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29 Abstract. ~ We study the extyemal properties of a stochastic procesx; dePned by
the Langevin equation’y = ~ 2D #, in which # is a Gaussian white noise wit

22 he Langevi iofinx 25 hich G h h

32 zero mean andD; is a stochastic "dilusivity", dePned as a functional of independent

33 Brownian motion B;. We focus on three choices for the random dilusivity D;: cut-o!

34 Brownian motion, D " I( B:), where!( x) is the Heaviside step function; Geometric

35 Brownian Motion, Dy " “exp#B:); and a superdilusive process based on squared

36 Brownian motion, Dy " BZ. For these cases we derive exact expressions for the

37 probability density functions of the maximal positive displacement and of the range of

38 the processxy on-the time interval t $ (0, T). We discuss the asymptotic behaviours

39 of the associated probability density functions, compare these against the behaviour

40 of the corresponding properties of standard Brownian motion with constant dilusivity

41 (D¢ =(Dy) andhalso analyse the typical behaviour of the probability density functions

jé which is observed for a majority of realisations of the stochastic dilusivity process.

44

45

46 !

47 1. Introduction

48 . . . .

49 The statistics of extreme values (EVs) of stochastic processes has been in the focus of

gg extensivenresearch in the mathematical (see, e.glpg]) and physical (see, e.g.4p15)

50 literature aver several decades. More recently, EV properties have also received attention

53 in‘the areas of mathematical Pnancel8 19 in which stochastic processes represent one

2‘51 of the“main components in the modelling of the dynamics of asset prices, of computer

56 science 20,21], as well as of the analysis of "records" of dilerent kindsl1[9,22,23]. Apart

57 from "simple" EV problems asking for the maximum behaviour of a variable, "dual”

gg EVs of the min-max and max-min families are relevant in game theorg4] or reliability

engineering RY, for which a universal Gumbel limit law emerges2p, 27).
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Typically, one computes several types of EVs, which are either interrelated or
independent of each other, and hence, provide complementary information abeut the
processx; under consideration. Commonly considered EVs are, for instance, 'the
persistence probability for not crossing the initial valuexy of the process10],.the related
probability that the process does not reach a given threshold or a given peintin space
up to time t (i.e., the "survival" probability) [ 5], or the Prst-passage time to a given
threshold or spatial location 4B10, 13P15. For one-dimensional processes, one often
considers the maximal positiveM or negative M displacements andithe rang® (also
called the span or the extent) of; (here and henceforth wefassumethat; = 0) on a
given time interval:a

Mt = Orlnt?ﬁxt} % O, M, =+# Omi,nT{Xt} % O, Rr=M+1+M; %0 (1)

Here T represents the length ("observation time"), of the time seriesx; under
consideration. When a random process; evolves on a ene-dimensional lattice, the
rangeR debnes another important property/namely, the number of distinct visited sites
up to time T [28]. We also note that complementary characteristics of extreah values
of Brownian motions such as the distribution ofitimes between minima and maxima has
been evaluated recently49, 30].

Knowledge of the EV statistics is conceptually important for the understanding of
various facets of the stochastic process and is relevant for diverse physical phenomena
and also in applications in Pnance,ysociophysics and biology, since EVs often trigger
a particular response of the system. “Ayprominent application is molecular chemical
reaction kinetics, in which a dilusing molecule hits a reaction centre3fl]. For instance,
during gene regulation a proteinyneeds to dilusively search a specibc binding site on
the cellular DNA [32. Recent research demonstrated that for typical biochemita
situations with extremely’low reactant concentrations knowledge beyond mean chemical
rates B1] is essential,“due,to the signibcant separation of relevanite scales even in
simple geometries d3,34]. Notably, geometry-control of reaction time scales in gene
regulation [35, 36j,is closely related to the most likely reaction time 33, 34]. We also
mention that the knowledge of EVs is often very benebcial for a non-perturbative analysis
of complicated funetionals,ofk;, permitting for a construction of convergent bounds and,
hence, for obtaining non-trivial exact results 37/842).

Mostgof thepavailable analyses pertain to the paradigmatic process of Brownian
motion; or to lattice random walks. In particular, the exact probability density function
P+ (M) ofithe maximal positive displacemenM 1 of a one-dimensional Brownian motion
has already been derived exactly in the early work by LZwl]f Denoting the dilusion
coe''cient as Dy and supp(IJsing thatt $ (0, T) one has
' 2

1
Pr(M)= t=—exp
ID oT
a Note that these quantities are related to the caliper size or spanning diameter in polymer physics,
where these extension parameters, obtained from projection to a given axis, are used as a proxy for the
radius of gyration [16,17].
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é normalised to the positive semi-axisM % 0, compare Pgurel. Subsequently, the
6 probability density function Pt (R) of the range of Brownian motion was obtained?2]
; (see also4315)]) | )

' 2p2
10 Pr(R) = J.L# FH™ i miexp # 0
11 D oT n=1 4DoT | )
” _ 16DoT # © 22@2m +1)?DoT , op # (2Mm*1)ZDo 3)
14 R, R? R2
ig These two series representations are exact and thus equivalent. The series in the prst
17 line highlights the asymptotic behaviour in the ImitR & ' _gwhile thene in the second
18 line is appropriate for the analysis in the smalR (or long-T) limit:yNote also that while
;g Pr(M = 0) is bnite for any pniteT, the probability density function P+ (R) abruptly
21 drops to zero wherR & O, see the entire shape in bguie, Further on, more complicated
22 multivariate joint distributions of maxima, minima and thesrange were evaluated 7],
;Z while correlations between maxima or between values of the range achieved on dilerent
25 time intervals were studied in #6£49]. A remarkableresulthas recently been obtained for
26 the distribution of the time instant at which the ‘range of Brownian motion brst reaches
;; a prescribed value §0]. Concurrently ‘a varietyyof Prst-passage phenomena assaedh
29 with Brownian motion have been analysed using exact approachd®13]. On top of this
30 several accurate approximation schemes have been analysed, permitting one to consider
g; prst-passage events in rather complicated, experimentally-relevant geometrigg, $2].
33 However, the progress in the theoretical analysis of EV statistics for more general
34 processes, in particular, other than standard Brownian motion and especially non-
gg Markovian processes, remains limited, and typically only the behaviour of the expected
37 values of the EVs is known4ei0, 13.
38 In this paper we,derive exatt compact expressions for the probability density
Zg function Pt (M) of the'maximal displacement and for the probability density function
41 Pt (R) of the range forthree random-dilusivity stochastic processes introduced recently
42 in [53. In these models, the process; evolves in a one-dimensional system according
jj to the Langevin equation
p & _ oo @ Y=o, @
47 dt
jg where"{ is standard white Gaussian noise with zero mean and covariarigt, = #t# t,
50 Dy is a‘eonstant scale factor, and/(B;) is a dimensionless random di'usivity dePned
g; asqa functional of independent Brownian motiorB,:
gi Bi.o=0, (B)=0, (BBy)=2Dgmin{t,t%, (5)
gg with“the dilusivity Dg. Here and henceforth, angular brackets denote averaging
57 with respect to all possible realisations of the Brownian motioB;, while the overline
gg corresponds to averaging over realisations of the white noise procgssWe note that

dilerent versions of the model in @) corresponding to dilerent choices of the functional
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Figure 1.  Probability density functions of the extremal behaviour of standard
Brownian motion. Panels (ajh). show.the Gaussian law g) for the maximum M on
linear and log-log scales. Panel$c,d) showthe probability density (3) for the range.
In all panels we depict the functions for.the observation timesT =1 and T = 2. We
choseDg =1.

