condition is only defined when n > 2.

Suppose w is an (n + 1)-linear contraction as in (3.3). Let J C J, be such that
1 < #J <n—2. Suppose f; € Ll _(X;) for all j € J. Denote by (f;);jes the tuple of
functions (fj,. .., f;,). Let D be a dyadic lattice in R%. For v € J, \ J, we define the
multilinear Rademacher maximal function RMp & 7.,[(fj)jecrs] by

RMp.o.7.[(f)ies () = [{(Un@hse: w e @e DY
Let p; € (1,00) for j € J,, and define for all J C J,, with 1 < #J < n — 2 the exponent
p(J) by 1/p(J) = > ;e71/pj- We say that (Xi,...,Xnq1) has the RMFg property

relatively to a given dyadic lattice D in R? and the tuple of exponents (py) if

3.20 max min max ‘R D,w : LPi(X;) — LP () ]Rd H
( ) J1,02€Tn v€Tn\{J1,32} T CIn\{j1,52,0} T H )
J1#j2 jeJ

The number defined in (3.20) will be referred to as the RMF (D, (p;)) constant of the
tuple (X1,..., Xnt1).

Independence of the RMF, property (3.20) on the dimension d and the lattice D can
be proved with the same procedure used for the linear case by Kemppainen [32].
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particular, this means that if we have two lattices D and D’ in R, then RMF (D, (pj)) =
RMF (D', (p;)). On the other hand, Lemma 3.22 implies that the RMF, condition is
independent of the tuple of exponents in the sense that if (¢;) is another set of exponents
then RMF (D, (p;)) ~ RMF4(D, (¢;)). Lemma 3.22 also shows that it is not important
to have a fixed tuple (p;) in (3.20); for each J appearing in (3.20) we could have related
exponents p}-j € (1,00], j € J, such that the corresponding target exponent is finite.
Henceforth, we are authorized to not mention the dimension d, the choice of the lattice
D and of the exponents, and refer to a tuple (Xi,..., X,,+1) enjoying (3.20) as a tuple of
spaces with the RMF, property.

3.21. Remark. The original definition of an RMF property of a Banach space X is in
Hytonen-McIntosh-Portal [23]. If A C X, then define
K
| Allru = supE|| Y exdparx,
k=1

where the supremum is over K € N, a; € A and over scalars A\; such that Zle A2 < 1.
In [23| the Rademacher maximal function Mp was defined by

Mpp, f(z) = Mpf(z) = |{{f)q: v € Q € Do}|lrm,

where Dy is the standard lattice in R and f € L{ _(X), and it was defined that X has
the RMF property if Mp: L?(X) — L? is bounded. The Rademacher maximal func-
tion has further been studied for example by Kemppainen [31, 32]. The boundedness of
Mp: LP(X) — LP is independent of the dimension d and the lattice D used in the defi-
nition, as well as of the exponent p € (1,00). A definition akin to the one given in this
article was previously given in [11].

The proof of the next lemma is a twist on a sparse domination argument presented in

[8] by Culiuc, Di Plinio and Ou.

3.22. Lemma. Let D be a dyadic lattice in Re. Letn >3 and let J C T, with 1 <
#J < n—2. Suppose v € T, \ J. Assume that for some q; € (1,00], j € J, such that

q:= (Zjej 1/qj)_1 < 00 the estimate

IRMp .70 [(f1)jeqllle S T Ifillos x,)
JeT

holds. Then, for all pj € (1,00], j € J, such that p := (Zjej 1/pj)71 < oo we have the
estimate

IRMp oo, 7o [(f1)jer e S TT 1l cx;)-
JjeT

Proof. We abbreviate RM := RMp 5 7.,. First, we prove the weak type boundedness
RM: [[cs LYX;) — L%’oo, where ¢ := #J. Then, we show that it implies a suitable
pointwise sparse domination for certain finite maximal functions, from which the claim
follows.

We turn to the weak type estimate. Let f; € Ll(Xj), j € J, and fix some A > 0. It is
enough to assume that || f;11(x,) = 1 and show that

H{RM(f))jes] > A} S A7
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We perform the usual Calderén-Zygmund decomposition. Let D; y denote the collection

of the maximal cubes @ € D such that (|f;|x;)q > A7. As usual, we write fi =g9; +0bj,
where

gj = 1UDj,Afj + Z (fi)ola and bj = Z (fi = {fie)lq
QED; Q€4

Write J = {j1,...,j¢}. We have

14
(323) RM[(fJ)]Ej} < Z RM[(QJU s agjiflabji’ fj¢+1> SRR fj()] + RM[(g]U s 79_72)]
=1

The assumed boundedness gives that

q(q; —1)

{RMIgs, - 0030] > s} S 270 Hugjuw <AqHA T <

N\H

where we used the facts that ||g;||z(x;) A7 and lgillzrx;) < fillix,) =1
Fix some ¢ € {1,...,l} and consider the corresponding function from the sum in the
right hand side of (3.23). Since ||JDj, A| < A~7, it is enough to consider

A
(3-24) {x ¢ UDji)\: RM[(gju e 951 bji’ fji+17 EER) f]e)](x) > m}

Suppose & (JDj,x. If Q € D and Q' € Dy,  are such that z € Q and Q N Q' # O,
then Q' C Q. Using this and the zero integral of bj, in the cubes Q' € Dj, \ we see that
RM[(gjy»- -+ 95i_1>0j;s fiisrsr---» f)]l(x) = 0. Thus, the set in (3.24) is actually empty.
This finishes the proof of the weak type estimate.

We move on to prove the sparse domination. Let ¥ C D be any finite collection such
that there exists a cube Qp € D so that QQ C Qo for every @ € €. We consider the related
maximal function

RMy[(fy)jes)() = [ {(fleer: v e Qe g}
Define the related truncated versions for every Q' € D by
RMy o/ [(fj)jesl(z) = H{ ((fi)e RM,(20,7)’
and also the numbers
M T(£:)oe o] — H . :
o [(fi)jed] {(<fJ>Q) RM, (w,J)

Notice that RMy g, = RMg.
Fix some functions f; € LIOC(X ;). Let B denote the weak type norm of RM. We show
that there exists a sparse collection S = S((fj)jes) C D of subcubes of Qg so that

(3.25) RMy[(f;)jer]) < 2B [ (ilx)ele:
QeS jeg
This follows via iteration from the estimate

(3.26) RMy[(fi)jer) < 2B [[{filx)aolae + D RMyggl(fi)jeal,
jeg QeE(Qo)
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where £(Qo) is a collection of pairwise disjoint cubes @ C Qo such that Y ocegy) Q] <

|Qol/2.
We prove (3.26). Define the collection £(Qp) to be the set of the maximal cubes Q € D,

Q C Qo, such that
RM%[(fj)jeJ] > 2l8 H(‘fj’Xj>Q0'
JjeJ

If Q € £(Qo), then RM¢[(f;1q,)jes)(x) = RMe[(f))jes(x) > 2B e 7| filx;)qo for all
x € Q. Therefore, applying the weak type boundedness, we have that

S 1@l <2 (TT06)a) " T Ielh ) =271

QEE(Qo) JeT JjeJ

If 2 € Qo \ UE(Qo), then RMy[(f))jer](z) < 2'B [T;e7(filx;)Qo- On the other hand,
if v € @ € £E(Qp), then

RMy[(f;)jes](x) < RME" [(f;)je0] + RMy o[(f)je] (@),

where RM?K(U [(fi)jeq) < 2'B [Te7(|filx;)q@o by the stopping condition. Thus, we have
proved (3.26), and therefore also (3.25).

From (3.25) it follows that each RMy : [[;c 7 LP(X;) — LP is bounded for all p; as in
the statement. There exist cubes Q; v € D, where 1 < i < m for some m < 24 and N € N,
so that £(Q;n) =2V, Qin C Qint1, QinNQuy =0 ifi #£ 4, and |, Uy Qin = RY.
What the number m is depends on the lattice D. Let €; n :={Q € D: Q C Qin,¥(Q) >
2=N1. Then,

> RMq, \[(fj)jes)(@) S BRM[(f;)jeql(@), N — oo,

i=1
for every x. Thus, by monotone convergence, we have that RM is also bounded. O
3.27. Example (The RMF, property in the function lattice case). We continue with
the setting and notation of Example 3.11. We also assume that (Xi,..., X,4+1) has the
RMF, property. Suppose J C Jp, 1 < #J < n—2and v € J, \ J. Suppose
fi € LPi(RY LPi(Q; X)) = LPi(R? x Q; X;) for all j € J, and fix a dyadic lattice D. We
have by Example 3.11 that

RMp e, 7.0((f5)jeq](@) S [|w = BMp e, 7.0[(£i (-, w))iea)(@)]| o 0

so that
H RMD,W,J,U[(fj)jEJ](x) HLp(J)(Rd) S H H RMD,WO,J,UKfj(': w))jGJ] (w)HLp(J)(]Rd) HLP(J)(Q)

< | TT 156 )l oo e,
JjeT

Lr(I)(Q)
< H 1£5ll7s maxasx;)-
jedJ
This shows that (LP'(92; X1),..., LPr+1(€; X,,41)) has the RMF, property. In particular,
by iterating the previous we have obtained that any Holder tuple of iterated Banach



22 FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

1 m 1 m
function lattice spaces (L} --- Lyt ... ,LZ’I“ e Lﬁ’l‘“) enjoys the RMF, property with
respect to
n+1

w(fla . -,fnJrl /H f] ti,. .. atm) dlul(tl) o 'd,um(tm)'

3.28. Example (Noncommutative RMF property). We are interested in operator valued,
multilinear singular integrals acting on products of noncommutative LP-spaces; to this
purpose, we need to study the corresponding Rademacher maximal function theory. We
begin with a quick summary of the relevant definitions. For comprehensive background
material on noncommutative LP spaces and their role in noncommutative probability and
operator algebras we refer to the classical survey by Pisier and Xu [42], to the recent
monograph [41] by Pisier and references therein.

