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THE ABEL MAP FOR SURFACE SINGULARITIES

II. GENERIC ANALYTIC STRUCTURE

JÁNOS NAGY AND ANDRÁS NÉMETHI

Abstract. We study the analytic and topological invariants associated with complex normal

surface singularities. Our goal is to provide topological formulae for several discrete analytic

invariants whenever the analytic structure is generic (with respect to a fixed topological type),

under the condition that the link is a rational homology sphere. The list of analytic invariants

include: the geometric genus, the cohomology of certain natural line bundles, the cohomology

of their restrictions on effective cycles (supported on the exceptional curve of a resolution), the

cohomological cycle of natural line bundles, the multivariable Hilbert and Poincaré series associated

with the divisorial filtration, the analytic semigroup, the maximal ideal cycle.

The first part contains the definition of ‘generic structure’ based on the work of Laufer [La73].

The second technical ingredient is the Abel map developed in [NN18].

The results can be compared with certain parallel statements from the Brill–Noether theory

and from the theory of Abel map associated with projective smooth curves, though the tools and

machineries are very different.

1. Introduction

1.1. Our major objects in this note are the analytic and topological invariants associated with

complex normal surface singularity germs. Our goal is to provide topological formulae for several

discrete analytic invariants whenever the analytic structure is generic (with respect to a fixed topo-

logical type). Regarding this problem very little is known in the present literature. The type of

formulae of the topological characterizations of the present article are totally new, as well as the

methods (based on the newly created theory of Abel map).

In order to formulate the invariants and the topological characterizations we need some notation.

Let X̃ → X be a good resolution with irreducible exceptional curves {Ev}v∈V , with resolution graph

Γ, negative definite intersection lattice L = H2(X̃,Z), dual lattice L′ = H2(X̃,Z) ≃ H2(X̃, ∂X̃,Z),
and discriminant group H = L′/L (for details see 2.1). We assume that the link M of (X, o) is a

rational homology sphere, that is, Γ is a tree of rational Ev’s. In such a case H = H1(M,Z) is finite.
Usually Z will denote an effective cycle supported on the exceptional curve E. L′ is also the target

of the surjective first Chern class map c1 : Pic(X̃) → L′, set c−1
1 (l′) = Picl

′

(X̃). For any Chern class

one defines the ‘natural line bundle’ O
X̃
(l′) ∈ Picl

′

(X̃), and its restrictions OZ(l
′), cf. 3.4.

In the sequel we fix a topological type, that is, a resolution graph. The topological invariants are

read from Γ, or equivalently, from L. The most elementary one is the ‘Riemann–Roch’ expression

χ : L′ → Q given by χ(l′) := −(l′, l′ − ZK)/2, where ZK ∈ L′ is the anticanonical cycle defined

combinatorially by the adjunction formulae, cf. 2.1.
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Poincaré series, Hilbert series, Abel map, Brill–Noether theory, effective Cartier divisors, Picard group, Laufer duality,

generic singularity, generic line bundle, analytic semigroup, cohomological cycle, maximal ideal cycle.

1

http://arxiv.org/abs/1809.03744v2
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The list of analytic invariants, associated with a generic analytic type (with respect to the fixed

graph), which are described in the present article topologically are the following: h1(OZ), h
1(OZ(l

′))

(with certain restriction on the Chern class l′), — this last one applied for Z ≫ 0 provides h1(O
X̃
)

and h1(O
X̃
(l′)) too —, the cohomological cycle of natural line bundles, the multivariable Hilbert

and Poincaré series associated with the divisorial filtration, the analytic semigroup, the maximal

ideal cycle. See [CDGZ04, CDGZ08, Li69, N99b, N08, N12, O08, Re97] for the definitions and

relationships between them. Here some definitions will be recalled in section 6.

Surprisingly, in all the topological characterization we need to use merely χ, however, it is really

remarkable the level of complexity and subtlety of the combinatorial expressions/invariants carried

by this ‘simple’ (?) quadratic function. Definitely, this can happen due to the fact that we work over

the lattices L and L′, and the position of the lattice points with respect to the level sets of χ play

the key role. It is a real challenge now to interpret these expressions in terms of lattice cohomology

[N08b, N11] or other topological 3–manifold invariants.

Theorem A. Fix a resolution graph and assume that the analytic type of X̃ is generic. Then the

following identities hold:

(a) For any effective cycle Z ∈ L>0

h1(OZ) = 1− min
0<l≤Z,l∈L

{χ(l)}.

(b) If l′ =
∑

v∈V l
′
vEv ∈ L′ satisfies l′v < 0 for any Ev in the support of Z then

h1(Z,OZ(l
′)) = χ(−l′)− min

0≤l≤Z,l∈L
{χ(−l′ + l)}.

(For a characterization valid for more general Chern classes l′ see section 6.)

(c) If pg(X, o) = h1(X̃,O
X̃
) is the geometric genus of (X, o) then

pg(X, o) = 1− min
l∈L>0

{χ(l)} = −min
l∈L

{χ(l)}+




1 if (X, o) is not rational,

0 else.

(d) More generally, for any l′ ∈ L′

h1(X̃,O
X̃
(l′)) = χ(−l′)− min

l∈L≥0

{χ(−l′ + l)}+





1 if l′ ∈ L≥0 and (X, o) is not rational,

0 else.

(e) Let H(t) =
∑

l′∈L′ h(l′)tl
′

be the multivariable equivariant Hilbert series associated with the

divisorial filtration. Write l′ as rh + l0 for some l0 ∈ L and rh ∈ L′ the unique representative of

h = [l′] in the semi-open cube of L′. Then h(rh) = 0 for l0 = 0. Furthermore, for l0 > 0 and h 6= 0

h(l′) = min
l∈L≥0

{χ(l′ + l)} − min
l∈L≥0

{χ(rh + l)}.

For h = 0 and l′ = l0 > 0

h(l0) = min
l∈L≥0

{χ(l0 + l)} − min
l∈L≥0

{χ(l)}+





1 if (X, o) is not rational,

0 else.

(f) Write the multivariable equivariant Poincaré series P (t) = −H(t)·
∏

v∈V(1−t
−1
v ) as

∑
l′∈S′ p(l′)tl

′

.

It is supported in the Lipman (antinef) cone, in particular in L′
≥0. Then p(0) = 1 and for l′ > 0

one has

p(l′) =
∑

I⊂V

(−1)|I|+1 min
l∈L≥0

χ(l′ + l + EI).
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(g) Consider the analytic semigroup S ′
an := {l′ ∈ L′ : O

X̃
(l′) has no fixed components }. Then

S ′
an = {l′ : χ(l′) < χ(l′ + l) for any l ∈ L>0} ∪ {0}.

(h) Assume that Γ is a non–rational graph and set M = {Z ∈ L>0 : χ(Z) = minl∈L χ(l)}.

Then the unique minimal element of M is the cohomological cycle, while the unique maximal

element of M is the maximal ideal cycle of X̃.

1.2. The Abel map. The main tool of the present note is the Abel map constructed and studied

in [NN18]. Though in [loc.cit.] we also listed several applications, the present note shows its power,

its applicability in a really difficult problem, with a priori unexpected answers which become totally

natural and motivated from the perspective of this new approach.

Let us recall shortly this object (for details see [NN18] or §2 and 3.4 here). Let (X, o), X̃ → X ,

L and L′ as above. Then for any effective cycle Z supported on E and for any (possible) Chern

class l′ ∈ L′ we consider the space ECal
′

(Z) of effective Cartier divisors D supported on Z, whose

associated line bundles OZ(D) have first Chern class l′. Furthermore, we also consider the Abel

map cl
′

(Z) : ECal
′

(Z) → Picl
′

(Z), D 7→ OZ(D).

Using the Abel map, in [NN18, Th. 5.3.1] we have shown that for any analytic singularity and

resolution with fixed resolution graph, and for any L ∈ Picl
′

(Z), one has h1(Z,L) ≥ χ(−l′) −

min0≤l≤Z, l∈L χ(−l
′ + l), and equality holds for a generic line bundle Lgen ∈ Picl

′

(Z). In particular,

for any analytic type, Lgen ∈ Picl
′

(Z) can be expressed combinatorially. Now, the expectation and

our guiding principle is the following: for a generic analytic structure the natural line bundle OZ(l
′)

should have the same h1 as the generic line bundle Lgen ∈ Picl
′

(Z) (associated with any analytic

structure). This is the key technical statement of the note.

Theorem B. Assume that X̃ is generic. Under some (necessary) negativity restriction on the Chern

class l′ (see Theorem 5.1.1 and Remark 6.1.1(b)) the following facts hold.

(I) The following facts are equivalent:

(a) OZ(l
′) ∈ im(cl̃), where OZ(l

′) is the natural line bundle with Chern class l′;

(b) Lgen ∈ im(cl̃), where Lgen is a generic line bundle in Picl̃(Z) (that is, cl̃ is dominant);

(c) OZ(l
′) ∈ im(cl̃), and for any D ∈ (cl̃)−1(OZ(l

′)) the tangent map TDc
l̃ : TDECa

l̃(Z) →

TOZ(l′)Pic
l̃(Z) is surjective.

(II) hi(Z,OZ(l
′)) = hi(Z,Lgen) for i = 0, 1 and for a generic line bundle Lgen ∈ Picl̃(Z).

The proof is long and technical, it fills in all section 5 (the ‘hard’ part is (a)⇒(c)). It uses the

explicit description of tangent map of cl
′

in terms of Laufer duality (integration of forms along

divisors, cf. 2.2). In this section certain familiarity with [NN18] might help the reading.

By this result, if X̃ has generic analytic structure, then the cohomology of natural line bundles

can be expressed by the very same topological formula as Lgen with the same Chern class. Then all

the formulae of Theorem A above follow directly.

In the next paragraph we say a few words about ‘generic analytic type’.

1.3. Discussion regarding the ‘generic analytic type’. Let us comment first what kind of

difficulties appear in the definition and study of ‘generic’ analytic type. The point is that for a

fixed topological type the moduli space of all analytic structures supported by that fixed topological

type, is not yet described in the literature; hence, we cannot define our generic structure as a generic

point of such a space. Laufer in [La73b] characterized those topological types which support only one
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analytic type, but about the general cases very little is known. Usually, generic structures — when

they appeared — were introduced by certain ad-hoc definitions, or only in particular situations. In

a slightly different direction a remarkable progress was made by Laufer (see e.g. [La73]) when he

defined local complete deformations of (resolution of) singularities. This parameter space will be the

major tool in our working definition as well (see 1.4).

However, even if one defines a certain ‘genericity’ notion by eliminating a discriminant from a

parameter space (consisting of the pathological objects from the point of view of the discussion), the

next hard major task is to exploit from the genericity some key geometric/numerical/cohomological

properties. E.g., in the present article this is done via Theorem B.

Regarding the problem to find the values of the analytic invariants associated with the generic

analytic type, a crucial obstruction was (before the present note) the lack of examples and experience.

E.g., Laufer in [La77] proved that a generic elliptic singularity has geometric genus pg = 1, but except

this almost no other example is known. Even more, using the known statements of the literature, it

is almost impossible to guess what are the possible topological candidates for the invariants of the

generic analytic structure. The expectation is that they should be certain sharp topological bounds,

but even if some topological bound is known, usually there are no tools to prove its realization for

the generic (or any) analytic structure. The situation is exemplified rather trustworthily already

by the geometric genus. Wagreich already in 1970 in [Wa70] defined topologically the ‘arithmetical

genus’ pa of a normal surface singularity and for any non–rational germ (that is, when pg 6= 0) he

proved that pa ≤ pg (see [Wa70, p. 425]). Though in some (easy) cases was known that they agree,

analyzing the existing proofs of the inequality (see e.g. the very short proof in [NO17]), one might

think that this inequality for germs with complicated topological types probably is extremely week.

However, the point is that in the present note we prove that (contrary to the first naive judgement)

the geometric analytic structure realizes exactly this pa. For the other invariants (listed in Theorem

A) even the corresponding candidates were not on the table (but we expect that they will have some

relationship with lattice cohomology [N08b]).

In fact, even in this article we make the selection of a package of analytic invariants (organized

around the cohomology of natural line bundles), for which we present the corresponding ‘package of

topological expressions’, and we will treat, say, the Hilbert–Samuel function/multiplicity/embedded-

dimension package in a forthcoming manuscript (with rather different type of combinatorial answers).

1.4. The working definition of the generic analytic type. Usually when we have a parameter

space for a family of geometric objects, the ‘generic object’ might depend essentially on the fact that

what kind of geometrical problem we wish to solve, or, what kind of anomalies we wish to avoid.

Accordingly, we determine a discriminant space of the non–wished objects, and generic means its

complement. In the present article all the discrete analytic invariants we treat are basically guided

by the cohomology groups of the natural line bundles (for their definition see [N07], [O04] or 3.4 here,

they associate in a canonical way a line bundle to any given Chern class). Hence, the discriminant

spaces (sitting in the base space of complete deformation spaces of Laufer [La73]) are defined as the

‘jump loci’ of the cohomology groups of the natural line bundles. In section 3 we recall the needed

results of Laufer regarding complete deformations of some X̃ , and we build on this our working

definition of general analytic type.

Note that the natural line bundles are well–defined only if the link is a rational homology sphere.

Furthermore, this assumption appeared in the theory of Abel maps as well. Hence, in the article we

also impose this topological restriction.
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2. Preliminaries and notations

2.1. Notations regarding a good resolution. [N99b, N07, N12, L13, NN18] Let (X, o) be the

germ of a complex analytic normal surface singularity, and let us fix a good resolution φ : X̃ → X of

(X, o). Let E be the exceptional curve φ−1(0) and ∪v∈VEv be its irreducible decomposition. Define

EI :=
∑

v∈I Ev for any subset I ⊂ V .

We will assume that each Ev is rational, and the dual graph is a tree. This happens exactly when

the link M of (X, o) is a rational homology sphere.

L := H2(X̃,Z) is a lattice endowed with the natural negative definite intersection form ( , ). It

is freely generated by the classes of {Ev}v∈V . The dual lattice is L′ = HomZ(L,Z) = {l′ ∈ L ⊗Q :

(l′, L) ∈ Z}. It is generated by the (anti)dual classes {E∗
v}v∈V defined by (E∗

v , Ew) = −δvw (where

δvw stays for the Kronecker symbol). L′ is also identified with H2(X̃,Z). The anticanonical cycle

ZK ∈ L′ is defined via the adjunction identities (ZK , Ev) = E2
v + 2 for all v.

All the Ev–coordinates of any E∗
u are strict positive. We define the (rational) Lipman cone as

S ′ := {l′ ∈ L′ : (l′, Ev) ≤ 0 for all v}. As a monoid it is generated over Z≥0 by {E∗
v}v.

L embeds into L′ with L′/L ≃ H1(M,Z). L′/L is abridged by H . Each class h ∈ H = L′/L has

a unique representative rh ∈ L′ in the semi-open cube {
∑

v rvEv ∈ L′ : rv ∈ Q ∩ [0, 1)}, such that

its class [rh] is h.

There is a natural (partial) ordering of L′ and L: we write l′1 ≥ l′2 if l′1 − l′2 =
∑

v rvEv with all

rv ≥ 0. We set L≥0 = {l ∈ L : l ≥ 0} and L>0 = L≥0 \ {0}.