V(B;) have been extensively studied in recent years within the context of dilusion
in complex heterogeneous .environmentb465|, dynamics of particles involved in
polymerisation processe$p,67] which can be anomalous in the non-Stokesian limié§],
as well as in the mathematieal Pnance literature (see, e.g69). We also mention that
stochastically varying ditusivities were identiPed in simulations of dilusing proteins
with RBuctuating shape, /0], and switching between low and high mobility states was
observed in simulations of, protein-crowded membrane31] and the motion of tracer
particles in the cytaplasm of mammalian cells72).

Following«[53}ywe ‘debne the three random dilusivity models under study heras
follows:

(D In Model | we consider the choiceV (By) = !( By) for the functional V, where
I( x) isfthe Heaviside step function with the property!( x) = 1 for x % 0 and zero
otherwise. In this model, the processx; undergoes standard Brownian motion once
B: 270, andiit'pauses at its current location wheneveB; is negative. Here, the mean-
squared displacemeni(x?) = Dot shows Brownian behaviour, however, the dilusion
coe'eientds smaller by a factor of two than the dilusion coe"cient of standard Brownian
meotion with V = 1.

(IN In Model Il we chooseV (B;) = exp(# B/a), wherea is a scale parameter of
dimension length. This choice foW (B:) corresponds to Geometric Brownian motion, as
assumed for the time evolution of an asset price in the paradigmatic Black-Scholes
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model [73. In this model, dilusion is strongly anomalous and the meancuared
displacement has an exponential time dependende?) " exp(t).

(I11) In Model 11l we choose V (B;) = B?/a2. Here, the process; accelerates when
B goes away from the origin in either direction, and we are thus facing a.superdi'usive
behaviour as the process; in (4) exhibits a random ballistic growth with time:

We focus here on the generalisation of expressio@} &nd (3), deriveddfor Brownian
motion, to the above debned three models of random dilusivity. “We thus seek the
exact expressions for probability density functions of the maximum,and of the range,
respectively, debned as

Pr(M)= (Pt(M)), Pt(M)=#(M# M 1) (6)
and
Pr(R)= (Pt(R)), Pt(R)= #(R# Rt), (7)

whereP+ (M) and Pt (R) denote the probability density functions calculated for a given
realisation of B; (and thus a given realisation‘of ditusivity). We note that the latter
realisation-dependent distribution§/0rare evidently ‘given by expressiong)(and (3) with
DoT replaced by the integralDo , V(B:)dt, implying that Pr(M) and Pr(R) are,
respectively, a Gaussian function or an inbnite'sum of Gaussians with random variances.
As we proceed to show, the averaging over realisationsByfcan be performed exactly for
the three models under study and requires 5}nly the knowledge of the moment-generating
function "( T;$) of the random variableD, V(Bt()dt,

& = "

"(T;$)= exp #3Dy V(By) dt - (8)
0

This function can indeed be calculated exactly for many cases (see, e.§,2[] and
references therein) and, in‘particular, for the models we study here. We proceed to show
that the averaged /distributions, i.e.,Pt(M) and P1(R), exhibit a markedly di'erent
behaviour, as compared to the distributions in %) and (3). We will compare these
predictions against the e@stimates of the "typical” behaviour of these distributions (see,

e.g. [r479),

P¥(M) =apNy exp (In(P1(M)/p))) , C)
P (R) 5 pNr exp (IN(P1(R)/p))) , (10)

where Ny, and Ng are normalisation constants, whilep is an irrelevant auxiliary
parameter of inverse length that is introduced to deal with dimensionless quantities
under-the logarithm but cancels anyway. We will demonstrate that their functional
formiisrsupported by some atypical realisations of the proceBs.

The paper is organised as follows. In sectiod we brieBy summarise our main
results. In two subsequent section8 and 4, we present the details of the derivations
of our main results, analyse their asymptotic behaviour and their moments, and also
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estimate their elective broadness by calculating the coe"cients of variation of the
respective distributions. Additionally, we compare our analytical predictions with the
results of numerical simulations. Sectior8 is devoted to the maximum, in section
4 we consider the range. Next, in sectiob for the example of the distribution of the
maximum, we will discuss its "typical" shape which should be observed-for a majority of
realisations of the procesB; (or for small statistical samples) and demonstrate that the
exact form obtained forP+ (M) (and for P+ (R)) debPned in @) stems from some atypical
realisations of the stochastic dilusivity process. Concluding remarks ‘are provided in
section 6.

2. Main results

In this section we summarise our main results forsthe probability density functions
Pr(M) and Pt (R), (6) and (7), for the three models under study. The parameters
entering these results were debPned above in.the description of our models.

2.1. Model |

For Model | we bnd that
' n l n
1 M2 S M2
POM) = Le——exp # K ,
T (M= 5P amer <0 BT

(11)

where K((z) is the modibed Bessel function of the second kind of the zeroth order.
In turn, the exact probability density, function PT(')(R) can be written in either of two
equivalent forms: (i) as weproceed to show, the analysis of the shé&tbehaviour (i.e.,
the behaviour of the left tail.of the probability density function P+(R)) can be realised
from the following expression,

#
PrR= izl ome 1y
d2m|-0 | 2( )2 n ' 2( )2 non
122m+1)?DT  12(2m+1)2DoT
*
dRE SR TR o 2R? - 13

wherel o(2),is the.modiPed Bessel function of the Pbrst kind; (ii) in turn, the behaviour
of the right tail is conveniently given by an alternative series expansion,

: 4 #  m?R? " m2R2
PI(R) = 1'!3—T0T 1(# ™ m?exp # o <o 8T (13)
m=

Expressions 12) and (13) are related to each other through the Poisson summation
formula.
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2.2. Model I

For Model Il we obtain the following exact expression for the probability density function

of the maximum,
) ) * + +

2a a’ Dg M
P{(M)= $ exp # arcsinh? 5 . 14
T (M) IT (DgM?2+ 4Dad) P DT D§ 2a (14)
The detailed discussion of its rather unusual asymptotic behaviour is presented in the
next section. In turn, the probability density function P{"" ’(R) of thesrange obeys the

exact expression

% ° )
PrU(R) = ooz REFV(R)
16# 1

#R= = ——
(R) = _,(@m+ 1)2

v | n ) ) 2' (2 ) * —+

. DsT_, 1z _ F@2m+1)a Do
) exp # 4a22 cosh > Ki, Re Dy dz, (15)

where K, (x) is the modiped Bessel function ‘of the’second type of purely imaginary
order. This latter form is suitable for the analysis of the shorR behaviour (see section
4). An alternative form appropriate for thetanalysis of the lageR behaviour follows
from (15) via the Poisson summation formula and reads

g ) * ++
, 8 # )M+, ?2 2 . Dg mR
PII(R) = A $ #H ™ m exp # & arcsint? s M
T m=1 (DBm2R2+ 43.2D0) DgT Do 2a
(16)
2.3. Model 111
For Model 11l the probability den5|ty function of the maximum has the exact form
1 M 2
(||| (M) = ! a $ T4l a - (17)

"8 3DDgT: 4 4 DDgT
where$(z) is the.Gamma‘function. The probability density function of the range admits

the exact expansion / 5

(||| \(R) = E# 1 % 8 ' R ! — T" § | (18)
osi/? 21 (2m +1)%

2 _o@m+ 1)2 %R
which is Suitable in the shortR limit, while the right tail of the distribution can be
accessed via an equivalent e>§pansion,

2 # 1 R 2
PUDR)= L2 " (g1ymim? $ SR (19)
SDeDe T __, 2" '4 DDs T

The rest of the paper presents the details of the derivations of our main results and a
discussion of their behaviour.
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3. Probability density function of the maximal displacement

We present the details of derivations of the exact expressions for the probability density
function Pr(M) summarised earlier in sectior2. We Pnd it expedient to base our
analysis here on the exact expressions for the brst-passage time densitjM.) that
was derived for all three models under study in a recent paped. Ansalternative
approach which takes advantage of the moment-generating functiol)(will be used
later on in section5 and will permit us to access the typical behaviour ofithe prolality
density.

