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Abstract. Recently the relevance of adaptive models for dynamic data
environments has turned into a hot topic due to the vast number of sce-
narios generating nonstationary data streams. When a change (concept
drift) in data distribution occurs, the ensembles of models trained over
these data sources are obsolete and do not adapt suitably to the new
distribution of the data. Although most of the research on the field is
focused on the detection of this drift to re-train the ensemble, it is widely
known the importance of the diversity in the ensemble shortly after the
drift in order to reduce the initial drop in accuracy. In a Big Data sce-
nario in which data can be huge (and also the number of past models),
achieving the most diverse ensemble implies the calculus of all possible
combinations of models, which is not an easy task to carry out quickly in
the long term. This challenge can be formulated as an optimization prob-
lem, for which bio-inspired algorithms can play one of the key roles in
these adaptive algorithms. Precisely this is the goal of this manuscript:
to validate the relevance of the diversity right after drifts, and to un-
veil how to achieve a highly diverse ensemble by using a self-learning
optimization technique.
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1 Introduction and Related Work

The increasing number of applications favoring the generation of data streams –
such as mobile phones, sensor networks and in general all scenarios under the so-
called Internet of Things paradigm [1] – has led the research community to the
necessity for new approaches capable of dealing with fast incoming information
flows. In these practical situations it is often assumed that the process behind
the generation of such data streams is stationary, i.e. the statistical properties
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of the underlying phenomena that produce the information to be processed do
not vary along time. Unfortunately, in many real scenarios this assumption does
not hold since the data generation process becomes affected by a nonstationary
event (such as eventual changes in the users’ habits, seasonality, periodicity,
sensor errors, etc.). Under these circumstances the statistical distribution of the
data may change (drift), which ultimately causes that models trained over these
data sources are obsolete and do not adapt suitably to the new distribution
of the data. Therefore, in the context of data mining in such nonstationary
environments the construction of learning models requires adaptive approaches
to ease the adjustment of such model to drifts, either from an active (i.e. drift
detection, which triggers a subsequent model adaptation) or a passive perspective
(the adaptation of the model whenever new data arrive).

Ensembles are one of the most useful approaches to deal with concept drift,
and have been successfully used to improve the accuracy of single classifiers
in incremental learning. Diversity among the constituent learners in ensemble
models has been empirically proven to be crucial when dealing with concept
drift [2]. Specifically this study evinces that the diversity plays an important role
before and after a concept drift, importance that is also subject to the severity of
the drift: before the drift, ensembles with less diversity obtain better test errors,
while shortly after the drift more diverse ensembles use to score lower test error
rates. Their difference in terms of test error performance when compared to
lower diversity ensembles is usually more significant when the severity is higher.
Therefore, it is a good strategy to maintain highly diverse ensembles and utilize
them shortly after the drift (independently from the type of drift) to obtain
good performance scores. The so-called Diversity for Dealing with Drifts (DDD)
approach published in [3] leverages this empirically validated conclusion, and is
one of the most recognized methods to manage diverse ensemble in the presence
of concept drift from an active perspective.

Due to the above noted importance of achieving a good balance between
adaptability (diversity) and performance along time, there is a latent need for
novel mechanisms to optimally balance the diversity in ensemble learning. This
work falls within this research trend and formulates the diversity balance as
an optimization problem. We explore the benefits of a bio-inspired solver for
the construction of ensembles with different levels of diversity, in particular the
Harmony Search (HS) algorithm [4]. HS has demonstrated to be competitive
respect to other evolutionary heuristics for optimization paradigms in diverse
fields such as energy [5,6], bio-informatics [7], telecommunications [8,9], data
mining and concept drift [12], and logistics [13], among many others [10,11].
However, to the knowledge of the authors no previous contribution has gravitated
on the diversity-accuracy trade-off in ensemble learning over nonstationary data.

The idea behind this research work is to use the HS algorithm to build en-
sembles of models with maximum and minimum diversity, and then utilize them
shortly after the drift to show that ensembles with high diversity yield better
classification performance those with low diversity. In this regard it has been
widely acknowledged in the literature (see e.g. [14,15,16] and references therein)
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that the Area Under the ROC Curve (AUC) is the most strongly recommended
score due to the fact that the naive accuracy metric is not a reliable indicator
in severely imbalanced data sets. This work will embrace this recommendation
in what follows, specially in Section 4 for comparing results among different
ensembles.

The rest of the paper is organized as follows: Section 2 introduces the ana-
lyzed scenario. Section 3 delves into the proposed approach based on HS, whereas
Section 4 presents and discusses the simulation results obtained over the SEA
data set [20]. Finally, Section 5 ends the paper and sketches future research lines.

