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Abstract. Constraint Satisfaction Problems (CSP) belongs to this kind
of traditional NP-hard problems with a high impact in both, research and
industrial domains. However, due to the complexity that CSP problems
exhibit, researchers are forced to use heuristic algorithms for solving the
problems in a reasonable time. One of the most famous heuristic al-
gorithms is Ant Colony Optimization (ACO) algorithm. The possible
utilization of ACO algorithms to solve CSP problems requires the de-
sign of a decision graph where the ACO is executed. Nevertheless, the
classical approaches build a graph where the nodes represent the vari-
able/value pairs and the edges connect those nodes whose variables are
different. In order to solve this problem, a novel ACO model have been
recently designed. The goal of this paper is to analyze the performance
of this novelty algorithm when solving Multi-Mode Resource-Constraint
Satisfaction Problems. Experimental results reveals that the new ACO
model provides competitive results whereas the number of pheromones
created in the system is drastically reduced.
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1 Introduction

One of the compounding paradigms within the set of NP-hard problems is re-
lated to as Resource-Constraint Project Scheduling Problem (RCPSP) [14]. This
family of problems is defined by a set of variables that need to be assigned with
a particular value taking into account a set of restrictions that establish con-
straints among the different values assigned to the variables. Therefore, any
Constraint Satisfaction Problem (CSP) is represented with a triple (X, D, C)
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where X = {x1,x2a,... 2, } represents the set of objects that composes the prob-
lem, D = {dy,ds,...d,} is used to describe the domains that contain the differ-
ent values for the objects described in X, and C' represents the set of constraints
that relates the objects with their values [3, 14].

There is a wide number of complex research and industrial problems that can
be modelled as a CSP, the main techniques, algorithms and methods obtained
from this area have been applied in the last decades to real domains with an
increasing level of complexity (i.e. scheduling and planning problems, energy op-
timization, man-power scheduling, travel and car routing optimization, etc...)
[1,8,11,12,14].

Due to the inherent complexity of CSP problems, it is common to use Com-
putational Intelligence algorithms (such as Ant Colony Optimization (ACO)) to
solve these problems. In order to use ACO for solving CSP problems, the solu-
tion space must be represented as a graph (called decision graph) over which the
ACO algorithm is executed. The standard approaches for building this decision
graph presents several drawbacks that make it difficult to apply this approach
to CSP instances of moderate to high dimensionality. To solve this problem, a
new CSP-graph based model was proposed in [6], where the reduction in the
size of the decision graph results in a fast growth in the number of pheromones.
In order to control this increase rate of the number of pheromones created in
the model, a new heuristic called Oblivion Rate was included in the model. This
model has been applied to the N-Queens problem [6], the Resource-Constraint
Project Scheduling Problem [7] and the Lemmings Game [9]. The contribution of
this work is the analysis of the performance of the Oblivion Rate heuristic in a
new family of RCPSP problems called, Multi-Mode Resource Constraint Project
Scheduling Problems.

This paper is structured as follows: Section 2 contains the description for
the RCPSPs. Section 3 details the implementation of the ACO model used to
RCPSP, including the definition of the new decision graph, the behaviour of the
ants, and the Oblivion Rate heuristic used in this work. The performance of the
selected model is analyzed in Section 4 and the conclusions extracted from this
work are outlined in Section 5.

2 Resource-Constraint Project Scheduling Problem

This work gravitates on the use of ACO algorithms to the Resource-Constraint
Project Scheduling Problem (RCPSP) [2,4]). The goal of this class of problems
is to find an optimal schedule of the activities that compose a project sub-
ject to the availability and demand of different resources required to undertake
these tasks. In mathematical terms, a project is composed by a set of activities
J ={0,...,n+1}, a set of resource types Q = {1,..., ¢} and a specific number
of resources for each resource type r,Vq € Q. A project composed by n activities
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has always n + 2 activities in the set J because activity 0 and n + 1 are dummy
activities explicitly included to represent the start and end of the project and
do not imply any duration nor need for resources.