Let St (M) denote the survival probability, i.e., the probability,that the processx,
starting at the origin xo = 0 at t = 0, does not reach a/pointM. > 0 within the time
interval t $ (0, T). This probability can be expressed as

St(M) = H (t|M)dt, (20)
T
where H (t|M) is the probability density function of'the event that the processx;
reached the pointM for the prst time at the time“instant t. As a consequence, the
desired probability density function Pr«{MJsmwhich.dePnes the probability density that
the maximal positive displacement of the process within the time interval t $ (0, T)
is exactly equal toM obeys

dST(M)_I CdH @V
dM  ;  [dMm

Pr(M) = dt. (21)
In the ¢ase of standard Brownian maotion D, = Do) the survival probability Sr(M) =
erf(M/ = 4D,T), where erf(x) is the error function, H(t|M) is the celebrated Lewy-
Smirnov distribution, and, eventually, P+ (M) is given by ).

3.1. Model |

For Model | the Brst-passage time density obey$5]
Comz e

M
HO@M) = & e # K
(tIM) &P 78Dt O 8Dt

" AT8D,t3

(22)

Dilerentiating the latter expression with respect to M, inserting the result into (21)
and integratingit over t, we Pnd our compact expressioriLl). Note that the density in
(22).resemblesNbut is not identical toNthe density PT(')(M ).

Moreover, due to the presence &€ y(z), the distribution of the maximum exhibits
a dilerent’ asymptotic behaviour in the limits of small and largeM as compared to
behaviour (2) of Brownian motion. From (11) the asymptotic limit M & ' produces
to leading order

> M2
Pr(M) + e # aDoT

M & "), (23)
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4
5 that is, the probability density decreases withM faster, due to the additional factor
6 1M , than expression 2). For the opposite limit M & 0 we Pnd that
7 [ " "
8 ) 1 16D T

P (M) + J— In # M 24
o (M) o VE & (M & 0, (24)
11 where & , 0.5772is the Euler-Mascheroni constant. Expression2d)_implies that
i; PT(')(M) logarithmically divergesin this limit, while expression (2) remains bounded.
14 Overall we observe that the probability density function (1) is shifted towards smaller
15 M values compared to the distribution ). In particular, the expected (with respect to
is the distribution in (11)) value of the maximal displacement of the.process in Model
18 | obeys
19 4 $
;2 M) = 32 DoT, (25)
22 , it grows with T exactly at the same rate as|the/expected maximum of Brownian
32 motlon, M BM = $% DoT, but has a slightlyssmaller prefactor 4/! ¥2 |, 0.72 while
25 2/t V2 1.12). The expression in R5) can be'generalised to derive the moments of the
;s maximum of the process for Model | of arbitrary, not'necessarily integer ordeiq %0,

' n
28 g+ 1
29 g2 1 5
30 M) = — g (4DoT)%2. (26)
31 '$ —+1
32 2
33 . : . o
34 From this expression we also derive the coe"cient of variation),’ of the distribution
35 (12):
36 5 4
37 5 2 -
M <) # (M 13

38 vl = MDFMIRL F#16 g 27)
39 M 1) 16
40
41 By dePnition, this property measures the relative weight of Buctuations around the mean
42 value. Hence, fomModel | these RBuctuations are of nearly the same order as the expected
jj value itself, such thatP(')(M) is electively broad [11,12]. Note that the distribution of
45 the maximum of a standard Brownian r’r@tlon ?), appears to be somewhat narrower;
jg there, the coe"gient of variation vi;"') = = (I # 2)/2, 0.756is smaller thanv(,’.
48
49 3.2. Madel Il
50
51 ForaModel'llithe exact expression for the probability density function of the prst-passage
52 time is given by 5
53 ) +
54 a
55 HID M) = b——arcsinh —$7
56 ID gt3 2a Dy/Dg
57 ) 2 ) ++
o8 * exp #—arcsmh2 —$7 : (28)
59 Dg 2a Dy/Dg
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Again, di'erentiating ( 28) over M and integrating the resulting expression ovet, we
arrive at our result in (14). The small-M asymptotical behaviour of expression.14)
obeys

| 1]
: 2

P (M) + L exp

o #aor (M&O. (29)

Rather surprisingly, this limiting behaviour is exactly the same,as that of) for the
maximum of standard Brownian motion. In contrast, the largeM asymptotic behaviour
is very di'erent from that of standard Brownian motion and follows

) ) *  ++

2
PIOM)+ L2 exp #-2_z  2eM (V&' ), (30)

D BTM DBT Do a

i.e., the right tail of the distribution PT(” )(M) is that of a,log-normal distribution. In
view of such a "heavy" tail one expects that.higher values &fi are more likely than in
case of a standard Brownian motion.
The moments of the distribution P{"" ’(M ) of arhitrary order q % 0 can be obtained
by a straightforward integration of expression 14); leading us to
| " I

! W\ 8 P "9
o~ _ 2 42D, 7 A DeT_
M )= J—I_ 5 exp. #x“ sinh 3 X dx
B 0
I n I n ' n
D, Y°# ' DT
= aDB #1)" d exp 4;2 (q# 2n)?
| ln-_'o nwon
! BT X
* l+erf P # 2n , 31
oo (a# 2n) (31)

6 7
where 7 denotes the binomial coe"cient. Naturally, whenq is an integer the series is
truncated at n = g, as:.can be observed directly from the expression in the brst line of
(31). From (31) we have, in“particular,

|
. 2 1/2 6' 7
- Do exp(‘/ 4)erf T2,

M =
M) .
Ny , -
A 75 220 eq() 1# o)
| °
1" 482D, ¥?
3y = — '
M 5)= 7 D. exp (9'/ 4)
' 6! _ 7 el _ 7°
* erf 32 #3exp@2)erf /2 (32)

and.so on. Here we used the notation = DgT/a?. We observe that in the case of
ModellI'there is no unique time scale, in contrast to Model | (and also to Model lli
below)r This is a direct consequence of the fact that the right tail d’PT(” )(M) decreases
with M slower than an exponential function, which gives rise to the behaviour specibc
to the so-calledstrongly anomalous superdilusion for which a growth of the moments
with time is not characterised by a unique exponent (see, e.g7,6078).
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The prst two expressions in32) permit us to evaluate the coe"cient of variation
vﬁﬂ") of the probability density function PT(” )(M) in (14):

S i
o 1# 2exp '/ 2)erf( 1 2) # exp# ')
vy = b exp(/ 4). (33)
2erf( "1 2)
b
Remarkably, vﬁ,'l') diverges exponentially,vﬁ,'l') + exp(/ 4) 2as" &' /(ie., the

observation time T tends to inPnity). This signibPes that momentsyof arbitrary order
are not representative of the actual behaviour and knowledge of the full distribution
P (M) is crucial.

