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Abstract. We study the extremal properties of a stochastic processxt deÞned by
the Langevin equation úxt =

!
2Dt #t , in which #t is a Gaussian white noise with

zero mean andDt is a stochastic "di!usivity", deÞned as a functional of independent
Brownian motion Bt . We focus on three choices for the random di!usivity Dt : cut-o!
Brownian motion, Dt " !( Bt ), where !( x) is the Heaviside step function; Geometric
Brownian Motion, Dt " exp(# Bt ); and a superdi!usive process based on squared
Brownian motion, Dt " B 2

t . For these cases we derive exact expressions for the
probability density functions of the maximal positive displacement and of the range of
the processxt on the time interval t $ (0, T). We discuss the asymptotic behaviours
of the associated probability density functions, compare these against the behaviour
of the corresponding properties of standard Brownian motion with constant di!usivity
(Dt = D0) and also analyse the typical behaviour of the probability density functions
which is observed for a majority of realisations of the stochastic di!usivity process.

1. Introduction

The statistics of extreme values (EVs) of stochastic processes has been in the focus of
extensive research in the mathematical (see, e.g., [1Ð3]) and physical (see, e.g., [4Ð15])
literature over several decades. More recently, EV properties have also received attention
in the areas of mathematical Þnance [18,19] in which stochastic processes represent one
of the main components in the modelling of the dynamics of asset prices, of computer
science [20,21], as well as of the analysis of "records" of di!erent kinds [19,22,23]. Apart
from "simple" EV problems asking for the maximum behaviour of a variable, "dual"
EVs of the min-max and max-min families are relevant in game theory [24] or reliability
engineering [25], for which a universal Gumbel limit law emerges [26,27].
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Maximum and range of random di!usivity processes 2

Typically, one computes several types of EVs, which are either interrelated or
independent of each other, and hence, provide complementary information about the
processxt under consideration. Commonly considered EVs are, for instance, the
persistence probability for not crossing the initial valuex0 of the process [10], the related
probability that the process does not reach a given threshold or a given point in space
up to time t (i.e., the "survival" probability) [ 5], or the Þrst-passage time to a given
threshold or spatial location [4Ð10, 13Ð15]. For one-dimensional processes, one often
considers the maximal positiveM or negativeM displacements and the rangeR (also
called the span or the extent) ofxt (here and henceforth we assume thatx0 = 0) on a
given time interval:à

M T = max
0! t! T

{ xt } % 0, M T = # min
0! t ! T

{ xt } % 0, R T = M T + M T % 0. (1)

Here T represents the length ("observation time") of the time seriesxt under
consideration. When a random processxt evolves on a one-dimensional lattice, the
rangeR deÞnes another important property, namely, the number of distinct visited sites
up to time T [28]. We also note that complementary characteristics of extremal values
of Brownian motions such as the distribution of times between minima and maxima has
been evaluated recently [29,30].

Knowledge of the EV statistics is conceptually important for the understanding of
various facets of the stochastic processxt and is relevant for diverse physical phenomena
and also in applications in Þnance, sociophysics and biology, since EVs often trigger
a particular response of the system. A prominent application is molecular chemical
reaction kinetics, in which a di!using molecule hits a reaction centre [31]. For instance,
during gene regulation a protein needs to di!usively search a speciÞc binding site on
the cellular DNA [32]. Recent research demonstrated that for typical biochemical
situations with extremely low reactant concentrations knowledge beyond mean chemical
rates [31] is essential, due to the signiÞcant separation of relevant time scales even in
simple geometries [33, 34]. Notably, geometry-control of reaction time scales in gene
regulation [35, 36] is closely related to the most likely reaction time [33, 34]. We also
mention that the knowledge of EVs is often very beneÞcial for a non-perturbative analysis
of complicated functionals ofxt , permitting for a construction of convergent bounds and,
hence, for obtaining non-trivial exact results [37Ð42].

Most of the available analyses pertain to the paradigmatic process of Brownian
motion, or to lattice random walks. In particular, the exact probability density function
PT (M ) of the maximal positive displacementM T of a one-dimensional Brownian motion
has already been derived exactly in the early work by LŽvy [1]: Denoting the di!usion
coe"cient as D0 and supposing thatt $ (0, T) one has

PT (M ) =
1

!
!D 0T

exp
!