Consider a von Neumann algebra A equipped with a normal, semifinite, faithful trace
7. For 1 < p < o0, the corresponding noncommutative space LP(.A) is defined by the norm

€l = [ (€0F)]”

Notice that LP(A) is a UMD space for all 1 < p < oco. An enlightening example is
obtained by choosing A = B(H), the space of bounded linear operators on a complex
separable Hilbert space H with orthonormal basis {e; : j € N} equipped with the usual

trace
o0

() =Y (geie)
j=1
In this case LP(A) is usually referred to as the p-th Schatten class and denoted by SP.
Let now (2, 1) be a o-finite measure space and A a von Neumann algebra as above. We
conveniently recall that M = L*°(Q) ® A is also a von Neumann algebra equipped with

normal semifinite faithful trace
v(ifeeg) = < / f du)

and that we have the isometrically isomorphic identification LP(M) ~ LP(§; LP(.A)).

We turn to the study of noncommutative multilinear Rademacher maximal functions.
This concept was first explored in the bilinear setting in [11]. Let 2 < k < n + 1, and
P1,.--,Px € (1,00) be a Holder tuple of exponents. We are interested in the Rademacher
maximal functions associated to the tuple of spaces X1, ..., X,,+1, where

o X;=1LPi(A)for1<j<k,
o X;j=Cforn<j<n+1,
equipped with the (n 4 1)-linear contraction

n+1

@(&1s- - Eng1) = ny IT ¢

J=kKk+1

We are able to establish a satisfactory multilinear Rademacher maximal function estimate
for the above tuple of spaces when x < 3. This is an improvement over the results of [11],
where the restriction k = 2 was imposed. Notice that the analysis of [11] concerned the
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nontangential version of the Rademacher maximal function, but the arguments therein can
be recast in the dyadic setting as well.

3.29. Proposition. Suppose kK = 2 or k = 3. Then the above defined tuple of spaces
X1i,...,Xnt1 has the RMF 4 property.

Proof. We work with the dyadic lattice Dy in dimension d and therefore make use of the
identification LP(M) ~ LP(R%; LP(A)), where M = L®(R%) ® A. The proof is split into
several cases, all of which will make use of the following celebrated result of Junge [28]: if
f € LP(M), we may find af,by € L?’(M) and contractions y,,; € M such that

(3.30) lagll L2e oAy 105l 220 A1) S I F1 e (M)
and
(3.31) Eif = Y Eqf =asysby.
QeDy
(Q)=2""*

By the definition of RMF (3.20), we will prove the result according to the following cases:

(1) {jlan}m{lw"?K’}:@;
(il) #{j1,j42} N{L,...,k} = 1;
(111) #{jlan}m{l?"'7H}:2

In case (i), we will take jp = 1, so that #J N{1,...,k} can be 0, 1 or 2(if kK = 3). In
case (ii), without loss of generality, we can assume that 1 ¢ {j1,j2} so that we can still
take jp =1, then #7 N{1,...,k} can be 0 or 1(if kK = 3). In case (iii), if kK = 3, again we
can assume 1 ¢ {j1,j2} and take jp =1, then #J N{1,...,k} = 0; if kK = 2 we will take
jp = 3 and in this case #J N{1,...,x} = 0. Let us consider the last situation first. We
have

RMpy .7.3((f)ieal(@) = ||[{({f)@ies s » € Q € Do}l

RM3(w,J)
< sup sup ‘ dor€ab2) I ]l Ezfj(x)‘
l€e,ullRad(Lru (a))=1i€PRaa\{1,2} ' i€Praa\{1,2}  JET
u=1,2 lI€ill 2 =1 ’

= sup sup E‘T < Z ekk,1 Z €e8e,2 H €e,i H Eij(@) ‘
k ¢

Ieullnaacrrn (=t i€ Raa (1,2} i€Praa\{1,2}  JET
i A

< sup H |Eefj(x)] < H Mf;(x),

jeJ jeJ

where we have used Holder’s inequality and Kahane contraction principle. We conclude
this case by using the boundedness of [],. ; M f;j(x). Now we are left to deal with the
remaining cases, keep in mind that we always have jp = 1.
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Case #J N{1,...,k} = 2. This forces that kK = 3. We are then allowed to estimate

RMDo,wjl[(fj)Jej _H{ fJ 36‘7 xGQEDO}HRMl @, J)
< sup  suplr (A()Ecfo(n)Bets)l [ MY
|§1\LP1(A):1 £ JET\{2,3}
<H||afj 2l ylloss @)l T M

JeI\{2:3}

where the first inequality follows from the definition and the second by (3.31) and Holder’s
inequality. For ¢; = (p1)’ Holder’s inequality yields

I RMDo,wjl[(fJ)JEJ | Lax (Rd) H Haf]HLZPJ )Hbfj”L2Pj(M) H HijHLOO(Rd)
jeg\{2,3}

3
S H ||fjHLPj(M) H ||fj||L<>o(Rd)-
Jj=2 JeIT\{2,3}

In view of (3.30), we obtain the bound

3
RMp, w7 : | [[ L7 ®R% LP (A)) | % I r2®Yy) - ro®?
j=2 jeg\{2,3}

and conclude the required condition for this class of J by means of Lemma 3.22.

Case #J N{1,...,k} = 1. This is actually the most complex case. If kK = 2, we may
proceed similar as in the previous case, details are omitted. We are therefore left with
treating the case where k = 3 and without loss of generality we assume 2 € 7, \ J. We
may estimate the Rademacher maximal function corresponding to the RM;(w, J) norm

RMpy,z,7.1[(fj)jesl() = H{ (fi)Qljeg: € Q€ DO}HRM1 (@.7)
< sup sup ZT G(@)é2Eefs [ Mi| ] Eefil@)
||€eu||Rad<LPu<A>> 1ﬁ§PTd\{2}1 i€PRaa\{2} jeT\{3}
£,illRad

S( sup || AcEefs(x )HRadLPSA)) I My,

”)‘Z”Radzl ]67\{3}
where the second step is obtained via Hélder’s inequality and the Kahane contraction

principle. Now using (3.31), we obtain

IAEef3(2) [Raares (ay) S Nags (@)l n2es 4y [ Xeye, g (@) by (I)HRad(LQW(A))

2

S llags (@) L2ra (Z\AelHy@fs ()b, (z )H%ng(A))> S llags (@)l L2vs ()10 5 () L2ra )
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We have crucially used type 2 of L?P3(A) when passing to the second line. Taking L3 (R9)
norm and using (3.30), we realize that we have proved the estimate

RMpy .71t LP(RE L (A)) x - [ Lo(RY) — L7 (RY)
JeT\{3}
which completes the proof of this case.

Case J N{1,...,k} = @. This is the easiest case. If K = 2 it can be proved similarly as
the the previous case (even easier as we don’t need to deal with Eyfs). And if kK = 3, it
can be proved similarly as at the very beginning. O

4. OPERATOR-VALUED MULTILINEAR SHIFTS

Our basic result concerning the boundedness of n-linear operator-valued dyadic shifts is
summarized by the following sparse domination principle.

4.1. Theorem. Let n > 2, suppose X1, ..., Xy, Yni1 are UMD spaces and denote X411 =
Yy, . Assume that (Xi,...,Xn41) has the RMF, property with some w as described
in Section 3.2. Let fp, € LX(X,,) for m = 1,...,n+ 1. Suppose D is a dyadic grid
and n € (0,1). Then there exists an n-sparse collection S = S((fm),n) C D so that the
following holds.

Suppose S* := SE k= (k1,...,knt1), 0 < k; € Z, is an n-linear dyadic shift with com-
plexity k and with coefficient operators ag (g,) € £(Hm 1 Xm, Yni1). Recall the collection
C(S*) of normalized coefficients from (2.14). We have

n+1
(42)  [(S*(frse s o)y far)| Sp (L4 8" R (C(S9) D 1QI TT (fmlxn)g
QES m=1

where k = max ky,.
In particular, if 1., pn € (1,00], Gus1 € (1/n,00) and S0, 1/pm = 1/guss, then

(43)  NS* (frye s F)llponsr vy S (14 8)" T R H ([ fmll zom (x,0)-

Proof. The estimate

n+1 1/2 ntl
Q
H | m| H |6m|Xm

{ar (@ulets - enl, ent1)] < Ra(C(SY)) |K,n

m=1

follows directly from the definition. We are considering a shift

S (froeif) = Y Ar(free ),

KeD
where _ _ _
AK(fh'”afﬂ) = Z aK,(Q¢)[<f17hQ1>7"'7<fnﬂhQn>]hQn+1'
Q1,..,Qny1€D
ngi):K
By Lemma 2.15 it remains to prove that
n+1

(4.4) [(S™(f1 - )y )] S (U4 8)" T R (C(S™)) T Il o ()
m=1
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for some p,, € (1,00) satisfying an—i_:ll 1/pm = 1. Notice that by proving this, we also

prove the corresponding estimate for all subshifts S&, = $° e Ai, where D' C D. This
is required in the assumptions of Lemma 2.15.