The support of a cycle l =
∑
nvEv is defined as |l| = ∪nv 6=0Ev.

2.2. The Abel map. [NN18] Let Pic(X̃) = H1(X̃,O∗
X̃
) be the group of isomorphic classes of

holomorphic line bundles on X̃. The first Chern map c1 : Pic(X̃) → L′ is surjective; write

Picl
′

(X̃) = c−1
1 (l′). Since H1(M,Q) = 0, by the exponential exact sequence on X̃ one has

Pic0(X̃) ≃ H1(X̃,O
X̃
) ≃ Cpg , where pg is the geometric genus.

Similarly, if Z is an effective non–zero integral cycle supported by E, then Pic(Z) = H1(Z,O∗
Z)

denotes the group of isomorphism classes of invertible sheaves on Z. Again, it appears in the exact

sequence 0 → Pic0(Z) → Pic(Z)
c1−→ L′(|Z|) → 0, where Pic0(Z) is identified with H1(Z,OZ) by the

exponential exact sequence. Here L(|Z|) denotes the sublattice of L generated by the base element

Ev ⊂ |Z|, and L′(|Z|) is its dual lattice.

For any Z ∈ L>0 let ECa(Z) be the space of (analytic) effective Cartier divisors on Z. Their

supports are zero–dimensional in E. Taking the class of a Cartier divisor provides the Abel map c :

ECa(Z) → Pic(Z). Let ECal̃(Z) be the set of effective Cartier divisors with Chern class l̃ ∈ L′(|Z|),

i.e. ECal̃(Z) := c−1(Picl̃(Z)). The restriction of c is denoted by cl̃(Z) : ECal̃(Z) → Picl̃(Z).

We also use the notation ECal
′

(Z) := ECaR(l′)(Z) and Picl
′

(Z) := PicR(l′)(Z) for any l′ ∈ L′,

where R : L′ → L′(|Z|) is the cohomological restriction, dual to the inclusion L(|Z|) →֒ L. (This

means that R(E∗
v ) =the (anti)dual of Ev in the lattice L′(|Z|) if Ev ⊂ |Z| and R(E∗

v ) = 0 otherwise.)

A line bundle L ∈ Picl̃(Z) is in the image im(cl̃) if and only if it has a section without fixed

components, that is, if H0(Z,L)reg 6= ∅, where H0(Z,L)reg := H0(Z,L) \ ∪vH
0(Z − Ev,L(−Ev)).

Here the inclusion of H0(Z − Ev,L(−Ev)) into H0(Z,L) is given by the long cohomological exact

sequence associated with 0 → L(−Ev)|Z−Ev
→ L → L|Ev

→ 0, and it represents the subspace of

sections, whose fixed components contain Ev.

By this definition (see (3.1.5) of [NN18]) ECal̃(Z) 6= ∅ if and only if −l̃ ∈ S ′(|Z|) \ {0}. It

is advantageous to have a similar statement for l̃ = 0 too, hence we redefine ECa0(Z) as {∅}, a
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set/space with one element (the empty divisor), and c0 : ECa0(Z) → Pic0(Z) by c0(∅) = OZ . Then

(2.2.1) H0(Z,L)reg 6= ∅ ⇔ L = OZ ⇔ L ∈ im(c0) (c1(L) = 0).

Then the ‘extended equivalence’ reads as: ECal̃(Z) 6= ∅ if and only if −l̃ ∈ S ′(|Z|). In such a

case ECal̃(Z) is a smooth complex algebraic variety of dimension (l̃, Z), cf. [NN18, Th. 3.1.10].

Furthermore, the Abel map is an algebraic regular map. It can be described using Laufer’s duality

as follows, cf. [La72], [La77, p. 1281] or [NN18]. First, by Serre duality,

(2.2.2) H1(X̃,O
X̃
)∗ ≃ H1

c (X̃,Ω
2
X̃
) ≃ H0(X̃ \ E,Ω2

X̃
)/H0(X̃,Ω2

X̃
).

An element of H0(X̃ \ E,Ω2
X̃
)/H0(X̃,Ω2

X̃
) can be represented by the class of a form ω̃ ∈ H0(X̃ \

E,Ω2
X̃
). Furthermore, an element [α] of H1(X̃,O

X̃
) can be represented by a Čech cocyle αij ∈

O(Ui ∩ Uj), where {Ui}i is an open cover of E, Ui ∩ Uj ∩ Uk = ∅, and each connected component

of the intersections Ui ∩ Uj is either a coordinate bidisc B = {|u| < 2ǫ, |v| < 2ǫ} with coordinates

(u, v), such that E ∩B ⊂ {uv = 0}, or a punctured coordinate bidisc B = {ǫ/2 < |v| < 2ǫ, |u| < 2ǫ}

with coordinates (u, v), such that E ∩ B = {u = 0}. Then, Laufer’s realization of the duality

H0(X̃ \ E,Ω2
X̃
)/H0(X̃,Ω2

X̃
)⊗H1(X̃,O

X̃
) → C is

(2.2.3) 〈[α], [ω̃]〉 =
∑

B

∫

|u|=ǫ, |v|=ǫ

αij ω̃.

In particular, if ω̃ has no pole along E in B, then the B–contribution in the above sum is zero.

This duality, via the isomorphism exp : H1(X̃,O
X̃
) → c−1

1 (0) ⊂ H1(X̃,O∗
X̃
) = Pic(X̃), can be

transported as follows, cf. [NN18]. (Here we present the case of a peculiar divisor due to the fact

that this version will be used later.) Consider the following situation. We fix a smooth point p

on E (p ∈ Ev), a local bidisc B ∋ p with local coordinates (u, v) such that B ∩ E = {u = 0},

B = {|u|, |v| < ǫ}. We assume that a certain form ω̃ ∈ H0(X̃ \ E,Ω2
X̃
) has local equation ω̃ =

∑
i∈Z,j≥0 ai,ju

ivjdu ∧ dv in B. In the same time, we fix a divisor D̃ on X̃, whose local equation in

B is vℓ, ℓ ≥ 1. Let D̃t be another divisor, which is the same as D̃ in the complement of B and in

B its local equation is (v + t +
∑

k≥1,l≥0 tk,lu
kvl)ℓ, where all t, tk,l ∈ C and |t|, |tk,l| ≪ 1. Then

D̃t − D̃ is the divisor D̃′ = div(g), where g := ((v + t+
∑

k≥1,l≥0 tk,lu
kvl)/v)ℓ, supported in B. In

particular, O(D̃′) ∈ Pic0(X̃) ⊂ H1(X̃,O∗
X̃
) can be represented by the cocycle g|B∗ ∈ O∗(B∗), where

B∗ = {ǫ/2 < |v| < ǫ, |u| < ǫ}. Therefore, log(g|B∗) is a cocycle in B∗ representing its lifting into

H1(X̃,O
X̃
). This paired with ω̃ gives for 〈〈D̃t, [ω̃]〉〉 := 〈exp−1 O

X̃
(D̃t − D̃), [ω̃]〉 the expression

(2.2.4) ℓ ·

∫

|u|=ǫ, |v|=ǫ

log
(
1 +

t+
∑

k,l tk,lu
kvl

v

)
·

∑

i∈Z,j≥0

ai,ju
ivjdu ∧ dv.

If ω̃ has no pole then 〈〈D̃t, [ω̃]〉〉 = 0. As an example, assume that ω̃ has the form (h(u, v)/uo)du∧dv

with h regular and h(0, 0) 6= 0, and o ≥ 1, while g = (v + tuo−1)/v and ℓ = 1, then

(2.2.5) 〈〈D̃t, [ω̃]〉〉 =

∫

|u|=ǫ, |v|=ǫ

log
(
1+

tuo−1

v

)
·
h

uo
du∧dv = c ·t+{higher order terms} (c ∈ C∗).

If Z ≫ 0 thenH0(X̃\E,Ω2
X̃
)/H0(X̃,Ω2

X̃
) ≃ H0(X̃,Ω2

X̃
(Z))/H0(X̃,Ω2

X̃
). Furthermore, if ω̃1, . . . , ω̃pg

are representatives of a basis of this vector space and D̃t is considered as a path in ECa−ℓE∗
v (Z),

then D̃t 7→ (〈〈D̃t, [ω̃1]〉〉, . . . , 〈〈D̃t, [ω̃pg
]〉〉) is the restriction of the Abel map to D̃t (associated with

Z, and shifted by the image of D̃) (cf. [NN18]).
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3. Resolutions with generic analytic structure

3.1. The setup. We fix a topological type of a normal surface singularity. This means that we fix

either the C∞ oriented diffeomorphism type of the link, or, equivalently, one of the dual graphs of

a good resolution (all of them are equivalent up to blowing up/down rational (−1)–vertices). We

assume that the link is a rational homology sphere, that is, the graph is a tree of rational vertices.

Any such topological type might support several analytic structures. The moduli space of the

possible analytic structures is not described yet in the literature, hence we cannot rely on it. In

particular, the ‘generic analytic structure’, as a ‘generic’ point of this moduli space, in this way is

not well–defined. However, in order to run/prove the concrete properties regarding generic analytic

structures, instead of such theoretical definition it would be even much better to consider a definition

based on a list of stability properties under certain concrete deformations (whose validity could be

expected for the ‘generic’ analytic structure in the presence of a classification space). Hence, for

us in this note, a generic analytic structure will be a structure, which will satisfy such stability

properties. In order to define them it is convenient to fix a resolution graph Γ and treat deformation

of analytic structures supported on resolution spaces having dual graph Γ.

The type of stability we wish to have is the following. The topological type (or, the graph Γ)

determines a lower bound for the possible values of the geometric genus (which usually depends on

the analytic type). Let MIN(Γ) be the unique optimal bound, that is, MIN(Γ) ≤ pg(X, o) for any

singularity (X, o) which admits Γ as a resolution graph, and MIN(Γ) = pg(X, o) for some (X, o).

Then one of the requirements for the ‘generic analytic structure’ (Xgen, o) is that pg(Xgen, o) =

MIN(Γ). (In the body of the paper MIN(Γ) will be determined explicitly.) However, we will need

several similar stability requirements involving other line bundles as well (besides the trivial one,

which provides pg). For their definition we need a preparation.

3.2. Laufer’s results. In this subsection we review some results of Laufer regarding deformations

of the analytic structure on a resolution space of a normal surface singularity with fixed resolution

graph (and deformations of non–reduced analytic spaces supported on exceptional curves) [La73].

First, let us fix a normal surface singularity (X, o) and a good resolution φ : (X̃, E) → (X, o) with

reduced exceptional curve E = φ−1(o), whose irreducible decomposition is ∪v∈VEv and dual graph

Γ. Let Iv be the ideal sheaf of Ev ⊂ X̃. Then for arbitrary positive integers {rv}v∈V one defines

two objects, an analytic one and a topological (combinatorial) one. At analytic level, one sets the

ideal sheaf I(r) :=
∏

v I
rv
v and the non–reduces space Z(r) with structure sheaf OZ(r) := O

X̃
/I(r)

supported on E.

The topological object is a graph decorated with multiplicities, denoted by Γ(r). As a non–

decorated graph Γ(r) coincides with the graph Γ without decorations. Additionally each vertex

v has a ‘multiplicity decoration’ rv, and we put also the self–intersection decoration E2
v whenever

rv > 1. (Hence, the vertex v does not inherit the self–intersection decoration of v if rv = 1). Note

that the abstract 1–dimensional analytic space Z(r) determines by its reduced structure the shape of

the dual graph Γ, and by its non–reduced structure all the multiplicities {rv}v∈V , and additionally,

all the self–intersection numbers E2
v for those v’s when rv > 1 (see [La73, Lemma 3.1]).

We say that the space Z(r) has topological type Γ(r).

Clearly, the analytic structure of (X, o), hence of X̃ too, determines each 1–dimensional non–

reduced space Z(r). The converse is also true in the following sense.

Theorem 3.2.1. [La71, Th. 6.20],[La73, Prop. 3.8] (a) Consider an abstract 1–dimensional space

Z(r), whose topological type Γ(r) can be completed to a negative definite graph Γ (or, lattice L).
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Then there exists a 2–dimensional manifold X̃ in which Z(r) can be embedded with support E such

that the intersection matrix inherited from the embedding E ⊂ X̃ is the negative definite lattice L.

In particular (since by Grauert theorem [GR62] the exceptional locus E in X̃ can be contracted to a

normal singularity), any such Z(r) is always associated with a normal surface singularity (as above).

(b) Suppose that we have two singularities (X, o) and (X ′, o) with good resolutions as above with

the same resolution graph Γ. Depending solely on Γ, the integers {rv}v may be chosen so large that

if OZ(r) ≃ OZ′(r), then E ⊂ X̃ and E′ ⊂ X̃ ′ have biholomorphically equivalent neighbourhoods via a

map taking E to E′. (For a concrete estimate how large r should be see Theorem 6.20 in [La71].)

In particular, in the deformation theory of X̃ it is enough to consider the deformations of non–

reduced spaces of type Z(r).

Fix a non–reduced 1–dimensional space Z = Z(r) with topological type Γ(r). Following Laufer

and for technical reasons (partly motivated by further applications in the forthcoming continuations

of the series of manuscripts) we also choose a closed subspace Y of Z (whose support can be smaller, it

can be even empty). More precisely, (Z, Y ) locally is isomorphic with (C{x, y}/(xayb),C{x, y}/(xcyd)),
where a ≥ c ≥ 0, b ≥ d ≥ 0, a > 0. The ideal of Y in OZ is denoted by IY .

Definition 3.2.2. [La73, Def. 2.1] A deformation of Z, fixing Y , consists of the following data:

(i) There exists an analytic space Z and a proper map λ : Z → Q, where Q is a manifold

containing a distinguished point 0.

(ii) Over a point q ∈ Q the fiber Zq is the subspace of Z determined by the ideal sheaf λ∗(mq)

(where mq is the maximal ideal of q). Z is isomorphic with Z0, usually they are identified.

(iii) λ is a trivial deformation of Y (that is, there is a closed subspace Y ⊂ Z and the restriction

of λ to Y is a trivial deformation of Y ).

(iv) λ is locally trivial in a way which extends the trivial deformation λ|Y . This means that for

ant q ∈ Q and z ∈ Z there exist a neighborhood W of z in Z, a neighborhood V of z in Zq, a

neighborhood U of q in Q, and an isomorphism φ :W → V ×U such that λ|W = pr2 ◦φ (compatibly

with the trivialization of Y from (iii)), where pr2 is the second projection; for more see [loc.cit.].

One verifies that under deformations (with connected base space) the topological type of the

fibers Zq, namely Γ(r), stays constant (see [La73, Lemma 3.1]).

Definition 3.2.3. [La73, Def. 2.4] A deformation λ : Z → Q of Z, fixing Y , is complete at 0

if, given any deformation τ : P → R of Z fixing Y , there is a neighbourhood R′ of 0 in R and a

holomorphic map f : R′ → Q such that τ restricted to τ−1(R′) is the deformation f∗λ. Furthermore,

λ is complete if it is complete at each point q ∈ Q.

Laufer proved the following results.