#
M 2

4D0T

"
, (2)

à Note that these quantities are related to the caliper size or spanning diameter in polymer physics,
where these extension parameters, obtained from projection to a given axis, are used as a proxy for the
radius of gyration [16,17].
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Maximum and range of random di!usivity processes 3

normalised to the positive semi-axisM % 0, compare Þgure1. Subsequently, the
probability density function PT (R) of the range of Brownian motion was obtained [2]
(see also [43Ð45])

PT (R) =
4

!
!D 0T

"#

m= 1

(# 1)m+1 m2 exp
!

#
m2R2

4D0T

"

=
16D0T

R3

"#

m= 0

!
2! 2(2m + 1) 2D0T

R2
# 1

"
exp

!
#

! 2(2m + 1) 2D0T
R2

"
. (3)

These two series representations are exact and thus equivalent. The series in the Þrst
line highlights the asymptotic behaviour in the limit R & ' , while the one in the second
line is appropriate for the analysis in the small-R (or long-T) limit. Note also that while
PT (M = 0) is Þnite for any ÞniteT, the probability density function PT (R) abruptly
drops to zero whenR & 0, see the entire shape in Þgure1. Further on, more complicated
multivariate joint distributions of maxima, minima and the range were evaluated [7],
while correlations between maxima or between values of the range achieved on di!erent
time intervals were studied in [46Ð49]. A remarkable result has recently been obtained for
the distribution of the time instant at which the range of Brownian motion Þrst reaches
a prescribed value [50]. Concurrently a variety of Þrst-passage phenomena associated
with Brownian motion have been analysed using exact approaches [4Ð13]. On top of this
several accurate approximation schemes have been analysed, permitting one to consider
Þrst-passage events in rather complicated, experimentally-relevant geometries [51, 52].
However, the progress in the theoretical analysis of EV statistics for more general
processes, in particular, other than standard Brownian motion and especially non-
Markovian processes, remains limited, and typically only the behaviour of the expected
values of the EVs is known [4Ð10,13].

In this paper we derive exact compact expressions for the probability density
function PT (M ) of the maximal displacement and for the probability density function
PT (R) of the range for three random-di!usivity stochastic processes introduced recently
in [53]. In these models, the processxt evolves in a one-dimensional system according
to the Langevin equation

dxt

dt
=

$
2D0V(Bt ) "t , x0 = 0, (4)

where"t is standard white Gaussian noise with zero mean and covariance"t "t ! = #(t# t#),
D0 is a constant scale factor, andV(Bt ) is a dimensionless random di!usivity deÞned
as a functional of independent Brownian motionBt :

Bt=0 = 0, (Bt ) = 0, (BtBt! ) = 2DB min{ t, t #} , (5)

with the di!usivity DB . Here and henceforth, angular brackets denote averaging
with respect to all possible realisations of the Brownian motionBt , while the overline
corresponds to averaging over realisations of the white noise process"t . We note that
di!erent versions of the model in (4) corresponding to di!erent choices of the functional
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Maximum and range of random di!usivity processes 4
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Figure 1. Probability density functions of the extremal behaviour of standard
Brownian motion. Panels (a,b) show the Gaussian law (2) for the maximum M on
linear and log-log scales. Panels(c,d) show the probability density (3) for the range.
In all panels we depict the functions for the observation timesT = 1 and T = 2 . We
choseD0 = 1 .

V (Bt ) have been extensively studied in recent years within the context of di!usion
in complex heterogeneous environments [54Ð65], dynamics of particles involved in
polymerisation processes [66,67] which can be anomalous in the non-Stokesian limit [68],
as well as in the mathematical Þnance literature (see, e.g., [69]). We also mention that
stochastically varying di!usivities were identiÞed in simulations of di!using proteins
with ßuctuating shape [70], and switching between low and high mobility states was
observed in simulations of protein-crowded membranes [71] and the motion of tracer
particles in the cytoplasm of mammalian cells [72].