If n > 3 we assume the following. Let jo, j1 € J. be the indices such that the corre-
sponding Haar functions of the shift S* are cancellative. Then, since (X1,..., X41) is
assumed to have the RMF property there exists a v € J,, \ {Jjo, j1} so that the maximal
functions RMp . 7, are bounded for all 7 C 7, \ (J U {jo,j1}), see (3.20). Notice that
EQU = hOQv. For convenience of notation we assume that v = n + 1 but the general case is
handled similarly. If n = 2 there are no RMF assumptions involved and we assume for
convenience that hg, = ths.

Having made the initial assumptions we proceed with an arbitrary n > 2. We let
{{n+1}, Taq> Tiu} be the admissible partition such that #J%,4 = 2 and hg, = hg, for

je Jlgad; for j € Ty we hive hg, = h%j. Ifme jlgad7 then (fm, hQ,,) = (A];(mfm, hQ,.),
and if m € JQy, then (fm, hq,.) = (Ef(mfm, hOQm>. By writing for m € J%), that

km—1
Ejrfm= Y Aifm+ Exfm,
=0

we see that the shift S¥ can be split into at most (1 + x)"~2 operators of the form

> Ag(PRfr,... PR fa),

KeD
where the following holds. We have 0 < l,,, € Z and l, < ky,. If I, # 0 then P = Alm,
and if [, = 0 then Pln = Py can be either Ag or Ex. For m € jfgad we have l,,, = kn,
and PIIQ = AZI}”. Now we fix one such operator and show that it is bounded as desired.

Let Jhy C J9y be the subset of those indices m such that Py = Eg, and set Jh,q =
{1,...,n} \ Jhy- Recall the lattices Dj ., j € {0,...,x}, from (2.5). We fix one j and
start to consider the term

(4.5) < 3y AK(P};fl,...,P;gfn),fn+1>.
KeDj

We prove an estimate that is independent of j.
Let K € D; . Define an operator-valued kernel ag : RA™Y — £(TT" _, Xon, Yyi1) by

m=1
a @,y ou) = Y KM ak@nho W) - b, (Un)hg . (2).
Q1,-,Qny1€D

Notice that ax is supported in K"*! and that if z,¥1,...,y, € K, then for some € €
{—1,1} we have eax(x,y1,...,9n) € C(S¥) . Thus, there holds

Re({ax(z,y1,. . yn): K € Dj ey, y1,...,Yn € Rd}) < Rw(C(Sk)).

Below we write ag (z,y) = ax (2, y1,...,yn) for y = (y1,...,9yn) € R¥. We have that

1

(16)  Ax(Pfr o PRE)@) = /K Caxc () [P, - P fulyn)] dy.
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Let (V,v) be the space related to decoupling, see Section 2.2. Let also V" be the n-fold
product of these, and let 1, be the related measure. If y = (y1,...,yn) € V", then yn, k
for m € {1,...,n} and K € D denotes the coordinate of y,, related to K. If y € V", we
write yx to mean the tuple (yi k,...,Yn k). If K € Dj, then we can rewrite (4.6) as

(A7) Ax(PRfr,- . PR fn)(x) = / Cak (@ y) PR ALK, - PR Fu(yn, )] dvn(y).

Applying (4.7) it is seen that (4.5) equals

/Rd/n Z aK z yK Kfl(yl K) 7P[l?fn(yn,K)]vfn+1(x)> an(y)dx'

KeDj

Notice that here we may multiply each of the functions inside ax (z,yx) by 1x(z), since
ag(z,-) = 0unless z € K. Applying the R -boundedness (see Remark 3.16) of the kernels
gives that the absolute value of (4.5) is dominated by

/Rd/ H (L (@ A 7 fm(Ym, k) kep; . |Rad(X)

me jRad

< |{ (k@ Brcfmlymi)) oK eDjs

A n X dv, dz.
meThm ’ } HRM(W,jéM,n+1) ’f +1( )’Xn+1 (y)

Let ijl{M be the tuple of the functions f,, with indices m € JP’{M. We notice that for
all z € R? and y € V" there holds that

{ (@ Brchntm)) K€D

< RMDwJ’ n+1(FJF’{M)($)7

mETfm RM (@, T ppon+1)

and by assumption we have that

1/r
woy ([, ] ®Mocgna g ey dnmde) " < T Unlinc,

me T

Here 7 is the exponent defined by 1/r=3" T L /Drm.-
Let m € Jf,4- Then Kahane-Khintchine inequality (2.1) shows that

/]Rd/ H 1K )A fm(ymK))KED]KHRad(X )an( )d.ZC

(4.10) on
B[ L] et @ )y e dvw) S 1,
Rd Xm m)

KeDj .

The last step is based on the decoupling estimate (2.6).
Now, if we use Holder’s inequality in (4.8) and combine the result with (4.9) and (4.10),
we finally see that
n+1
[(4.5)] < H ||fm||me(Xm)‘
m=1

This concludes the proof. [l
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5. OPERATOR-VALUED MULTILINEAR PARAPRODUCTS

We begin with some definitions. Suppose X1, ..., Xy, Y,+1 are Banach spaces. Suppose
Te L1 Xm,Yns1). Let k € {2,...,n} and e, € X,,, for m € {k,...,n}. Define the
operator T'leg, ..., en] € E(an_zll Xm, Ynt1) by

(Tlek, .- en))er, .. ex—1] :=Tle1,...,en],
where e, € X,,,, m € {1,...,k —1}. We see that for k € {2,...,n — 1} there holds that

G0 Tk el v wn < lerlx Tleren - enll oqps oy
and that
(5.2 ITlenl oot xoviny < el Tl %o v

Let a = (ag)gep, where

n
ag € ,c( I1 Xm,YnH).
m=1

Assume that there exists a UMD subspace Ty, C E(anzl X, Ynt1) for every k € Z,,_1 so
that

aQ € Tn
and for kK < n

aglék+1,--.,en] € T, for every epy1 € Xpy1,..., e, € X,

If these conditions are satisfied, we say that a satisfies the UMD subspace condition.
The next theorem generalises the result about boundedness of operator-valued para-
products from [16] to the multilinear context.

5.3. Theorem. Let n > 2, Xi,...,X, be Banach spaces, Yn+1 be a UMD space and
Xng1 := Yy . Let fry € L°(Xy,) for m = 1,...,n+ 1. Suppose D is a dyadic grid
and n € (0,1). Then there exists an n-sparse collection S = S((fm),n) C D so that the
following holds.

Suppose a = (ag)gep satisfies the UMD subspace condition as above. For a paraproduct
T := Tpq we have for all v € (0,00) that

n+1
(5.4) [ (frsees fa)s Farn)] S llallBao, 7y D 1Q1 TT (1 fmlxn)o-
QES m=1

In particular, if p1,...,pn € (1,00, gnt1 € (1/n,00) and > 1 1/pm = 1/qn+1, then

n

(5.5) 7w (f1s- s )l () S lallevon.. 7y LT 1 fmllzom -

m=1

Proof. We first fix r € (1,00) and assume that ||a|gmop, (7;,) = 1. We will use Lemma
2.15 again. First, the correctly normalized estimate

’Q|n/2+1/2 n+l

Q"

1

Qpre €] X,

[617 . '7en]7en+l>‘ <

m=1

follows directly from the BMO assumption.
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Choose py, € (1,00) so that >, 1/py, = 1/r. We show that

(5.6) | > aql(Fle] < T mllzom (x,-
& "

where Qg € D is arbitrary and (F)g := ((f1)Q,-- ., (fn)q). We denote by D(Qq) the set
of cubes @ € D such that @ C Qg.

We begin by constructing a collection of stopping cubes. Set Sy := {Qo}, and suppose
that S, ..., Sk are defined for some k. If S € Sy, we define chg(S) to be the collection of
the maximal cubes Q € D such that Q C S and

(lf1lx1)e (Ifnlxn)@
(5.7) max(<‘f1|Xl>S,..., <‘fn’X">S) > 2n.

Then, we define Si41 := USeSk chs(S) and finally S := [Jp2 ;Sk. If Q € D and Q C Qo,
then the unique minimal cube S € S containing @ is denoted by 75(Q). If S € S we
define E(S) := S\ Ugrecng(s) 5"

It follows from the construction that S is a sparse collection. For S € S define Fg :=
(f1,85--+,fns), where

(5.8) fog =Y. {fm)sls + lpgs)fm.

S'cchg(S)
From the stopping condition (5.7) it is deduced that
(5.9) I fn.sllpoe () S (I fmlxm)s-
Equation (5.8) implies that
(5.10) (Flo = (Fs)q

for all @ € D(Qq) such that 7sQ = S.
Pythagoras’ theorem (2.7) and Equation (5.10) give that

| QE;QO)aQKFwQ) o
(5.11) r 1r
<gSH QG%QO) allfsalia LT(YnH)) .
TS

It will be shown that for all S € S there holds that

(5.12) | > aaltoa.tonalhal,, . < T lomllieenls1”

QeD(Qo) =t
TsQ=S
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for all g,, € L>®(X,,), m € {1,...,n}. This combined with (5.9) and (5.11) implies that
the left hand side of (5.11) satisfies

LHS(5.11) 5 (Y H (I fnlx) s!S!)

SeSm=1

(S Usulxzrlsl)

Ses

<

~

| fmllLom (x0)5

q=F i:=

where the last step followed from an application of the Carleson embedding theorem based
on the sparseness of S.