2 Analyzed Scenario

In batch learning [15] the level of diversity among base learners in the ensemble is
a relevant topic that has grasped notable attention in the literature. The success
of ensemble learning algorithms is based, to a certain point, on the accuracy and
diversity among the base learners [17]; some studies have revealed that it exists
a positive correlation between accuracy of the ensemble and diversity among its
members [18]. In [2] it was concluded that it is a good strategy to maintain highly
diverse ensembles to obtain good responses shortly after the drift, independently
of the type of the drift. However, at this point it is necessary to choose a metric
to measure the diversity of an ensemble so as to build ensembles with different
levels of diversity depending on the instant at which it is applied (before or
shortly after the drift).

Following the recommendations of [18], in which a thorough analysis of 10
measures was discussed, the Yule’s Q statistic [19] is selected for the purpose
of minimizing the error of ensembles. The advantages of this measure are its
simplicity and ease of interpretation. Considering two classifiers Ci and Cj , the
Yule’s Q statistic metric can be calculated as

Qi,j
.
=
N11N00 −N01N10

N11N00 +N01N10
, (1)

where Nab is the number of training samples for which the classification given
by Ci is a and the classification given by Cj is b. We further assume that 1
represents a correct classification and 0 is a misclassification. Q varies between
-1 and 1. Classifiers that tend to recognize the same objects correctly will have
positive values of Q, and those which commit errors on different objects will
render Q negative. For an ensemble E of M classifiers, the Q̄ statistic averaged
over all pairs of classifiers is given by

Qaveraged
.
=

2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

Qi,j . (2)

where, as mentioned above, higher/lower Q̄ values are associated with lower/higher
diversity, establishing an inversely proportional relation.
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Bearing these definitions in mind a batch learning technique based on an
ensemble composed of several base learners has to deal with applications that
provide fast incoming information flows in the form of data batches. In this sce-
nario one different model can be trained with each newly incoming batch, hence
the total number of combinations that may yield possible diverse ensembles at
a concrete time step can be too high in the long run for its exhaustive evalua-
tion. Due to the time constraints or computation costs in certain cases of these
applications, the task of finding diverse ensembles may not be affordable in prac-
tice. For this reason this challenge can be dealt with by formulating the choice
of diverse base learners as an optimization problem, for which a bio-inspired
technique can find an optimal diverse ensemble at each moment on time.
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Fig. 1. Diversity importance before and after the drift for the SEA data set.

In the case of the online learning approach proposed in [3], the learning pro-
cess of the ensemble is carried out for a fixed number of times (defined by the
rate parameter λ characterizing the Poisson(λ) distribution) with the same cur-
rent training data. As it is not possible to store past data, so the ensemble can
not learn from past information. In this way, higher/lower λ values are associ-
ated with higher/lower Q̄ values (lower/higher diversity). In the case of a batch
learning approach, a model can be trained with incoming training examples, and
be part of the ensemble if it is considered, being it possible to have an ensem-
ble formed by members trained in the past. This work follows a batch learning
approach, and uses an HS solver to maximize and minimize the diversity of the
ensemble. Figure 1 represents a batch learning process during 200 time steps
with the AUC score, and it shows how the importance of the diversity is at each
moment before and after the drift for the SEA dataset [20].

In order to test the feasibility of HS to achieve different levels of diversity for
the ensemble, this work has been evaluated when applied over one of the most
widely used synthetic data sets for assessing new concept drift developments:
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the SEA data set. Following the original data set generation procedure posed
in this work, a total of 10000 3-dimensional samples have been generated at
random within the range R[0, 10). Only the first two dimensions (features) are
set informative for the class to be predicted, whereas the remaining dimension is
irrelevant and acts as a noisy component for the target label. Points have been
split in 200 batches of length 250 samples, which have been further divided into 4
main groups or blocks characterized by different concepts: a data sample belongs
to class 1 if x1 + x2 ≤ Θ, where x1 and x2 represent the first two features of the
sample and Θ is a threshold value that sets the frontier between the two classes.
A recurrent series of values (i.e. Θ = {4, 7, 4, 7}) has been used to generate the
four concept blocks. An additional class noise has been also inserted within each
block by randomly changing the class of 5% of the total instances.

