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Abstract. We consider a fractal refinement of the Carleson prob-
lem for the Schrödinger equation, that is to identify the minimal
regularity needed by the solutions to converge pointwise to their
initial data almost everywhere with respect to the α-Hausdorff
measure (α-a.e.). We extend to the fractal setting (α < n) a recent
counterexample of Bourgain [5], which is sharp in the Lebesque
measure setting (α = n). In doing so we recover the necessary
condition from [23] for pointwise convergence α-a.e. and we ex-
tend it to the range n/2 < α ≤ (3n+ 1)/4.

1. Introduction

We consider the problem of pointwise convergence for the linear
Schrödinger equation∂tu = i

~
2

∆u

u(x, 0) = f(x) ∈ Hs(Rn);

here ~ = 1/(2π). A classical question is: what is the minimal regular-
ity the initial datum must have for the solution u to converge almost
everywhere (a.e.) to f? More precisely, which is the smallest s ≥ 0
such that

(1) lim
t→0

u(x, t) = f(x), for a.e. x ∈ Rn and for all f ∈ Hs(Rn).

This problem was introduced by Carleson in [8], where he proved the
validity of (1) for s ≥ 1/4 in dimension n = 1; soon later Dahlberg
and Kenig [10] proved this to be sharp. The considerably harder higher
dimensional problem was subsequently studied by many authors [9, 6,
30, 34, 3, 26, 32, 33, 31, 22, 4, 25, 11, 24, 14].

Recently, the problem has been settled, up to the endpoint, thanks
to the contributions of Bourgain [5] (see [27] for a nice detailed exposi-
tion), who proved the necessity of s ≥ n

2(n+1)
, and of Du–Guth–Li [13]

and of Du–Zhang [15], who proved the sufficiency of s > n
2(n+1)

in di-
mensions n = 2 and n ≥ 3, respectively. We mention that, besides

1



2 LUCÀ R. AND PONCE-VANEGAS, F.

Bourgain’s counterexample, the necessity of s ≥ n
2(n+1)

can be proved
also by different counterexamples [23].

In this paper we consider a fractal refinement of the Carleson prob-
lem. Given α ∈ (0, n], the goal is to identify the smallest 0 ≤ s ≤ n/2
such that

(2) lim
t→0

u(x, t) = f(x), for α-a.e. x ∈ Rn and for all f ∈ Hs(Rn),

where α-a.e. means almost everywhere with respect to the α-dimensional
Hausdorff measure.

This fractal refinement of the Carleson problem was introduced in
[29]. In [2], the authors gave a complete solutions for α ∈ [0, n/2],
proving that s > (n − α)/2 is necessary and sufficient for (2) to hold.
The necessity of this condition depends on the Sobolev space frame-
work, since for smaller s there exist initial data in Hs(Rn) that are
not well defined on sets of dimension α; see [35]. On the other hand,
for s > (n − α)/2 one can make sense of the initial data and of the
relative solution α-a.e.; we refer to the proof of Theorem 9 for details.
When α ∈ (n/2, n], Du and Zhang [15] proved the best known sufficient
condition for (2) to hold:

(3) s >
n

2(n+ 1)
(n+ 1− α).

As mentioned, this is optimal (up to the endpoint) when α = n, but it
is not clear yet whether this is optimal for α strictly smaller. It is worth
mentioning that (3) is necessary for the α-a.e. pointwise convergence
in the periodic setting [16], however in this setting it is still unknown
if it is sufficient (not even for α = n).

In [23] it was proved that for (3n+ 1)/4 ≤ α ≤ n the condition

(4) s >
n

2(n+ 1)
+

n− 1

2(n+ 1)
(n− α) ,

is necessary for (2) to hold. Here we extend this result to the full
range n/2 < α ≤ n (recall that for smaller α the problem has been
solved in [2]); thus the result is new for n/2 < α ≤ (3n + 1)/4. To
prove this result, we use a modification of the Bourgain’s counterex-
ample rather than the counterexample in [23]. We consider this fact of
independent interest. The possibility of adapting the Bourgain’s coun-
terexample to the fractal measure setting was also suggested by Lillian
Pierce in [27].

Theorem 1. Let n ≥ 2 and n/2 < α ≤ n. Then for every

(5) s′ < s :=
n

2(n+ 1)
+

n− 1

2(n+ 1)
(n− α)
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there exists a function f ∈ Hs′(Rn) such that

(6) lim sup
t→0+

|eit~∆/2f(x)| =∞

for x in a set of Hausdorff dimension ≥ α.

For α ∈ (n/2, n) we can in fact immediately improve the statement,
saying that (6) occurs on a set with α-Hausdorff measure = ∞. This
is because in (5) we have a strict inequality. Thus, given α′ > α and
sufficiently close to α in such a way that

s′ < s :=
n

2(n+ 1)
+

n− 1

2(n+ 1)
(n− α′),

we would in fact prove that (6) occurs on a set of dimension ≥ α′.
When α = n we can not self-improve the statement, however we know
by [23] that (6) holds on a set of strictly positive Lebesgue measure.