Fix S € S and suppose g, € L>®(Xp,), m € {1,...,n}. Let {eg}gep be a collec-
tion of independent random signs. For all € R? the collections of random variables
{eghq(z)}gep and {eg|hq(z)|}gep are identically distributed. This gives, using the
UMD property of Y, 1, that

‘ 3 aQ[<91>Q,~-a<9n>Q]hQ’

QeD(Qo) b )
(5.13) TsQ=s
~E[ X cquelie. - lomlalinal,,
QED(Qo) wt)
TsQ=S

Notice that |hg| = 1¢/|Q|*/2. This allows us to use Stein’s inequality in the next estimate.
The UMD-valued version of Stein’s inequality is due to Bourgain, for a proof see e.g.
Theorem 4.2.23 in the book [24].

The right hand side of (5.13) satisfies

RHS(.13)=E| Y 5Q<aQ[gl(.),...,<gn>Q]>thQ|‘LT(Y |
QED(Qo) "
TsQ=S

SE| X cemlo() o tmallreO]
QED(Qo) Y
TsQ=S

<El|lalx| Y coaollgle. - gdallhal| ||,

QED(Qo) '
TsQ=S
<ol 3 cotolisa.- allkal[,, -
QED(Qo)
TsQ=S

Because 77 is assumed to be a UMD space we can repeat the above estimate with g9 in
place of g1. In course of doing so, after applying Stein’s inequality, we use the estimate

| > cateln@). @ - gmlallho@)]|

QeD( Qo)
WSQ

< lga(@)] x|

> cquolig. - anallho@ | .

QeD(Qo)
TsQ=S
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see (5.1) and (5.2). Iterating this we arrive at

RES(5.13) $ T] lgmllz=(x,.E|
m=1

QED(Qo)
TsQRQ=S

Finally, the BMO assumption gives that

Bl 3 5 lalssion, SV =151

QeD(Qo)

TsQ=S
This concludes the proof of (5.12), and hence of (5.6). Lemma 2.15 now gives (5.4). It
remains to recall the John—Nirenberg inequality (2.9). O

6. THE REPRESENTATION THEOREM

Let n > 2 and let X1q,..., Xy, Y,r1 be UMD-spaces. With respect to these spaces,
suppose that T' is an n-linear operator-valued SIO with a basic kernel K.

Assume that there exist UMD subspaces T C E(H 1 Xom, Ynt1) so that for all dyadic
lattices D the sequence [T'1]p := ((T'1, hq))QeD satisfies 1 the UMD subspace condition (see
Section 5) with these spaces. Recall that the operators (T'1, hg) were defined in Section
2.4. We abbreviate this by saying that T'1 satisfies the UMD subspace condition. Let
m € {1,...,n}. Likewise, we say that T"™*1 satisfies the UMD subspace condition if the
corresponding UMD subspaces 7, exist. Notice that here the spaces X, change places,
so that for instance

TmCL‘(HkaXon H Xk,X*>

k=m-+1

If ¢,: R* - C, m = 1,...,n+ 1, are bounded and compactly supported and ® =
(¢1,...,¢n), then we can define the n-linear operator

(TP, pn+1): H Xm = Ynt1

m=1

by setting

(61) <T<I>7 ¢n+1>[61a s 7671] = <T(¢1€17 cee ¢nen)a ¢n+1>7 em € Xm.
We define the following collection of n-linear operators [[" _; X, — Y41 by setting

Coea(T) = {|Q™ (T (1g,...,10),10): @ C R is a cube}.

6.2. Definition. Let n > 2, Xy,..., X, Y11 be UMD spaces and X, 11 = Y, ;. With
respect to these spaces, suppose that T' is an n-linear operator-valued SIO with a basic
kernel K. Suppose that w: X7 x -+ x X, 11 — C is an n+ 1-linear contraction as in (3.3).
We say that T satisfies T'1 type testing conditions if:
(1) We have
[K|cZa,w = Re(Coz,a(K)) < o0.
(2) We have
”THWBP,W = Rw(cweak(T)) < 00.
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(3) For all m € {0,1,...,n} the UMD subspace condition for 77"*1 holds, and there
exist exponents rg,71,...,7r, € (0,00) so that

1T 1| Bmo,,, (Tm) = sup ({1, hq))qeplBMOS,,.,, (T17) < 00

where the supremum is over dyadic lattices on R,

Good and bad cubes. Recall the random dyadic lattices from Section 2.1. We introduce
the good and bad dyadic cubes of Nazarov—Treil-Volberg [37]. Let v € (0,1) and r €
{1,2,3,...}. We say that a cube Q € D, where D is a dyadic lattice, is (v, 7)-good if for
all R € D with ¢(R) > 2"¢(Q) there holds that

d(Q,0R) > L(Q)U(R)' ™,

where OR is the boundary of R. If @ is not (v, r)-good, we say that it is (v, r)-bad. Let
Q@ € Dy (where Dy is the standard dyadic grid) and define the probability

Poad(7,7) = P{w € Q: Q +w is (y,7)-bad}).

This probability is independent of the cube @ € Dy and Ppaq(y,7) — 0, as 7 — oo. In
what follows we make the explicit choice y(dn+ «) = «/2 and then fix r large enough — at
least so large that Pgood = Pgood(7:7) =1 — Phad (v, 7) > 0, and that certain calculations
below are legitimate. Now that v and r are fixed we simply write Dgooq and Dpaq for the
good and bad cubes of a given lattice D.

6.3. Theorem. Letn > 2 and let X1,..., Xy, Yy 11 be UMD spaces. Denote Xy 11 =Y, ;.
Suppose that (X1, ..., Xnt+1) satisfies the RMF, property with some w, as in Section 3.2.
With respect to these spaces, suppose that T is an n-linear operator-valued SIO with a
basic kernel K as in Section 2.3. Suppose that T satisfies the T'1 type testing conditions
of Definition 6.2.

Let fr: R = X, m=1,...,n+ 1, be compactly supported and bounded functions.
Then we have the representation

<T(fla ... 7fn)7fn+l>

n
= C[IIKlIczm + ITlIwep.e + 3 1T Iy, , (730 |

m=0

« [IE ST amemakn /2NN GE (f f) farn) £ ST e (Fra s f)s fasn) .

n+1 u =0
keZl m

Here C < 1 and the sum over u is a finite summation. The operators wa are dyadic
shifts of complexity k defined in the grid D, and satisfy RW(C(SUEM)) < 1. The operator

Ty, me1 18 the paraproduct wp, (pmeq]y, . related to [T™*1]p
w,goo

w,good *

Using Theorem 4.1, Theorem 5.3 and (2.17) we get:

6.4. Theorem. There exist dyadic grids D;, i = 1,...,3%, with the following property. Let
n e (0,1). Let X1,..., X, and Y11 be Banach spaces and fr,: RT — X, m = 1,...,n+1,
be compactly supported and bounded functions. Then for some i there exists an n-sparse
collection S = S((fm),n) C D; with the following property.
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If T is an operator-valued n-linear singular integral satisfying the T'1 type testing con-
ditions, then

(6.5)
(T (s ) fur)] S (1K D0 + [T wBP + D IT™ Ulpnt0,,, (70 |
m=0
n+1
<310 TT Ul
Qes m=1

In particular, if p1,...,pn € (1,00], gni1 € (1/n,00) and >0 1/pm = 1/qn+1, then

(6.6)

n
IT(f1,- -5 flllLmr (v S 1Kl 0Zow + I Tl wep,e + Z HTm*l”BMOrm(Tnm)}

m=0
n
< T 1 fmllzom x,n)-
m=1

Proof of Theorem 6.3. We show the proof under the additional assumption that T is a
priori bounded, say from [["_, L"**(X,,) to L"*D/7(Y, 1), At the end we comment
why this is enough. With this assumption, all the steps in this subsection can be made

rigorous.
For every m € {1,...,n + 1} suppose fp, is a X,,-valued, bounded and compactly
supported strongly measurable function. Write F' = (f1,..., f,). We start considering the

pairing (T'[F), fn+1)-

Multilinear reduction to good cubes. Fix for the moment a random parameter w € ).
Writing the functions as fm, = Yo <p, AQ,, fm We have

<T(f1)' . 'afn)vfn-‘rl)

Q1,--,Qn+1€Dy,
n+1
m=1 Q1’~~~»Q7L+16Dw

K(Ql)7-"7Z(Qm71)>£(Q'm)
UQm+1)5-l(Qny1)2U(Qm)

For k € Z there holds that

<T<AQ1f17 s 7AanTL)? AQn+1fn+1>

<T(AQ1fla ceey Aann)7 AQn+1fn+1>~

> Agg=E,ng,
Q€eD,,
2(Q)>2F

Thus, for m € {1,...,n} we have

Z <T(AQ1f1;-'

Q1,--,Qn+1€Dy,
Q1) A(Qm—1)>(Qm)
Z(Qm+1)»~~:e(Qn+l)Ze(Qm)

E,ogi= Y (9olg
QeD.,
o(Q)=2*

‘7Aann)7AQn+1fn+1> = Z Am(Q),

QeD.,
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where A,,(Q) is defined, for Q € D,,, to be

<Tm* (Bw o) 15 B p@) fm—1, Ew,@fnﬂa Ew7@fm+1, R ), fn),AQfm>-

0.&72

Similarly, for m = n + 1 we have

Z <T(AQ1f17""Aann)aAQn+1fn+l> = Z An+1(Q)a
Ql ..... Qn+1€'Dw QE’DW
Q1) (Qn)>€(Qnt1)
where
(6.7) M 1(Q) := (T (Eyp(@)f15- - -+ B p(@) fn), Ag frt1), Qe D,.