3.3. Model llI

Lastly, for Model Ill the prst-passage time density isg9)

' n
M 1 iaM [
HOD(EM) = bt g 4 18 (34)
2 2 3D0DB t2 - 4 4 DoDBt

Dilerentiating this expression with respeetstoM “and integrating overt, we arrive at
our result in (17).
For small M, the Gamma function in (17) tends to a constant (with corrections of
order O(M ?)), and hence, one has
a$?(1/4) 6

P (M) = 1+ 06|v| 207 (M & 0) (35)
T " 83D,Dg T '

In turn, for M &' , the asymptotic behaviour ofPT('” )(M) is given by
! " ! "

2a 1/2 ' la
K" DyDg ™™ 4 DoDg T

i.e., the right tail“of,the probability density function of the maximal displacement is
an exponentialsfunction"and hence, is also "heavier" than the Gaussian tail of the
corresponding probability distribution of the maximum of standard Brownian motion.
Evidently, expression (7) also favours higher values of the maximunM than the
probability density function (2).
The moments of the distribution (L7) obey
o DD T
a

M )= fq, (37)

where the dimensionless numerical amplitudig, is given by

* 1 | n

2 L1 P
fo= 3 x4-$ Z+|x - dx. (38)
' 0
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Figure 2. Amplitude fq in (37) from (38) as a function of q. See discussion in text.

We were unable to perform the integral in the latter equation and, hence, to derive
an explicit expression forf;, except for the{patrticular case whery is an even integer,
g=2n. In this latter case, f is given by

+.

d2n 1 ) A
fon = (#1) $—— =l 39
= (FD cosh@/2) - _ 2" (39)
where A, are integers forming SloaneOs sequeAd®6156[79. In particular,
1 7 139
fO— 1’ f2_ és f4_ 6_4-’ f6_ 5—12 (40)

The numerical factorfy as a function ofq is depicted in Pgure2. We realise thatf,
turns out to be a non-monetonie function ofg. Lastly, we estimate numerically the
value of the coe"cient of variation of PT('” )(M) to get

vy, 1012 (41)

implying that RBuctuations around the mean value of the maximum exceed the latter
such that the distribution‘is, e'ectively broad.

Figure 3 presents the exact probability density functionsP+(M) (solid curves)
and their asymptotic forms (dashed and dash-dotted curves) for the three models,
highlighting the ranges of validity of the smallM limit as well as the onset of the large-

M asymptotic behaviours. The results are shown on both linear and log-log scales, to
highlight the asymptotic behaviour as well as the respective crossovers. Note specibcally
the divergence o+ (M) in the limit M & O for Model I.

3/4. Relation between the moments of the maximum and of the random dilusivity

To close this section we present a general rq,}ation between the moments of the maximum

and-‘the moments of the random variabl®, , V(B:)dt,

| no ' 1 n X

2 T qg+1 T @/

s =0 e veoa
: 0

(42)
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39 Figure 3. “ Probability density function Pt (M) of the maximal displacement along
22 with thersmall-M"and largeM asymptotic behaviours for Model | (a,b) , Model I
42 (c,d) fand Madel Il (e,f), plotted on linear (a,c,e) and log-log(b,d,f) scale. We set
43 Dp=1,T=1,a=1,and Dg =1. Compare this behaviour to the Brownian limit in
44 Pgure 1.
45
46 . . . . . .
47 which holds for_arbitrary q % 0. This relation can be proven directly by using the
48 debnitian in (21) and also a general expression for the prst-passage time wlition
gg presented in our previous workg5]. Below we will merely demonstrate the validity of
51 (42sby establishing a relation between the moments of the maximu and the moments
52 of the range. Using the standard "replica trick" we Pnd the following simple expression
gi thatieonnects the typeircal behaviour of the maximum and the typical behaviour of the
55 random variableD, , V(By)dt,
56 _ & ' 1 II(
57 I _1 ! &
58 (In(M 1)) = lég/?oa MD#1 = > In Dy ) V(By)dt # > (43)
59
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where & is again the Euler-Mascheroni constant. In particular, in the special case
V(By) - 1(i.e., when the process; in (4) is standard Brownian motion), equation,@3)
reproduces the known result

1

n M &M = ~(n(DeT) # &) (44)

4. Probability density function of the range

In this section, we Prst present the arguments underlying the, derivation & (R) and
evaluate general expressions which highlight the shdrR-and.largeRibehaviour, i.e., the
left and right tails of Pt (R), respectively. We then establish a gene;,r/al relation between
the moments of the range and the moments of the random,variatils, ,V(B:) dt, which
also permits us to link the moments of the range and,the moments of the maximum in
the random dilusivity processes. Lastly, we will concentrate.on the particular cases and
evaluate the exact forms oP+(R) for the three models under study.

The probability density function of the rangeR, of the process 4) can be evaluated
by writing down the corresponding Fokker-Planek equation for the position probability
density function %(x,t) (in which the ‘difusion,coe"cient D; is a random function of
time), appropriately rescaling the time variable and then solving the resulting dilusion
equation subject to adsorbing boundary conditions. The steps involved in this approach
are well described, e.g., in4B345.5,.In this procedure we Pnd thatP;(R) can be
conveniently represented by two alternative forms, one of which is suitable for the
analysis of the smallR behaviour-of the probability density function of the range, while
the second one is adapted to'the larg@-asymptotic behaviour.

In the Prst casePr (R)/(Is givendby

%

Pr(R) = ﬁ(R#T(R))’ (45)

with

8.# i 6 7
FTRZE D ommay | @MEDIRY, (46)
m=0

and where( T;$)uis the moment-generating function which is debPned earlier i), We
note that in virtde of (46) the knowledge of an exact form&) of " (T; $) appears to be the
key ingredient for Pnding exact forms o+ (R) (see also§2] for the role of this function

for the analysis of the brst-passage time densitieg). In turn, the largetail of "( T;$)
(carresponding to such realisations dB; when Dy , V(B)dt is small) is responsible
for the'behaviour of# 1+ (R) in the limit when R & 0. We proceed to show that such