Theorem 3.2.4. [La73, Theorems 2.1, 2.3, 3.4, 3.6] Let θZ,Y = HomZ(Ω
1
Z , IY ) be the sheaf of

germs of vector fields on Z, which vanish on Y , and let λ : Z → Q be a deformation of Z, fixing Y .

(a) If the Kodaira–Spencer map ρ0 : T0Q→ H1(Z, θZ,Y ) is surjective then λ is complete at 0.

(b) If ρ0 is surjective then ρq is surjective for all q sufficiently near to 0.

(c) There exists a deformation λ with ρ0 bijective. In such a case in a neighbourhood U of 0 the

deformation is essentially unique, and the fiber above q is isomorphic to Z for only at most countably

many q in U .

3.2.5. Functoriality. Let Z ′ be a closed subspace of Z such that IZ′ ⊂ IY ⊂ OZ . Then there is

a natural reduction of pairs (OZ ,OY ) → (OZ′ ,OY ). Hence, any deformation λ : Z → Q of Z fixing
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Y reduces to a deformation λ′ : Z ′ → Q of Z ′ fixing Y . Furthermore, if λ is complete then λ′ is

automatically complete as well (since H1(Z, θZ,Y ) → H1(Z ′, θZ′,Y ) is onto).

3.3. The ‘0–generic analytic structure’. We wish to define when is the analytic structure of a

fiber Zq (q ∈ Q) of a deformation ‘generic’. We proceed in two steps. The ‘0–genericity’ is the first

one (corresponding to the Chern class l′ = 0), which will be defined in this subsection.

It is rather advantageous to set a definition, which is compatible with respect to all the restrictions

OZ → OZ′ . In order to do this, let us fix the coefficients r̃ = {r̃v}v so large that for them

Theorem 3.2.1 is valid. In this way basically we fix a resolution (X̃, E) and some large infinitesimal

neighbourhood Z(r̃) associated with it. Moreover, let us also fix a complete deformation λ(r̃) :

Z(r̃) → Q whose fibers have the topological type of Γ(r̃). Next, we consider all the other coefficient

sets r := {rv}v such that 0 ≤ rv ≤ r̃v for all v, not all rv = 0. Such a choice, by restriction as in

3.2.5, automatically provides a deformation λ(r) : Z(r) → Q. Then set

(3.3.1) ∆(0, r) := {q ∈ Q : hi(Z(r)q ,OZ(r)q ) is not constant in a neighbourhood of q for some i}.

Then ∆(0, r) is a closed (reduced) proper subspace of Q, see [Ri74, Ri76] (one can use also an

argument similar to Lemma 3.6.1 written for l′ = 0). Define ∆0(r̃) := ∪rv≤r̃v∆(0, r). Then ∆0(r̃) is

also closed and ∆0(r̃) 6= Q.

Definition 3.3.2. We say that the fiber Z(r̃)q of λ(r̃) : Z(r̃) → Q is 0–generic if q ∈ Q \∆0(r̃).

Next, we wish to generalize this definition for all Chern classes l′ ∈ L′, or, for all ‘natural line

bundles’, as generalizations of the trivial bundle corresponding to l′ = 0.

3.4. Natural line bundles. Let us start again with a good resolution φ : (X̃, E) → (X, o) of a

normal surface singularity with rational homology sphere link, and consider the cohomology exact

sequence associated with the exponential exact sequence of sheaves

(3.4.1) 0 → Pic0(X̃)
ǫ

−→ Pic(X̃)
c1−→ H2(X̃,Z) → 0.

Here c1(L) ∈ H2(X̃,Z) = L′ is the first Chern class of L. Then, see e.g. [O04, N07], there exists a

unique homomorphism (split) s : L′ → Pic(X̃) of c1 such that c1 ◦ s = id and s restricted to L is

l 7→ O
X̃
(l). The line bundles s(l′) are called natural line bundles of X̃, and are denoted by O

X̃
(l′).

For several definitions of them see [N07]. E.g., L is natural if and only if one of its power has the

form O
X̃
(l) for some integral cycle l ∈ L supported on E. Here we recall another construction from

[O04, N07], which will be extended later to the deformations space of singularities.

Fix some l′ ∈ L′ and let n be the order of its class in L′/L. Then nl′ is an integral cycle; its

reinterpretation as a divisor supported on E will be denoted by div(nl′). We claim that there exists

a divisor D = D(l′) in X̃ such that one has a linear equivalence nD ∼ div(nl′) and c1(OX̃
(D)) = l′.

Furthermore, D(l′) is unique up to linear equivalence, hence l′ 7→ O
X̃
(D(l′)) is the wished split

of (3.4.1). Indeed, since c1 is onto, there exists a divisor D1 such that c1(OX̃
(D1)) = l′. Hence

O
X̃
(nD1 − div(nl′)) has the form ǫ(L) for some L ∈ Pic0(X̃) = H1(X̃,O

X̃
) = Cpg . Define D2 such

that O
X̃
(D2) =

1
n
L in H1(X̃,O

X̃
). Then D1−D2 works. The uniqueness follows from the fact that

Pic0(X̃) is torsion free.

The following warning is appropriate. Note that if X̃1 is a connected small convenient neigh-

bourhood of the union of some of the exceptional divisors (hence X̃1 also stays as the resolution

of the singularity obtained by contraction of that union of exceptional curves) then one can repeat

the definition of natural line bundles at the level of X̃1 as well. However, the restriction to X̃1

of a natural line bundle of X̃ (even of type O
X̃
(l) with l integral cycle supported on E) usually
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is not natural on X̃1: O
X̃
(l′)|

X̃1
6= O

X̃1
(R(l′)) (where R : H2(X̃,Z) → H2(X̃1,Z) is the natural

restriction), though their Chern classes coincide.

In the sequel we will deal with the family of ‘restricted natural line bundles’ obtained by restric-

tions of O
X̃
(l′). Even if we need to descend to a ‘lower level’ X̃1 with smaller exceptional curve,

or to any cycle Z with support included in E (but not necessarily E) our ‘restricted natural line

bundles’ will be associated with Chern classes l′ ∈ L′ = L′(X̃) via the restrictions Pic(X̃) → Pic(X̃1)

or Pic(X̃) → Pic(Z) of bundles of type O
X̃
(l′) ∈ Pic(X̃). This basically means that we fix a tower

of singularities {X̃1}X̃1⊂X̃
, or {OZ}|Z|⊂E , determined by the ‘top level’ X̃, and all the restricted

natural line bundles, even at intermediate levels, are restrictions from the top level.

We use the notations O
X̃1

(l′) := O
X̃
(l′)|

X̃1
and OZ(l

′) := O
X̃
(l′)|Z respectively.

3.5. The universal family of natural line bundles. Next, we wish to extend the definition of

the line bundles OZ(l
′) to the total space of a deformation (at least locally, over small balls in the

complement of ∆0(r̃)).

We fix some Z = Z(r̃) with all r̃v ≫ 0, supported on E, such that Theorem 3.2.1 is valid (similarly

as in 3.3). Fix also some Y ⊂ Z, and a complete deformation λ : Z(r̃) → Q of (Z, Y ) as in Definition

3.2.2 such that all the fibers have the same fixed topological type Γ(r̃). We consider the discriminant

∆0(r̃) ⊂ Q, and we fix some q0 ∈ Q \∆0(r̃), and a small ball U , q0 ∈ U ⊂ Q \∆0(r̃). Above U the

topologically trivial family of irreducible exceptional curves form the irreducible divisors {Ev}v, such

that Ev above any point q ∈ U is the corresponding irreducible exceptional curve Ev,q of X̃q. With

the notations of the previous paragraph, if nl′ has the form
∑

v nvEv write divλ(nl
′) :=

∑
v nvEv

for the corresponding divisor in λ−1(U). Since U is contractible, one has H2(λ−1(U),Z) = L′ and

H1(λ−1(U),Z) = 0, hence the exponential exact sequence on λ−1(U) gives

(3.5.1) 0 → Pic0(λ−1(U)) −→ Pic(λ−1(U))
c1−→ L′ → H2(λ−1(U),Oλ−1(U)).

Lemma 3.5.2. H2(λ−1(U),Oλ−1(U)) = 0 and the first Chern class morphism c1 in (3.5.1) is onto.

Proof. We use the Leray spectral sequence. Recall, see e.g. EGA III.2 §7, or [Os], that if q 7→

hi(Z(r̃)q,OZ(r̃)q ) is constant over some open set U (and all i) then Riλ(r̃)∗OZ(r̃) is locally free over

U and Riλ(r̃)∗OZ(r̃) ⊗OU
C(q) → Hi(Z(r̃)q,OZ(r̃)q ) is an isomorphism for q ∈ U .

Hence, since Riλ∗Oλ−1(U) is locally free, Hi(U,R2−iλ∗Oλ−1(U)) = 0 for i > 0. On the other

hand, R2λ∗Oλ−1(U) = 0 since R2λ∗Oλ−1(U) ⊗OU
C(q) → H2(Z(r̃)q,OZ(r̃)q ) is an isomorphism and

H2(Z(r̃)q,OZ(r̃)q ) = 0 by dimension argument. �

Then, if in the above construction of the split of c1 in (3.4.1) we replace X̃ by λ−1(U) and div(nl′)

by divλ(nl
′), we get the following statement.

Lemma 3.5.3. For any l′ ∈ L′ there exists a divisor Dλ(l
′) in λ−1(U) such that one has a lin-

ear equivalence nDλ(l
′) ∼ divλ(nl

′) in λ−1(U) and c1(Oλ−1(U)(Dλ(l
′)) = l′. Furthermore, Dλ(l

′) is

unique up to linear equivalence, hence l′ 7→ Oλ−1(U)(Dλ(l
′)) is a split of (3.5.1) which extends the nat-

ural split L ∋
∑

vmvEv 7→ Oλ−1(U)(
∑

v mvEv) over L. Since Pic0(λ−1(U)) = H1(λ−1(U),Oλ−1(U))

is torsion free, there exists a unique split over L′ with this extension property.

Let us summarize what we obtained: For any q0 ∈ Q \∆0(r̃), and small ball U with q0 ∈ U ⊂

Q \∆0(r̃), we have defined for each l′ ∈ L′ a line bundle Oλ−1(U)(Dλ(l
′)) in Pic(λ−1(U)), such that

its restriction to each fiber Z(r̃)q is the line bundle OZ(r̃)q (l
′). Let us denote it by Oλ−1(U)(l

′).
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3.6. The semicontinuity of q 7→ h1(Zq,OZq
(l′)). We fix a complete deformation λ : Z(r̃) → Q,

and we consider the set of multiplicities rv ≤ r̃v, not all zero, as in 3.3. Then, for each r, we have a

restricted deformation λ(r) : Z(r) → Q of Z(r) as in 3.5.

Lemma 3.6.1. For any restricted natural line bundle the map q 7→ hi(Z(r)q ,OZ(r)q (l
′)) is semi-

continuous over Q \∆0(r̃), for i = 0, 1.

(Note that if each rv > 1 then the intersection form on Γ(r) is well–defined. In particular, the

semicontinuities of h0 and h1 are equivalent, since h0−h1 = (Z(r), l′)+χ(Z(r)) by Riemann–Roch.)

Proof. We fix a small ball U in Q \∆0(r̃) as in subsection 3.5, and we run q ∈ U .

Let us denote (as above) the exceptional curves in the fiber λ(r)−1(q) by {Ev,q}v, hence the cycle

Z(r)q is
∑

v rvEv,q. Then one has the short exact sequence of sheaves

0 → OZ(r)q ⊗Oλ−1(U)(l
′) → ⊕vOrvEv,q

⊗Oλ−1(U)(l
′) → ⊕(v,w)C{x, y}/(x

rvyrw) → 0,

where the sum in the last term runs over the edges (v, w) of Γ(r). This gives the Mayer–Vietoris

exact sequence

0 → H0(Z(r)q ,Oλ−1(U)(l
′)|Z(r)q ) → ⊕vH

0(rvEv,q,Oλ−1(U)(l
′)|rvEv,q

)
δ

−→ ⊕(v,w)C{x, y}/(x
rvyrw) → . . .

Next, we analyse the vector space H0(rvEv,q,Oλ−1(U)(l
′)|rvEv,q

) for any v. Let us fix an arbitrary

q0 ∈ U . Note that a singularity with a resolution consisting only one rational irreducible divisor

is taut, see [La73b], hence the analytic family {Z(r̃)q}q restricted to {rvEv,q}v over a small neigh-

bourhood U ′ ⊂ U of q0 can be trivialized. Furthermore, Pic0(rvEv,q) = 0, hence the line bundle

Oλ−1(U)(l
′)|rvEv,q

is uniquely determined topologically by l′ and r. Hence, Oλ−1(U)(l
′)|rvEv,q

also can

be trivialised over a small U ′. In particular, by these trivializations, H0(rvEv,q,Oλ−1(U)(l
′)|rvEv,q

)

can be replaced by the fixed H0(rvEv,q0 ,Oλ−1(U)(l
′)|rvEv,q0

), and the q–dependence is codified in

the restriction morphism δ. Hence, there exists a morphism

(3.6.2) ⊕v H
0(rvEv,q0 ,Oλ−1(U)(l

′)|rvEv,q0
)

δ(q)
−→ ⊕(v,w)C{x, y}/(x

rvyrw)

whose kernel is H0(Z(r)q ,OZ(r)q (l
′)). Since the rank of δ(q) is semicontinuous, the statement follows

for h0. But h1(Z(r)q ,OZ(r)q (l
′)) = dim coker(δ(q)) + h1(rvEv,q,Oλ−1(U)(l

′)|rvEv,q
), and the second

term in this last sum is also topological and constant (by the same argument as above), hence

semicontinuity for h1 follows as well. �

3.7. The ‘generic analytic structure’. Now we are ready to give the definition of the ‘generic

structure’. Let us fix a complete deformation λ(r̃) : Z(r̃) → Q as in 3.3 (with r̃v large) whose

fibers have the topological type of Γ(r̃). Similarly as there, we consider all the other coefficient sets

r := {rv}v such that rv ≤ r̃v for all v, not all zero, and the induced deformations λ(r) : Z(r) → Q.

Then for any l′ ∈ L′ consider

(3.7.1) MIN(l′, r) := min
q∈Q\∆0(r̃)

{h1(Z(r)q ,OZ(r)q (l
′))}

and

(3.7.2) ∆(l′, r) := closure of {q ∈ Q \∆0(r̃) : h1(Z(r)q ,OZ(r)q (l
′)) > MIN(l′, r)}.

Then ∆(l′, r) is a closed (reduced) proper subspace of Q (for this use e.g. an argument as in the

proof of Lemma 3.6.1, or [Ri74, Ri76]). Then set the countable union of closed proper subspaces

∆(r̃) := (∪l′∈L′ ∪rv≤r̃v ∆(l′, r)) ∪∆0(r̃). Clearly, ∆(r̃) $ Q.
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Definition 3.7.3. (a) For a fixed Γ(r̃) and for any complete deformation λ(r̃) : Z(r̃) → Q (with all

r̃v ≫ 0) we say that the fiber Z(r̃)q of λ(r̃) : Z(r̃) → Q is generic if q ∈ Q \∆(r̃).