Each activity can be executed in one or more different modes. If activities
can be executed only in one mode, the problem is labeled as Single-Mode. Like-
wise, if activities can be executed in more than one mode, the problem is called
Multi-Mode. The modes of a given activity represent different ways to execute
this activity. For the same activity, modes differ in both the duration needed to
complete the activity and the set of resources required for its accomplishment.
Formally, the set of different modes of the activity j is denoted as Mode;, the
duration of activity j executed with mode m is denoted as d;,, and it requires
Tjmq units of the resource ¢ € Q. Moreover, s; denotes the time when activity
J started the execution, and f; denotes the time when such an activity has fin-
ished. Note that f; = s; + d;., because the execution of any activity cannot be
interrupted.

Each project may also contain precedence constraints that establish rela-
tions of time interdependence between the different activities that compose the
project. If a given activity j has a precedence constraint with activity ¢, activity
i cannot be executed until activity j has finished (i.e. s; > f;). By considering
these constraints each activity can be assigned two lists, namely, P; and S;,
which contain its direct predecessors and successors. It is relevant to note that
activity O is the only start activity and hence has no predecessors. Likewise,
activity n + 1 is the only end activity and consequently, has no successors.

A solution for a RCPSP is schedule for the different activities that compose
the project. This schedule is composed by the start time for all the activities that
compose the project, S = {s, | Vx € J} and the different execution modes for
the activities. For a given schedule, the start time is the initial time for activity
0 (s¢) and the finish time is the time for activity n+1 (fn+1). The best solution
is those with a minimum makespan [13], i.e. the difference between its finishing
and starting times (f,+1 — So). A schedule will be declared feasible if it satisfies
the following constraints:

— All the activities are scheduled, and each of them is executed once.

— Any activity must not be started before all its predecessors have finished.
37ij |VJ€P1,ZEJ

— At any time ¢, the sum of resources required for the activities in execution
must not exceed the resource capacities of the project.
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3 The Selected ACO Model for Constraint Satisfaction
Problems

This section describes the model (first proposed in [6]) that allows a significant
reduction in the size of the decision graph. The goal of this model is to create
smaller graphs than the ones created in the literature. This section provides a
detailed description of the different components that defines the model which
are:

— A new decision graph, which is smaller than the ones created in the classical
approaches.

— The new ants’ behaviour: the reduction in the size of the graph yields a
slightly more complex behaviour of the ants.

— The new heuristic called Oblivion Rate needed to control the number of
pheromones created in the system.

The classical procedure to model any CSP as a graph is by creating as many
nodes as pairs < wvariable, value > available in the problem, and connecting those
nodes whose variables are different. More formally, the resulting graph is defined
as G = (V, E) where:

V ={(X;,v)|X; € X and v € D(X;)}
EZ{(<X¢,’U>,<X]‘,’UJ>)€V2|X1#Xj} (1)

where nodes V represent the pairs < wvariable, value >, and E represents edges
connecting those nodes whose associated variables X are different from each
other.

There are several pitfalls regarding this representation but the most im-
portant are related to the size of the resulting graph and the type of CSPs
that can be represented. In this sense, if the problem has N variables and
each of them can take M different values, the resulting graph will contain
N - M nodes. As the graph is almost fully connected, the number of edges is
(N-M)-(M-(N—-1))=N?.M?—-N-M?= N2.M2. This observation implies
that problems composed by many variables or by variables that could take on
a high number of different values would become really difficult to model and
almost computationally prohibitive to handle due to the size of their underlying
graph.

The CSP graph representation selected in this paper was initially proposed in
[6]. This representation focuses on the reduction of the graph size resulting from
the modeling of the CSP as a graph. In this approach, the size of the resulting
graph is drastically reduced because each variable in the problem is represented
only by one node, independently of the number of values that can be assigned to
this variable (as it is traditionally represented in CSP solvers). Therefore, given
any problem composed by IV variables whose value can be drawn from a set of
M different values, the resulting graph will have only NV nodes, instead of NV - M



Quantitative Analysis of ACO models applied to Multi-Mode RCPSP 5

nodes created in classical graph models. This representation was applied to the
N-Queens Problem, though it can be used in other CSP-like problems such as
video games [5].

The restrictions of the problem are represented in the edges of the graph.
Two nodes will be connected if there is at least one restriction that involves
the variables represented by the nodes. For example, given the nodes N7 (that
represent the variable x1) and N, (correspondingly, variable z5) there will be
an edge connecting both nodes if there is at least one constraint involving the
values of x; with the values of z5. Using this representation, the number of edges
is drastically reduced due to the decrease of the number of nodes.