Recall that D, is the lattice {Q + w: @ € Dp}. Hence, the average over w € Q of
>-0ep, Ant1(Q) can be written as

E, Z Ap1(Q+w) =

Q€eDo

1
P Z Ew[lgood(Q + w)]EwAn-i-l(Q + w)
good QeDo

_ ! Eu Y lg00d(Q + w)Ani1(Q +w)

P
good QeDo

= ! E, Z ATLJrl(Q)’

Pgood
goo QEDw,good

where independence of the functions w — 1g404(Q +w) and w — Ap41(Q +w) was used in

the second identity. Since the same argument can be clearly made for every Zerw A (@),

we have shown that
n

(6'8) <T[F]a fn+1> = ! Ew [ Z Z ]\m(Q) + Z An+1(Q)] :

Pgood
goo m=1 QEDu,good QeDm,good

Expansion back to martingale differences. Now that the probabilistic reduction is
done, we fix one w € 2 and suppress w from the notation; all the dyadic concepts are with
respect to the lattice D := D,,. Let first m € {1,...,n} and @ € D, and consider the
pairing A,,(Q). Just for notational convenience define for the moment

fj? .] € {1,...,n}\{m},
(6.9) 97" =S farr, j=m,

fm, j=n+1

By writing E@gﬁ,} = Dy@)9m + Euq@)9m> where Dorg =30 yg)=o2r D@y, we have
An(Q) = <Tm* (B9t - -- s Eu@9m-1> De@)9m> Eog gmias - 7E@921)7AQ97T+1>
+ <Tm* (Eygygt - - >EZ(Q)9:Z>E@9$+1, e E@gﬁl), AQ97T+1>-

Continuing in the same way with the second term on the right hand side, it is seen that

n
Am(Q) =" <Tm* (B9t - -- ' Ev@)97%1: Duydi Bua 9, - ,E@QZL%AQQ%O

j=m

+ A (Q),
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where we have defined
(6.10) An(Q) = (T™ (Eygyg's - Eu@y9i'): Magitsr )-

The terms A, (Q), m € {1,...,n}, are completely symmetric with the term A, 1(Q)
in (6.7). Hence, we will concentrate on finding the model operator structure for the sum

(6.11 > An(@.
QEDgood
The terms
(6.12)
> <Tm* (Euo)9Ts - Eu@)97-1, Duy gl Bug)gi%1, - 7E@97T)7AQQZL+1>,
QEDgood

where m € {1,...,n} and j € {m,...,n}, will be handled separately in Section 6.6. Apart
from a certain diagonal part, the shift structure for these will follow from our arguments
concerning (6.11).

Now we start to consider the term (6.11). Fix the cube @ € Dggoq for the moment.
Since by a priori boundedness there holds

T(EQkfl,...,EQkfn) — 0, as k — oo,

we have
(T(Eqg)f1:-- - Buqyfn), Ao fas1) = Z [<T(E2kf17~-,Ezkfn)7Aan+1>
2’619266%62)

AT (Eyess f1, ..., By fu), Ag fn+1>} .
Let k € Z be such that 2¥ > £(Q). Then
(T(Egif1,-- s Eoefn) AQfns1) — (T(Egrsr f1, - Eorir f) AQ frt1)

n
= Z <T(E2k+1 fl, ey E2k+1 fz‘—l, D2k+1 fi, EQk fi+1, ceey E2k fn) , Aan+1>.
=1

For i € {1,...,n} the corresponding term in this sum can further be written as

Z <T(EQ1f17 cee 7EQi71fi—17 AQZf’La EQ¢+1fi+17 ey Eann)a Aan-i-1>
Q1,...,Qn€D
UQr)==£(Q;)=2F+1
UQit1)="=L(Qn)=2F

Let us agree on the following conventions. Let Z;, ¢ = 1,...,n, be defined by
D; = {R: Ql Xoeee XQn: Ql?"'aQnepv
E(Ql) e K(Ql) = 2£(Qi+1) R 2€(Qn)}

Suppose R=Q1 X -+ X Q@ € Z; and Q € D. Define /(R) := ¢(Q1) and
A(Q. B) = maxd(Q. Q).
Set V]éF to be the n-tuple of functions
VEE == (Eg, f1,-- - EQ,_y fim1, Q. fis EQs iy fit1s - -+ By, f)-



36 FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

Using the above splitting we have

(6.13) > An(@ Z S > (TVEF], AQfaia)-

Q€Dgo0d =1 Q€Dgooda RED;
L{R)>4(Q)
Most of the time we will consider each i separately. However, related to every ¢ there will
be a paraproduct type term. These will be summed together in Section 6.4 giving one
simple paraproduct.
Let us rewrite the pairings (T[VAF], Ag fnt1) using Haar functions. Expanding

AQfnt1 = (fn+1, hQ)hq
there holds ‘ ‘
(TVAF), A fust) = (TVAF] ha) {fus1, b))
Related to the set R = Q1 X -+ X Qn € %, define the n-tuple
0 0 0 0
(614) hR,i == (th, ceey hQifl’ hQ” hQi+1’ ey h n)'
Using hg; we can write
(TIV&RF], hq) = (Thr,i, hQ)[(F, hr.q).
where (T'hg;, hq) is the natural operator defined using (6.1) and
<F7 hRJ) = (<f17 he 1>7 s <fi*17 he 1‘71>’ <f17 th>7 <fi+17 hOQi+1>7 SRR <fn7 he n>)
Altogether, we have
(TIVRF), A fat1) = (Thr,, hg)[(F, hr )], (far1, ha))-
We now fix one 7 in (6.13) and start to study the related term

(6.15) S > UThea hQ)UF hra)l, (fat1, b))
QEDgood RGQ
LR)>L(Q)
6.1. Step I: separated cubes. Here the part
O-Zi = Z Z <<ThR,i> hQ> [<F7 hR,i>]> <fn+17 hQ>>
QeDgood Re@i
{R)>4(Q)

d(Q,R)>L(Q)Y (£(R)/2)' =
of (6.15) is considered. We begin with the following lemma on the existence of nice common
parents. A short proof is given, albeit it is morally the same as in the case n =1 in [19].
FR=Q1 %X - XQn € % and Q € D are such that there exists a cube K € D so that
Q,Q1,...,Q, C K, then the minimal such K is denoted by Q V R.

6.16. Lemma. Suppose R = Q1 x --- X Qn € Z; and Q € Dyooq are such that there holds

d(Q,R) > L(Q)"(L(R)/2)'=7. Then there exists K € D so that Q1 U---UQ,UQ C K and
d(Q, R) Z U(Q)0(K)'™

Proof. Let K € D be the minimal parent of () for which both of the following two conditions

hold:

o ((K) > 27U(Q);
o d(Q,R) < UQ)U(K)'™
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If we had that @, C K¢ for some m, we would get by the goodness of the cube @ that
HQYUE)'™Y < d(Q R) < £(Q)TU(K)'™,
which is a contradiction. Moreover, we have
UQ)(UR)/2)' ™7 < d(Q,R) < UQ)UK)'

implying that ¢(K) > ¢(R). Thus, there holds Q; U---UQ, UQ C K.

It remains to note that the estimate d(Q, R) > £(Q)"¢(K)'~7 is a trivial consequence
of the minimality of K. There is something to check only if /(K) = 2"¢(Q). But then
/(K) S U(R) and so

d(Q. R) 2 €(Q)UR)' ™ 2 €(Q)T(K)' .

We use the common parents to organize o} as

oo j1—1
(6.17) > ) =222 )
QGDgood Re@z j1:2 j2:1 KeD QEDgOOd,Regi
UR)>H(Q) d(Q,R)>£(Q)(¢(R)/2)1
d(Q,R)>L(Q)(¢(R)/2)1 2110(Q)=2724(R)=L(K)

QVR=K

Suppose j1, jo, K, Q and R are as in the above sum. We will show that for some large
enough constant C' there holds that

2aj1/2 ‘K’n
C Izt 1Qm|V2Q[2

Here we are using the notation defined in Lemma 3.18. This then implies that for fixed j;
and jy the inner double sum in (6.17) multiplied by

(6.18)

<ThR’,', hQ> S A(Ccz,a (K))

2aj1/2

C[HKcha,w + | TlwBp,= + >om—o HTm*lHBMorm(nm)]

is an operator-valued n-linear shift as in the representation theorem acting on fi,..., fn
and paired with f,,+1. The complexity of this shift is k = (k1,...,kpy1), where ky = -+ - =
ki = 2k;y1 = -+ = 2k, = jo and k1 = j1. Therefore, (6.17) is of the right form for the

representation theorem.

We turn to prove (6.18). We write R = Q1 X - - - X @, and suppose first that d(Q, R) <
Cyl(Q), where Cy is a dimensional constant. From the proof of Lemma 6.16 it is clear
that, if r is fixed large enough, then K ¢ Q") implying that ¢(K) ~ £(Q) and j; < r < 1.

If z € R and y = (y1,...,yn) € R¥ are such that (z,y1,...,9,) € R4\ A  where

A consists of the diagonal points (z, ..., z), define
n —dn
(6.19) Ney) = (Y le=yml)
m=1

By slight abuse of notation we write

hri(y) = ho, (1) -~ b, (Wi1)hq,Wiho, , Wit1) -+ hoy, (Un)-
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In (6.14) we gave a different definition for hpr;, but it should be clear from the context
which one we use (see the next equation, for instance).
We write out (Thr;, hg) as

(6.20) (Thri hq) = /Rd Rin IA(((; ’3))

Notice that this integral does not make sense as such, but has to be interpreted as in
(2.13). There holds that K(z,y)/A(z,y) € Ccz,q(K). Because d(Q, R) > ¢(Q), there also
holds that

[ [, atinote PR LT TLL RPN | L o1
R4 Rdn 1|$_ym|) - E(Q)dn |K‘n

This together with (6.20) proves (6.18) in the case d(Q, R) < Ca4(Q).
Consider then the case d(Q, R) > Cgl(Q). If (cg,y1,-..,yn) € A, define

Az, y)hri(y)hg(x) dy de.