(b) Consider a singularity (X, o) and one of its resolutions X̃ with dual graph Γ. We say that the

analytic type on X̃ is generic if there exists r̃ ≫ 0, and a complete deformation λ(r̃) : Z(r̃) → Q

with fibers of topological type Γ(r̃), and q ∈ Q \∆(r̃) such that λ(r̃)−1(q) = O
X̃
|∑

v
r̃vEv

.

Remark 3.7.4. (a) Fix any 1–dimensional space Z with fixed topology Γ(r̃) with all r̃v ≫ 0. Then

in any complete deformation λ of Z there exists a generic structure arbitrary close to Z.

(b) Though the above construction does not automatically imply that Q \∆(r̃) is open, for any

q0 ∈ Q \∆(r̃) and for any finite set FL′ ⊂ L′ there exists a small neighbourhood U of q0 such that

h1(OZ(r)q ,OZ(r)q (l
′)) = MIN(l′, r) for any r (as above), l′ ∈ FL′, and q ∈ U .

(c) Fix a complete deformation λ : Z(r̃) → Q of some (Z, Y ) with some fixed r̃v ≫ 0 as above.

Then, by Theorem 3.2.1(b) for any q ∈ Q the fiber Z(r̃)q determines uniquely a holomorphic neigh-

borhood X̃q of E. (Some {r̃v}v very large works uniformly for all fibers, since a convenient {r̃v}v can

be chosen topologically.) Furthermore, h1(X̃q,OX̃q
) can be recovered from λ as h1(Z(r̃)q,OZ(r̃)q )

by the formal function theorem. This is the geometric genus of the singularity (Xq, o) obtained by

contracting E in this X̃q. Since ∆(0, r̃) = {q ∈ Q : pg(Xq, o) = MIN(Γ)} is part of the discriminant

∆(r̃) (and it is closed), for any ‘generic’ q ∈ Q \∆(r̃) there is a ball q ∈ U ⊂ Q \∆(0, r̃) such that

λ simultaneously blows down to a flat family X → U . This follows from [Ri74, Ri76, Wa76] by the

constancy of Γ and pg.

3.8. Extension of sections. Consider a complete deformation λ(r̃) : Z(r̃) → Q as above, and let

Z(r̃)q be a generic fiber as in Definition 3.7.3. Let U be a small neighbourhood of q such that U ⊂ Q\

∆0(r̃). For any l′ ∈ L′ fixed consider the universal family of line bundles Oλ−1(U)(Dλ(l
′)) constructed

in subsection 3.5. Fix also some r := {rv}v (0 ≤ rv ≤ r̃v for all v, not all rv = 0, as above). Assume

that OZ(r)q (l
′) = Oλ−1(U)(Dλ(l

′))|Z(r)q admits a global section s ∈ H0(Z(r)q ,OZ(r)q (l
′)) without

fixed components.

Lemma 3.8.1. After decreasing U if it necessary, the following facts hold:

(a) the section s has an extension s ∈ H0(λ(r)−1(U),Oλ(r)−1(U)(Dλ(l
′)) with sq = s.

(b) sq′ (q
′ ∈ U, q′ 6= q) has no fixed components either.

Proof. (a) Since Z(r̃)q is generic, q does not sit in the union of the discriminant spaces con-

sidered in 3.7. In that subsection we considered all the discriminants associated with all the

Chern classes and the ‘r–tower’, hence, in particular, we had countably many discriminant ob-

structions. By assumption, q is not contained in any of these. In this proof we have to con-

centrate on the Chern class l′ and the tower level Z(r), hence only one discriminant. In partic-

ular, q ∈ Q has a small neighbourhood which does not intersect it. Therefore, decreasing the

representative of (Q, q) we get the stability of the corresponding h1–cohomology sheaves. Fur-

thermore, λ is proper, Oλ(r)−1(U)(Dλ(l
′)) is coherent, and q′ 7→ h1(Z(r)q′ ,OZ(r)q′

(l′)) is con-

stant. Hence by EGA III.2 §7 (or, see e.g. [Os]), R0λ∗(Oλ(r)−1(U)(Dλ(l
′))) is locally free and

R0λ∗(Oλ(r)−1(U)(Dλ(l
′)))⊗O(Q,q)

C(q) → H0(Z(r)q ,OZ(r)q (l
′)) is an isomorphism. �

4. A special 1–parameter family of deformation.

4.1. Next, we describe a special 1–parameter deformation of a fixed resolution of a normal surface

singularity (X, o), what will play a crucial role in the proof of the main Theorem 5.1.1.

We choose any good resolution φ : (X̃, E) → (X, o), and write ∪vEv = E = φ−1(o) as above. Since

each Ev is rational, a small tubular neighborhood of Ev in X̃ can be identified with the disc-bundle
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associated with the total space T (ev) of OP1(ev), where ev = E2
v . (We will abridge e := ev.) Recall

that T (e) is obtained by gluing Cu0 ×Cv0 with Cu1 ×Cv1 via identification C∗
u0

×Cv0 ∼ C∗
u1

×Cv1 ,

u1 = u−1
0 , v1 = v0u

−e
0 , where Cw is the affine line with coordinate w, and C∗

w = Cw \ {0}.

Next, fix any curve Ew of φ−1(o) and also a generic point Pw ∈ Ew. There exists an identification

of the tubular neighbourhood of Ew via T (e) such that u1 = v1 = 0 is Pw. By blowing up Pw ∈ X̃

we get a second resolution ψ : X̃ ′ → X̃; the strict transforms of {Ev}’s will be denoted by E′
v,

and the new exceptional (−1) curve by Enew. If we contract E′
w ∪ Enew we get a cyclic quotient

singularity, which is taut, hence the tubular neighbourhood of E′
w ∪Enew can be identified with the

tubular neighbourhood of the union of the zero sections in T (e − 1) ∪ T (−1). Here we represent

T (e − 1) as the gluing of Cu′
0
× Cv′

0
with Cu′

1
× Cv′

1
by u′1 = u′−1

0 , v′1 = v′0u
′−e+1
0 . Similarly,

T (−1) as Cβ × Cα with Cδ × Cγ by δ = β−1, γ = αβ. Then T (e − 1) and T (−1) are glued along

Cu′
1
× Cv′

1
∼ Cβ × Cα by u′1 = α, v′1 = β providing a neighborhood of E′

w ∪ Enew in X̃ ′. Then the

neighbourhood X̃ ′ of ∪vE
′
v ∪ Enew will be modified by the following 1–parameter family of spaces:

the neighbourhood of ∪vE
′
v will stay unmodified, however T (−1), the neighbourhood of Enew will

be glued along Cu′
1
×Cv′

1
∼ Cβ ×Cα by u′1 + t = α, v′1 = β, where t ∈ (C, 0) is a small holomorphic

parameter. The smooth complex surface obtained in this way will be denoted by X̃ ′
t, and the ‘moved’

(−1)–curve in X̃ ′
t by Enew,t. If we blow down Enew,t we obtain the surface X̃t.

By construction, the family of spaces {X̃ ′
t}t∈(C,0) form a smooth 3–fold X̃ ′, together with a flat

map λ′ : (X̃ ′, X̃ ′) → (C, 0), a C∞ trivial fibration, such that λ′−1(t) = X̃ ′
t. Similarly, the family

{X̃t}t∈(C,0) form a smooth 3–fold X̃ , together with a flat map λ : (X̃ , X̃) → (C, 0), a C∞ trivial

fibration, such that λ−1(t) = X̃t.

Remark 4.1.1. Such a deformation λ : (X̃ , X̃) → (C, 0), reduced to some Γ(r̃), say with r̃ ≫ 0,

is always the pullback of a complete deformation of O
X̃
|Z(r̃). Hence, if X̃ is generic, then the

base point q0 corresponding to the fiber O
X̃
|Z(r̃) is in Q \∆(r̃). Since for such q0 there is a ball

q ∈ U ⊂ Q \∆(0, r̃) such that λ simultaneously blows down to a flat family X → U (cf. 3.7.4(c)),

the deformation λ : (X̃ , X̃) → (C, 0) also blows down to a deformation X → (C, 0) of (X, o). In

fact, λ is a weak simultaneous resolution of the (topological constant) deformation X → (C, 0),
cf. [La83, KSB88]. The point is that along the deformation λ automatically we will have the h1–

stabilities for any other finitely many restricted natural line bundles as well, cf. Remark 3.7.4(b)

(that is, for the very same X̃ and its deformation λ, the finitely many Chern classes — whose

h1–stability we wish — can be chosen arbitrarily, depending on the geometrical situation we treat).

5. The cohomology of restricted natural line bundles

5.1. The setup. We fix a normal surface singularity (X, o) and one of its good resolutions X̃ with

exceptional divisor E and dual graph Γ. For any integral effective cycle Z = Z(r) whose support |Z|

is included in E (not necessarily the same as E) write V(|Z|) for the set of vertices {v : Ev ⊂ |Z|}

and S ′(|Z|) ⊂ L′(|Z|) for the Lipman cone associated with the induced lattice L(|Z|). As above, for

any l′ ∈ L′ we denote the restriction of the natural line bundle O
X̃
(l′) to Z by OZ(l

′). Denote also

by l̃ the cohomological restriction R(l′) of l′ ∈ L′ to L′(|Z|). Recall also that for any −l̃ ∈ S ′(|Z|)

one has the Abel map cl̃ : ECal̃(Z) → Picl̃(Z).

Theorem 5.1.1. Assume that X̃ is generic in the sense of Definition 3.7.3. Fix also some Z = Z(r)

as above. Choose l′ =
∑

v∈V l
′
vEv ∈ L′ such that l′v < 0 for any v ∈ V(|Z|). Then the following facts

hold.

(I) Assume additionally that −l̃ ∈ S ′(|Z|) \ {0}. Then the following facts are equivalent:
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(a) OZ(l
′) ∈ im(cl̃), that is, H0(Z,OZ(l

′))reg 6= ∅;

(b) cl̃ is dominant, or equivalently, for a generic line bundle Lgen ∈ Picl̃(Z) one has Lgen ∈ im(cl̃)

(that is, H0(Z,Lgen)reg 6= ∅).

(c) OZ(l
′) ∈ im(cl̃), and for any D ∈ (cl̃)−1(OZ(l

′)) the tangent map TDc
l̃ : TDECa

l̃(Z) →

TOZ(l′)Pic
l̃(Z) is surjective.

(II) hi(Z,OZ(l
′)) = hi(Z,Lgen) for a generic line bundle Lgen ∈ Picl̃(Z) and i = 0, 1.

(For a remark regarding the assumptions of the theorem see 6.1.1(c).)

Remark 5.1.2. The theorem shows that if we fix Γ(r) then the restrictions of natural line bundles

of generic singularities cohomologically behave similarly as the generic line bundles. This is the main

guiding principle of the present article. This principle, in general, can be formulated as follows. Fix

some invariant associated with line bundles of resolutions with fixed graph and fixed Chern class.

Then one expects that the invariant evaluated on the restricted natural line bundle in the context of

the generic singularity agrees with the value of the invariant evaluated on the generic bundle with

the same topological data (associated with an arbitrary fixed analytic type).

Note that by [NN18, Theorem 5.3.1] the cohomology of the generic line bundles depends only on

the combinatorics of Γ (for the formula see e.g. the introduction or (6.1.2)).

5.1.3. Starting the proof of Theorem 5.1.1. We use double induction over the cardinality of

the subset V(|Z|) ⊂ V and
∑

v rv.

If |V(|Z|)| = 1 then Pic0(Z) = 0 and all line bundles with the same Chern class are isomorphic,

hence all the statements are trivially true for any Z and any l′. Hence let us fix some virtual support

|Z| and assume that all the statements are valid for any cycle with support smaller than |Z| and for

any l′ with the corresponding restrictions.

Next, we run induction over
∑

v∈V(|Z|) rv. Assume that rv ≤ 1 for all v. Then Pic0(Z) = 0 again

and both (I) and (II) hold. Hence, we assume that (I) and (II) hold for all cycles with
∑

v rv < N

(and any l′ with the required restrictions) and we consider some Z = Z(r) with
∑

v rv = N .

5.1.4. The first part of the proof of Theorem 5.1.1(I). First we verify the ‘easy’ implications.

(c) ⇒ (b) Since ECal̃(Z) is smooth (cf. [NN18, Th. 3.1.10]), by local submersion theorem, if TDc
l̃

is surjective then the germ cl̃ : (ECal̃(Z), D) → (Picl̃(Z),OZ(l
′)) is surjective too. Since cl̃ is an

algebraic morphism and its image contains a small analytic ball of top dimension, cl̃ is dominant.

(b) ⇒ (a) Since H0(Z,Lgen)reg 6= ∅, one has h0(Z,Lgen) 6= 0, hence by the semicontinuity of L 7→

h0(Z,L) (cf. [NN18, Lemma 5.2.1]) h0(Z,OZ(l
′)) 6= 0 too. Next, assume that h0(Z,OZ(l

′))reg = ∅,

that is, there exists v ∈ V(|Z|) such that h0(Z,OZ(l
′)) = h0(Z − Ev,OZ(l

′)(−Ev)). Note that

OZ(l
′)(−Ev)|Z−Ev

is also a restricted natural line bundle, it is OZ−Ev
(l′ −Ev). Furthermore, from

l′u < 0 for u ∈ V(|Z|) we obtain (l′ − Ev)u < 0 too. Therefore, by the inductive step (part II)

h0(Z−Ev,OZ(l
′−Ev)) = h0(Z−Ev,Lgen(−Ev)) and by the assumption h0(Z−Ev,Lgen(−Ev)) <

h0(Z,Lgen). Thus h0(Z,OZ(l
′)) < h0(Z,Lgen), a fact, which contradicts the semicontinuity of

L 7→ h0(Z,L).

The proof of (a) ⇒ (c) in (I) is much harder and longer, and it is the core of the present theorem.

5.2. The proof of (a) ⇒ (c) in short. The detailed proof is presented in 5.3; in this subsection

we summarize the main steps in order to help the reading of the complete proof, though in this way

inevitably some repetitions will occur. (Since the idea of the proof – based on the construction of

the 1–parameter family – is quite fruitful, it will be used several times in forthcoming manuscripts

as well, hence in the future work we will refer to these paragraphs as the basic prototype.)
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First we identify Picl̃(Z) with Pic0(Z) by L 7→ L ⊗ OZ(−l′), and Pic0(Z) with H1(Z,OZ),

and we replace cl̃(Z) with c̃l
′

(Z) : ECal̃(Z) → H1(OZ). Therefore, we wish to show that for any

D ∈ (c̃l
′

)−1(0) the tangent map TD c̃
l′ : TDECal̃(Z) → T0H

1(OZ) is surjective.

Assume that this is not happening. Then there exists a linear functional ς ∈ H1(OZ)
∗, ς 6= 0,

such that ς |im(TD c̃l
′) = 0. This lifts to a nonzero functional ς̃ of H1(O

X̃
), which necessarily has the

form ς̃ = 〈·, [ω̃]〉 for some ω̃ ∈ H0(X̃ \ E,Ω2
X̃
), which necessarily must have a pole along some Ew.