3 Proposed HS-based Approach

HS works by imitating the activity of musicians while improvising new music
pieces. The choice of which note to play next is something which takes years to
learn to do effectively. Each musician in the band (ensemble) is often faced with
the problem of picking the next note. To do so they can resort to their knowl-
edge of the notes in the key they are playing in (which notes sound aesthetically
pleasant in the context of the song), as well as the notes they have played pre-
viously (what notes sounded good in the recent context). The notes they played
recently are most likely to sound pleasantly. Also, it is wise to select a particular
note that the audience might expect and adjust the pitch ignoring the expected
note to create an artistic effect and a new, potentially better, harmony. HS seeks
an optimal combination of inputs, just as a musician seeks a good harmony. HS
generates “harmonies” of inputs which are evaluated for quality, and iterates this
process until it finds the best one possible. The aesthetics of a musical harmony
are analogous to the fitness of a particular solution, so following this simile HS
attempts to achieve a good combination of inputs, just like musicians optimize
their note selection using their own heuristics. Each input to the problem is con-
sidered as a different instrument in an ensemble, each potential note corresponds
to each potential value of the inputs that the function might adopt. The mu-
sical harmony of notes is modeled as a programmatic harmony of values. Each
iteration a new harmony is generated its quality is calculated: if it makes the
cut it is included in the musician’s memory. This way, iteration by iteration, old
poor quality harmonies are discarded and replaced by better ones. The average
quality of the set of harmonies in this memory as a whole gradually increases as
these new harmonies replace poor ones.

This being said, notes in the HS solver particularized to the problem tackled
in this paper represent the members of the ensemble. At each time step ti, HS
optimizes the diversity of the ensemble formed by 10 members, combining all
past models trained from t0 to ti−1. Special attention deserves the fact that the
more past time steps are handled at the time where the ensemble is to be built,
the more necessary an efficient optimization technique is, because there are more
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candidates (models) to form the ensemble. In the last time step there are 199
different models, thus considering that the order of the selected models does not
matter and that a model can not be selected more than once, there are 2.13×1016

possible combinations (being n
.
= 199 and m

.
= 10) to form an ensemble of 10

base learners at this time. Taking into account that a Big Data application may
have millions of time steps (and models), the need for an optimization technique
can be solidly argued.

Table 1. HS similarities in the proposed approach

Element HS original definition Proposed approach

Instrument
One of the inputs to the quality
function

Each ensemble at time step ti com-
posed of 10 possible models from t0
to ti−1

Note
One of the possible values of an in-
put

Qaveraged value for each ensemble

Harmony
A combination of each instrument
playing a particular note

The formation of an ensemble com-
posed of trained models

Quality
A quantitative measure of a har-
mony’s desirability

The Yule’s Q diversity metric

Harmony
Memory

The collection of good harmonies
stored in memory

The collection of ensembles

HMCR
The process of generating a new
harmony using random notes from
the memory

The probability of choosing a
model (note) of the former ensem-
ble (harmony) for the new one

PAR
The process of moving a particular
note of an instrument up or down

The probability of choosing a “sim-
ilar” model (note) to the current
one from the new ensemble (new
harmony)

The superior performance of HS over other solutions finds its roots in their
operators; the search process of HS is controlled by three different operators
iteratively applied to a set of candidate solutions [4]. In a nutshell, the Harmony
Memory Considerate Rate (HMCR) operator generates a new harmony using
random notes from the rest of harmonies in the memory, whereas the Pitch
Adjustment Rate (PAR) mutates a particular note of an instrument to a value
of the vicinity of its previous value. Table 1 shows the similarities between the
original definition of HS and the proposed approach.

The HS approach is applied over a total of 200 data batches, with Xtr(t) and
Xtst(t) being composed by 250 samples. Every 50 batches a concept drift occurs,
with 3 drift events in total. All base learners are Decision Trees and the ensemble
is of size M = 10. This work has followed an active approach (using “perfect”
drift detection) that triggers the selection of those ensembles that are more
appropriate for each time slot. The study will show how to achieve an optimal
level of diversity for the ensemble in each moment by the use of HS, evidencing
that shortly after the drift an ensemble with high diversity obtains a better
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classification performance (AUC score) than an ensemble with low diversity. HS
has been used to minimize the Q̄ metric during 10 time steps after the drift.

4 Experiments and Results

The main purpose of this work is to demonstrate the feasibility of using HS to
build ensembles with maximum and minimum diversity specifically when the
learning process requires it due to detected drift statistics by an external detec-
tor. In this case, Figure 1 shows three drift moments at time steps 50, 100, and
150; as already explained in Section 2, it should be a good strategy to main-
tain highly diverse ensembles to obtain good classification performance (AUC
score) shortly after the drift. The experiments discussed in what follows aim at
corroborating this recommendation first posed in [2] by means of an HS-based
selection of learners for the ensemble.

In order to avoid using complex algorithm for adaptive learning (which falls
out of the scope of this study), we have built ensembles of size M = 10 by
following two different perspectives. The first refers to the ensemble formed by
the best M past learners (hereafter labeled as BEST), i.e. those M past learners
that obtain the best AUC score, being trained with their training batch data at
their time but testing the current batch training data. In the second approach
(corr. LAST) the ensemble is built with the M last learners again trained with
their training batch data at that time, but testing the current batch training
data. It is assumed that diversity can help mainly to reduce the initial increase
in the error caused by drifts at time steps 50, 100, and 150.