a behaviour can be markedly dilerent depending on how fas{ T;$) vanishes when

$ &' . Inthis sense, the three models under study provide representative examples of
di'erent kinds of such a behaviour: in Model | the moment-generating functiofi( T;$)
vanishes as a power-law whed &' and Pt (R) approaches a constant value @& & O,
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|
é while for both Models Il and 11l "( T;$) " exp@ $) in the leading order in the limit
6 $&' ,andInPr(R) exhibits a singular behaviour of the formin P+ (R) " # /R
; In the second case, the form appropriate for the analysis of the largebehayiour
9 can be obtained by the Poisson summation formula
10 ' : ) + < :
11 4 # m2R2 T
12 Pr(R) = J'T #1)™m? exp # %y / \/(B,)adt
13 ‘Do, 4Dy , V(By)dt 0
14
e (47)
is Further on, using the integral identity
18 6 7' 2 " 6 7
19 exp #¢%/(4b) | b= b= exp #bd cos g day (48)
2 ’
22 we cast @7) into the form
23 .
24 g # '
25 Pr(R) =+ (#1)""m?  cosRq)"(,Toeg)dq: (49)
26 " m=1 0
;57; In case of standard Brownian motion the latteriexpression reduces to the series in the
29 prst line in (3). One observes that in thellimitR & ' the integral in the latter
22 expression is dominated by thelbehaviour df T;¢?) in the vicinity of q = 0, which
32 corresponds to the smal$ asympteticbehaviour of t(;)e moment-generating function in
33 (8) (and hence, to such realisations d@; forwhich Do , V(By)dt is large). However, we
2‘5‘ Pnd1# "( T;¢?) = O(¢?) for Models,l and 11l (while for Model Il there are logarithmic
36 corrections to the g>-dependence), meaning thaPr(R) decays su'ciently fast in all
37 three models to ensure the existence of all moments. Hence, the precise form of the
gg largeR tails of Pr(R)“eannot beyin principle, deduced from the smatiexpansions of
40 "( T;¢?) and we have to perform the corresponding integrals explicitly. In doing so,
41 we will demonstraté below that the largeR tails of Pt (R) are markedly di'erent in all
fé three models.
a4 (yReIation (49 between Pr(R) and the moment-generating function"( T;$) of
45 Do , V(Bydt implies a“simple and quite general relation between the moments of
jg the range andhe moments of the latter random variable. Indeeq/ multiplying both
48 sides of 47 by R%(q % 0) we Pnd that whenever the moments db, , V(B:)dt exist,
49 the following relation holds
50 "
51 R7) = RI9Pr(R)dR
54 4@ # D a1l s b, vB)d ., (50)
55 ! 2 0
g? where ((z) is the Riemann zeta function (note that forg = 0, 1, 2, one has to take the
58
59
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limit as q approaches one of these integer values). For instance, we bnd
. ' "y

4 !

(Rr)=1*t% Do V(Bydt : (51)
e "(

(R#)=(8In2) Do V(Bydt (52)

0
and so on. Next, resorting again to the usual "replica trick" we also"deduce frorb@ a
Iinear,_.pelation between the averaged logarithm of the range and the,averaged logarithm
of Do , V(By)dt, which thus connects the "typical" behaviour of these two random
variables,

. 1=
(InR7) (I;O;poa (RT.)#l "
! - ( 4
In Do V(B)dt #1#&/2# -In2+12InA
0 3
& | ] T u(

5 I Do V(BN + 07723 (53)
0

In (53) A, 1.2824is GlaisherOs constant P a mathematical constant related to the
asymptotical behaviour of the BarnesG-functions(double Gamma-function) BO]. The
latter emerges, e.g., in the normalisation af, the joint distributions of eigenvalues in
Gaussian ensembles of the Random Matrix Theory and, henck,plays an important

role in the asymptotic analysis of seme characteristic properties of such ensembles (see,
e.g., B1)).

We emphasise that §0) and"(53) are general formulae which are valid for any
positive functional V(B;) offBrownian motion B;. In particular, they also hold in the
trivial case whenV (By) - 1, i.€., whenR = R(TBM ) the range of standard Brownian
motion. For this latter:case expression §3) yields the following result for the typical

rangeRﬁyE:)M) of standard Brewnian motion,

C— Al2 $_ $__
(BM) _ BM) -
Ryp ~ = aexp,In Ry "’'/a = 2T exp(l+ &2) DoT, 21647 DoT, (54)

wherea is an auxiliary length scale which was intrgduced in order to get dimensionless
units. While the scaling of the typical range with DoT appears quite intuitive, the
proportionality factor , 2.1647in (54) is rather nontrivial. In particular, its relation
to the GlaisherOs constarkt is surprising. Note that the expected value of the range in
(51) also'scales as DyT, but the proportionality factor 4/ T , 2.2568is somewhat
larger. As.a consequence, for most of realisations of trajectories of standard Brownian
maotion their ranges appear to be smaller than the range averaged over all realisations,
which“implies that some less probable, atypical realisations dominate the value of the
rangew This, in turn, implies that even in the case of simple standard Brownian motion
the knowledge of the full probability density function of the range is vital.

We now evaluate explicit expressions foPt(R) for the three models of random
dilusivity presented in section 2 and discuss their asymptotic behaviour.

Page 16 of 32
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4
5 4.1. Model |
6 . . %
7 In Model | we haveV (B;) =!( B:) and, hence, the exponential function ofgs!( By)dt
8 in (46) is simply the moment-generating function of the occupatioime (of Brownian
io motion on a positive half-axis in the time interval(0, T). Explicitly one has'(see %3] for
11 more details)
12
13 "(T:;$)=exp(#$DoT/2)1¢($DoT/2), (55)
14
15 such that
16 #‘ ' n I n
17 8 1 © o 12(2m+1)2DT W 2(2m+ 1)°DoT
) — 0 0
18 #(R)= = —— _exp # |
1 T 12 (2m+ 1y 2R2 0 2R2
20 (56)
21
;g The latter expression together with 45) yields our result 12).
o4 The smallR behaviour of#(T')(R) and,¢hence, of the probability density function
25 PT(')(R) can be derived directly from b6) by, taking advantage of the asymptotic
26 expansion
27
28 # 2
1 $2(k +1/2)
29 exp #x) lo(x) + 4 ) 57
29 PENI00* e (57)
31
32 which holds for large values of the argument. Inserting this expansion into 66) and
gi performing the summation overm we pnd
35 . | "
36 sOR) s RO penen (B+208%(k+1/2)  R? (s8)
37 T 192" DT | k! 12DoT
k=0
38
39 . . . : . :
40 By virtue of expression @5)the,asymptotic small-R expansion for PT(')(R) is obtained
41 from (58) by merely multiplying the latter by R and di'erentiating the resulting
fé expression twiceawith respect tdr. In doing so we arrive at a rather curious conclusion
a4 that, in contrast to thesbehaviour of the probability density function of the range of
45 standard Brewnian motion; PT(')(R) does not vanish in the limitR & O but rather
jg approaches the‘non-trivial constant value
48 14((3)
49 PI(R) + &1 R& 0). 59
49 Wery + 419 s R& O (59)
g; Therefore, gespite the fact that the procesx; in Model | exhibits the "dilusive"
53 behaviour/(x?) = Dot, its rather intricate character causes signibpcant departures from
54 the behaviour of standard Brownian motion B here, the fact that; may pause at the
gg origintfor a random time (having a broad distribution without even the Prst moment)
57 onceB; goes initially to negative values, entails a Pnite value of the probability density
gg at R = 0. This behaviour is also in line with the divergence oIPT(')(M) in the limit

M & 0. Note that in (59) the amplitude decays as the inverse square root ®f.
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To construct the asymptotic largeR expansion of PT(')(R) we turn,to the
representation in @9). Usling (55 we then have

|
" DT 1 L, MmPRZ mPR?
R &Dqu2/2| L 2 d = J: ’ 60
. cos(mRq)€ 0 2 q q 4 DoT exp 8D¢T 0 8Dl {0)

and, hence,PT(')(R) is cast into the form in (13). The leading, largeR behaviour is
provided by the brst term in the series in the latter equation,
|

R? "
4D, T

g
PI(R) + B &P # (R& '), (61)
i.e., the right tail of the distribution P{’(R) vanishes fastéfthan @ Gaussian function
due to the additional factor 1/R .