(dn+a)

(6:21) Mo(@,y) = | — cql® (Z\cQ yl)

The zero average of hg allows us to write

cQ,
(This hg) = / / K(Q0) 5 o (@, y)his(m)ho (a) dy da-
R4 JRAn AQ T y)

Since d(Q, R) > Cq¢(Q), it holds that here (K (z,y) — K(cq,y))/Aq(x,y) € Ccz,o(K). In
addition, using the fact d(Q, R) > £(Q)7¢(K)*~7 from Lemma 6.16 we have the estimate

// 2~ cqllhriWha(@)l 4, o, < (Q)RIV2IQIY?  _ R['?IQ['?
ri Jran ( yabe TS (QpUE) e T e 2 K

—1leqQ = yml

where we recalled that v(dn+ «) = «/2. This proves (6.18) in the case d(Q, R) > Cyl(Q).
We are done with Step 1.

6.2. Step II: nearby cubes. We now look at the sum

o= ) > (Thri hQ)[(F, hri)ls (fat1, ho))-
QGDgood R:QIX"'XQHEQZ‘
UR)>(Q)

d(Q,R)<L(Q)V(L(R)/2)*—
QmNQ=0 for some m

Let Q€ Dand R= Q1 X -+ X Q, € Z; be as in a5. Suppose Qy,, is a cube such that
Qo NQ = 0. If £(Quy) > £(Q™)), then the goodness of the cube @ implies that

d(Q, R) > d(Q; Qmo) > U(Q)U(Qm)' ™" > UQ)(U(R)/2)' 7,

which is a contradiction. Thus, we have £(R) < 20(Qum,) < £(Q™). Suppose Q,,NQ™) =0
for some m. Then

d(Q,R) = d(Q, (Q")%) > £(Q)(Q")! ™7 > £(Q) (¢(R)/2)"~
which is again a contradiction. We conclude that Q vV R ¢ Q).
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These observations show that

r ji—1
= Z Z Z Z <<ThR,’LahQ>[<F7 h’R,i)]u <fn+17hQ>>
J1=17j2=0 K€D QeDg00d7RE@i

d(Q,R)<U(Q)7 (£(R)/2)'
QmNQ=0 for some m
2710(Q)=272L(R)=¢(K)
QVR=K
Similarly as in Step I, we need to show that if j1, j2, @, R and K are as in o3, then
2aj1/2 ‘K|n
C e [Qm[V21QI2
Recall the function A(z,y) = (> _; | — ym|)_dn and write
K(zx,
Thnista) = [ [ I o) dy s
R Jrin A(,Y)

Here we have K (z,y)/\(x,y) € Ccz,o(K). Let mg € {1,...,n} be such that Qy,,, NQ = 0.
Then, using the estimate [pq(c+ [z —y|)™¢ P dy Sap ¢P, where ¢, 3 > 0, we have

(6.22)

hri( T _ _ 1
/ / hriwheln)l g, 4, < R Q) 1/2// Ly da
R JRdn ( ]a:—ym\) @ Joonq 1% = Ymol

<ThR7Z‘, hQ> S A(Cczya(K».

1/2|)|1/2
< ’R|_1/2|Q|_1/2|Q| ~ 2—aj1/2|R| / ‘Q| /
K"
This concludes Step II.
6.3. Step III: error terms. We start working with the sum
oh= ) > (Thri hQ)[(F, hri)l (fat1,hQ)),

QGDgood RE—@’L
R=(Q®)ix(Q*k—=1))n—i for some k>1

which is what is left after Step I and Step II. Here and in what follows Q° = Q x --- x @,
where there are ¢ members in the Cartesian product. First, we define abbreviations related
to certain error terms. Let ) € Dgooq and 1 < k € Z. We will define the function tuple

Qo ki = (qSlQ’k’i’j, . .,qb%’kij) forevery j=1,...,n. If j <i—1 we set

1 1/2 j
Ookig =" = gni; = 1QV 172 645 = 1RV 21 quye,
+1 k)|~
Gomig =" = aiag = QW g, So ki, = how,
E—1)—
%ﬂi i == g = QU Pl gun.

If j =1 we set

(k’)‘—l/2

) .
GO hii == Popii=| s PO ki = Liu-n)e[—hgw + (hgw)gu-1],

E—1)—
Wcﬁ,m’ == ¢5,k,i,¢ = |Q( 1)‘ 1/21Q(1€71).
Finally, for j € {i +1,...,n} we set

i—1 = |Q(k)|71/2

1
POk = = PQoksing Do kij = (how)oer-
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. 1 1) ] 1
¢ali,i,j - %,k,i,j = |Q( 1)| 2, JQ,k,i,j - |Q( 1)| 1/21(Q<k—1>)c’
+1 k—1)|—
(Zszvk?i:j == Qs%)k)i)j = ‘Q( 1)’ 1/21Q(k71) .

With the same abuse of notation as with hr; we set for y = (y1,...,yn) € R that
n
QQ,k,i,j(y) = H ¢8k”(?/m)
m=1

We are ready to move forward. Suppose @ and R are as in o} with £(R) = 2¥¢(Q). We
will denote the function hg; also by ug ;. Note that if y = (y1,...,yn) with y,, € Q-1
for all m, then ug ki(y) = (uQ.ki)or. With the previous definitions we have the identity

n

(Thri, hq) = (UQki)en(T1,hq) = > (TPqQkij hq),
j=1

where we recall that the operators (T'1, hg) and (T'®q . ; ;, hg) are interpreted as in (2.13).

fe olvea R n Q
This gives that o3 = 03 ZFI 03¢ j» Where

(6.23) ohei= > Y (ugrior (T1,hQ)[(F,ugri)l, (far1, ha))
Q€Dgo0d k=1

and

Gheg= D, D (TPquij hQ)[(F ugu), (fas1,ha))-

ergood k=1

The term Ug,w will become part of the paraproduct that is considered in the next section.
Now we look at the error terms Ué7€7j. We consider each of them separately, so we fix

je{l,...,n}.
The term o% ; can be written as

o0
Ohei =2 . (T®qrijhQ)[(Fugril: (fat1,hq))-
k=1 K€D QEDgo0d
QW =K

From here it is seen that this produces a series of shifts that satisfy the requirements of
the representation theorem once we have shown that if £, K and @ are as in o3 ;> then

(6.24) O 22 K M2QI 2 (T 11, h) € A(Cez,a(K)).
Notice that we have the right normalisation since
[K[*21QITY2 ~ |QW2| QU |- =021~ 2 K

Recall the functions A and Ag from (6.19) and (6.21). Notice that the j-coordinate of
@0 ki is supported in the complement of ). Therefore, using the definition (2.13) of
(T®Q ki, hqg), we have that (T'®q 1., hq) is the sum of

Ky, . y 2 dv dz
(6.25) /Rd /(CdQ)n Ne.y) A, y) P k() ho(x) dyd
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and

(6.26) /R d / o A)Q (x[; ()CQ’y) AQ(@,9) gk (y)ho () dy du.

Let us first consider the case k& < r. Using the pointwise normalisation |®g 1 ;(y)| <
|Q¥)|~"/2 = | K|~"/? we get, similarly as in (6.22), that

Do pii(y)h 1
/ / ‘ Qk i () Q(x)‘ln dydz < ]K\_"/2|Q]_1/2// g Qydz
]Rd OdQ -1 |x—ym’) Q CdQ\Q ‘x_yﬂ

S IK[TQ12.

In the same way, there holds that
dn+a yar < K|n/2 | _ .|d+a Yj
R J((CaQ)” —1leq —yml) K2 Jqe leq —
SIKQU

These estimates prove (6.24) in the case k < r.
Assume then that k > r. The j-coordinate of ®¢ 1 ; ; is supported in (Q(k_l))c. Because

Q is a good cube, we have Q1) 5 QM 5 €@, which uses the fact that 7 is large enough.
Thus, the integral (6.25) is zero. Related to (6.26) there holds by the goodness of the cube
Q@ that

/ / |:U—CQ| |(I)ka,]( )hQ(x)|dyd$§ |Q’1/2/ &d%
Rd JRdn _ )dn+o‘ |K’"/2 (QF=1))e |CQ_yj|d+a

m=1lcqQ = ym|
_1Q @)
K2 ((Q)T(K) )

Since 1 — v > 1/2, we also get the right geometric decay. We have proved (6.24) also in
the case k > r.

6.4. Step IV: paraproduct. We consider the term

Ohe= DY (ugrior((TLhQ)(F ugri)), (fat1: ho))

QEDgood k=1

from (6.23). Here we will sum up the corresponding terms Ugm, i€{l,...,n}, to get one
paraproduct.
Recalling the implicit summation over the cancellative Haar functions we have that

(u@ ki) (T, hQ)[(F’ uq k)]
= (T1L, h)[({f1)gws - - - {fim1) g s (Agw fi) gu—vs (fi1) gae-1)5 - s {fn) gus—1)]-

Summing these together over ¢ € {1,...,n} yields

n

D (uQridor (T h)[(Fyugrid] = (T1,hg) [(F)gu-n] — (T1, h)[(F)quw].
i=1
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where (F)g denotes ((f1)qQ,- -, (fn)qg). Finally, we get the desired paraproduct:

Sooha= 2 Y {(TLhQ)UF) gun] = (TLhQI(F) quol: (fus1 he))
i=1 QGDgood k=1
S UTLEQUE)) st Q) = (mprip, () fus).
CQG'Dgood

6.5. Synthesis of the steps I-IV. We summarize what we have done so far. We have
shown that the terms o, % and 05767]-, where i,j € {1,...,n}, can be represented in terms
of shifts. Also, we proved that the sum )", ag’ﬂ produces a paraproduct. Therefore, one
of the main terms
n n
Z An—l—l(Q) = Z {071 + U; + Z Ué,e,j + 0-;),7'(:|

QEDgood =1 j=1

satisfies the required identity for the representation theorem. By symmetry, this gives the
corresponding identity for the terms Zergood A (Q), me{l,...,n}.