This simplification in the graph size entails a change in the behavior of the
ants. In classical ACO approaches ants have to select the next node to visit,
because the node itself contains the value assignment. Ants only deposit a small
quantity of pheromone on the graph and repeat the process until they finish their
execution. When adopting the new representation the ant behavior becomes
more complex because ants are in charge of selecting a specific value for the
variable encoded in the node (see Algorithm 1).

Algorithm 1: Ants’ behavior needed in the selected graph representation.

EvalValList + getEvaluatedValues(currentN ode)
PherList < getPheromonelnformation()
selectedVal + selectValue(EvalValList,PherList)
updatePersonal Assignment (selectedVal)
D + getPossibleNodes(currentNode)
if (D # null) then

node < selectNextNode(D)

currentNode < node

© 00N U kW N

else

=
o

resetAnt()
end

=
=

In Algorithm 1 ants evaluate the different values that can be assigned to
the variable encoded in the corresponding node (Line 1). This evaluation is per-
formed by using the heuristic function defined for the specific problem. Then
the pheromone information deposited in the graph is used in Line 2. Once the
pheromone and the heuristic values are obtained, ants select one value for the
variable encoded in the node (Line 3). Every ant updates its personal assign-
ments, i.e. its local solution, and compute the possible nodes to visit taking into
account their local solution built so far. If there is at least one possible desti-
nation, the ant selects one of them to visit in the next time step. Otherwise,
the ant finishes its execution and goes back to the nest updating, at the same
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time, the pheromone information that has deposited through the graph (Line 10).

Another consequence of the graph reduction is the increase of the number of
pheromones deposited in the graph. Pheromones are placed in the edges of the
graph because the validity of a specific value in a node depends on the given
values to the rest of variables in the other nodes. Thereby, the edge connecting
nodes 7 and j stores all pheromones related to the variables and values for these
nodes. Depending on the complexity of the problem being solved, the number of
pheromones stored in the graph might saturate the system. The total number of
different pheromones in an edge is proportional to the size of the domains of the
variables involved in the constraint represented by the edge. That is, if |D(vars)]
denotes the different values that the source variable can take, and |D(vary)| rep-
resents different values for the destination variable, the edge connecting source
and destination node could store, a maximum of |D(var)| - |D(varg)| different
pheromones.

In order to reduce the number of pheromones stored in the graph an Oblivion
Rate heuristic is incorporated to the system. This heuristic removes a subset of
pheromones from the network. It is important to note that this heuristic must be
carefully designed, because it affects directly on the system performance. Con-
sequently, the design of this heuristic depends on the problem being addressed.

In this work, the selected Oblivion Rate is a dynamic function that depends
on the number of pheromones created in the system to compute the number of
pheromones that will be removed. This heuristic applied at step t is defined as:

R(t)=1- ts% (2)

where S(t) represents the number of pheromones created in the graph at step
t. Equation 3 defines this function, that depends on the number of pheromones
created (P(t)) and the maximum number of pheromones that can be created
(MazPher), yielding

P(t)

S5 = MazPher

3)

In order to compute the maximum number of pheromones, Expression 4
provides an upper bound value using the classical graph-based representation
previously described. This upper bound is computed by estimating the number
of nodes and edges that the graph would contain by using the classical represen-
tation, i.e.

MazPher(j,m)=j-m-(j—1)-m=j-m*-(j —1). (4)
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4 Experimental Results

The main goal of the experimental results discussed in this section is to analyze
the performance of the described ACO model when tackling RCPSP problems.
Performance will be measured as the quality of the solutions found by the ACO
model, as well as the number of pheromones stored in the system. The dataset
used in this work has been extracted from the PSPLIB library [10] by selecting
those problems where the number of execution modes are greater than 1, i.e.
selecting the Multi-Mode problems (a description about the characteristics for
the selected problems can be found in Table 1).

Problem |#Instances|# Activities|#Modes
j10.mm 536 10
j12.mm 547 12
j14.mm 551 14
j16.mm 550 16 3
j18.mm 552 18
j20.mm 554 20
j30.mm 640 30
m2.mm 481 2
m4 . mm 555 16 4
m5 . mm 558 5

Table 1. Description of the different problems available in the RCPSP dataset.

The configuration for the ACO algorithms carried out in this work is the
same for all the experiments. The colony is composed by 100 ants that are ex-
ecuted during 100 steps. The evaporation rate is fixed to p = 0.05 whereas the
values for o and S are 1 and 2 respectively.