Using [NN18] one shows that in fact we can choose Ew ⊂ |Z|. Next, we modify X̃ by a sequence

of blow ups. First we blow up X̃ at generic point of Ew creating the new exceptional divisor F1,

then we blow up a generic point of F1 creating F2, etc. The sequence of n such blow ups will be

denoted by bn : X̃n → X̃ , which has exceptional divisors ∪n
i=1Fi. We define ςn by the composition

H1(Ob∗n(Z)) → H1(OZ)
ς

−→ C (where the first arrow is an isomorphism by Leray spectral sequence);

and similarly we set ς̃n associated with some Z̃ ≫ 0 (instead of Z). Note that ς̃n ◦ c̃−F∗
n (b∗n(Z̃))

corresponds to an integration of the 2–form b∗n(ω̃) paired with divisors supported on Fn. Since the

pole order along Fn of b∗n(ω̃) decreases by one after each blow up, after some steps n it will have no

pole along Fn, hence ςn ◦ c̃−F∗
n (b∗n(Z)) : ECa

−F∗
n (b∗n(Z)) → H1(Ob∗n(Z)) → C is constant. Let k be

the smallest integer such that this map is constant. Then b∗k(ω̃) has a pole of order one along Fk−1.

Next, let U ⊂ X̃k be a small tubular neighbourhood of the exceptional curve EU := E∪(∪k−1
i=1 Fi).

Let ΓU be the dual graph of EU . One considers the homological projection πU : L(Γ) → L(ΓU )

and the cohomological restriction RU : L′(Γ) → L′(ΓU ) (dual to the natural homological injec-

tion of cycles). Then first one identifies the germs in the corresponding spaces of effective Cartier

divisors (ECal̃(Z), D) ≃ (ECab
∗
k(l̃)(b∗k(Z)), D) ≃ (ECaRU (b∗k(l̃))(πU (b

∗
k(Z))), D), then one shows

that (ECal̃(Z), D)
c̃l

′

−→ H1(OZ)
ς

−→ C factorizes through (ECaRU (b∗k(l̃))(πU (b
∗
k(Z))), D)

c̃RUb∗
k
(l′)

−→

H1(OπU (b∗
k
(Z)))

ςUk−→ C. This, and the choice of ς show that

(†) ςUk ◦ TD(c̃RU (b∗k(l
′))(πU (b

∗
k(Z))) = 0.

Now we continue with the key construction of the proof. Using the exceptional divisors Fk−1 and

Fk we construct the 1–parameter family of deformation {X̃k,t}t of X̃k (by mowing the intersection

point of Fk,t along Fk−1), as in section 4. In this deformation one considers the universal family

of natural line bundles. Since in the central fiber D is the divisor of a section of the corresponding

natural line bundle, and along the deformation the cohomology groups of the bundles are stable

(here we use the genericity), by Lemma 3.8.1 this extends to a family of sections. In this way

we construct a path in ECaRU (b∗k(l̃))(πU (b
∗
k(Z))) at D, t 7→ γ(t) (or, {Dt}t with D0 = D). By

the choice of ς and (†) and the chain rule, ς ◦ c̃ ◦ γ must have zero derivative at t = 0. This

is valid even for any common multiple of the divisors {Dt}t. On the other hand, this derivative

can be computed differently by Laufer integration. Indeed, by taking a convenient multiple, the

corresponding powers of the members of the family of natural line bundles restricted on U have the

form OπU (b∗
k
(Z))(

∑
v Nl

′
vEv + ℓ

∑k−1
i=1 Fi + ℓFk,t) with ℓ 6= 0. Here ℓFk,t ∩ Fk−1 is moving divisor

along Fk−1. It paired with the differential form of pole one by Laufer pairing has a non-trivial linear

part, cf. (2.2.5). Hence its derivative at t = 0 is nonzero, a fact which contradicts the previous

statement.

5.3. The detailed proof of (a) ⇒ (c). Fix any l∗ ∈ L′ and write l ∈ L′(|Z|) for its restriction.

Then there is a canonical identification of Picl(Z) with Pic0(Z) by L 7→ L⊗OZ(−l∗). Also, Pic
0(Z)

identifies with H1(Z,OZ) by the inverse of the exponential map such that OZ is identified with

0. In particular, cl(Z) : ECal(Z) → Picl(Z) can be identified with its composition with the above
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two maps, namely with c̃l
∗

(Z) : ECal(Z) → H1(OZ). In the sequel l∗ will stay either for l′ or for

different cycles of type E∗
u with Eu ∈ |Z|. In this latter case, the restriction of E∗

u ∈ L′ is E∗
u(|Z|),

where this second dual is considered in L′(|Z|). We use sometimes the same notation E∗
u for both

of them, from the context will be clear which one is considered.

Therefore, the wished statement (a) ⇒ (c) transforms into the following: If D ∈ (c̃l
′

)−1(0) then

the tangent map TD c̃
l′ : TDECal̃(Z) → T0H

1(OZ) is surjective (under the assumptions of part (I)).

Assume that this is not the case for some D. Then there exists a linear functional ς ∈ H1(OZ)
∗,

ς 6= 0, such that ς |im(TD c̃l
′) = 0. During the proof we fix such a D ∈ (c̃l

′

)−1(0) and ς .

First, we concentrate on ς .

Lemma 5.3.1. For any ς ∈ H1(OZ)
∗, ς 6= 0, there exists Ew ⊂ |Z| such that ς ◦ c̃−E∗

w :

ECa−E∗
w(Z) → C is not constant.

Proof. Let Z̃ =
∑

v r̃vEv be a large cycle with all r̃v ≫ 0 (v ∈ V) so that h1(O
Z̃
) = h1(O

X̃
). Define

ς̃ by the composition H1(O
Z̃
)

ρ
−→ H1(OZ)

ς
−→ C. Since ρ is onto, ς̃ 6= 0 too. Recall that any

functional on H1(O
X̃
) has the form ς̃ = 〈·, [ω̃]〉, cf. (2.2.3), for some ω̃ ∈ H0(X̃ \ E,Ω2

X̃
). Since

ς̃ 6= 0 the form necessarily must have a pole along some Ew. By combination of Theorems 6.1.9(d)

and 8.1.3 of [NN18] we know that the kernel of ρ is dual with the subspace of forms which have no

pole along |Z|. Therefore, ω̃ must have a pole along some Ew ⊂ |Z|. Since ECa−E∗
w(Z) is the space

of effective Cartier divisors of X̃ (up to the equation of Z), which intersect (transversally) only Ew,

again by local nature of the integration formula, ς̃ ◦ c̃−E∗
w(Z̃) : ECa−E∗

w(Z̃) → C is nonconstant,

cf. (2.2.5). But ς ◦ c̃−E∗
w(Z) composed with R : ECa−E∗

w(Z̃) → ECa−E∗
w(Z) is exactly this map

ς̃ ◦ c̃−E∗
w(Z̃). Since R is surjective (cf. [NN18, Theorem 3.1.10]), ς ◦ c̃−E∗

w(Z) is nonconstant too. �

5.3.2. Let Z, ς and Ew ⊂ |Z| be as in Lemma 5.3.1, and ω̃ as in its proof, ς̃ = 〈·, [ω̃]〉. We

wish to modify the resolution X̃ (and the space Z) dictated by a certain property of ω̃. For this

we blow up X̃ at generic point of Ew creating the new exceptional divisor F1, then we blow up

a generic point of F1 creating the new exceptional divisor F2, etc. The sequence of n such blow

ups will be denoted by bn : X̃n → X̃, which has exceptional divisors ∪n
i=1Fi. Note also that

H1(Ob∗n(Z)) → H1(OZ) is an isomorphism (use Leray spectral sequence). We define ςn by the

composition H1(Ob∗n(Z)) → H1(OZ)
ς

−→ C.

Lemma 5.3.3. For n sufficiently large the next morphism is constant:

(5.3.4) ςn ◦ c̃−F∗
n (b∗n(Z)) : ECa

−F∗
n (b∗n(Z)) → H1(Ob∗n(Z)) → C.

Proof. Consider Z̃ and the notations of the proof of Lemma 5.3.1, and the composition ς̃n◦ c̃−F∗
n (b∗n(Z̃)),

similar to (5.3.4), but with Z̃ instead of Z. This for any n gives the diagram

(5.3.5)

ECa−F∗
n (b∗n(Z̃))

c̃−F∗
n

−→ H1(O
b∗n(Z̃))

ς̃n−→ C

ECa−F∗
n (b∗n(Z))

c̃−F∗
n

−→ H1(Ob∗n(Z))
ςn−→ C

↓↓Rn ↓↓ ↓ ≃

Note that ς̃n ◦ c̃−F∗
n (b∗n(Z̃)) corresponds to an integration of the 2–form b∗n(ω̃) paired with a divisor

supported on Fn (cf. 2.2). Since the pole order along Fn of b∗n(ω̃) decreases by one after each blow

up, after some steps n it will have no pole along Fn, hence ς̃n ◦ c̃−F∗
n (b∗n(Z̃)) = ςn ◦ c̃−F∗

n (b∗n(Z)) ◦Rn

is constant. Since Rn is surjective (see e.g. [NN18, Theorem 3.1.10]), the statement follows. �
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5.3.6. In the sequel, let k ≥ 1 be the smallest integer such that ςk◦c̃−F∗
k (b∗k(Z)) is constant. Consider

again Z̃ as in the proof of Lemmas 5.3.1 and 5.3.3. The functionals ςk−1, ςk, ς̃k−1 and ς̃k (as in 5.3.2

and (5.3.5)) form the following commutative diagram:

(5.3.7)
H1(O

b∗
k
(Z̃))

≃
−→ H1(O

b∗
k−1(Z̃))

ς̃k−1
−→ C

H1(Ob∗
k
(Z))

≃
−→ H1(Ob∗

k−1(Z))
ςk−1
−→ C

↓↓ ↓↓ ↓ ≃

❳③

ς̃k

✘✿

ςk

By the choice of k and by the diagrams (5.3.5)–(5.3.7) ς̃k−1 ◦ c̃−F∗
k−1(b∗k(Z̃)) is nonconstant, while

ς̃k ◦ c̃−F∗
k (b∗k(Z̃)) is constant. Therefore, b

∗
k(ω̃) has a pole of order one along Fk−1. In particular, the

maps ECa−F∗
k−1(b∗k(V )) → H1(Ob∗

k
(V )) → C (where V is either Z̃ or Z) depend only on the reduced

structure of b∗k(V ) along Fk−1, and they all can be identified with the map represented by Laufer’s

integration pairing. (For this check the integrals from 2.2 for a 2–form with pole of order one.)

5.3.8. In Lemma 5.3.3 and in the discussion from 5.3.6 one can replace in ECa−F∗
k−1 and in ECa−F∗

k

the cycles F ∗
k−1 and F ∗

k by any multiple of them: NF ∗
k−1 and NF ∗

k respectively, for any N ∈ Z>0.

Indeed, the space of divisors has a natural ‘additive’ structure, namely a dominant map sl
′
1,l

′
2(V ) :

ECal
′
1(V ) × ECal

′
2(V ) → ECal

′
1+l′2(V ) which satisfies c̃l

′
1+l′2 ◦ sl

′
1,l

′
2 = c̃l

′
1 + c̃l

′
2 . Therefore, if for

n = k − 1 or n = k the image im(c̃−F∗
n ) belongs to an affine subspace A of H1(Ob∗n(Z)), then

im(c̃−NF∗
n ) belongs to NA := A+ · · ·+A too. In particular, ςk−1 ◦ c̃

−NF∗
k−1(b∗k(Z)) is nonconstant,

while ςk ◦ c̃
−NF∗

k (b∗k(Z)) is constant. (Compare also with the ℓ–dependence in (2.2.4).) Furthermore,

the discussion from 5.3.6 can be repeated for any N , the composed maps depend only on the reduced

structure of b∗k(Z), hence Z can be replaced by any large Z̃, in which case the composition can be

computed by Laufer’s integration duality formula.

This shows that one has a factorization (where V = Z̃ or Z, and ςV,k = ς̃k or ςk respectively)

(5.3.9)

ECa−NF∗
k−1(b∗k(V ))

c̃
−NF∗

k−1

−→ H1(Ob∗
k
(V ))

ςV,k
−→ C

ECa−NF∗
k−1(Fk−1)

↓↓
✏✶

Though in (5.3.9) this factorization through ECa−NF∗
k−1(Fk−1) exists (and it is nonconstant),

a factorization through ECa−NF∗
k−1(Fk−1) → H1(OFk−1

) definitely does not exists (because, e.g.,

H1(OFk−1
) = 0). On the other hand, a factorization through a non-trivial quotient of H1(Ob∗

k
(V )) =

H1(OV ) do exists, a fact which will be crucial later. This is what we explain next.

5.3.10. In the space of resolution X̃k let U ⊂ X̃k be a small tubular neighbourhood of the exceptional

curve EU := E ∪ (∪k−1
i=1 Fi). Let ΓU be the dual graph of EU . (Note that contracting EU in U

provides a singularity with different topological type than Γ, one of its dual graphs is ΓU .) One

can restrict sheaves/bundles from X̃k to U . At cycle level one has the homological projection

πU (
∑

v nvEv +
∑k

i=1miFi) :=
∑

v nvEv +
∑k−1

i=1 miFi. One also has the cohomological restriction

RU : L′(Γ) → L′(ΓU ) (dual to the natural homological injection of cycles); e.g. the restriction

RU (F
∗
k−1) of F ∗

k−1 is the antidual rational cycle F ∗
k−1(ΓU ) associated with Fk−1 in the lattice of

ΓU . Then, for both V = Z̃ or Z, one has the natural injection (which, for V = Z̃ and Z fit in

a commutative diagram): ECa−NF∗
k−1(b∗k(V )) is a Zariski open set in ECa−NRU (F∗

k−1)(πU (b
∗
k(V ))).
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Indeed, both of them depend only on the multiplicity mk−1 of Fk−1 in b∗k(V ) and πU (b
∗
k(V )) (which

are equal), the second set contains divisors up to the equation ofmk−1Fk−1 supported on Fk−1\Fk−2

with total multiplicity N , while in the first set consists of those divisors of the second set whose

support does not contain Fk−1 ∩ Fk.

On the other hand, the natural epimorphism ρV : H1(Ob∗
k
(V )) → H1(OπU (b∗

k
(V ))) usually is not a

monomorphism. However, one has the following fact.

Lemma 5.3.11. ςV,k : H1(Ob∗
k
(V )) → C factors through ρV : H1(Ob∗

k
(V )) → H1(OπU (b∗

k
(V ))).

Proof. First, we concentrate on the map c̃−F∗
k : ECa−F∗

k (b∗k(V )) → H1(Ob∗
k
(V )). Let A be the

smallest affine subspace of H1(Ob∗
k
(V )) which contains im(c̃−F∗

k ), and let A0 be the parallel linear

subspace of the same dimension. As above, we denote the sum A+· · ·+A (m times) bymA, clearly all

of these affine subspaces have the same dimension, and are parallel to each other. Next, consider also

the ‘multiples’ c̃−mF∗
k : ECa−mF∗

k (b∗k(V )) → H1(Ob∗
k
(V )) (cf. [NN18, §6], or see 5.3.8). Therefore,

im(c̃−mF∗
k ) ⊂ mA, and in fact, by [NN18, Theorem 6.1.9], for m ≫ 0, they agree. Furthermore, by

the same theorem, A0 = ker(ρV ).