Following [53] we deÞne the three random di!usivity models under study hereas
follows:

(I) In Model I we consider the choiceV(Bt ) = !( Bt ) for the functional V , where
!( x) is the Heaviside step function with the property!( x) = 1 for x % 0 and zero
otherwise. In this model, the processxt undergoes standard Brownian motion once
Bt > 0, and it pauses at its current location wheneverBt is negative. Here, the mean-
squared displacement(x2

t ) = D0t shows Brownian behaviour, however, the di!usion
coe"cient is smaller by a factor of two than the di!usion coe"cient of standard Brownian
motion with V = 1.

(II) In Model II we choose V(Bt ) = exp( # Bt /a ), where a is a scale parameter of
dimension length. This choice forV(Bt ) corresponds to Geometric Brownian motion, as
assumed for the time evolution of an asset price in the paradigmatic Black-Scholes
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Maximum and range of random di!usivity processes 5

model [73]. In this model, di!usion is strongly anomalous and the mean squared
displacement has an exponential time dependence,(x2

t ) " exp(t).
(III) In Model III we choose V(Bt ) = B 2

t /a 2. Here, the processxt accelerates when
Bt goes away from the origin in either direction, and we are thus facing a superdi!usive
behaviour as the processxt in (4) exhibits a random ballistic growth with time.

We focus here on the generalisation of expressions (2) and (3), derived for Brownian
motion, to the above deÞned three models of random di!usivity. We thus seek the
exact expressions for probability density functions of the maximum and of the range,
respectively, deÞned as

PT (M ) = (PT (M )) , PT (M ) = #(M # M T ) (6)

and

PT (R) = (PT (R)) , PT (R) = #(R # R T ) , (7)

wherePT (M ) and PT (R) denote the probability density functions calculated for a given
realisation of Bt (and thus a given realisation of di!usivity). We note that the latter
realisation-dependent distributions are evidently given by expressions (2) and (3) with
D0T replaced by the integralD0

%T
0 V(Bt ) dt, implying that PT (M ) and PT (R) are,

respectively, a Gaussian function or an inÞnite sum of Gaussians with random variances.
As we proceed to show, the averaging over realisations ofBt can be performed exactly for
the three models under study and requires only the knowledge of the moment-generating
function "( T; $) of the random variableD0

%T
0 V(Bt )dt,

"( T; $) =
&

exp
!

# $D0

' T

0
V(Bt ) dt

"(
. (8)

This function can indeed be calculated exactly for many cases (see, e.g., [3, 21] and
references therein) and, in particular, for the models we study here. We proceed to show
that the averaged distributions, i.e.,PT (M ) and PT (R), exhibit a markedly di!erent
behaviour, as compared to the distributions in (2) and (3). We will compare these
predictions against the estimates of the "typical" behaviour of these distributions (see,
e.g. [74,75]),

P(typ)
T (M ) = pNM exp ((ln(PT (M )/p ))) , (9)

P(typ)
T (R) = pNR exp ((ln(PT (R)/p ))) , (10)

where NM and NR are normalisation constants, whilep is an irrelevant auxiliary
parameter of inverse length that is introduced to deal with dimensionless quantities
under the logarithm but cancels anyway. We will demonstrate that their functional
form is supported by some atypical realisations of the processBt .

The paper is organised as follows. In section2 we brießy summarise our main
results. In two subsequent sections3 and 4, we present the details of the derivations
of our main results, analyse their asymptotic behaviour and their moments, and also

Page 5 of 32 AUTHOR SUBMITTED MANUSCRIPT - NJP-112470.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Ac
ce

pt
ed

 M
an

us
cr

ip
t

Gianni Pagnini



Maximum and range of random di!usivity processes 6

estimate their e!ective broadness by calculating the coe"cients of variation of the
respective distributions. Additionally, we compare our analytical predictions with the
results of numerical simulations. Section3 is devoted to the maximum, in section
4 we consider the range. Next, in section5 for the example of the distribution of the
maximum, we will discuss its "typical" shape which should be observed for a majority of
realisations of the processBt (or for small statistical samples) and demonstrate that the
exact form obtained forPT (M ) (and for PT (R)) deÞned in (6) stems from some atypical
realisations of the stochastic di!usivity process. Concluding remarks are provided in
section6.