4.2. Model I

In Model Il the dimensionless dilusivity is geverned by Geometric Brownian motion:
V (B¢) = exp(# B¢/a). In this case, one has (se®% andalso B3 84))
1 ' n
W 2 - DpTZ? ' 1z , —

(T;9) = T exp #W cosh = Ki; 2a $Dy/Dg dz. (62)
Combining (62), (45) and (46), we thus arrive atieur result (15). The small-R asymptotic
behaviour of#g' )(R) and, hence, ofPT(” )(R) (see (L5) can be conveniently accessed
by taking advantage of the Kontorovich=Lebedev-type representation ir6@). Using the
largex expansion

I g 1+472 1+4z2%)(9+ 22 1
Kiz (X) = gexp(#x) 1# v +( 2I(;)(()2 )+O v , (63)

we bnd from @6) that #&')(R)(s€e (5)) admits the following form in the limit R & 0,

| !
8 #"2aR vz o U oy2g2 # 1
#7 (R = S e P 52
121 DyDsT DT _ (2m+ 1)
* _+ = m=0 *
2h@m¥1a Do 248" 4412 R Ds
* — . 1# -5
exp R D 8§82 2 (m+l)a Do
) *__ to
, 9ot 8008192 24401 * 241921 * +16! 4 R Dg
128 4 2l (2m+1)a Dy
| no>
rR3 DgT
—— = . 64
(2m + 1)3 a2 (64)

We notice next that the leading in theR & 0 behaviour is provided by the term with
m =0wAs a consequence, we arrive at the asymptotic formula
| n ) * +
' 14 5/2 | 252 D, 2 a
PI(R) + 32 : —0=°

4D3 ra’
572 R exp
12D2T R 4D T Dg R

(R& 0). (65)

Page 18 of 32
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4
5 Therefore, in Model 1l the probability density function vanishes afR & 0, in contrast
6 to Model |. Note also that the essential singularity in Model Il is somewhat weaker,
; InP{!")(R). 1/R,as compared to the singular behaviour specipc to standard Brownian
9 motion, for which one hadn PT(B'VI )(R) . 1/R?, see B).
10 The analysis of the largdR asymptotic behaviour of PT(”)(R) hingeswon the
i; expansion @9). Inserting (62) into (49) and evaluating the two-fold/integral
13 L ! " . ) * et
14 BT _» 1z _ Do
15 T exp # 122 z°= cosh 7 cos(mMRx)Kj; 2a Ex dx dz
16 I ) ) * _ o 4+
17 Tg 2 _ DgmR
18 =3 a exp # arcsin? (20T (66)
19 (Dgm?R2 + 4a2Dg) T DeT Do 2a
20
21 we bnd that expression 49) for Model Il admits thefexplicit form in (16). Inspecting
22 the latter formula we notice that the dominant largeR behaviour is provided by the
;Z term with m = 1. As a consequence, we get
25 o ) , ) * D—R++
26 () a 2 B '
P R)+ L——e # In —-— R & : 67
27 T (R TR T Dpa ) (67)
28
gg whose form is nearly identical (apart from numerical factors) to the asymptotic result
31 (30) describing the right tail of thelprobability density function P{"' ’(M).
32
" 4.3. Model Il
gg In Model Il the random di'usivity is given by V(B;) = B?#a? and the moment-
37 generating function is (see§3, 85, 86])
38
39 . 1 $
0 (T;$)= ——==,,c=2 DpDo/2?, (68)
41 coShET,, $)
42
43 Hence, we Pnd that
44
45 g # 1 1
a6 #1 RS | Gnay | BT (69)
47 T d=o 12 o Vs
28 cosh/? 21 (2m +1) R
49
50 The latter, expression, together with 45 and (46), result in (18). The small-R
g; asymptotic behaviour of P{"' ’(R) can be obtained directly from 69) by noticing that
53 the,series converges very rapidly and the dominant behaviour is provided by the zeroth
54 term, i.er,
o L "
8 2 I DoDpT
() oYs
59
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Substituting the latter asymptotic form into (45) and dilerentiating, we arrive at
| ' | n

8 2D,DgT? '#!' DDg T

() +
PT (R) a2R3 p aR

(R& 0), (71)
which shows thatPT('” )(R) vanishes exponentially fast whemR & O.

The largeR asymptotic behaviour of the probability density functien of the range
in Model IIl can be determined as follows. Using again relatiorg) we get

1 I n
1 .1 .mR ‘?
RQ)"( T;¥)dg= —L=——$ Z+i-—— -, 72
_ cosMRAY( Tid)da= S8 g (72)
which yields our result (L9). Noticing Pnally that in the'limit Rx& ' the dominant
contribution to the expansion in (19) comes from the termm.= 1 we thus arrive at the

asymptotic formula

| * | n

4 2 a laR
PMI(R) + 4 = LT R& ' ). 7
T (R) T DT R &P #7 ST (R& ') (73)

Figure 4 illustrates the behaviour of.the probability density functon Pt (R) and its
asymptotic forms for the three models."To emphasise the crossover behaviours as well
as the asymptotic forms of the probability density functions we show the results both
on linear and log-log scales. Note specibcally that while Models Il and Il exhibit a
suppression of the probability density:functions to zero in the limiR & 0, in Model |
a bnite value atR = 0 is reached.

In Pgure5 we compare the probability density functiond+ (M) and Pt (R) for the
three random dilusivity models.. Note the dilerent large-M asymptotic behaviours for
the dilerent models as discussed/ above. The analytical results are also confronted
with Monte Carlo simulationsis®These simulations were obtained with the Euler
integration scheme applied,tosthe Langevin equation4]. For each realisation an
independent Brownian metion run is generated to compute the dimensionless random
dilusivity throughithe specibc functional V(B:). In this way the two noises are
varied simultaneously-and independently. Perfect agreement with analytical formulas is
observed even for a_moderately large sampling with 10 000 realisations.

4.4. Relation between the moments of the maximum and of the range

We derive _a general expression for the moments of the range for the processe#l)n (
Tosthis end, 'we observe that for the three models studied here the probability density
function Py (R) can be formally written as
#
Pr(R)=4  #1)™'m?Pr(M = mR), (74)
m=1
where P+ (M) is the corresponding probability density function of the maximum. One
may expect that this relation is valid in general for an arbitrary process debned id)(
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Figure 4. “Praobability density function Pr(R) of the range and its smallR and large-
R asymptotic behaviours, for Model | (a,b) , Model 1l (c,d) , and Model Il (e,f),
plotted on linear (a,c,e) and log-log(b,d,f) scales. We seDy=1,T=1,a=1, and
Dg =1. Compare this behaviour to the Brownian limit in bPgure 1.

but we are not in the position to prove it here. Then, multiplying both sides of the
latter expression byRY we obtain, through a simple change of the integration variable,
the follewing intricate relation between the moments of the range and the moments of
the maximum,

RY) = 14 22 (g4 1) 1. (75)
In“particular, we get
(Rt)=2M 1) (76)
(R%) = 4ln((M 3), (77)
2
(R}) = %(M 9, (78)


Gianni Pagnini


O©CoO~NOOTA~WNPE

"0.R2 Page 22 of 32

Maximum and range of random dilusivity processes 22
10° 107
‘”‘*«-\\ (a) (b)
1072 Al—..l—l~—L!‘k..!--!'§.‘-'.L
g /= 107
& £
0% L Model T « Model I
Model IT = Model IT
Model IIT 5 107 Model 1T
106 Loy T 3 T T 3
10 10 10 10 10 10
M R

Figure 5. Comparison of the probability density functions Pr(M) (a) and Pt (R)
(b) for the three random dilusivity models. Solid lines'show the analytical formulas
whereas symbols represent the empirically renormalised histograms obtained from
Monte Carlo simulations with 10* runs (time step 100?). We set Do = 1, T = 100,
a=1,andDg =1.

and so on. While the brst relation 76) is,obvious, relations 77) and (78) are non-trivial
results. Lastly, comparing 76) and (50), we arrive at (42), which we presented without
a derivation in the previous section.