By the choice of k, ςV,k restricted on the image of c̃−F∗
k is constant, which means that ςV,k|A is

constant, or A0 ⊂ ker(ςV,k). Hence ker(ρV ) ⊂ ker(ςV,k), and ς
U
V,k with ςUV,k ◦ ρV = ςV,k exists. �

This lemma has the following geometric interpretation. If ςV,k = 〈·, [b∗kω̃]〉 (at the level of V or

X̃k), then ς
U
V,k = 〈·, [b∗kω̃|U ]〉 at the level of U . The form b∗kω̃|U again has order one along Fk−1 and

all the local integration formulas along EU are the same.

5.3.12. Next, we concentrate on the divisor D ∈ ECal̃(Z) and on the line bundle OZ(l
′) = OZ(D).

As the center of blow up of b1 is generic on Ew, we can assume that it is not in the support of

D. This guarantees that the divisor D lifts canonically into any of the spaces ECab
∗
k(l̃)(b∗k(Z)) (still

denoted by D), and the germs (ECal̃(Z), D) and (ECab
∗
k(l̃)(b∗k(Z)), D) are canonically isomorphic.

Furthermore, this germ is preserved under the restriction to U (see also the argument from 5.3.10),

hence all these facts together with the existence of factorization from Lemma 5.3.11 can be inserted

in the following commutative diagram:

(5.3.13)

(ECal̃(Z), D)
c̃l

′

−→ H1(OZ)
ς

−→ C

(ECab
∗
k(l̃)(b∗k(Z)), D)

c̃b
∗
k
(l′)

−→ H1(Ob∗
k
(Z))

ςk−→ C

↑ b′n ≃≃ ↑ ↑≃

↓ ρZ≃ ↓ ↓≃

(ECaRU (b∗k(l̃))(πU (b
∗
k(Z))), D)

c̃
RUb∗

k
(l′)

−→ H1(OπU (b∗
k
(Z)))

ςUk−→ C

This diagram shows that ςk ◦ TD(c̃b
∗
k(l

′)(b∗k(Z))) = 0 and also

(5.3.14) ςUk ◦ TD(c̃RU (b∗k(l
′))(πU (b

∗
k(Z))) = 0.

5.3.15. On b∗k(Z) now we have the pullback line bundle b∗k(OZ(l
′)) = b∗k(OZ(D)) = Ob∗

k
(Z)(D).

Lemma 5.3.16. b∗k(OX̃
(l′)) = O

X̃k
(b∗k(l

′)), that is, the pullback of the natural line bundle O
X̃
(l′) is

the natural line bundle associated with the Chern class b∗k(l
′). Therefore, b∗k(OZ(l

′)) = O
X̃k

(b∗k(l
′)|b∗

k
(Z))

(which will be denoted by Ob∗
k
(Z)(b

∗
k(l

′))).

Proof. A bundle is natural if one of its power has the form O(l) for some integral cycle l. In this

case the Chern classes of the two bundles agree. Furthermore, if nl′ is integral for certain n ∈ Z>0,

then b∗k(OX̃
(l′)⊗n) = O

X̃k
(b∗k(nl

′)), hence b∗k(OX̃
(l′)) is natural with Chern class b∗k(l

′). �
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After all these preparations, we start with the key construction of the proof. We will construct

a path in ECaRU (b∗k(l̃))(πU (b
∗
k(Z))) at D, t 7→ γ(t) (or, {Dt}t with D0 = D) with the following

properties. Firstly, by the choice of ς and (5.3.14) ς ◦ c̃ ◦ γ must have zero derivative at t = 0. On

the other hand, we will compute by integration explicitly ς ◦ c̃ ◦ γ and we will show that its linear

part is nontrivial, hence its derivative at t = 0 is nonzero, a fact which leads to a contradiction.

The local path of divisors will be constructed via a deformation, based on section 4.

5.3.17. A special deformation of the analytic structure of O
X̃k

.

Let (X̃k, E ∪ ∪k
i=1Fi) be the resolution as in 5.3.2, with the choice of k as in 5.3.6. Here we

concentrate on the exceptional components Fk−1 and Fk, where Fk is obtained by blowing up a

generic point P . (If k = 1 then Fk−1 = Ew.) Then for the pair (Fk−1, Fk) we apply the construction

of section 4, that is, we move Fk and its intersection point with Fk−1 locally along Fk−1. In this way

we obtain a 1–parameter family of deformations of the resolution X̃k, denoted by λk : (X̃k, X̃k) →

(C, 0), with fibers X̃k,t. In X̃k,t the exceptional curve has components E ∪∪k−1
i=1 Fi ∪Fk,t. If we blow

down the F–type curves in X̃k,t we get a resolution X̃t, they form a family (X̃ , X̃). If we contract

all the exceptional curves we get a family of singularities {(Xt, o)}t. Since the analytic structure

we started with is generic, the geometric genus h1(O
X̃k,t

) stays constant and the deformation blows

down to a deformation (X , X) → (C, 0) with fibers Xt (cf. 4). We denote the contraction X̃k → X̃

by the same symbol bk.

We assume that the base space of λ is so small that the universal map (C, 0) → Q to the base

space of a complete deformation omits the discriminant ∆(r̃); this fact is guaranteed by the choice

of the generic structure of the singularity.

Therefore, for the very same l′ ∈ L′ (which provides the bundle OZ(l
′)) we can consider the

universal line bundles constructed in Lemma 3.5.3, namely OX̃k
(b∗k(l

′)) ∈ Pic(X̃k) and OX̃ (l′) ∈

Pic(X̃ ). By similar argument as in Lemma 5.3.16 we have b∗k(OX̃ (l′)) = OX̃k
(b∗k(l

′)). The restriction

to the fibers of the deformations are the natural line bundles of the fibers.

Corresponding to the irreducible exceptional curves {Ev}v and {Fi}ki=1 in X̃k we have the irre-

ducible exceptional surfaces {Ev}v and {Fi}ki=1 in X̃k. (Here (Fn)t = Fn for n < k but (Fk)t = Fk,t.)

If Z =
∑

v rvEv then b∗k(Z) =
∑

v rvEv + rw
∑k

i=1 Fi. Let we set b∗k(Z) =
∑

v∈V rvEv + rw
∑k

i=1 Fi.

Then we restrict OX̃k
(b∗k(l

′)) to b∗k(Z) and we get Ob∗
k
(Z)(b

∗
k(l

′)) ∈ Pic(b∗k(Z)).

Let λ : b∗k(Z) → (C, 0) be the projection of the deformation. The central fiber is Ob∗
k
(Z)(b

∗
k(l

′)).

In particular, over t = 0 the bundle Ob∗
k
(Z)(b

∗
k(l

′)) has a global section s whose divisor is D (by the

definition of D from 5.3 and identification (5.3.13)). Then Lemma 3.8.1 implies the following fact.

Lemma 5.3.18. There exists an extension s ∈ H0(b∗k(Z),Ob∗
k
(Z)(b

∗
k(l

′))) of s ∈ H0(b∗k(Z),Ob∗
k
(Z)(b

∗
k(l

′)))

such that s0 = s. Furthermore, st has no fixed component either.

Let Dt be the restriction of the divisor of s to the fiber over t.

Since the support of D = D0 is disjoint with the center of b1, the same is true for each Dt (for

|t| ≪ 1). Hence, in this way we get a path germ γ with γ(t) ∈ Ob∗
k
(Z)t(Dt) = Ob∗

k,t
(Z)(Dt) =

Ob∗
k,t

(Z)(b
∗
k,t(l

′)), where bk,t is the contraction/blow up X̃k,t → X̃t.

Note also that in the cycles b∗k,t(Z) the curve Fk,t (with its stable multiplicity) is ‘moving’ along

the deformation, the other components with their multiplicities are stable, and the divisors Dt are

supported by this stable part (but they might move). More precisely, by the construction from 5.3.17

we obtain that πU (b
∗
k(Z)t) is t–independent, and it equals πU (b

∗
k(Z)). (It is worth to mention that

πU (b
∗
k(Z)) is not the same as b∗k−1(Z), they differ even topologically at Euler number level.)
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Then, by the choice of ς and D and the chain rule (compare also with (5.3.13) and (5.3.14):

d

dt

∣∣∣
t=0

(ςk ◦ c̃b
∗
k,t(l

′)(b∗k,t(Z))(γ(t)) =
d

dt

∣∣∣
t=0

(ςUk ◦ c̃RU (b∗k,t(l
′))(πU (b

∗
k,t(Z)))(γ(t))

=TD(ςUk ◦ c̃RU (b∗k(l
′))(πU (b

∗
k(Z)))(

dγ

dt

∣∣∣
t=0

) = ςUk ◦ TD(c̃RU (b∗k(l
′))(πU (b

∗
k(Z)))(

dγ

dt

∣∣∣
t=0

) = 0.

(5.3.19)

The same is valid if we replace the family Dt by any of its multiple N ·Dt.

5.3.20. Let us summarize what we have. On each b∗k,t(Z) we can consider the restricted natural

line bundle Ob∗
k,t

(Z)(b
∗
k,t(l

′)). Then, if we take its restriction to U , namely Ob∗
k,t

(Z)(b
∗
k,t(l

′))|U ∈

Pic(πU (b
∗
k(Z))) and we shift it back with the natural line bundle OπU (b∗

k
(Z))(RU (b

∗
k(l

′)))−1 we get a

path in Pic0(πU (b
∗
k(Z))) = H1(OπU (b∗

k
(Z))), whose differential at t = 0 is in the kernel of ςUk .

Now, let us compute these objects directly, in fact, for a certain N–multiple of the corre-

sponding bundles. Let N be an integer so that Nl′ =
∑

v Nl
′
vEv is an integral cycle and write

ℓ := Nl′w. Then, Nb∗k(l
′) =

∑
vNl

′
vEv + ℓ

∑k
i=1 Fi. Furthermore, (Ob∗

k,t
(Z)(b

∗
k,t(l

′)))N , being natu-

ral with integral Chern class, should equal Ob∗
k,t

(Z)(
∑

vNl
′
vEv + ℓ

∑k
i=1 Fi,t) and its restriction to

U is OπU (b∗
k
(Z))(

∑
v Nl

′
vEv + ℓ

∑k−1
i=1 Fi + ℓFk,t). By the same reason, OπU (b∗

k
(Z))(RU (b

∗
k(l

′)))−N is

OπU (b∗
k
(Z))(

∑
v Nl

′
vEv + ℓ

∑k
i=1 Fi). Hence, the N–multiple of the path is OπU (b∗

k
(Z))(ℓ(Pt − P )),

where Pt = Fk,t ∩ Fk−1, P = Fk ∩ Fk−1 as above. By assumption on l′w we have ℓ 6= 0.

That is, OπU (b∗
k
(Z))(ℓPt − ℓP ) is a path in H1(OπU (b∗

k
(Z))) and (5.3.19) reads as

(5.3.21)
d

dt

∣∣∣
t=0

(ςUk (OπU (b∗
k
(Z))(ℓPt − ℓP )) = 0.

Next we compute the left hand side of (5.3.21) in a different way.

By Lemma 5.3.11 (and comment after it) ςUk = 〈·, [b∗kω̃|U 〉, and the form b∗kω̃|U has a pole of order

one along Fk−1. Moreover, P is a generic point of Fk−1 and in a local neighborhood B of P in local

coordinates (u, v) one has Fk−1 ∩B = {u = 0}, Pt = {v+ t = 0}. Hence (2.2.5) with o = 1 reads as

(5.3.22) ςUk (OπU (b∗
k
(Z))(ℓPt − ℓP )) = tℓc+ {higher order terms} (c ∈ C∗),

whose derivative at t = 0 is non–zero. This contradicts (5.3.21).

5.4. The proof of part (II). Note that the equalities for i = 0 and i = 1 are equivalent by

Riemann–Roch. We will prove (II) in three steps.

5.4.1. The proof of part (II), case 1. Assume that l′v < 0 for any v ∈ V(|Z|) and −l̃ ∈

S ′(|Z|) \ {0}.

Then part (I) — already proved — can be applied.

First assume that the equivalent assumptions (a)-(b)-(c) of (I) are satisfied. Then by [NN18,

Th. 4.1.1] h1(Z,Lgen) = 0. Hence we have to show that h1(Z,OZ(l
′)) = 0 too. Choose an element

s ∈ H0(Z,OZ(l
′))reg with divisor D and consider the exact sequence of sheaves 0 → OZ

×s
−→

OZ(l
′) → OD(D) → 0 (where the second morphism is multiplication by s).

Then one has the cohomology exact sequence

H0(Z,OZ(l
′)) → OD(D)

δ
−→ H1(OZ) → H1(Z,OZ(l

′)) → 0.

Then δ can be identified with TD(cl̃) (see [NN18, Prop. 3.2.2], or [Mu66, p. 164], [Kl05, Remark

5.18], [Kl13, §5]). Since TD(cl̃) is onto by (I)(c), h1(Z,OZ(l
′)) = 0 follows.

Next, assume that the equivalent assumptions of (I) are not satisfied. That is, H0(Z,OZ(l
′))reg =

H0(Z,Lgen)reg = ∅. These facts read as h0(Z,OZ(l
′)) = maxv{h0(Z − Ev,OZ(l

′ − Ev))} and

h0(Z,Lgen) = maxv{h0(Z − Ev,Lgen(−Ev))}. But, by induction (applied for part (II) similarly as
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in the proof of case (b) ⇒ (c) in 5.1.4, see also 5.1.3) maxv{h0(Z−Ev,OZ(l
′−Ev))} = maxv{h0(Z−

Ev,Lgen(−Ev))}, hence h0(Z,OZ(l
′)) = h0(Z,Lgen) follows too.

5.4.2. The proof of part (II), case 2. Assume that l′v < 0 for any v ∈ V(|Z|) and l̃ = 0. (If

this happens then necessarily |Z| < E. Recall also that OZ(l
′) is the restriction of the natural line

bundle O
X̃
(l′) to Z.)

If h1(OZ) = 0 then Lgen = OZ(l
′), hence the statement follows. If h0(OZ(l

′)) = 0 then by the

semicontinuity of L 7→ h0(Z,L) (cf. [NN18, Lemma 5.2.1]) h0(Lgen) = 0 too.

In the sequel we assume that h1(OZ) 6= 0 and h0(OZ(l
′)) 6= 0.

Assume that H0(Z,OZ(l
′))reg 6= ∅, that is, OZ(l

′) has a section without fixed components. But,

then by Chern class computation, this section has no zeros, hence OZ(l
′) = OZ , see also (2.2.1).

We claim that this identity OZ(l
′) = OZ cannot happen for generic (X, o).

The argument runs similarly as the proof of (a) ⇒ (c) in (I).