2. Main results

In this section we summarise our main results for the probability density functions
PT (M ) and PT (R), (6) and (7), for the three models under study. The parameters
entering these results were deÞned above in the description of our models.

2.1. Model I

For Model I we Þnd that

P(I )
T (M ) =

1
!

! 3D0T
exp

!
#

M 2

8D0T

"
K 0

!
M 2

8D0T

"
, (11)

where K 0(z) is the modiÞed Bessel function of the second kind of the zeroth order.
In turn, the exact probability density function P(I )

T (R) can be written in either of two
equivalent forms: (i) as we proceed to show, the analysis of the short-R behaviour (i.e.,
the behaviour of the left tail of the probability density function PT (R)) can be realised
from the following expression,

P(I )
T (R) =

8
! 2

"#

m= 0

1
(2m + 1)2

*
d2

dR2

!
R exp

!
#

! 2(2m + 1) 2D0T
2R2

"
I 0

!
! 2(2m + 1) 2D0T

2R2

" "
, (12)

whereI 0(z) is the modiÞed Bessel function of the Þrst kind; (ii) in turn, the behaviour
of the right tail is conveniently given by an alternative series expansion,

P(I )
T (R) =

4
!

! 3D0T

"#

m= 1

(# 1)m+1 m2 exp
!

#
m2R2

8D0T

"
K 0

!
m2R2

8D0T

"
. (13)

Expressions (12) and (13) are related to each other through the Poisson summation
formula.
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Maximum and range of random di!usivity processes 7

2.2. Model II

For Model II we obtain the following exact expression for the probability density function
of the maximum,

P(II )
T (M ) =

2a
$

!T (DB M 2 + 4D0a2)
exp

)

#
a2

DB T
arcsinh2

) *
DB

D0

M
2a

+ +

. (14)

The detailed discussion of its rather unusual asymptotic behaviour is presented in the
next section. In turn, the probability density function P(II )

T (R) of the range obeys the
exact expression

P(II )
T (R) =

%2

%R2

,
R# (I I )

T (R)
-

,

# (II )
T (R) =

16
! 3

"#

m= 0

1
(2m + 1)2

*
' "

0
exp

!
#

DB T
4a2

z2

"
cosh

, !z
2

-
K i z

)
2! (2m + 1) a

R2

*
D0

DB

+

dz , (15)

where K iz (x) is the modiÞed Bessel function of the second type of purely imaginary
order. This latter form is suitable for the analysis of the short-R behaviour (see section
4). An alternative form appropriate for the analysis of the large-R behaviour follows
from (15) via the Poisson summation formula and reads

P(I I )
T (R) =

8a
!

!T

"#

m= 1

(# 1)m+1 m2

$
(DB m2R2 + 4a2D0)

exp

)

#
a2

DB T
arcsinh2

) *
DB

D0

mR
2a

+ +

.

(16)

2.3. Model III

For Model III the probability density function of the maximum has the exact form

P(III )
T (M ) =

a
!

8! 3D0DB T

.

.

.

.$
!

1
4

+ i
aM

4
!

D0DB T

" .
.
.
.

2

, (17)

where$(z) is the Gamma function. The probability density function of the range admits
the exact expansion

P(III )
T (R) =

8
! 2

"#

m= 0

1
(2m + 1)2

%2

%R2

/

0
0
0
1

R

cosh1/ 2

!
2! (2m + 1)

!
D0DB T

aR

"

2

3
3
3
4

, (18)

which is suitable in the short-R limit, while the right tail of the distribution can be
accessed via an equivalent expansion,

P(III )
T (R) =

!
2a

!
! 3D0DB T

"#

m= 1

(# 1)m+1 m2

.

.

.

.$
!

1
4

+ i
maR

4
!

D0DB T

" .
.
.
.

2

. (19)

The rest of the paper presents the details of the derivations of our main results and a
discussion of their behaviour.
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Maximum and range of random di!usivity processes 8

3. Probability density function of the maximal displacement

We present the details of derivations of the exact expressions for the probability density
function PT (M ) summarised earlier in section2. We Þnd it expedient to base our
analysis here on the exact expressions for the Þrst-passage time densityH (t|M ) that
was derived for all three models under study in a recent paper [65]. An alternative
approach which takes advantage of the moment-generating function (8) will be used
later on in section5 and will permit us to access the typical behaviour of the probability
density.