A consequence of Theorem 1 is the necessity of the condition

s ≥ n

2(n+ 1)
+

n− 1

2(n+ 1)
(n− α)

for the validity of the maximal estimate

(7)
∫
BR

sup
t∈(0,1)

|eit∆f(x)|2dµ(x) . CµR
2s‖f‖2

2 ,

where BR ⊂ Rn is a ball of radius R > 1, and µ is an α-dimensional
measure on BR ⊂ Rn, i.e. a positive Borel measure that satisfies

µ(Br(x)) . Cµr
α,

for all balls with center x and radius r > 0. One may see (7) as the
weighted L2 inequality

(8)
∫
BR

sup
t∈(0,1)

|ĝdσ(x)|2dµ(x) . CµR
2s‖g‖2

L2(S),

where S is a bounded hypersurface in Rd := Rn+1 with non zero gauss-
ian curvature (for instance, a portion of the paraboloid in the case of
(7)) and dσ is the measure induced on S by the Lebesgue measure. A
closely related family of weighted L2 estimates is

(9)
∫
B1

|ĝdσ(Rx)|2dµ(x) . CµR
−γ‖g‖2

L2(S),

where B1 is now a ball in Rd of radius 1, and µ is an α-dimensional
measure on B1 ⊂ Rd. The problem here is to identify the largest γ such
that (9) holds. Interestingly, these problems are very sensitive to the
arithmetical structure of the hypersurface S. For instance, the known
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necessary conditions are different for the sphere and the paraboloid;
see [21, 1, 25, 12, 28, 19].

In section 2 we introduce some preliminary results we need to prove
the main lower bound for the solution of the Schödinger equation—
Theorem 6—in section 3, where the initial data are basically the same
described by Bourgain in [4]. Bourgain’s counterexample is a function
with frequencies at a fixed scale, so in section 4 functions at different
scales are assembled into a single function, and we show that the inter-
action between different scales is negligible (Theorem 9). In section 5
we compute the dimension of the divergence sets, and we conclude the
proof of Theorem 1 in section 6.

Notations.
• e(z) = eiz.
• If A ⊂ Rn, then |A| is its Lebesgue measure, and if A is a
discrete set, then |A| is the cardinality. For example, if I =
[a, b] ⊂ Z denotes the interval of integers a ≤ k ≤ b, then |I| is
the length of the interval.
• If I = [a, b] ⊂ Z, for a, b ∈ R, denotes an interval of integers,
then we write L(I) := mink∈I k and R(I) := maxk∈I k.
• Br(x) ⊂ Rn is a ball of radius r and center x—the center is
usually omitted. Q(x, l) ⊂ Rn is a cube with side-length l and
center x.
• If x . y, then x ≤ Cy for some constant C > 0, and similarly
for x & y; if x ' y then x . y . x. If x � y then x ≤ cy,
where c is a sufficiently small constant, and similarly for x� y.
• lim supk→∞ Fk :=

⋂
N≥1

⋃
k≥N Fk.

• Hausdorff dimension of a set: for 0 < α ≤ n and δ > 0 we
define the outer measure

Hα
δ (F ) := inf{

∑
Br∈B

rα | F ⊂
⋃
Br∈B

Br and r < δ};

we do not exclude the case δ = ∞. The α-dimensional Haus-
dorff measure of a set F is Hα(F ) := limδ→0Hα

δ (F ). The Haus-
dorff dimension of a set F is sup{α | Hα(F ) > 0}.

Acknowledgments. This research is funded by the Basque Govern-
ment through the BERC 2018-2021 program, and by the Spanish State
Research Agency through BCAM Severo Ochoa excellence accredita-
tion SEV-2017-0718 and by the IHAIP project PGC2018-094528-B-I00.
Additionally, the first author is supported by Ikerbasque and the sec-
ond author is supported by the ERCEA Advanced Grant 2014 669689-
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2. Preliminaries

We recall some classical estimates about exponential sums that we
will use repeatedly in the rest of the paper.

We recall first a classical result about Gauss quadratic sums, whose
proof can be consulted in Lemma 3.1 of [27].

Lemma 2 (Gauss quadratic sums). If a, b, q ∈ Z satisfy the conditions
(a, q) = 1 and

(10)


b ∈ Z when q is an odd number,
b is even when q ≡ 0 (mod 4),

b is odd when q ≡ 2 (mod 4),

then for the quadratic phase

(11) f(r) :=
a

q
r2 +

b

q
r

it holds that

(12)

∣∣∣∣∣
q−1∑
r=0

e(2πf(r))

∣∣∣∣∣ = cq
√
q,

where cq = 1 when q is odd, and cq =
√

2 when q is even.

The following estimate due to Weyl will be useful to handle incom-
plete Gauss sums.

Lemma 3. Let I be an integer interval. If a, b, q ∈ Z satisfy the con-
ditions (a, q) = 1 and (10), then for the quadratic phase f in (11) it
holds that

(13)

∣∣∣∣∣∑
k∈I

e(2πf(k))

∣∣∣∣∣ = C
|I|
√
q

+O(
√
q ln q),

where 1
2
≤ C ≤

√
2.

Proof. We can assume that L(I) := mink∈I k = 0. In fact,
R(I)∑
k=L(I)

e(2π(
a

q
k2+

b

q
k)) = e(2π(

a

q
L(I)2+

b

q
L(I)))

|I|−1∑
k=0

e(2π(
a

q
k2+

b+ 2aL(I)

q
k)),

and the absolute value at both sides is the same; we observe that the
parity of b and b+ 2aL(I) is preserved.

If |I| < q, then

(14)

∣∣∣∣∣∑
k∈I

e(2πf(k))

∣∣∣∣∣ ≤ C
√
q ln q;
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for the proof we refer to Lemma 3.2 of [27].
If |I| ≥ q, then we can sum in blocks of length q. Let M be the

largest integer that satisfies Mq ≤ |I|, i.e. Mq ≤ |I| < (M + 1)q, then

I = [0,Mq − 1] ∪ J

=
(M−1⋃
m=0

[mq,mq + q − 1]
)
∪ J,

where |J | < q. The sum over each block [mq,mq + q − 1] is a Guass
quadratic sum, and we arrive to

∑
k∈I

e(2πf(k)) := M

q−1∑
r=0

e(2πf(r)) +
∑
k∈J

e(2πf(k)).