6.6. Step V: diagonal. To finish the proof of Theorem 6.3 it remains to consider the
term

> <Tm* (Eu)9t"s - Eu) 971, Duy9; E@gﬂl, - Bug In')s DQani >7
QEDgood

where m € {1,...,n} and j € {m,...,n}. This is the term from (6.12). For notational
convenience write g; := g7 and G = (g1,---,9n). The term under consideration can be
written as

Z Z <Tm* [VI%G]’ Aan+1>

QGDgood RE@]
K(R)=€(Q)

> > ({(T™ hr j, h@) (G5 bR ) (gnv1, hQ))-

j=0KeD Q€Dyo0a,REZ;
zw(Q) 2J€(R) U(K)

Notice that the common parents exist since the cubes @ are good. Those pairs (Q, R),
R=Q1 X xQp, where QN Q, = 0 for some u, can be handled with the arguments
presented above: either () and R are separated as in Step I, or then ) and R are close to
each other as in Step II. So the new part here is

> > (T™ hpr,j, ho)[(G: hr )], (gnt1, hq))
QEDgoodR QIX XQ’H.GJ
Qi=-=Q;=
Q]+17 7QneCh(Q)

= Z Z <aQ1Q1---7Qn+1 [(fla%Q1>7 cees <fn7EQn>]? <fn+17?LQn+1>>>

QED le"'ineD
Q1==Q;=Qn+1=Q

Qj+1,--,QnEch(Q)

(6.27)
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where ag (@,) = @Q,Q1...Qni1 = 1good(Q)<T[ﬁQ1, e ,?LQn],TLQMl). We defined Eor QeD
that 15004(Q) = 1if @ is good and 14004(Q) = 0 if @ is not good. If j = m, then hg, = Ko ;
for i € {1,. n}\{m}andﬁQ:hQ fori € {m,n+1}. If j € {m+1,...,n}, then
hQZ = ho for ie{l,...,n+1}\{m,j} and hQ = hg, for i € {m,j}. We d1V1de (6.27)
into two by splitting the Coefﬁments as ag,(Q,) = 4Q,(Q:),1 1 4Q,(Q,),2> Where

aQ,(Qi)l = 1g00d(Q) Z <T[1Q/1 th, RN 1Q§LhQn]7 1Q;+1hQn+1>
D@ 11 €CH(Q)
Q. ;éQl for some u and [
and
40,02 = lgooad(@) Y (Tlohq- -\ 1ghg,] 1ghg, . )-
Q’ech(Q)
Let Q1 = =Qj = Quy1 = Q € D and Qj11,...,Qn € ch(Q). Consider first the

coefficient ag (,),1- Suppose @, ..., Q; ; € ch(Q) are such that @, # Q] for some u and
l. Recall the function A(z,y) = (> _; |z — ym\)fdn. Then

~ ~ ~ K(ﬂj,y)
6.28 Tlg hgyy---, 10/ h h = dyd
( ) (T Q NQuy - 1QLQn J,1 Qni1 Qn+1> /Rd rin N, 9) p(z,y) dy dz,

where
(@, y) = Ma,y) ] 1op, Wm)ho,. (vm) gy, (@), (@).
m=1

Similarly as in (6.22) we see that [ |¢(z,y)|dzdy < [Q|~("FY/2|Q]. Since ag (g,)1 is a
finite sum of terms of the form (6.28), this shows that

n+1
CH T 1@ml 210 ag i1 € AlCoza(K)).

m=1

Consider then the coefficient ag (q,)2- Suppose Q' € ch(Q). We may obviously suppose
that Qj41 =+ = Qn = Q. Then, we have

_ - - Q1 (Thg,---1¢l1g)
T 1o 1o =%
< [Qth, s QhQn], QhQn+1> Hn+1 ‘Qm’1/2 |Q/| )

where (T'[1g, ..., 1], 1¢")/|Q'] € Cyear(T). Since ag (g,),2 is a finite sum of operators of
this type, we are done with Step V.

6.7. Step VI: T is not a priori bounded. It is possible to first prove a representation
theorem in a certain finite set up, where no a priori boundedness is needed to make the
calculations legitimate (as all the sums are finite to begin with). The proof is similar to the
above except for some initial probabilistic preparations related to the finite setup inside a
given fixed cube. Reductions of this type appear e.g. in [9] and [20]. We omit the technical
details in our setting as they are similar. A corollary of such a special representation is
the boundedness of T, say from [/ _, L"*(X,,) to L(™1)/™(Y,,11). After this, we can
run the above argument. We are done with the proof. ([
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6.29. Remark. We make a remark here about the WBP in the linear setting, and describe
a seemingly weaker condition in that setting, which can still be used to estimate the
“diagonal” in the T'1 argument.

Suppose X, X9 are UMD spaces and 1 < p < oco. Let T: LP(X;) — LP(X) be a
bounded linear operator. Then, for {eg}oep C X1, we have

(6.30) EH > 5Q<T(6Q1Q)>Q1Q’
QeD

<|T DE| lof| -
Lo 1Tl (x1)—Lr(x3) QZE:D%eQ Ql poixy)

Indeed, the left hand side is dominated by
EH > 5QT(6Q1Q)‘

QeD

LP(X3)

by Stein’s inequality, from which the claim follows using linearity. We denote the smallest
possible constant in (6.30) by Ryeax (Which may depend on the exponent p).
We recall that our usual WBP means the R-boundedness of the operators

Q" (T1g,1g) = (T1g)q.

which means the estimate

(6.31) EH %;JEQ(T(e@Q))QHXS < C’WBpEH C;)EQeQHXl.

We show that Ryearx S Cwpp- Actually, there holds that

Cwep > sup R({{T1g)q: = € Q € D}) =: Cwep,
z€R

and we show that Ryeax S éwgp. The proof is quite immediate. Raising the left hand
side of (6.30) to power p and using Kahane-Khintchine inequality we are left with

E/Rd > €Q<T(€Q1Q)>Q1Q(ﬂf)Hp dz

QeD Xz
P

5/ ER{(T1g)g: z € Q GD})pH g eQteQ(x)H dz

R4 X1

QeD

~ p

P
< CWBPE/Rd H E sQteQ(aj)HXl dz,

QeD

which gives the proof.

We then look at how the Ryeak-condition handles the diagonal in the T'1 argument. We
consider a zero complexity shift whose coefficient operators {ag}gep satisfy the estimate
(6.30) (so aq in place of (T'(1g))g). Then we simply have:

H > aglf hQ>hQ) "~ EH > eqaolf, hQ>1Q/|Q|1/2‘
QeD QeD

Lr (X3 Lr(X3)
(6.32)
SB[ X calfnahia/IQM| Sl

QeD

Finally, we remark that we do not know how to formulate a similar weak boundedness
condition in the multilinear setting.
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7. R-BOUNDEDNESS OF BILINEAR SHIFTS

In this section we consider the R-boundedness properties of families of shifts. Let
X1...,Xn, Yoq1 be UMD spaces, X1 = Y5 and let wg: [],, X;n — C be a contrac-
tion as in (3.3). Fix some exponents p, € (1,00) such that >." 1/p,, = 1 and let
w: [1,, LP"(X:,) = C be as in (3.12).

Suppose {S;}; is a family of shifts, all of them defined with respect to a grid D and
having a fixed complexity k. Recall the families C(S;) from (2.14) that consist of the
normalized coefficients. It seems that the R-boundedness condition from Definition 3.15
is not suitable for proving that

Ra({5; H 17 () = L (i)} )

is dominated by R, (U, C(S;)), that is, we can not prove that if the family of coefficients
U; C(S)) is Re,-bounded, then {S;}; is Re-bounded.

Currently, we are only able to come up with a suitable R-boundedness condition that
works for families of shifts in the bilinear case. But even here we need to modify the one
we used previously: we need a somewhat stronger condition, but then also the conclusion
is stronger — i.e., the families of shits will satisfy the said stronger condition. We now start
considering the bilinear case, and here, as usual, no contraction w is needed.