Let ST (M ) denote the survival probability, i.e., the probability that the processxt ,
starting at the origin x0 = 0 at t = 0, does not reach a pointM > 0 within the time
interval t $ (0, T). This probability can be expressed as

ST (M ) =
' "

T
H (t|M )dt, (20)

where H (t|M ) is the probability density function of the event that the processxt

reached the pointM for the Þrst time at the time instant t. As a consequence, the
desired probability density functionPT (M ), which deÞnes the probability density that
the maximal positive displacement of the processxt within the time interval t $ (0, T)
is exactly equal toM obeys

PT (M ) =
dST (M )

dM
=

' "

T

dH (t|M )
dM

dt. (21)

In the case of standard Brownian motion (Dt = D0) the survival probability ST (M ) =
erf(M/

!
4D0T), where erf(x) is the error function, H (t|M ) is the celebrated Le«vy-

Smirnov distribution, and, eventually, PT (M ) is given by (2).

3.1. Model I

For Model I the Þrst-passage time density obeys [65]

H (I ) (t|M ) =
M

!
4! 3D0t3

exp
!

#
M 2

8D0t

"
K 0

!
M 2

8D0t

"
. (22)

Di!erentiating the latter expression with respect to M , inserting the result into (21)
and integrating it over t, we Þnd our compact expression (11). Note that the density in
(22) resemblesÑbut is not identical toÑthe density P(I )

T (M ).
Moreover, due to the presence ofK 0(z), the distribution of the maximum exhibits

a di!erent asymptotic behaviour in the limits of small and largeM as compared to
behaviour (2) of Brownian motion. From (11) the asymptotic limit M & ' produces
to leading order

P(I )
T (M ) +

2
!M

exp
!

#
M 2

4D0T

"
(M & ' ), (23)
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Maximum and range of random di!usivity processes 9

that is, the probability density decreases withM faster, due to the additional factor
1/M , than expression (2). For the opposite limit M & 0 we Þnd that

P(I )
T (M ) +

1
!

! 3D0T

!
ln

!
16D0T

M 2

"
# &

"
(M & 0), (24)

where & , 0.5772 is the Euler-Mascheroni constant. Expression (24) implies that
P(I )

T (M ) logarithmically divergesin this limit, while expression (2) remains bounded.
Overall we observe that the probability density function (11) is shifted towards smaller
M values compared to the distribution (2). In particular, the expected (with respect to
the distribution in (11)) value of the maximal displacement of the processxt in Model
I obeys

(M T ) =
4

! 3/ 2

$
D0T, (25)

i.e., it grows with T exactly at the same rate as the expected maximum of Brownian
motion, M B M

T = 2$
#

!
D0T, but has a slightly smaller prefactor (4/! 3/ 2 , 0.72 while

2/! 1/ 2 , 1.12). The expression in (25) can be generalised to derive the moments of the
maximum of the processxt for Model I of arbitrary, not necessarily integer orderq % 0,

(M q
T ) =

$2

!
q+ 1

2

"

! $
, q

2
+ 1

- (4D0T)q/ 2 . (26)

From this expression we also derive the coe"cient of variationv(I )
M of the distribution

(11):

v(I )
M =

5
(M 2

T ) # (M T )
2

(M T )
=

*
! 3 # 16

16
, 0.968. (27)

By deÞnition, this property measures the relative weight of ßuctuations around the mean
value. Hence, for Model I these ßuctuations are of nearly the same order as the expected
value itself, such thatP(I )

T (M ) is e!ectively broad [11,12]. Note that the distribution of
the maximum of a standard Brownian motion, (2), appears to be somewhat narrower;
there, the coe"cient of variation v(BM )

M =
$

(! # 2)/ 2 , 0.756 is smaller thanv(I )
M .