By our election of M we have M = C|I|/q, for 1
2
< C ≤ 1, and by (14)

we have ∣∣∣∣∣∑
k∈I

e(2πf(k))

∣∣∣∣∣ = C
|I|
q

∣∣∣∣∣
q−1∑
r=0

e(2πf(r))

∣∣∣∣∣+O(
√
q ln q).

Finally, we apply Lemma 2 to get (13). �

To deal with perturbations of quadratic sums, we will use the fol-
lowing Lemma, which is consequence of Abel’s summation formula; see
Lemma 2.3 of [16].

Lemma 4. Let I be an integer interval. Let ak ≥ 0 be a sequence of
real numbers and bk be sequences of complex numbers such that

(1) ak+1 ≤ ak,
(2)

∣∣∑
k∈I′ bk

∣∣ ≤ C, for every interval I ′ ⊆ I.

Then,

(15)

∣∣∣∣∣∑
k∈I′

akbk

∣∣∣∣∣ ≤ CaL(I′), for every interval I ′ ⊆ I.

If (1) is replaced with ak+1 ≥ ak, then∣∣∣∣∣∑
k∈I′

akbk

∣∣∣∣∣ ≤ CaR(I′), for every interval I ′ ⊆ I.
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3. The main lower bound

The initial data we consider are modifications of the Bourgain’s
counterexample in [5]. Let ϕ be a smooth positive function such that
supp ϕ̂ ⊂ B1(0) and ϕ(0) = 1. We define the function

(16) fD(x) := f1(x1)f̃(x̃)

where

f1(x1) = e(2πRx1)ϕ(R
1
2x1), f̃(x̃) :=

n∏
j=2

ϕ(xj)
( ∑

R
2D
<lj<

R
D

e(2πDljxj)
)

where l = (l2, . . . , ln) ∈ Zn−1 and x = (x1, x̃) ∈ R × Rn−1. For now
we set D as a free parameter, and we will choose its value later as a
suitable power of R.

We need the following definition before investigating the divergence
set of eit~∆/2fD; compare with (10).

Definition 5 (Admissible fractions). Let p1, . . . , pn, q ∈ Z. A point
(p1/q, . . . , pn/q) is an admissible fraction if (p1, q) = 1 and if

(17)


(p2, . . . , pn) ∈ Zn−1 when q is an odd number,
pj are even when q ≡ 0 (mod 4),

pj are odd when q ≡ 2 (mod 4).

Theorem 6. Let c � 1 and let q > 0 be an integer such that R
Dq
�√

ln q. If f is the initial datum (16), then

(18)
|eit~∆/2fD(x)|
‖fD‖L2

& R
1
4

( R
Dq

)n−1
2

for (x, t) such that 0 < t = 2p1/(D
2q)� 1/R and

(19) x ∈ Eq,D ∩ [0, c]n,

where Eq,D is the set of points
(20)

x1 ∈ 2
p1R

qD2
+[−cR−

1
2 , cR−

1
2 ] and xj ∈

pj
Dq

+[−cR−1, cR−1], 2 ≤ j ≤ n;

here (p1/q, . . . , pn/q) is an admissible fraction in the sense of Definition
5; see Fig. 1.

Proof. If f̂ is an integrable functions, the solution of the Schrödinger
equation with initial datum f can be represented as

eit~∆/2f(x) =

∫
f̂(ξ)e(−πt|ξ|2 + 2πx · ξ) dξ.
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Figure 1. Set Eq,D in Theorem 6. Some slabs may dis-
appear to satisfy the conditions of admissibility.

We want to compute the modulus of eit~∆/2fD(x) in the region |x| < c
and 0 < t < c/R. We note that

|eit~∆/2fD(x)| = |eit~∆/2f1(x1)| |eit~∆/2f̃(x̃)| .

A direct computation shows that for |t| ≤ c/R and

(21) x1 ∈ tR + [−cR−
1
2 , cR−

1
2 ]

we have

(22) |eit~∆/2f1(x1)| ' |ϕ(R
1
2 (x1 − tR))| ' 1

Again, a direct computation gives (x̃ ∈ Rn−1)

eit~∆/2f̃(x̃) =
n∏
j=2

∫
ϕ̂(ξj)e(−πtξ2

j + 2πxjξj)∑
R
2D
<lj<

R
D

e(−πt|Dlj|2 + 2πDlj(xj − tξj)) dξj.

(23)

To estimate the absolute value of this product, we recall our hypotheses
(20): xj = pj/(Dq) + εj, for |εj| < c/R. We split each factor in (23)
into the main term

(24) Fmain(t, pj/q) := eit~∆/2ϕ(xj)
∑

R
2D
<lj<

R
D

e(−πt|Dlj|2 + 2πlj
pj
q

)
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and the perturbation

(25) Fper(t, xj) :=

∫
ϕ̂(ξj)e(−πtξ2

j + 2πxjξj)∑
R
2D
<lj<

R
D

e(−πt|Dlj|2 + 2πlj
pj
q

)(1− e(2πDlj(εj − tξj)) dξj.

By hypothesis t = 2p1/(D
2q), so we can exploit Lemma 3 and the

condition R/(Dq)�
√

ln q to estimate the main contribution (24) as

|Fmain| ' |
∑

R
2D
<lj<

R
D

e
(
− 2π(

p1

q
l2j −

pj
q
lj)
)
|

' R

D
√
q

;(26)

we used |eit~∆/2ϕ(xj)| ' 1.
We claim that the perturbation term (25) satisfies |Fper| � R/(D

√
q),

which, together with (23) and (26), leads to

(27) |eit~∆/2f̃(x̃)| '
( R

D
√
q

)n−1

.