The first experiment carried in this work analyzes the reduction in the num-
ber of pheromones created in the system. In order to do that, the different prob-
lems have been solved using the selected ACO model without Oblivion (Normal
ACO) and using the Dynamic Oblivion. The number of pheromones created by
both ACO models and the corresponding reduction percentage are shown in Ta-
ble 2.

As it can be observed in this table, there is an important reduction in the
number of pheromones of, at least, 94%. This is an important reduction because
each pheromone is a structure stored in the memory of the system and it could
be saturated. Nevertheless, pheromones are used to guide the colony to the op-
timal solutions. Thus, this reduction could affect to the quality of the solutions
found by the ACO model. In order to measure whether this reduction affects
to the quality of the solutions found, we have computed the average minimum
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Problem Normal|Dynamic|Reduction
ACO |Oblivion pct.
j10.mm 2023 68 96.63%
j12.mm 2695 83 96.92%
j14.mm 3246 101 96.88%
j16.mm | 3841 120 96.87%
j18.mm | 4315 142 96.71%
j20.mm 4865 168 96.54%
j30.mm 5922 276 95.33%
m2.mm 2092 112 94.64%
m4 . mm 4891 268 94.52 %
m5 . mm 5645 121 97.85 %

Table 2. This table shows the maximum number of pheromones created in the system
using the Dynamic Oblivion Rate, and without the Oblivion Rate (Normal ACO).

makespan obtained by the different ACO algorithms and compared it against
the average best makespan published by the research community.

Dataset| MinPubl. |Normal ACO |Dynamic Oblivion
m2.mm (30.16 £ 6.87| 31.04 £+ 7.42 31.04+74
md.mm |22.71+73| 26.69+8.61 26.68 £+ 8.51
m5.mm (21.16 +8.14| 25.73+9.4 25.76 £9.31
j10.mm [19.04 4+ 6.21| 19.69 + 6.46 19.68 + 6.46
j12.mm [21.34 +6.48| 22.36 £ 6.63 22.25 £ 6.54
j14.mm [23.18 +6.14| 25.23 £6.73 25.31 £6.79
j16.mm [24.93 +6.02| 27.67 + 7.03 27.76 £7.07
j18.mm [26.57 £ 6.47| 29.99 £ 7.66 30.09 £ 7.54
j20.mm [27.71 +6.99| 32.08 £ 8.62 32.08 £ 8.76
j30.mm [28.79 4+ 7.44| 36.16 £+ 17.39 36.16 £ 17.44

Table 3. This table shows the average minimum makespan published by the research
community, the average minimum makespan obtained by the selected model without
using the Oblivion Rate (Normal) and using the Dynamic Oblivion Rate for the Multi-
Mode problems belonging to PSPLib.

Table 3 shows the average minimum makespan published by the research
community and the average minimum makespan obtained by the selected model:
without using the Oblivion Rate (Normal) and using the Dynamic Oblivion Rate
for the Multi-Mode problems of the PSPLib dataset. As it can be seen in this
table, the average minimum makespan obtained by our approach is really similar
when the model is not using the Oblivion Rate, and when the Dynamic Obliv-
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ion Rate is used. These results are really promising if we take into account the
strong reduction in the number of pheromones created in the system when the
Oblivion Rate is used. The utilization of the Dynamic Oblivion Rate reduces at
least the 94% of the pheromones for Multi-Mode problems, building solutions
really close to the ones obtained by the system without controlling the number
of pheromones, and thus having more information about the past of the algo-
rithm. Finally, all these makespan values obtained by our approach are really
close to the optimal makespan obtained by the research community. For previous
reasons, we can conclude that the Oblivion Rate heuristic and the selected ACO
model are a good approach for solving RCPSP problems because the system
obtains solutions close to the optimal, and the number of pheromones created
in the system has been extremely reduced.

5 Concluding Remarks

Constraint Satisfaction Problems (CSP) belongs to this kind of traditional NP-
hard problems with a high impact in both, research and industrial domains.
There are several problems that can be modelled as a CSP such as planning,
scheduling, travel and car routing problems, videogames or energy, among others.