As a direct consequence @f,relation7g) we can write down exact closed-form
expressions for the moments of the-range of arbitrary (not necessarily integer) order. In
turn, the latter permit us to evaluate the coe"cients of variation of the distributions of
the range. *For Model | we bPnd

13In(2) # 16

16 ’
which is about 30 per eent smaller than the coe"cient of variation 27) of the
corresponding distribution ofithe maximum. The coe"cient of variation of the range
for Model Il is giveg explicitly by

Vi) = 0/586, (79)

S e 1BZexp @'l 2)erP( T 2/ In(2) # exp’)
Vi = AInQ2) L exp(/ 4),  (80)
2erf( 1 2)
$
and, hence, grows as In(2)/2exp(/ 4) in the limit * & ' . This growth is

thus somewhat slower than for the corresponding coe"cient of vagationBG) of the
distribution, of the maximum due to the additional numerical factor In(2) , 0.833.
Lastly, for.Model 111 the numerical value of the coe"cient of variation of P{"' )(R) is

v ) 0635 (81)

I.e., isvagain somewhat smaller than the corresponding valuvﬁ” ) for the maximum,

equation (41). We thus conclude that distributions of the range in all thr&e models
under study arenarrower than the corresponding probability density functions of the
maxima.
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g 5. Typical behaviour of the probability density function of the maximum

6

7 As yet, our discussion of the averaged versus a typical behaviour coneerned only the
g maximum and the range themselves. The results fdP+(M) and Pt (R) we ‘have
10 presented so far correspond to a standard way of performing the averaging, ie.sWhen the
11 averaging is brst performed with respect to thermal histories at a bxed realisation of the
ig stochastic dilusivity processB; and then over all possible realisationsi@,. Conversely,
14 realisation-dependent distributionsP+ (M) and P+ (R) are evidently,random functions
15 themselves which Ructuate from one realisation &; to the next, and itis, of course,
is not clear a priori to which extent their brst moments, i.e., precisely?+(M ) and P1(R),

18 are representative of the actual behaviour of these propertiess, In principle, it may well
19 happen that Pt (M) and Py (R) are supported by someatypical, rare realisations &;

32 which nonetheless provide a dominant contribution.to their,values. If true, in order
2 to observe our predictions forPr (M) and Pt (R) one may. need very large statistical
23 samples. Note that in Pgures we presented a conyincing evidence for the predicted
3‘5‘ functional forms but the number of realisations, usedsto perform the averaging was
26 su"ciently high, 10*. That may not be the case for experimental studies for which such
27 a large number is beyond reach.

;g Following the analysis of a typical kinetic behaviour in the so-called target problem
30 with respect to RBuctuations in the starting poipts of searchers (see Re¥4 and the
31 recent Ref. 75)), we concentrate onthe properties debned i), Here, one brst performs
gg an averaging over thermal histories at a bxed realisation &; and then averages the
34 logarithm of the realisation-dependent probability density over all possible realisations
35 of B;. Because the logarithmgis,a slowly-varying function of its argument, one expects
36 that its averaged behaviour is #ather insensitive to rare anomalous realisations and is
g; thus representative of a,typieal behaviour which should be observed for a majority of
39 trajectories B¢, or seen for small statistical samples. The resulting expression is then
j‘i exponentiated to produce anestimate of typical distributions. We will be concerned here
42 only with the typical behaviour of the distribution of the maximumNthe analysis of the

43 typical distribution“of, the range appears to be somewhat more involved and lengthy,
44 but we do not«expect any. signibPcant new features, as compared to the behaviour of the
jg maximum.

47 Recalling that for any given realisation og/Bt, the probability density function

jg Pr(M)s given by ) with DoT replaced byD, , V(B;)dt, we then have that

50 & | ' " : ,

51 (In(Ps (M)/p)) = P p?Do ' V (By)dt ( # Yo M* (82)

2 2 0 Do , V(B)dt 4

54

55

56

57

58

59
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and hence,
) &t (
(typ) N 1 > !
PP (M) = plr=exp # > In p’Do  V(By)dt
1 M 2
% — . (83)

Do , V(B)dt 4

Integrating the latter expression overM we Pnd that the normalisation is given by

12 I & " "

L !
Ny = 04 exp = In p°D V (By)dt 84
M Do zrV(Bt)dt p > PDo . (BY) (84)

such that, eventually, we have the following estimate of the,typical behaviour

+
MZ

Oy -+ - (89
Dorg V (By)dt

'y U2 ) A ;

exp

.
PO (M) = 1= —o
T T Dy, V(B

Therefore, ye arrive at the conclusion that if the Prst inverse moment of the random
variable Do , V(B:)dt exists, the distribution PT(typ) (M) is a Gaussian function, similar
to the case of a standard @rownian motionyd), with a variance that is reciprocal to
the negative moment oD, , V(B,)dt. Both results become identical, of course, when
V(By)=1. %

The prst inverse moment oD, , V{(B;)dt can be calculated straightforwardly by
simply integrating "( T;$) in (8) over$ from zero to inPnity. In doing so, we realise that
for Model | this negative momentidoes not exist, becaudé T;$) decays as/  $ in the
limit $ &' (see 65) and hence, the gptegral diverges at the upper integrationrhit.
On the other hand, the,average,ct/(Do , V(B:)dt) over anyPnite statistical sample of
trajectories B, is evidently Pnite and hence, in virtue of 85) for such samplesPT(typ) (M)
should have a Gaussiamyshape. In bguéewe compare the ensemble-average'd')(M)
(Eq. (11), solid eurve) andP®” (M) (Eq. (85), dashed curve) against an empirical
histogram obtained from<Monte Carlo simulations with100 realisations of trajectories
B; only, i.e. for a statistical sampld;erwhich isL00times less than the one used to produce
Pgure 5. Notethat here (1/ (Do , V(B)dt)) is evaluated numerically by averaging
over thissPnite setrof realisations. We observe that for su”ciently small values d¥l ,
(i.e. those close to the most probable value ®fl ), for such a moderately small sample
the estimate PT(typ) (M) indeed agrees with the numerically evaluated distribution better
than P{)(M). For larger values ofM , however, the Gaussian tail oP{"’ (M) seems to
be closer to the numerical curve than that oPT(typ) (M) even for such a small sample.
Uponan i[,ycrease of the number of realisations 8f;, we get progressively bigger values
of (W(Do , V(B:)dt)) and therefore the variance in the Gaussian function in8¢)
vanishes meaning thatPT(typ) (M) converges to the delta-function, while the Gaussian
tail of PT(')(M) is characterised by a Pnite variance. This implies that for progressively
larger statistical samplesPT“yp) (M) may describe correctly the shape of the numerically
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g evaluated distribution only in a close vicinity ofM = 0, while for the almost entire

6 range of variation ofM the ensemble-averaged distributiorIPT(')(M) should provide an

; accurate estimate of the actual bera/aviour (see bgube.