Then, we multiply by (22) to reach

(28) |eit~∆/2fD(x)| '
( R

D
√
q

)n−1

.

Finally, we divide (28) by ‖fD‖2 ' R−
1
4 (R/D)

n−1
2 to obtain (18), and

so the statement of the Theorem follows up to the claim |Fper| �
R/(D

√
q).

To prove the upper bound |Fper| � R/(D
√
q), where Fper was defined

in (25), we begin with

|Fper| . sup
|ξj |≤1

|
∑

R
2D
<lj<

R
D

e(−2π
p1

q
l2j + 2πlj

pj
q

)(1− e(2πDlj(εj − tξj))|

= sup
|ξj |≤1

∣∣∣ ∑
R
2D
<lj<

R
D

e(−2π
p1

q
l2j + 2π

pj
q
lj)φε,t,ξj(lj)

∣∣∣
where (p1, q) = 1, and φεj ,t,ξj(lj) = 1− e(2πDlj(εj − tξj)).

By the triangle inequality, it suffices to prove
(29)∣∣∣ ∑
R
2D
<lj<

R
D

e(−2π
p1

q
l2j + 2π

pj
q
lj)φ

i
(·)(lj)

∣∣∣ . c
R

D
√
q
, c� 1 i = 1, 2.
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where

φ1
(·)(lj) := 1−cos(2πDlj(εj−tξj)) and φ2

(·)(lj) := |sin(2πDlj(εj−tξj))| .

Again by Lemma 3, and using R/(Dq)�
√

ln q, we have that

∣∣∣∑
lj∈I

e(−2π
p1

q
l2j + 2π

pj
q
lj)
∣∣∣ . |I|√

q
+
√
q ln q

(30)

.
R

D
√
q

+
√
q ln q .

R

D
√
q
, ∀ |I| ≤ R

D
.

On the other hand, the functions φi(·)(lj) are real valued, positive, in-
creasing in lj, and satisfy

φi(·)(lj) . |D||lj||εj − tξj| . c, c� 1;

recall that |lj| ≤ R
D
, |εj| ≤ c

R
, |t| ≤ c

R
and |ξj| ≤ 1 in the support of φ̂j.

Thus (29) follows by the second part of Lemma 4 taking

alj = φi(·)(lj) and blj = e(−2π
p1

q
l2j + 2π

pj
q
lj),

and the proof is concluded.
�

4. Construction of the Examples

According to Theorem 6, the function sup0<t<1|eit~∆/2fD| is large in
the set ⋃

1≤q≤Q

(Eq,D ∩ [0, c]n) ⊂ Rn, 0 < c� 1,

as long as R
DQ
�
√

lnQ.
To cover the largest possible area, we should ensure that the collec-

tion of sets Eq,D, for 1 ≤ q ≤ Q, is essentially pairwise disjoint. In a
unit cell [0, 1/D]n−1, the number of fractions (p2/(Dq), . . . , pn/(Dq)),
for 1 ≤ q ≤ Q, is ' Qn, and if we think of the fractions as if they
were uniformly distributed, then the average distance between them is
' 1/(Q

n
n−1D), so we impose the restriction

(31) R−a :=
1

Q
n
n−1D

≥ R−1.

We remark that R/(DQ) = Q
1

n−1R1−a, so the condition R/(Dq) �√
ln q, for 1 ≤ q ≤ Q, is easily satisfied.
The slabs that form Eq,D have dimensions cR−

1
2 ×cR−1×· · ·×cR−1,

for c� 1, and they do not overlap in the x̃-space because R/(DQ)� 1,
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however they may overlap in the x1 direction. To exploit the whole area
of the slabs, we impose the new restriction

(32) R−b :=
R

QD2
≥ R−

1
2 ;

see Figure 1.
The conditions (31) and (32) allow us to solve for Q and D as

(33) D = R(n−(n−1)a+nb)/(n+1) and Q = R
n−1
n+1

(2a−b−1).

Since Q ≥ 1, then we have to be sure that 2a ≥ 1 + b, so we can write
our conditions as

(34) 0 < a ≤ 1, 0 < b ≤ 1

2
and 2a ≥ 1 + b;

in particular, a ≥ 1
2
.

Definition 7 (Divergence Sets). Let a and b satisfy the conditions
(34), and let Ak, for k ≥ k0 � 1, be the collection of slabs S such that:

(i) S has dimensions cR−
1
2

k × cR−1
k × · · · × cR−1

k , for Rk = 2k and
c� 1.

(ii) S has center at

(2p1Rk/(qD
2
k), p2/(Dkq), . . . , pn/(Dkq)),

where (p1/q, . . . , pn/q) is an admissible fraction (Definition 5) with
1 ≤ q ≤ Qk, and Dk and Qk are given by (33).

A (a, b)-set of divergence F is defined as

(35) F := lim sup
k→∞

Fk, Fk :=
⋃
S∈Ak

S .

For fixed a and b, we define the initial datum

(36) ga,b =
∑
k≥k0

R−sk
k

‖fDk‖2

fDk ,
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where Rk = 2k and k0 � 1. Inequality (18) dictates the value of s, and
in terms of a and b we have

(37) s :=
1

4
+

n− 1

2(n+ 1)
(n− (n− 1)a− b).

Since

(38) ‖f‖2
Hs′ (Rn)

=
∑
k≥k0

kR
2(s′−s)
k <∞, for s′ < s,

we have that f ∈ Hs′(Rn) for every s′ < s.
We have to prove that the different terms in the sum (36) do not

interfere with each other. We need the following Lemma.