Since h1(OZ) 6= 0 we can choose a nonzero functional ω ∈ H1(O)∗ for which we can repeat

the arguments from 5.3. In particular, there exists Ew ⊂ |Z| which satisfies Lemma 5.3.1, we can

consider the sequence of blow ups as in 5.3.2, and we can choose k as in 5.3.6. Finally we consider

the deformation of singularities as in 5.3.17. In this way we get a family of restricted line bundles

Ob∗
k,t

(Z)(b
∗
k,t(l

′)), so that for t = 0 the corresponding bundle is the trivial one. We wish to show

that for generic t the corresponding term cannot be the trivial bundle. Indeed, as in (5.3.22) we

get that t 7→ Ob∗
k,t

(Z)(b
∗
k,t(l

′))|U ∈ Pic(πU (b
∗
k(Z))) is not constant. This implies that the path

t 7→ b∗k,t(OZ(l
′)) = Ob∗

k,t
(Z)(b

∗
k,t(l

′)) cannot give for all t the trivial bundle either since otherwise

its restriction to πU (b
∗
k(Z)) would be constant (since the restriction of the structures sheaf is the

t–independent constant structure sheave). In particular, for generic t we have OZt
(l′) 6= OZt

.

However, we can prove that in this situation necessarily h1(OZt
(l′)) < h1(OZt

) for generic t

(though the Chern classes agree), hence t = 0 is a jumping discriminant point of l′ 7→ h1(OZt
(l′)),

a fact which contradict the genericity.

Indeed, since OZt
(l′) 6= OZt

for generic t (and H1(OZt
) is constant nonzero), OZt

(l′) must

have fix components (use c1(OZt
(l′)) = 0 and (2.2.1)). Let Eu ∈ |Z| be a fix component. Then

H0(Zt,OZt
) → H0(Eu,OZt

) = C is surjective, while H0(Zt,OZt
(l′)) → H0(Eu,OZt

(l′)) = C is

zero. Since their kernels have the same h0 by the inductive step, h0(OZt
(l′)) < h0(OZt

), hence the

inequality follows by Riemann–Roch. This proves the claim.

After this discussion we can assume that h1(OZ) 6= 0, h0(OZ(l
′)) 6= 0, but H0(Z,OZ(l

′))reg = ∅.

By (2.2.1) Lgen 6= OZ (since Pic0(OZ) 6= 0), hence H0(Z,Lgen)reg = ∅ too. Then we proceed as in

the last paragraph of 5.4.1, induction shows that h0(Z,OZ(l
′)) = h0(Z,Lgen).

5.4.3. The proof of part (II), case 3. Finally, assume that l′v < 0 for all v ∈ V(|Z|), and

−l̃ 6∈ S ′(|Z|). Then there exists Ev in the support of Z such that (l′, Ev) = (l̃, Ev) < 0. Hence

for any L ∈ Picl̃(Z) the exact sequence 0 → L(−Ev)|Z−Ev
→ L → L|Ev

→ 0 and vanishing

H0(L|Ev
) = 0 give h0(Z − Ev,L(−Ev)) = h0(Z,L). By this step we replaced the Chern class l̃ by

l̃ − Ev. After finitely many such steps we necessarily get a new Chern class in the corresponding

Lipman cone (see e.g. [N07, Prop. 4.3.3]). Hence, in this way we reduced this third case to the first

two cases.

6. Applications. Analytic invariants

6.1. In this section we will fix a resolution graph Γ (hence, the lattice L associated with it as well),

and we treat singularities (X, o), together with their resolution X̃ whose dual graph is Γ. The goal
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is to list some consequences of Theorem 5.1.1: hence we will assume that X̃ is generic, and we

will provide combinatorial expressions for several analytic invariants in terms of L. We will use the

notations from the setup of 5.1.

The first group of results provides topological formulae for the cohomology of certain natural

line bundles over an arbitrary Z > 0.

Remark 6.1.1. (a) By [NN18, Theorem 5.3.1] for any l′ ∈ L′ and Lgen generic in PicR(l′)(Z)

(6.1.2) h1(Z,Lgen) = χ(−l′)− min
0≤l≤Z,l∈L

{χ(−l′ + l)}.

In particular, if l′ =
∑

v∈V l
′
vEv ∈ L′ satisfies l′v < 0 for any v ∈ V(|Z|) and X̃ is generic then

Theorem 5.1.1 gives the following topological characterization for the cohomology of OZ(l
′)

(6.1.3) h1(Z,OZ(l
′)) = χ(−l′)− min

0≤l≤Z,l∈L
{χ(−l′ + l)}.

This will be extended in Theorem 6.1.5 for a larger family of l′–values.

(b) Note that the identity h1(Z,OZ(l
′)) = h1(Z,Lgen) (hence (6.1.3) too) is not valid for any l′

(that is, without some negativity condition regarding the coefficients of l′). Indeed, assume e.g. that

|Z| = E and all the coefficients of Z are very large, and l′ = 0. Then using the quadratic form of χ

one has min0≤l≤Z,l∈L {χ(l)} = minl∈L≥0
{χ(l)}, hence h1(Z,Lgen) = −minl∈L≥0

{χ(l)} by (6.1.2).

But h1(Z,OZ) = 1−minl∈L≥0
{χ(l)} whenever (X, o) is not rational, see Corollary 6.2.4.

(c) Recall that if −l′ ∈ S ′ \ {0} then all the coefficients l′v of l′ are strict negative. However, if

the support of |Z| is strict smaller than E, then −R(l′) ∈ S ′(|Z|) \ {0} does not necessarily imply

that l′v < 0 for v ∈ V(|Z|). (Take e.g. Z = Ev a (−2)–curve, choose Eu an adjacent vertex with it

and set l′ = Ev + 3Eu. Then −R(l′) ∈ S ′(Ev) \ {0} however l′v = 1.)

6.1.4. The setup for generalization. We construct the following ‘Laufer type computation

sequence’ (see e.g. [La72] or [N07, Prop. 4.3.3]). We start with a class l′ ∈ L′ and an effective cycle

Z with |Z| ⊂ E. Let l̃ ∈ L′(|Z|) be the restriction of l′ as in Theorem 5.1.1.

Assume that −l̃ 6∈ S ′(|Z|). Then there exists Ew ⊂ |Z| so that (l′, Ew) < 0. Then, for

both line bundles L = Lgen and L = OZ(l
′) of Picl̃(Z) one can consider the exact sequence

0 → L(−Ew)|Z−Ew
→ L → L|Ew

→ 0, hence h0(L(−Ew)|Z−Ew
) = h0(L). Hence whenever

h0(OZ(l
′ − Ew)|Z−Ew

) = h0(Lgen(−Ew)|Z−Ew
) one also has h0(OZ(l

′)) = h0(Lgen).

Let us construct the following sequence of pairs (l′k, Zk)
t
k=0. By definition, (l′0, Z0) = (l′, Z) the

objects we started with. If −l̃ = −R(l′) 6∈ S ′(|Z|), then define (l′1, Z1) := (l′−Ew, Z −Ew) for some

Ew ⊂ |Z| with (Ew, l
′) < 0. If −l̃1 := −R(l′1) 6∈ S ′(|Z1|) we repeat the procedure, otherwise we stop.

After finitely many steps necessarily −l̃t := −R(l′t) ∈ S ′(|Zt|) (here Zt = 0 is also possible). (The

choice of the sequence is not unique, however by similar argument as in [La72] or [N07, Prop. 4.3.3])

one can show that the last term (l′t, Zt) of the sequence is independent of all the choices: it is the

unique (l′ −D,Z −D) with D minimal such that Z ≥ D ≥ 0, D ∈ L, and −(l′−D) ∈ S ′(|Z −D|).)

Theorem 6.1.5. Assume that X̃ is generic with fixed dual graph Γ, and we choose an effective

cycle Z and l′ ∈ L′. Assume that the last term (l′t, Zt) of the Laufer type computation sequence

{(l′k, Zk)}tk=0 has the following property: if l′t =
∑

v l
′
t,vEv, then l

′
t,v < 0 for any v ∈ V(|Zt|). Then

hi(Z,OZ(l
′)) = hi(Z,Lgen) for a generic line bundle Lgen ∈ Picl̃(Z) (i = 0, 1), i.e. (6.1.3) holds.

Proof. Use Theorem 5.1.1(II) and the discussion from 6.1.4. �

Example 6.1.6. Let X̃ be generic, Z an effective cycle and l′ ∈ L′. Assume that l′v ≤ 0 for all

v ∈ V(|Z|) and for any connected component Zcon of Z there exists v ∈ V adjacent with Zcon with
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l′v < 0. (The adjacent condition is |Zcon| ∩ Ev 6= ∅.) Then the conditions from Theorem 6.1.5 are

satisfied, hence hi(Z,OZ(l
′)) = hi(Z,Lgen) and (6.1.3) holds.

Indeed, first note that if for some vertex with l′v = 0 one has (l′, Ev) ≥ 0 then l′u = 0 for all

adjacent vertices u of v. Hence, (l′, Ev) ≥ 0 for all vertices v with l′v = 0 contradicts the assumption.

That is, there exists v ∈ V(|Z|) so that l′v = 0 and (l′, Ev) < 0.

Then we construct the computation sequence as follows. At the first part of the computation

sequence, at step (l′k, Zk) we choose Ew(k) so that Ew(k) ⊂ |Zk|, the Ew(k)–coefficient of l′k is zero,

and (Ew(k), l
′
k) < 0. After finitely many such steps we arrive to the situation when along the support

of Zk′ all the coefficients of l′k′ will be strict negative. Then we can continue the algorithm arbitrarily.

Corollary 6.1.7. If X̃ is generic with dual graph Γ and |Z| is connected then

(6.1.8) h1(OZ) = 1− min
0<l≤Z,l∈L

{χ(l)} = 1− min
|Z|≤l≤Z,l∈L

{χ(l)}.

Proof. For D = |Z| or D = Ev for any Ev ⊂ |Z| one has

(6.1.9) 0 → H0(Z−D,OZ(−D)) → H0(OZ)
δ
→ H0(OD) → H1(Z−D,OZ(−D))

ι
→ H1(OZ) → 0.

Since δ is onto ι is an isomorphism. But for h1(Z−D,OZ(−D)) Example 6.1.6 and (6.1.3) hold. �

6.2. The cohomology of natural line bundles over X̃. Next we apply the results of the previous

subsection for a cycle Z with all its coefficients very large. Recall that by Artin’s Criterion pg = 0

(that is, (X, o) is rational) if and only if minl∈L>0{χ(l)} = 1 [A62, A66]. Furthermore, for any

singularity minl∈L≥0
{χ(l)} = minl∈L{χ(l)}, see e.g. [N07, Prop. 4.3.3].

Corollary 6.2.1.

(6.2.2) pg(X, o) = 1− min
l∈L>0

{χ(l)} = −min
l∈L

{χ(l)}+





1 if (X, o) is not rational,

0 else.

Proof. For the first identity use (6.1.8), for the second one use Artin’s Criterion for rationality. �

Remark 6.2.3. (a) For any non–rational analytic structure (X, o) one has pg(X, o) ≥ 1−minl∈L{χ(l)}

[Wa70, NO17]. The above corollary shows that this topological bound in fact is optimal.

(b) If (X, o) is elliptic then minl∈L>0{χ(l)} = 0. Hence, if the analytic structure is generic then

pg = 1−minl∈L>0{χ(l)} = 1. This was proved by Laufer in [La77].

Corollary 6.2.4. Assume that X̃ is generic with dual graph Γ. Choose any l′ ∈ L′ and consider

O
X̃
(l′), the natural line bundle on X̃. Then

(6.2.5) h1(X̃,O
X̃
(l′)) = χ(−l′)− min

l∈L≥0

{χ(−l′ + l)}+ ǫ(l′),

where

ǫ(l′) =




1 if l′ ∈ L, l′ ≥ 0, and (X, o) is not rational,

0 else.

Proof. For any effective cycle Z (with |Z| = E) and l′ ∈ L′ let us write ∆(Z, l′) := h1(Z,OZ(l
′))−

χ(−l′)+min0≤l≤Z,l∈L {χ(−l′+ l)}. In order to compute h1(X̃,O
X̃
(l′)) let us fix some Z with all its

coefficients very large. Then, if we start with the pair (l′, Z), the Laufer sequence from 6.1.4 ends

with some (l′t, Zt) with Zt ≥ E (still with large coefficients), and −l′t ∈ S ′. We claim that ∆(Zk, l
′
k)

is constant along the computation sequence. Indeed, from the cohomological exact sequence used

in 6.1.4 (for k = 0) h1(Z,O(l′)) = h1(Z − Ew,O(l′ − Ew)) − 1 − (Ew, l
′). Then, we compare
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min0≤l≤Z χ(−l′ + l) and min0≤l≤Z−Ew
χ(−l′ + Ew + l). Since for any x ≥ 0 with Ew 6∈ |x| we have

χ(−l′ + Ew + x) ≤ χ(−l′ + x), these two minima agree. Hence the claim follows.

Now, for the pair (l′t, Zt), with −l′t ∈ S ′, we distinguish two cases. The case l′t = 0 occurs exactly

when l′ ∈ L≥0 (because l′t is the largest element of (−S ′) ∩ (l′ − L≥0), cf. [N07, Prop. 4.3.3]). In

this case ∆(Zt, l
′
t) can be computed from (6.2.2). Or, l′t 6= 0. In this case all the coefficients of l′t are

strict negative (use e.g. Remark 6.1.1(c)), and ∆(Zt, l
′
t) = 0 by (6.1.3). �

Example 6.2.6. For any h ∈ H define kh := K + 2rh and

χkh
(x) := −(x, x+ kh)/2 = χ(x)− (x, rh) = χ(x+ rh)− χ(rh).

(For the definition of rh see 2.1.) It is known (use e.g. the algorithm from [N07, Prop. 4.3.3]) that

for any h ∈ H one has minl∈L≥0
χ(rh + l) = minl∈L χ(rh + l). Therefore, for h 6= 0 one has

(6.2.7) h1(X̃,O
X̃
(−rh)) = χ(rh)−min

l∈L
χ(rh + l) = −min

l∈L
{χkh

(l)} = − min
l∈L≥0

{χkh
(l)}.

Remark 6.2.8. (a) Let (Xab, o) be the universal abelian covering of (X, o). Then

pg(Xab, 0) =
∑

h∈H

h1(X̃,O
X̃
(−rh)),

see e.g. [N07]. Hence pg(Xab, 0) is topologically (and explicitly) computable by (6.2.2) and (6.2.7).

(b) For a conjectural identity which connects minl∈L χ(rh+l) with the Heegaard Floer d–invariant

associated with the link of the singularity and the spinc–structure attached to the characteristic

element kh see [N08b, §5.2].

6.3. The cohomological cycle of X̃. For any non–rational germ and fixed resolution the set

{Z ∈ L>0 : h1(OZ) = pg(X, o)} has a unique minimal element Zcoh, called the cohomological cycle.

It also satisfies the next property: h1(OZ) < pg for any Z 6≥ Zcoh, Z > 0 (see e.g. [Re97, 4.8]).

In parallel, let us mention the following topological statement. For any fixed non–rational res-

olution graph, M := {Z ∈ L>0 : χ(Z) = minl∈L χ(l)} has a unique minimal and a unique max-

imal element. Indeed, if l1, l2 ∈ M, then for m := min{l1, l2} and M := max{l1, l2} one has

χ(M) + χ(m) = χ(l1) + χ(l2) − (l1 −m, l2 −m) ≤ 2minχ, hence χ(m) = χ(M) = minχ. Hence,

M ∈ M always, and m ∈ M whenever m 6= 0. However, if m = 0 then the germ is elliptic and M

admits a minimal element, namely the minimally elliptic cycle [La77, N99, N99b].