We now introduce this stronger bilinear R-boundedness condition, which we call R-
boundedness. After this we will show that if the spaces X,,, have Pisier’s property («),
then R({S;};) S R(U; C(S)))-

We denote by Rada(X) the space of those doubly indexed sequences (ejm)75,—; of
elements of X such that

- ° 2\ 1/2
Ietm)Fumt sz = (B[ 32 cmerm|| ) < o0
I,m=1

7.1. Definition. Let X;, X2 and Y3 be Banach spaces and write X3 = Y3". Suppose
T C L(X1 x X2,Y3) is a family of operators. We say that T is R-bounded if there exists a
constant C' such that forall N e N, T} ,, € T, e%’u € Xi, efw € Xy and egv € X3, where
t,u,v € {1,..., N}, there holds that

N 3
Z ‘<Ttﬂlﬂ) [eg,u? 6121,1)]7 e?,v>| <C H || (e%,m){?[mzl ||Rad2(Xi)-
t,u,v=1 =1

The smallest possible constant C' is denoted by ﬁ(T)

7.2. Theorem. Let X1, X2 and Ys be UMD spaces with Pisier’s property (o) and suppose
p1,p2,p3 € (1,00) satisfy 3., 1/pm = 1. Let D be a dyadic lattice in R? and fix some
complexity k = (k1,k2,k3), 0 < ki € Z. Suppose {S;j}jes is a family of operator-valued
bilinear dyadic shifts with respect to the spaces X1, Xo and Y3, where each S; = S%’j s a
shift of complexity k with respect to the lattice D. Then

R({S;: LP'(X1) x LP2(X5) — L3 (Y3): j € I} < (1 —i—mjaxkj)ﬁ (UC(sj)).
J
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Proof. We divide the collection {S;};c s into three subcollections according to the type of
the shifts, that is, according to the place of the non-cancellative Haar function. We show
that each of these subcollections satisfies the required estimate, and therefore their union
satisfies it also. Thus, we assume that each S is of the form

Silfif2)=>_ > a J[(f1s b)), (fas W),
KeD I,eD
=k
The other two cases are handled symmetrically.

Let N € N and suppose St uon € {Sj}jer, ftl’u € L (Xy), fiv € LP2(Xsy) and ft?j,u €
LP3(X3) for t,u,v € {1,...,N}. Abbreviate C := [J,;C(S;). We need to show that for
arbitrary €, , € C with |e | = 1 there holds that

N

Z €tuv <St,u,v [ftl,uv 5,1}] ) fz‘?,v>

tyu,v=1

(7.3) o 2
S R(C) H (ft,u)t,U”Radg(Lpl (X1)) H (fu,v) y

~ R(C) I F1 11 (Rada (x1)) | P2l o2 (Rada (x2)) 13 ]| 123 (Rads (X))

where Fy: R — Rady(X1), Fi(z) = (fru(2))tu, and similarly Fo = (f2,)y., F3 =
(f2,)t,0- The last step was obtained using the Kahane-Khinchine inequality. We will now
construct a new shift S so that

N

(7'4) Z Et,u,U<St,U,U[ft1,uv 3,1}]? ft3,v> = <S(F1a FQ)? F3>'

t,u,v=1

Then we show that

(£r2 (o)) | (F2) 10| Rada (273 (X))

[(S(F1. F), Fs)| S RE) TT I £os (Rada (x))-

from which the desired estimate (7.3) follows.
Denote the coefficients of S, by a%u(})) Let I, I5, I3, K € D be such that Iz.(ki) =K.
Define the operator ag ;) € £L(Rad2(X1) x Radg(X2), Rada(Y3)) by

N

<aK,(Ii) [617 62]7 63> = Z €tu U<ai{u(1[) )[ez},w 63,11]» e?,v)?
t,u,v=1

where e = (el )Lm € Rada(X;). The shift S is defined with these coefficients by

S(G1,Go) Z Z ag (1)[(G1, hy ), (Ga, W ) hs,
KeD I,eD
* =k
where G; € LPi(Rad2(X;)), i = 1,2. We see that (7.4) is satisfied.

It remains to show that the shift S is bounded, which follows by Theorem 4.1 from the
R-boundedness of the family of coefficients {ax (1,)} i (7,) (notice that Rad(X) is UMD if
X is). To check this, let the admissible partition be for example {{1},{2,3}}. Choose
some W € N. For each w = 1,..., W let ay = ag(u) (1,(w)) be one of the coeflicients
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U,V t,u,v

of S, and accordingly write al v = O ) (T () Also, let e! € Rada(X1) and €™ =
(efzi)l,m € Rady(X;) fori =2,3 and w=1,...,W. Then

w w N
| aulet | = | 3N ernnlal el ekl ).
w=1 w=1t,u,v=1

We see that the pairs (v, w) appear in ap", e%’fff and ei’;“". Therefore, we look at the last

sum as a sum over triples (¢,u, (v,w)). Thus, we see that

w
1.2 3 5 1
| D Caule! €0, ¢*)| < RC)I (e} e Imads
w=1
2 \1/2 swll2 \1/2
X (EH Z Sty X ) (EH Z Sty X ) '
u,v=1,..., 2 tow=1,....N 3
w=1,...,.W w=1,.. W
Using the fact that X, has Pisier’s property («), we have that
2\ 1/2 2 \1/2
(EH Z z-:u’v’wei’fjj ) ~ (EE' Z ewzs;vvei’fjj )
XQ X2
u,v=1,....,N u,v=1,...,N
w=1,....W w=1,....W
w
— (EHzgw62,w‘2 )1/2'
Rada(X2)
w=1

Doing the same estimate for the term related to X3 we have shown that

w
|3 Gaufet e, )
w=1

S HelHRadz(Xl)H<e2’w)zvty:1HRad(RadQ(Xz))H<637w)1‘?;/:1HRad(Radg(Xg))y

which is what we wanted to show. This concludes the proof. O

8. MULTI-LINEAR MULTI-PARAMETER ANALYSIS

In this section we apply our operator-valued theory to prove multi-parameter estimates
in our multilinear setup. Such a strategy requires R-boundedness estimates, so in light of
the previous section we will eventually have to restrict to the fundamental bilinear case. Fo-
cusing only on the essentials, we will simply prove estimates for dyadic shifts. After this,
the full paraproduct free singular integral theory in the same bilinear multi-parameter
operator-valued generality would only require the development of the corresponding rep-
resentation theory. We do not anymore pursue this rather lengthy avenue here.

We define an n-linear m-parameter operator-valued dyadic shift in

m
R =[[R%  di>1
=1

Suppose X1,...,Xp, Y41 are Banach spaces. Let also D = [[%,; D% where D% is a
dyadic grid in R%, i = 1,...,m. Fix the complexity k = (k;)""{, k;j = (ki)i2}, ki > 0. In
what follows h; € {hy, RO} if I € D% for some i.
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An n-linear m-parameter operator-valued shift S¥ = SD has the form

Sk(fl,--'afn): Z AK(fl?"'af'n):

K=[[i~, KeD

where

AI;((f177fn) = Z aK7(Q]-) [<f17}~LQ1>7"'a<fn)iLQn>]l~an+1'
Qly--(-;vQ>n+1€D
3

J

Here f; € Lj,.(R%; X;),

AK,(Q;) = OK,Q1,,Qni1 € <H n+1>

m m
. . X k . 1 ~ ~
=TI Q. D%, Q" :=T[(@)* and hq, = e

i=1 i=1
We assume that for all K and the related (Q1,...,Qn+1) we have for every i = 1,...,m
tlgat in exactly two fixed positions, depending on i (but on nothing else), of the tuple
(hpi )" we have cancellative Haar functions, e.g. that

Qj/j=1
n+l __ ) 0 0
(hoo )it = gy hgy hy o ).

Moreover, we form the collection

6 o) = {0 KaQu e Qun € DO = K
| = [ g @) K@ Quin € DG = K.
Define Dy := D%+1 x ... x D% t =1,...,m—1, so that we can write D = D<i X D>y.

Define similarly e.g. RZ, = R¥+1 x ... x Rdm ko, = (k;)git+1. For K'.Q1,...,QL,, €
D% and functions g;: Ril — X define

SKl,(QJI,)(glv R 7gn)

= Z Z CK,(Qj) [<91, EQ1,>1>’ ARR) <gn7 BQn,>1>] iLQn+l,>17
K>1=[[i~, K'€D>1 Q1, >1 Qn+1,>1€D>1

1)
QJ etk

where K = K! x K+, Qj = Qj X (Qj>1. Notice that we can write

Sk(fl,---afn) = Z Z SKl,(Q;)KflvilQ%%'”7<fN7}~lQ}L>]ItLQ;+1

KleDh Qi,.. ,Qnﬂebdl
(Qj)

Let w: H"Jrl X; — C be a contraction as in (3.3) and suppose (X1,..., X, 1), where
Xng1 = Y}, satisfies the RMF condition. Fix p; € (1,00) so that Z”+1 1/p; =1
and let wsq: H”+1 LP; (]R‘il,Xj) — C be as in (3.12). Example 3.27 says that the tu-
ple of UMD spaces (LP1(RL,; X1), ..., LPr+1(RY,; X, 1)) satisfies the RMFq,_, condition.
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n+1

Viewing S* as an n-linear operator-valued shift of complexity (kl) acting on functions

fj € LPi(R%; LPi(R,; X)) = LPi (R X;) Theorem 4.1 says that

||Sk(f1a cees fn)Han+1(Rd;Yn+1) S+ man )" 173>1 H 1 £ill Les (R%:X;)>
j=1

where

K| /
R = R (1 par g @ HLJRM, ) > Dot (R i)

k1
K',Q} e D, ()™M = K1}).

Now we need to revert to the bilinear setting, since as explained in Section 7, we do not
have a suitable theory for the R-boundedness of n-linear shifts if n > 2.

8.1. Boundedness of bilinear multi-parameter operator-valued shifts. Suppose
we have a family {S¥},c; of bilinear multi-parameter operator-valued shifts as above.
Suppose X1, Xo, Y3 are UMD spaces with Pisier’s property («). Recall that spaces of the
form LP(2; X) are UMD and have Pisier’s property («) if X is UMD and has Pisier’s
property («). Therefore, we can iterate the above scheme using Theorem 7.2 to get that
given p1,p2,qs € (1,00) with 1/p; + 1/p2 = 1/g3 we have

R{S*: L' (R%: X1) x LP?(R% Xy) — LB (R Y3): uw € U})

51‘[ (1 max k) R (chk)

ueU
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