3.2. Model II

For Model II the exact expression for the probability density function of the Þrst-passage
time is given by [65]

H (I I ) (t|M ) =
a

!
!D B t3

arcsinh

)
M

2a
$

D0/ DB

+

* exp

)

#
a2

DB t
arcsinh2

)
M

2a
$

D0/ DB

++

. (28)
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Maximum and range of random di!usivity processes 10

Again, di!erentiating ( 28) over M and integrating the resulting expression overt, we
arrive at our result in (14). The small-M asymptotical behaviour of expression (14)
obeys

P(II )
T (M ) +

1
!

!D 0T
exp

!
#

M 2

4D0T

"
(M & 0). (29)

Rather surprisingly, this limiting behaviour is exactly the same as that of (2) for the
maximum of standard Brownian motion. In contrast, the large-M asymptotic behaviour
is very di!erent from that of standard Brownian motion and follows

P(II )
T (M ) +

2a
!

!D B TM
exp

)

#
a2

DB T
ln2

) *
DB

D0

M
a

+ +

(M & ' ), (30)

i.e., the right tail of the distribution P(II )
T (M ) is that of a log-normal distribution. In

view of such a "heavy" tail one expects that higher values ofM are more likely than in
case of a standard Brownian motion.

The moments of the distributionP(II )
T (M ) of arbitrary order q % 0 can be obtained

by a straightforward integration of expression (14), leading us to

(M q
T ) =

2
!

!

!
4a2D0

DB

" q/ 2 ' "

0
exp

6
# x2

7
8
sinh

! !
DB T
a

x
" 9q

dx

=
!

a2D0

DB

" q/ 2 "#

n=0

(# 1)n

!
q
n

"
exp

!
DB T
4a2

(q# 2n)2

"

*
!

1 + erf
! !

DB T
2a

(q# 2n)
" "

, (31)

where
6q

n

7
denotes the binomial coe"cient. Naturally, whenq is an integer the series is

truncated at n = q, as can be observed directly from the expression in the Þrst line of
(31). From (31) we have, in particular,

(M T ) =
!

4a2D0

DB

" 1/ 2

exp (' / 4) erf
6!

' / 2
7

,

(M 2
T ) =

1
2

!
4a2D0

DB

"
exp (' )

,
1 # exp (# ' )

-
,

(M 3
T ) =

1
4

!
4a2D0

DB

" 3/ 2

exp (9' / 4)

*
,

erf
6
3
!

' / 2
7

# 3exp (# 2' ) erf
6!

' / 2
7-

, (32)

and so on. Here we used the notation' = DB T/a 2. We observe that in the case of
Model II there is no unique time scale, in contrast to Model I (and also to Model III
below). This is a direct consequence of the fact that the right tail ofP(II )

T (M ) decreases
with M slower than an exponential function, which gives rise to the behaviour speciÞc
to the so-calledstrongly anomalous superdi!usion for which a growth of the moments
with time is not characterised by a unique exponent (see, e.g., [76Ð78]).
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Maximum and range of random di!usivity processes 11

The Þrst two expressions in (32) permit us to evaluate the coe"cient of variation
v(I I )

M of the probability density function P(II )
T (M ) in (14):

v(I I )
M =

5
1 # 2exp (# ' / 2) erf2(

!
' / 2) # exp(# ' )

!
2erf(

!
' / 2)

exp (' / 4) . (33)

Remarkably, v(II )
M diverges exponentially,v(II )

M + exp(' / 4)/
!

2 as ' & ' (i.e., the
observation time T tends to inÞnity). This signiÞes that moments of arbitrary order
are not representative of the actual behaviour and knowledge of the full distribution
P(II )

T (M ) is crucial.

3.3. Model III

Lastly, for Model III the Þrst-passage time density is [65]

H (I II ) (t|M ) =
aM

2
!

2! 3D0DB t2

.

.

.

.$
!

1
4

+
iaM

4
!

D0DB t

" .
.
.
.

2

. (34)

Di!erentiating this expression with respect to M and integrating over t, we arrive at
our result in (17).

For small M , the Gamma function in (17) tends to a constant (with corrections of
order O(M 2)), and hence, one has

P(III )
T (M ) =

a$2(1/ 4)
!

8! 3D0DB T

6
1 + O

6
M 2

77
(M & 0). (35)

In turn, for M & ' , the asymptotic behaviour ofP(III )
T (M ) is given by

P(III )
T (M ) +

!
2a

!
!