Corollary 6.3.1. Assume that X̃ is generic with a non–rational dual graph Γ. Then the cohomo-

logical cycle Zcoh := min{Z ∈ L>0 : h1(OZ) = pg(X, o)}, is min{Z ∈ L>0 : χ(Z) = minl∈L χ(l)}.

6.4. The cohomological cycle of a line bundle. For any L ∈ Pic(X̃) with h1(X̃,L) > 0 the set

LL := {l ∈ L>0 : h1(l,L) = h1(X̃,L)} has a unique minimal element, denoted by Zcoh(L), called

the cohomological cycle of L (and of φ). Similarly, for any Z > 0 and L ∈ Pic(Z) with h1(Z,L) > 0

the set LZ,L := {l ∈ L, 0 < l ≤ Z : h1(l,L) = h1(Z,L)} has a unique minimal element, denoted by

Zcoh(Z,L), called the cohomological cycle of (Z,L). (For detail see e.g. [NN18, 5.5].)

Corollary 6.4.1. Assume that X̃ is generic.

(a) Fix any l′ ∈ L′ with h1(X̃,O
X̃
(l′)) 6= 0. Then the set

Ll′ := {lmin ∈ L≥0 | χ(−l′ + lmin) = min
l∈L≥0

χ(−l′ + l)}

has a unique minimal element Zcoh(l
′), which coincides with the cohomological cycle of O

X̃
(l′).
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(b) For any Z > 0 and l′ ∈ L′ with h1(Z,O
X̃
(l′)) 6= 0 the set

LZ,l′ := {lmin ∈ L, 0 ≤ lmin ≤ Z, | χ(−l′ + lmin) = min
0≤l≤Z, l∈L

χ(−l′ + l)}.

has a unique minimal element Zcoh(Z, l
′), which coincides with the cohomological cycle of O

X̃
(l′)|Z .

Remark 6.4.2. [NN18, 5.5] For any analytic structure (X, o) supported on the fixed topological

type and for any resolution φ, fix l′ such that for the generic line bundle Lgen ∈ Picl
′

(X̃) one has

h1(X̃,Lgen) 6= 0. Then the cohomology cycle of Lgen is Zcoh(l
′) (independently of the analytic

structure). Similarly, if h1(Z,Lgen) 6= 0 for the generic Lgen ∈ Picl
′

(Z) then the cohomological cycle

of the pair (Z,Lgen) is Zcoh(Z, l
′).

6.5. The Hilbert series. Fix X̃ generic and let H(t) be the multivariable (equivariant) Hilbert

series associated with the divisorial filtration of the local algebra of the universal abelian covering

of (X, o) associated with divisors supported on all irreducible exceptional divisors of X̃; for details

see e.g. [CDGZ04, CDGZ08, N12]. Write H(t) =
∑

l′∈L′ h(l′)tl
′

. (Here if l′ =
∑

v l
′
vEv then

tl
′

=
∏

v t
l′v
v .) It is known that for any l′ there exists a unique s(l′) ∈ S ′ such that s(l′)− l′ ∈ L≥0,

and s(l′) is minimal with these properties. Furthermore, for any l′ ∈ L′ one has h(l′) = h(s(l′)).

Hence it is enough to determine h(l′) for the (closed) first quadrant (because S ′ ⊂ L′
≥0).

Write l′ as rh + l0 for some l0 ∈ L≥0 (and h = [l′]). Recall that h(l′) is the dimension of

H0(O
X̃
(−rh))/H0(O

X̃
(−l0 − rh)), see e.g. [N12, (2.3.3)]. Therefore, for l0 = 0 we get h(rh) = 0.

Proposition 6.5.1. Assume that l′ = rh + l0 with l0 > 0. Then for h 6= 0

(6.5.2) h(l′) = min
l∈L≥0

{χ(l′ + l)} − min
l∈L≥0

{χ(rh + l)} = min
l∈L≥0

{χkh
(l0 + l)} − min

l∈L≥0

{χkh
(l)}.

For h = 0 (i.e. when rh = 0 and l′ = l0 > 0)

(6.5.3) h(l0) = min
l∈L≥0

{χ(l0 + l)} − min
l∈L≥0

{χ(l)}+




1 if (X, o) is not rational,

0 else.

Proof. Use the exact sequence 0 → O(−rh−l0) → O(−rh) → Ol0(−rh) → 0 and Corollary 6.2.4. �

Remark 6.5.4. Proposition 6.5.1 via (6.2.7) and Corollary 6.2.1 can be written h–uniformly:

h(rh + l0) = min
l∈L≥0

{χkh
(l0 + l)}+ h1(X̃,O

X̃
(−rh)) (∀ h ∈ H, l0 ∈ L>0).

6.6. The Poincaré series. Let P (t) be the multivariable equivariant Poincaré series associated

with (X, o) and its fixed resolution, cf. [CDGZ04, CDGZ08, N12]. It is defined as P (t) = −H(t) ·∏
v∈V(1 − t−1

v ). It is known that it is supported on S ′. Proposition 6.5.1 implies the following.

Corollary 6.6.1. Write P (t) =
∑

l′∈S′ p(l′)tl
′

. Then p(0) = 1 and for l′ > 0 one has

p(l′) =
∑

I⊂V

(−1)|I|+1 min
l∈L≥0

χ(l′ + l + EI).

6.7. The analytic semigroup. The analytic semigroup is defined as

S ′
an := {l′ : H0(X̃,O

X̃
(l′))reg 6= ∅} = {l′ : h(l′) < h(l′ + Ev) for any v ∈ V}.

Corollary 6.7.1. If (X, o) is generic then S ′
an = {l′ : χ(l′) < χ(l′ + l) for any l ∈ L>0} ∪ {0} and

h1(X̃,O
X̃
(l′)) = 0 for any l′ ∈ −S ′

an \ {0}.

Proof. Use Corollary 6.2.4 and Proposition 6.5.1. �
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Remark 6.7.2. (a) This formula emphasizes once more the parallelism between generic line bundles

(associated with an arbitrary analytic structure) and the natural line bundles associated with a

generic analytic structure, cf. 5.1.2 and 6.4.2. To explain this in the present situation, consider

first an arbitrary analytic structure, a resolution with fixed graph Γ, and an effective cycle |Z|

as usual. By [NN18, §4] the fact that the Abel map cl
′

: ECal
′

(Z) → Picl
′

(Z) is dominant is

independent of the analytic structure, and it has a purely combinatorial description: χ(−l′) <

χ(−l′ + l) for any l ∈ L, 0 < l ≤ Z}. Assume that Z ≫ 0 and l′ 6= 0. Then a generic line bundle

Lgen ∈ Picl
′

(Z) is in im(cl
′

) if and only if −l′ ∈ S ′
dom := {−l′ : χ(−l′) < χ(−l′+ l) for any l ∈ L>0}.

On the other hand, by Corollary 6.7.1, in the context of a generic analytic type, this happens exactly

when the natural line OZ(l
′) is in the image of im(cl

′

) (that is, OZ(l
′) behaves as a generic line

bundle). In particular, for generic X̃ , S ′
an = S ′

dom ∪ {0}.

(b) In [NN18, §4] several combinatorial properties of S ′
dom are listed.

(c) Corollary 6.7.1 can be compared with the definition of S ′ = {l′ : χ(l′) < χ(l′+Ev) for any v ∈ V}.

6.7.3. San := S ′
an∩L is the semigroup of divisors (restricted to E) of functions φ∗O(X,o). Let Zmax

be the maximal ideal cycle (of S. S.-T. Yau [Y80]), that is, the divisorial part of φ∗(m(X,o)) (here

m(X,o) is the maximal ideal of O(X,o)). It is the unique smallest nonzero element of San.

Corollary 6.7.4. Assume that X̃ is generic with non–rational graph Γ. Then M = {Z ∈ L>0 :

χ(Z) = minl∈L χ(l)} has a unique maximal element and Zmax = maxM.

Proof. For the first part see the second paragraph of 6.3. maxM ∈ San by the right hand side of

6.7.1, but minSan cannot be smaller than maxM by the very same identity. �

Remark 6.7.5. Recall that the fundamental (or minimal, or Artin) cycle Zmin := min{S ′ ∩ L>0}

has the property h0(OZmin
) = 1, hence h1(OZmin

) = 1 − χ(Zmin) (see e.g. [N99b]). For X̃ generic

and (X, o) non–rational any cycle Z ∈ M (in particular Zmax too) has this property. Indeed,

h1(OZ) = 1−min0<l≤Z χ(l) = 1− χ(Z), hence h0(OZ) = 1 too.

Corollary 6.7.6. For (X, o) generic one has Zmax ≥ Zcoh. If additionally (X, o) is numerically

Gorenstein then Zcoh + Zmax = ZK .

6.8. The O(X,o)–multiplication on H1(X̃,O
X̃
). Assume that pg > 0. On H1(X̃,O

X̃
) the O(X,o)–

module multiplication transforms on the dual vector spaceH1(X̃,O
X̃
)∗ = H0(X̃\E,Ω2

X̃
)/H0(X̃,Ω2

X̃
)

into the multiplication of forms by functions. The filtration on H1(X̃,O
X̃
) induced by the powers

of the maximal ideal agrees with the filtration associated by the nilpotent operator determined by

multiplication by a generic element of m(X,o). For details see e.g. [To86].

The poles of forms are bounded by Zcoh. Indeed, by the exact sequence 0 → Ω2 → Ω2(Zcoh) →

OZcoh
(Zcoh + K

X̃
) → 0 and from the vanishing h1(Ω2) = 0 (and from Serre duality) we have

dimH0(Ω2(Zcoh))/H
0(Ω2) = h0(OZcoh

(Zcoh + K
X̃
)) = h1(OZcoh

) = pg. Hence the subspace

H0(Ω2(Zcoh))/H
0(Ω2) ⊂ H0(X̃ \E,Ω2)/H0(Ω2) has codimension zero, hence the spaces agree.

Corollary 6.8.1. If X̃ is generic then m(X,o) · H
1(X̃,O

X̃
) = 0. In particular, the O(X,o)–module

multiplication factorizes to the C = O(X,o)/m(X,o)–vector space structure.

Proof. Since Zmax ≥ Zcoh, cf. 6.7.6, m(X,o) ·H
0(Ω2(Zcoh)) ⊂ H0(Ω2(−Zmax+Zcoh)) ⊂ H0(Ω2). �

6.9. Generic Q–Gorenstein singularities. Recall that a singularity (X, o) is Gorenstein if the

anticanonical cycle ZK is integral, and Ω2
X̃

= O
X̃
(K

X̃
) equals O

X̃
(−ZK). Hence in this case

O
X̃
(K

X̃
) is natural. Recall, that more generally, a line bunlde L is natural if and only if one
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of its powers has the form O
X̃
(l) for some l ∈ L, or equivalently, if and only if its restriction

L|
X̃\E ∈ Pic(X̃ \ E) = Cl(X, o) has finite order (that is, it is Q–Cartier). In particular, (X, o) is

Q–Gorenstein if and only if O
X̃
(K

X̃
) is a natural line bundle, which automatically should agree with

O
X̃
(−ZK).

Proposition 6.9.1. If a Q–Gorenstein singularity (X, o) admits a resolution X̃ with generic analytic

structure, then (X, o) is either rational of minimally elliptic.

Proof. Step 1. Let us fix a resolution X̃ of a normal surface singularity (X, o). We claim that if

(X, o) is neither rational nor minimally elliptic then there exists an effective cycle Z > 0, |Z| ⊂ E,

with Z 6≥ ZK and with h1(OZ) > 0.

Assume first that X̃ = X̃min is a minimal resolution. Then ZK ≥ 0 (by adjunction formulae, see

also [La87]). By vanishing h1(O
X̃
(−⌊ZK⌋)) = 0 we get that h1(O⌊ZK⌋) = pg. Since (X, o) is not

rational, necessarily ⌊ZK⌋ > 0. Hence, if ⌊ZK⌋ < ZK then Z = ⌊ZK⌋ works.

Assume that ⌊ZK⌋ = ZK . Then ZK ∈ L and ZK > 0 (since pg > 0) hence necessarily ZK ≥ E (see

[La87]). For any v ∈ V consider the exacts sequence 0 → OEv
(−ZK +Ev) → OZK

→ OZK−Ev
→ 0.

If h1(OZK−Ev
) > 0 for some v then we take Z = ZK − Ev. Otherwise, h1(OZK−Ev

) = 0 for every

v. Since h1(OEv
(−ZK + Ev)) = 1 we get that pg = 1 and ZK = Zcoh. Then the geometric genus

of the singularities obtained by contracting any E \Ev is rational, hence (X, o) is minimally elliptic

(for details see [La77] or [Re97]).

Finally, let X̃ be arbitrary and let π : X̃ → X̃min be the corresponding modification of the

minimal one. Let 0 < Z < ZK be the cycle obtained previously for X̃min. Then π
∗(Z) works in X̃.

Step2. Fix the generic resolution X̃ . Assume that (X, o) is neither rational nor minimally

elliptic. Chose a cycle Z as in Step 1. Using 0 → Ω2
X̃

→ Ω2
X̃
(Z) → OZ(Z +K

X̃
) → 0, we get that

h1(Ω2
X̃
(Z)) = h1(OZ(Z +K

X̃
)) = h0(OZ). Since (X, o) is Q–Gorenstein, Ω2

X̃
(Z) = O

X̃
(Z − ZK),

hence h1(O
X̃
(Z − ZK)) = h0(OZ) = χ(Z) + h1(OZ). Now we apply (6.2.5) and (6.1.8), and we get

χ(ZK − Z)−min
l≥0

{χ(ZK − Z + l)} = χ(Z) + 1− min
0<l≤Z

{χ(l)}.

Since χ(D) = χ(ZK − D) this transforms into −minl≤Z{χ(l)} = 1 − min0<l≤Z{χ(l)}. Next we

claim that minl≤Z{χ(l)} = min0≤l≤Z{χ(l)}. Indeed, if l = l+− l− with l+, l− ≥ 0 and with different

supports, then there exists Ev ∈ |l−| such that (Ev, l−) < 0; then by a computation χ(l+Ev) ≤ χ(l).

Hence inductively χ(l+) ≤ χ(l). Therefore,

− min
0≤l≤Z

{χ(l)} = 1− min
0<l≤Z

{χ(l)}.

This means that min0≤l≤Z{χ(l)} cannot be realized by an element l > 0, hence 0 = χ(0) <

min0<l≤Z{χ(l)}. But this implies h1(OZ) = 0 (see [NN18, Example 4.1.3]), a contradiction. �

Remark 6.9.2. Proposition 6.9.1 generalizes the following result of Laufer [La77, Th. 4.3] (with

a different proof): if the generic analytic structure of a numerically Gorenstein topological type is

Gorenstein then the topological type is either Klein or minimally elliptic. (Recall that the Klein —

or ADE — singularities are exactly the Gorenstein rational singularities.)
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