Table 2. Mean AUC and mean Q̄ scores over 15 Monte Carlos for the BEST approach.

High diversity
ensemble

Low diversity
ensemble

After drift 1
AUC 0.911± 0.020 0.910± 0.025
Q̄ 0.507± 0.038 0.839± 0.021

After drift 2
AUC 0.932± 0.008 0.923± 0.009
Q̄ 0.495± 0.029 0.835± 0.019

After drift 3
AUC 0.894± 0.022 0.848± 0.036
Q̄ 0.469± 0.036 0.837± 0.024

This experiment maximizes or minimizes the diversity of the ensemble after
drifts 1, 2 and 3 by using HS during the period of 50-59 time steps, 100-109 time
steps, and 150-159 time steps, respectively. After that, the AUC scores in these
periods averaged over 15 Monte Carlo iterations are compared to confirm that it
is a good strategy to have an ensemble with high diversity shortly after the drift.
The HS algorithm has been configured as follows: 500 improvisations, a harmony
memory size of 50 candidate solutions, a HMCR of 0.5 and a PAR of 0.1. As
the role of a high diversity ensemble becomes progressively less important after
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the drift, it is assumed in this work that after 10 time steps high diversity is
no longer recommended to have a positive impact in the AUC score. Next, the
results of the experiment are discussed.
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Fig. 2. Mean AUC and Q̄ over 15 Monte Carlos after drifts 1, 2, and 3 respectively for
the BEST approach.

As it is shown in Table 2, for the “10 best past learners” perspective, the
best AUC scores are achieved when the diversity of the ensemble is maximized,
in contrast with the version in which the diversity is minimized. Considering the
results of the corresponding period of time, the Figure 2 shows the AUC scores
of the high and low diversity ensembles, displaying a better behavior after the
drifts in the case of the high diversity one. This also makes sense when checking
the level of diversity at each time step.
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Fig. 3. Mean AUC and Q̄ over 15 Monte Carlos after drifts 1, 2, and 3 for the LAST

approach.

In the LAST case the same results are shown in Table 3, and Figure 3 shows
the best performance for the high diversity ensemble.
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Table 3. Mean AUC and mean Q̄ scores over 15 Monte Carlos for the LAST approach.

High diversity
ensemble

Low diversity
ensemble

After drift 1
AUC 0.916± 0.020 0.910± 0.025
Q̄ 0.508± 0.037 0.838± 0.022

After drift 2
AUC 0.922± 0.008 0.934± 0.007
Q̄ 0.497± 0.029 0.833± 0.017

After drift 3
AUC 0.847± 0.036 0.900± 0.018
Q̄ 0.469± 0.034 0.837± 0.024

5 Conclusions and Future Research Lines

It has been confirmed in Section 4 that it is indeed a good strategy to maintain
highly diverse ensembles to obtain good classification performance shortly after
the drift. Furthermore, the use of a bio-inspired solver such as HS is an proper
way of building high diversity ensembles for batch learning scenarios where the
evaluation of all possible ensembles of past learners at each time cannot be per-
formed by an exhaustive method. When the time requirements or computational
cost are stringent constraints, the HS algorithm allows reducing the number of
improvisations and the size of the harmony memory, achieving a solution suitably
balancing optimality and computational complexity under these conditions.

After the drift is detected, it is very critical to determine the time range over
which a high diversity ensemble is convenient. This work has considered 10 time
steps as a relevant interval for high diversity just to show the importance of a
high diversity ensemble after the drift. However, this time period might change
depending on the type of drift, its severity, the reliability of the drift detection
and the statistics of the data considered in the problem. In general it is widely
accepted that after a large number of time steps since the beginning of the drift,
maintaining a high diversity becomes less important and even counterproductive
with respect to low diversity ensembles. However, the exact quantification of this
large number of time steps remains an open problem.

Diversity by itself is helpful to reduce the initial drop in accuracy that hap-
pens right after a drift, but not to provide convergence to the new concept.
Although high diversity ensembles may help to cushion the initial increase in
the error soon after the drift, they do not quickly adapt to the new concept (re-
covery from drifts). A practical workaround is to create a new ensemble after a
drift detection. In this way, the technique would achieve the required equilibrium
between stability and plasticity [21] to reduce the initial drop of accuracy after
the drift while, at the same time, to be able to adapt to the new concept.

Also as a future research line it might be of interest to delve into the influence
of the size of the ensemble in order to establish a mechanism to find the proper
size at each point while simultaneously maintaining a certain level of diversity in
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the ensemble. There is a trade-off between the severity degree of the disagreement
among the members of the ensemble and the number of base learners within it.
On the other hand, also the number of samples in the batch may affect this
equilibrium, which will also be subject of further investigation in the future.
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