Lemma 8. If the Fourier transform of ϕ ∈ S(R) is supported in
(−1, 1), then for every N ≥ 1 it holds

(39) |eit~∆/2ϕ(x)| ≤ CN
1

|x|N
, for |x| > 2t.

Proof. We use the principle of non-stationary phase. We assume that
x > 2t; the other case is similar. The solution is

eit~∆/2ϕ(x) =

∫
ϕ̂(ξ)e(−πt|ξ|2 + 2πxξ) dξ.

Since ∂ξe(−πt|ξ|2 + 2πxξ) = −2πi(tξ − x)e(−πt|ξ|2 + 2πxξ), then by
repeated integration by parts we obtain

|eit~∆/2ϕ(x)| ≤ CN
1

|x− t|N
,

which is the statement of the Lemma. �

Before proving the main result of this section, we need to make an
observation on the way we define solutions. For f ∈ Hs, we define
solutions for Sobolev functions, in such a way that they are well defined
on sets with large Hausdorff dimension. Recall that Q(N) is the cube
of side N centered at zero. We set

(40) eit~∆/2f(x) = lim
N→∞

SN(t)f(x),

where

(41) SN(t)f(x) =

∫
Q(N)

f̂(ξ)e(−πt|ξ|2 + 2πx · ξ) dξ.

The limit (40) is usually taken with respect to the L2 norm, but here
we take all the limits pointwise at each point x where they exist. When
f ∈ L2(R), it is known that the limit exists pointwise for almost every
x ∈ R and that it coincides with the L2–limit. When n = 1, this result
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Figure 2. The gray lines represent the regions where
the functions eit~∆/2hk concentrate.

is due to Carleson [7], whose proof extends to higher dimensions as
proved, for instance, in [18]. Moreover, we can show that this limit
exists γ-almost everywhere for every f ∈ Hs with s ∈ (0, n/2], as long
as γ > n − 2s; see the appendix of [16]. This can be regarded as a
refinement of Carleson’s result, although it does not recover it.

Theorem 9. If ga,b is the initial datum defined in (36), then

(42) lim sup
t→0+

|eit~∆/2ga,b(x)| =∞

for every x ∈ (F ∩ ([c0, c1]× [0, c1]n−1)) \ Ω, where
• c0 := 1

10
c1, c1 � c� 1;

• F is a (a, b)-set of divergence;
• Hγ(Ω) = 0 for γ > n− 2s.

Proof. We define hk := kR−sk fDk/‖fDk‖2, where Rk := 2k. From the
proof of Theorem 6 we know that for t = 2p1/(D

2
kq)� 1/Rk the value

of the solution at x ∈ Fk ∩ [0, c1]n =
⋃

1≤q≤Qk Eq,Dk ∩ [0, c1]n is

(43) |eit~∆/2hk(x)| & k.

We fix k∗ ≥ k0 � 1 and x ∈ Fk∗ , and we know that

(44) x1 = tRk∗ +O(R
− 1

2
k∗ ), c0R

−1
k∗ < t < c1R

−1
k∗ .

It suffices to prove

(45) |eit~∆/2hk(x)| . R−1
k , for k 6= k∗ ,



14 LUCÀ R. AND PONCE-VANEGAS, F.

because then for t = 2p1/(D
2
k∗q) � 1/Rk∗ we would have, for all k1 ≥

k∗, the following (recall (41))

(46) |S2k1 (t)ga,b(x)| > |eit~∆/2hk∗(x)| −
∑

k0≤k 6=k∗≤k1

|eit~∆/2hk(x)| & k∗,

as long as k0 � 1; then in order to deduce (42) we note that for all
x ∈ F ∩ ([c0, c1]× [0, c1]n−1) we can choose any k∗ ≥ k0 � 1, and we we
have a lower bound as (46) and the sequence of times t = 2p1/(D

2
k∗q)�

1/Rk∗ goes to zero as k∗ →∞. More precisely, since we have

(47) eit~∆/2f(x) = lim
N→∞

SN(t)ga,b(x) = lim
k1→∞

S2k1 (t)ga,b(x)

except possibly on sets Ωt, t = 2p1/(D
2
k∗q) with Hγ(Ωt) = 0 and these

sets are countably many, then (42) would follow by (46)-(47), taking

Ω :=
⋃

t=2p1/(D2
k∗q)

Ωt.

It remains to prove (45). From (23), we see that we can bound
eit~∆/2h̃k(x̃) with the crude estimate

|eit~∆/2f̃Dk(x̃)| .
(Rk

Dk

)n−1

,

so we can control each term eit~∆/2hk(x) as

|eit~∆/2hk(x)| ≤ |[eitRk~∆/2ϕ(R
1
2
k (x1 − tRk))]|kR

1
4
k

(Rk

Dk

)n−1
2
R−sk

. |eitRk~∆/2ϕ(R
1
2
k (x1 − tRk))|kQ

n−1
2

k ,

and we can apply Lemma 8 to ϕ.
We verify the hypotheses of Lemma 8 when Rk < Rk∗ . By (44) we

get

R
1
2
k (x1 − tRk)

tRk

=
R

1
2
k (t(Rk∗ −Rk) +O(R

− 1
2

k∗ ))

tRk

& R
− 1

2
k Rk∗ > 2,

for k, k∗ ≥ k0 � 1; hence, |eit~∆/2hk(x)| .N kQ
n−1
2

k R
−N

2
k . R−1

k , for
N � 1.
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We verify now the hypotheses of Lemma 8 when Rk > Rk∗ :