However, due to the complexity that CSP problems exhibits, researchers are
forced to use heuristic algorithms for solving the problems in a reasonable time.
One of the most famous heuristic algorithms is Ant Colony Optimization (ACO)
algorithm, but the classical utilization of ACO algorithms build a decision graph
composed by the same number of nodes as pairs < variable, value > available in
the problem. Therefore the size of the resulting graph could be unmanageable
depending on the number of variables and values of the selected problem.

In order to solve this problem, a new ACO model was proposed in [6]. This
model is characterized by the utilization of a reduced decision graph and by
the usage of a Oblivion Rate heuristic for controlling the number of pheromones
created in the system.

This paper studies the applicability of the novel approach to solve Multi-
Mode Resource Constraint Satisfaction Problem. For evaluating the ACO model,
we have selected the Multi-Mode instances belonging to the PSPLib dataset. The
experimental results reveals that the ACO model is able to remove, at least,
the 94% of the pheromones of the system without affecting to the quality of
the solutions built by the ACO algorithm. This result reveals that the ACO
algorithm is a good approach for solving RCPSP problems because it is able to
guide ants to optimal, or sub-optimal solutions, maintaining in the system those
pheromones created by the best solutions.



10 Antonio Gonzalez-Pardo et al.

Acknowledgements

This work has been supported by the next research projects: EphemeCH (TIN2014-
56494-C4-4-P) Spanish Ministry of Economy and Competitivity, CIBERDINE
S2013/ICE-3095, both under the European Regional De-velopment Fund FEDER,
Airbus Defence & Space (FUAM-076914 and FUAM-076915), BID3ABI (Basque
Government), and RiskTrack (JUST-2015-JCOO-AG-723180).

References

1. J. E. Bell and P. R. McMullen. Ant colony optimization techniques for the vehicle
routing problem. Advanced Engineering Informatics, 18(1):41-48, 2004.

2. J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. Scheduling subject to re-
source constraints: classification and complexity. Discrete Applied Mathematics,
5(1):11 — 24, 1983.

3. A. E. Eiben and Z. S. Ruttkay. Constraint Satisfaction Problems. IOP Publishing
Ltd. and Oxford University Press, 1997.

4. K. Z. Gao, P.N. Suganthan, Q.K. Pan, T.J. Chua, T.X. Cai, and C.S. Chong.
Pareto-based grouping discrete harmony search algorithm for multi-objective flex-
ible job shop scheduling. Information Sciences, 289:76 — 90, 2014.

5. A. Gonzalez-Pardo and D. Camacho. Environmental influence in bio-inspired game
level solver algorithms. In Proceedings of the 7th International Symposium on Intel-
ligent Distributed Computing - IDC 2013, volume 511 of Studies in Computational
Intelligence, pages 157-162. Springer Berlin Heidelberg, 2013.

6. A. Gonzalez-Pardo and D. Camacho. A new csp graph-based representation for
ant colony optimization. In 2013 IEEE Conference on FEvolutionary Computation,
volume 1, pages 689-696, June 20-23 2013.

7. A. Gonzalez-Pardo and D. Camacho. A new csp graph-based representation to
resource-constrained project scheduling problem. In 2014 IEEE Conference on
Evolutionary Computation, pages 344-351. IEEE Xplore 2014, 2014.

8. A. Gonzalez-Pardo, J. Del Ser, and D. Camacho. On the Applicability of Ant Colony
Optimization to Non-Intrusive Load Monitoring in Smart Grids, pages 312-321.
Springer International Publishing, Cham, 2015.

9. A. Gonzalez-Pardo, F. Palero, and D. Camacho. An empirical study on collective
intelligence algorithms for video games problem-solving. Computing and Informat-
ics, 34(1):233-253, 2015.

10. R. Kolisch and A. Sprecher. Psplib — a project scheduling problem library. European
Journal of Operational Research, 96:205-216, 1996.

11. V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine,
13(1):32-44, 1992.

12. S. Morin, C. Gagné, and M. Gravel. Ant colony optimization with a specialized
pheromone trail for the car-sequencing problem. FEuropean Journal of Operational
Research, 197:1185 — 1191, 2009.

13. A. Schirmer. Case-based reasoning and improved adaptive search for project
scheduling. Naval Research Logistics (NRL), 47(3):201-222, 2000.

14. E. P. K. Tsang. Foundations of constraint satisfaction. Computation in cognitive
science. Academic Press, 1993.