9 The prst inverse moment oD, , V(By)dt is Pnite for both Models Il :and Il For
10 Model Il we have

11 : : ' I y

12 1 _ Dg lz” 7 DgT,

ii DO'}’;r VB = 2aD, zdzcoth > exp # 42 z- (86)
ig where the integral in the right-hand-side is Pnite for any pniteéyvalue of the parameter
17 DgT/4a%. The latter integral cannot be performed exactlyabut its"behaviour can be
18 : -

19 readily understood by noticing that for anyz % 0 we have

20 -

21 2/ zeoth 2 4 2+ 2, (87)
22 ! 2 !

23 _ %y

24 As a consequence, we Pnd that the Prst inverse moment@§ , V(B:)dt obeys the
25 following two-sided inequality

2 R JRP I Vi R

28 L D %rl j ok Pe, L, (88)
gg aDo IT Do , V(By)dt aDg T DT

31 Inthe limit T &' these bounds beeome sharp and hence, debne the leading behaviour
gg of the prst inverse moment exactly. %

34 For Model 11l the Prst inversesmoment ofD, , V(B:)dt has the simpler form

35 : :

36 : y .

37 Y S R ) (89)
38 Do , V(By)dt 2DgDg T 0 coshg)

39

40 Comparison of our. analytical predictions for the ensemble-averaged and the typical
j; behaviours for Madels 1l and Ill against the histograms obtained from Monte Carlo
43 simulations with just, 100realisations of the stochastic procedB; is presented in bgure
44 6. Here, for PT(typ) (M )"we used our result in 85 with the respective variance given by
jg our analytical expressions‘in §6) (Model 1) and (89 (Model Ill). We observe that for
47 Model Il for small values ofM again PT(typ) (M) provides a better estimate of the actual
48 behaviour than PT(” )(M )Nthe former predicts higher values of the probabilities while
gg the latter underestimates them: a trend that is conbPrmed by our numerical observations.
51 Thissis not'the case for larger values dfl. Perhaps somewhat surprisingly, the heavy
52 log-normal tail of PT(” )(M) appears in a good agreement with numerics even for such
gi a moderately small sample size for values M as large aslC. In turn, for Model Il

55 there is no signipcant dilerence betwee®® (M) and P{"' (M) for small values of
56 M, a circumstance that does not permit to make any conclusive statement. On the
g; contrary, in the largeM domain, the ensemble-average resuIRT('” )(M) seems to be
59 more accurate.
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Figure 6. Comparison of the probability density:functions P+ (M) (solid curves) and
the estimate PT(typ) (M) from (85) of the typical behaviour(dashed curves) for the three
random dilusivity models. Symbols represent the empirically renormalised histograms
obtained from Monte Carlo simulations with 10% xuns (the time step of 10' 2). We set
Do=1,T=100,a=1,andDg =1.

6. Conclusion

Deviations from standard Brownian motion have been measured in a vast range of
systems, starting with Richardson®@sacubic law for the relative dilusion of tracers in
turbulent media in 1926 B7]. Such "anomalous di'usion” has given rise to a rich variety

of statistical models accounting forwarious physical aspects electing deviations from
standard Brownian motion B8ERJ]. As a particular case, random dilusivity models were
introduced in the context of the modelling of complex measured NMR signa®&l]. The
randomness of the dilusivity can'be assumed to be due to an inhomogeneous particle
ensemble in a homogeneous.environment, or due to identical particles in a heterogeneous
environment. When the dilusivity distribution is bxed in time the dynamics resulting
from such randomidilusivities is captured by the framework of superstatistic®p] or grey
Brownian motion,[93].“When particles move in quenched environments with Pnite pzn
sizes and specib¢ jump rules interesting dynamic elects and non-Gaussian phenomena
have recently been reveale®4, 95].

Originally devised to reproduce the observed crossover behaviour from non-
Gaussian to Gaussian displacement statistics in systems showing a Brownian scaling of
the _mean squared displacemen®§, 97|, dilusive processes withstochastically evolving
dilusivities\were devised as an "annealed" approach to the motion of the test particle in a
heterogeneous environment. Such dilusing dilusivity models with stationary dilusivity
dynamics were analysed in terms of the mean squared displacement and the displacement
distribution. Despite the di'erent formulations several core features turn out to be
robust among these model$f, 55 5769, 98).

Here we studied a stochastic process driven by white Gaussian noise, whose
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amplitude is being modulated by a stochastically varying dilusivityD; for three dilerent
choices: (I) cut-o! Brownian motion By with Dy " I( By); (II) Geometric Brownian
Motion, D; " exp(# B.); and (Ill) squared Brownian motion, D; " B?2. In‘contrast to
the above-mentioned dilusing dilusivity models, that are all Brownian, the three choices
here elect non-stationary dilusivity dynamics, and the resulting di'usien exhibits both
normal and anomalous di'usive scaling.

In the analysis we concentrated on the extremal properties in terms of the maximum
and the range of these three random dilusivity models. We obtain analytical expressions
for the probability density functions of the maximum and thefrange of the processes for
a given observation time. Our discussion reveals both similaritiesyand dilerences of the
extremal properties of these models among each other(as welhas compared to standard
Brownian motion. In particular, we unveil that Modell'shows signibcant dilerences
from Brownian motion while the small-maximum limit,of Model Il coincides exactly
with the Brownian behaviour. We also show that the distributions of the maximum are
generically broader than the distributions of‘'the range, as evidenced by the analysis of
the coe"cients of variation of the correspondingadistributions. Our discussion Pnally
unveils the dilerence between the ensemble and thetypical behaviour of the probability
density functions, an important ingredient forthe analysis of Pnite-sized data sets.

The analysis of given stochastic timesseries representing a set of trajectories of
dilusing test particles has moregecently received considerable attention. A number of
statistical observables has been intreduced and discussed (see, €89,90,99 10Q) to
allow the physical classibcation ©f recorded data. For instance, it has been shown how
to use Bayesian maximum likeliheed101,102 or machine learning 103 104 to classify
a measured system and extractits physical parameters. Specibcally, the power spectral
analysis of single, Pnite-length'trajectories was shown to distinguish dilerent forms of
random dilusivity models [53]. A 'more recent twist on data analysis of stochastic
processes uses large-deviation approaches, for instance, for the time averaged mean
squared displacementjo5 106.

While it is pot surprising that the extreme value behaviour encoded in the
probability density functions of the maximum and the range studied here was shown to
distinguish the three, quite di'erent, random dilusivity models investigated here, we
also demonstrated that the rectibed Brownian motion of Model | exhibits signipcant
di'lerences,,to standard Brownian motion. It should therefore be interesting to
investigate whether these two distributions allow one to distinguish between the dilusing
dilusivity:models encoding Brownian yet non-Gaussian motiong4, 55,5769, and how
these measures change for projections of higher dimensional versions of these models.
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