R
1
2
k (tRk − x1)

tRk

=
R

1
2
k (t(Rk −Rk∗) +O(R

− 1
2

k∗ ))

tRk

& R
1
2
k > 2,

for k, k∗ ≥ k0 � 1; hence, |eit~∆/2hk(x)| .N kQ
n−1
2

k (Rk∗R
− 3

2
k )N . R−1

k ,
for N � 1. �

5. Dimension of the Divergence Set

In the previous section we constructed initial data parameterized by
a and b. To simplify matters, we choose those values of a and b for
which computations are easier and exhaust all possible outcomes. Our
choices are:

(I)
1

2
< a ≤ 3

4
and b = 2a− 1(48)

(II)
3

4
< a ≤ 1 and b =

1

2
.(49)

We refer to these (a, b)-sets of divergence (Definition 7) as of type I
and type II. We remark that for I we have Q = 1, and that a = 1 and
b = 1

2
is Bourgain’s counterexample.

Theorem 10. Let 0 < c0 ≤ 1. If F = lim supk→∞ Fk is a (a, b)-set of
divergence (Definition 7), then dim(F ∩ [0, c0]n) ≤ α := 1

2
+(n−1)a+b.

Proof. Fix a scale 0 < λ � 1 and choose k′ such that R−1
k′ < λ. Since

Fk is union of . R
(n−1)a+b
k slabs with dimensions R−

1
2

k ×R
−1
k ×· · ·×R

−1
k ,

and each slab can be covered by R
1
2
k balls Br, for r = R−1

k , then we can
find a collection Bk with |Bk| = Rα

k of balls with radius R−1
k covering

Fk, so that

Hβ
λ(F ) := inf{

∑
Bρ∈B

ρβ | F ⊂
⋃
Bρ⊂B

Bρ and ρ < λ} ≤
∑
k≥k′

∑
Br∈Bk

R−βk ,

and the last sum is smaller than
∑

k≥k′ R
α−β
k , which tends to zero as

k′ →∞ whenever β > α. �

To prove the corresponding lower bound of dimF , we employ the
techniques in Section 4 of [24]. We recall a result of Falconer, which is
consequence of Theorem 3.2 and Corollary 4.2 in [17].
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Lemma 11. Let 0 < c ≤ 1. Suppose that there exists a constant
C > 0 such that, for all δ > 0 and all cubes Q(x, δ) ⊂ [0, c]n, we have
the density condition

lim inf
k→∞

Hβ
∞(Fk ∩Q(x, δ)) ≥ Cδβ,

where {Fk}k≥0 is a sequence of open subsets of B(0, 1). Then, for all
β′ < β,

Hβ′(lim sup
k→∞

Fk) > 0.

We prove now the lower bound of dimF in the easier case, in the
case of sets of type I.

Theorem 12. If F = lim supk→∞ Fk is a set of type I, that is, 1
2
<

a ≤ 3
4
and b = 2a− 1, then dimF ∩ [0, c0]n ≥ α where

(50) α :=
1

2
+ (n− 1)a+ b.

Proof. From Lemma 11 it will be sufficient to show that

(51) Hβ
∞(Fk ∩Q(x, δ)) ≥ Cδβ, ∀Q(x, δ) ⊆ [0, c0]n,

holds for all k sufficiently large, where β = α − ε for 0 < ε � 1.
The size of k for which (51) holds will depend on δ. To prove (51)
we define an auxiliary measure which is a uniform mass measure over
Fk ∩Q(x, δ), namely

µk(A) :=
|A ∩ Fk ∩Q(x, δ)|
|Fk ∩Q(x, δ)|

.

Note that µk depends on the set Fk ∩ Q(x, δ), but we will only stress
the dependence on k in the notation.

Assume we have proved

(52) µk(Br) ≤ Crβδ−β

for all sufficiently large k (the size of k will depend on δ). Using (52)
we can prove (51) easily, noting that if B is a collection of balls Br that
covers Fk, then

1 = µk(Fk ∩Q(x, δ)) ≤
∑
Br∈B

µk(Br) ≤ Cδ−β
∑
Br∈B

rβ.

Thus we have reduced to prove (52). To do so we have to work at
several scales. It will be useful to keep in mind that if k � 1 then

(53) |Fk ∩Q(x, δ)| ' Rα−n
k δn

and that Rk → ∞ as k → ∞. Many estimates below will be indeed
justified taking k large enough, depending on δ.
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(1) Scale r < R−1
k In the worst case a ball is entirely contained in

a slab from Fk, so

µk(Br) . rnR−α+n
k δ−n ≤ rαδ−n = rβδ−β rα−βδβ−n < rβδ−β R

−(α−β)
k δβ−n;

since α − β > 0 and r < R−1
k we have R−(α−β)

k δβ−n < 1 for
k �δ 1 thus (52) holds at this scale.

(2) Scale R−1
k < r < R−ak . Recall that R−ak < R

− 1
2

k , so a ball Br

cannot contain a slab. On the other hand, since r < R−ak a ball
Br intersects at most one slab, so

µk(Br) . rR
−(n−1)
k R−α+n

k δ−n = rR−α+1
k δ−n = rα

R
−(α−1)
k

rα−1
δ−n < rαδ−n,

using R−1
k < r and α > 1. Using also r < R−ak we see that

µk(Br) . rβR
a(β−α)
k δ−n < rβδ−β, k �δ 1.

(3) Scale R−ak < r < R
− 1

2
k . A ball Br intersects . R

(n−1)a
k rn−1 slabs,

so

µk(Br) . rnR
(n−1)a−n+1
k R−α+n

k δ−n ≤ rnR
−b+ 1

2
k δ−n.

where we used (50). Since r < R
− 1

2
k we have that

µk(Br) . rβR
1
2
β− 1

2
n−b+ 1

2
k δ−n < rβR

1
2

(β−α)

k δ−n

where we used

(54) α := (n− 1)a+ b+
1

2
=
n− 3

2
b+

n

2
+ 1 + 2b− 1 < n+ 2b− 1.

Thus
µk(Br) < rβδ−β, k �δ 1.

(4) Scale R−
1
2

k < r < R−bk . A ball Br contains . R
(n−1)a
k rn−1 slabs,

so recalling again (50) we get

µk(Br) . rn−1R
(n−1)a−n+ 1

2
k R−α+n

k δ−n = rn−1R−bk δ
−n < rn−1+2bδ−n,

where we used R−
1
2

k < r. From r < R−bk and (54) we have that

µk(Br) . rβR
−b(n+2b−1−β)
k δ−n < rβR

−b(α−β)
k δ−n < rβδ−β, k �δ 1.

(5) Scale R−bk < r < δ. A ball intersects . R
(n−1)a+b
k rn slabs, so

µk(Br) . rnR
(n−1)a+b−n+ 1

2
k R−α+n

k δ−n = rnδ−n < rβδ−β.

The inequality (52) thus holds, and so the statement of the Theorem.
�
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a)

fractions are very 

crowded over this line

b)

Figure 3. (a) When n = 2 the fractions are already
well separated; Lemma 13 is unnecessary. (b) When n ≥
3 the fractions might concentrate around some regions,
which prohibits the Frostman measure technique we used
in Lemma 12.

.

The lower bound for type II sets is harder to prove, and we need
a Lemma that assures us that for all Fk we can find a large sub-
collection of slabs uniformly distributed. Similar arguments were used
in Lemma 4.3 of [16] and in Sections 5.6–5.8 of [27].

Lemma 13. Let F = lim supk→∞ Fk be a set of type II, that is, 3
4
<

a ≤ 1 and b = 1
2
. If Ak is the collection of slabs in Fk ∩ Q(x, δ), for

δ < 1, then, for every ε > 0 and k �ε 1, we can extract a sub-collection
of slabs A′k ⊂ Ak such that
(i) |A′k| & R−εk |Ak|.
(ii) If x = (x1, x̃) and y = (y1, ỹ) are the centers of two slabs in A′k

and x̃ 6= ỹ, then |x̃− ỹ| & 1/(Q
n
n−1

k Dk).

Proof. The sets Fk :=
⋃
s∈Ak s have a periodic structure. In fact, recall

that the centers of the slabs are

(2p1Rk/(qD
2
k), p2/(Dkq), . . . , pn/(Dkq)),
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where (p1/q, . . . , pn/q) is an admissible fraction (Definition 5); hence,
Fk is made up of translation of the slabs in the unit cell [0, 2Rk/D

2
k]×

[0, 1/Dk]
n−1. We assume that k is so large that the number of unit cells

not entirely contained in Q(x, δ) is negligible. Therefore, the number of
slabs in Q(x, δ) is |Ak| ' Dn+1

k R−1
k δ−n|{slabs per unit cell}|, and the

Lemma reduces to extract a large number of admissible fractions in
[0, 1]n with denominator ≤ Qk.

unit cell

We drop the subscript k � 1. Let A0 be the set of admissible
fractions, and letA1 ⊂ A0 be the collection of fractions (p1/q, . . . , pn/q)
with q ≡ 0 (mod 4) and pj even for 2 ≤ j ≤ n, so that |A1| ' |A0|.

We denote by PA1 the projection of A1 into the plane (x2, . . . , xn),
so PA1 is the set of fractions (p2/q, . . . , pn/q) with q ≡ 0 (mod 4)
and even pj. The Dirichlet’s approximation Theorem asserts that for
2y ∈ Rn−1 there exists (p′2, . . . , p

′
n) ∈ Zn−1 such that

(55) |2y −
p′j
q′
| ≤ 1

q′(Q/4)
1

n−1

, for some 1 ≤ q′ ≤ Q/4,

so if we write q = 4q′ and pj = 2p′j, then we can assert that for every
y ∈ Rn−1 there exists a fraction (p2/q, . . . , pn/q), for q ≡ 0 (mod 4) and
pj even, such that

|y − pj
q
| ≤ 2

n+1
n−1

1

qQ
1

n−1

, for some 1 ≤ q ≤ Q.

In general, a point y ∈ [0, 1]n−1 cannot be sufficiently well approxi-
mated by fractions if it satisfies (55) with a fraction (p′2/q

′, . . . , p′n/q
′)
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with small q′, so it is convenient to ignore those points. The volume in
[0, 1]n−1 occupied by those undesirable points is less than

(56)
∑

1≤q′≤Q/2n+2

( 1

q′(Q/4)
1

n−1

)n−1

(2q′)n−1 =
1

2
.

Let G := {y ∈ [0, 1]n−1 | y satisfies (55) for some Q/2n+2 < q′ ≤
Q/4}, then by (56) the volume of G is > 1

2
. Cover G with cubes Q(y, l),

where y ∈ G and l := 2n+2+ 2
n−1/Q

n
n−1 . By Vitali’s covering Theorem

we can find a disjoint collection of cubes {Q(yj, l)}1≤j≤N such that

G ⊂
N⋃
j=1

Q(yj, 3l);

hence, N ≥ cnQ
n. We pick from within each Q(yj, l) a fraction and

construct so a collection of fractions C ⊂ PA1; we define A2 ⊂ A1 as
the set of fractions such that PA2 = C. By construction, |PA2| & Qn

and any two points in PA2 lie at distance & 1/Q
n
n−1 ; the latter, after

dilation by 1/D, implies the condition (ii).
The fractions in A2 that lie over (p2/q, . . . , pn/q) ∈ PA2 is in number

at least ϕ(q), where ϕ is the Euler’s totient function. Since ϕ(q) ≥ q1−ε

for every ε > 0 and q �ε 1—see Theorem 327 in [20]—then the number
of fractions inA2 is≥ Q1−ε|PA2| & Qn+1−ε ' Q−ε|A0|, whereA0 is the
set of admissible fractions; this concludes the verification of condition
(i). �

Theorem 14. Let 0 < c0 ≤ 1. If F = lim supk→∞ Fk is a set of type
II, that is, 3

4
< a ≤ 1 and b = 1

2
, then dimF ∩ [0, c0]n ≥ α where

(57) α := 1 + (n− 1)a.

Proof. We use the same method as in Theorem 12. For fixed ε > 0, let
A′k be the collection of slabs provided by Lemma 13, and let F ′k be the
corresponding set. Given Q(x, δ) ⊆ [0, c0]n, we define again a measure
µk on Fk ∩Q(x, δ) that will be useful in the proof; the measure is

µk(A) :=
|A ∩ F ′k ∩Q(x, δ)|
|F ′k ∩Q(x, δ)|

.

If k �ε 1 then
|F ′k ∩Q(x, δ)| & Rα−n−ε

k δn.

We take β := α − 2nε < α − ε. The goal is again to prove (52),
from which we deduce Theorem 14 proceeding as we did in the proof
of Theorem 12.

Since b = 1
2
, we can think of the slabs over (p2/(qDk), . . . , pn/(qDk))

as a single tube of length 1.
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(1) Scale r < R−1. In the worst case a ball is entirely contained in
a slab from Fk, so

µk(Br) . rnR−α+n+ε
k δ−n ≤ rαδ−n = rβδ−β(rα−β−εδβ−n);

since α − β > ε and r < R−1
k , then µk(Br) < rβδ−β whenever

k �δ 1.
(2) Scale R−1

k < r < R−ak . By the properties of separation of
the slabs in A′k, a ball Br intersects at most one slab—recall
Lemma 13(ii) and (31)—so

µk(Br) . rR
−(n−1)−α+n+ε
k δ−n = rR−α+1+ε

k δ−n < rα−εδ−n,

where we used α > 1. Since r < R−ak we see that

µk(Br) . rβR
a(β−α+ε)
k δ−n, k �δ 1.

(3) Scale R−ak < r < Rk/D
2
k = R

n−1
n+1

(2a− 3
2

)− 1
2

k . A ball intersects
. R

(n−1)a
k rn−1 “tubes” of length 1 and radius R−1

k , so (recall
(57))

µk(Br) . rnR
(n−1)a−(n−1)−α+n+ε
k δ−n = rnRε

kδ
−n = rβδ−β(rn−βRε

kδ
β−n);

since r < Rk/D
2
k ≤ R

− 1
n+1

k , we see that

µk(Br) . rβδ−β, k �δ 1.

(4) Scale Rk/D
2
k < r < δ. A ball Br contains ' Dn+1

k R−1
k rn trans-

lations of the unit cell [0, 2Rk/D
2
k] × [0, 1/Dk]

n−1. If V is the
volume of F ′k per unit cell, then |Br ∩ F ′k| ' V Dn+1

k R−1
k rn and

|Q(x, δ) ∩ F ′k| ' V Dn+1
k R−1

k δn;

hence
µk(Br) . rnδ−n < rβδ−β.

The inequality µk(Br) ≤ Crβδ−β holds for k sufficiently large (depend-
ing on δ), so the proof is complete. �

6. Conclusion of the proof

We are now ready to prove our statement combining the results from
the previous section. First we take a, b as in (48)-(49) and recall that
we have defined

(58) α :=
1

2
+ (n− 1)a+ b.

Note that we have a bijection between a ∈ (1/2, 1] (which predicts also
the value of b by (48)-(49)) and α ∈ (n/2, n], which is the range we are
interested in (the case α = n was handled in [5]).
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First we claim that given any

(59) s′ < s :=
n

2(n+ 1)
+

n− 1

2(n+ 1)
(n− α)

we can find a solution u(x, t) with initial datum u0 ∈ Hs′(Rn) such
that

lim sup
t→0+

|u(x, t)| =∞

for x ∈ (F ∩ ([c0, c1]× [0, c1]n−1)) \Ω, where F is an (a, b)-set of diver-
gence, 0 < c0 := 1

10
c1 � 1 and Ω has dimension ≤ n − 2s. Indeed, it

suffices to choose u0 := ga,b defined in (36) so that u0 ∈ Hs′(Rn) for

(60) s′ < s :=
1

4
+

n− 1

2(n+ 1)
(n− (n− 1)a− b);

see (38)-(37). Since under (58) the inequality (60) becomes (59), then
the claim follows invoking Theorem 9.

Thus, to conclude the proof, we need to show that

(61) dim
(
(F ∩ ([c0, c1]× [0, c1]n−1)) \ Ω

)
≥ α.

First, covering (F ∩ ([c0, c1] × [0, c1]n−1)) with ' (c1/c0)n−1 cubes of
side c0, we see as consequence of Theorems 12 and 14 that

dim(F ∩ ([c0, c1]× [0, c1]n−1)) ≥ α.

On the other hand, we know that dim Ω ≤ n − 2s; see Theorem 9.
Thus, since for our choice (59) of s we have α > n− 2s when α > n/2,
then (61) follows and the proof is concluded.
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