D0DB TM

" 1/ 2

exp
!

#
!a

4
!

D0DB T
M

"
(M & ' ), (36)

i.e., the right tail of the probability density function of the maximal displacement is
an exponential function and hence, is also "heavier" than the Gaussian tail of the
corresponding probability distribution of the maximum of standard Brownian motion.
Evidently, expression (17) also favours higher values of the maximumM than the
probability density function (2).

The moments of the distribution (17) obey

(M q
T ) =

!
4
!

D0DB T
a

" q

f q, (37)

where the dimensionless numerical amplitudef q is given by

f q =

*
2
! 3

' "

0
xq

.

.

.

.$
!

1
4

+ ix
" .

.

.

.

2

dx . (38)
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Maximum and range of random di!usivity processes 12

! " # $ %&

%

!

'

"

Figure 2. Amplitude f q in (37) from (38) as a function of q. See discussion in text.

We were unable to perform the integral in the latter equation and, hence, to derive
an explicit expression forf q, except for the particular case whenq is an even integer,
q = 2n. In this latter case, f q is given by

f 2n = ( # 1)n

)
d2n

dz2n

1
$

cosh(z/ 2)

+ .
.
.
.
.
z=0

=
A n

23n
, (39)

whereA n are integers forming SloaneÕs sequenceA126156[79]. In particular,

f 0 = 1, f 2 =
1
8

, f 4 =
7
64

, f 6 =
139
512

. (40)

The numerical factor f q as a function ofq is depicted in Þgure2. We realise that f q

turns out to be a non-monotonic function ofq. Lastly, we estimate numerically the
value of the coe"cient of variation of P(III )

T (M ) to get

v(III )
M , 1.012, (41)

implying that ßuctuations around the mean value of the maximum exceed the latter
such that the distribution is e!ectively broad.

Figure 3 presents the exact probability density functionsPT (M ) (solid curves)
and their asymptotic forms (dashed and dash-dotted curves) for the three models,
highlighting the ranges of validity of the small-M limit as well as the onset of the large-
M asymptotic behaviours. The results are shown on both linear and log-log scales, to
highlight the asymptotic behaviour as well as the respective crossovers. Note speciÞcally
the divergence ofPT (M ) in the limit M & 0 for Model I.

3.4. Relation between the moments of the maximum and of the random di!usivity

To close this section we present a general relation between the moments of the maximum
and the moments of the random variableD0

%T
0 V(Bt )dt,

(M q
T ) =

2q

!
!

$
!

q+ 1
2

" : !
D0

' T

0
V(Bt )dt

" q/ 2
;

, (42)
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Maximum and range of random di!usivity processes 13
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Figure 3. Probability density function PT (M ) of the maximal displacement along
with the small-M and large-M asymptotic behaviours for Model I (a,b) , Model II
(c,d) , and Model III (e,f ) , plotted on linear (a,c,e) and log-log(b,d,f ) scale. We set
D0 = 1 , T = 1 , a = 1 , and DB = 1 . Compare this behaviour to the Brownian limit in
Þgure1.

which holds for arbitrary q % 0. This relation can be proven directly by using the
deÞnition in (21) and also a general expression for the Þrst-passage time distribution
presented in our previous work [65]. Below we will merely demonstrate the validity of
(42) by establishing a relation between the moments of the maximum and the moments
of the range. Using the standard "replica trick" we Þnd the following simple expression
that connects the typical behaviour of the maximum and the typical behaviour of the
random variableD0

%T
0 V(Bt )dt,

(ln (M T )) = lim
q% 0

1
q

,
(M q

T ) # 1
-

=
1
2

&
ln

!
D0

' T

0
V(Bt )dt

"(
#

&
2

, (43)
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Maximum and range of random di!usivity processes 14

where & is again the Euler-Mascheroni constant. In particular, in the special case
V(Bt) - 1 (i.e., when the processxt in (4) is standard Brownian motion), equation (43)
reproduces the known result

ln
,

M (B M )
T

-
=

1
2

(ln (D0T) # &) . (44)

4. Probability density function of the range

In this section, we Þrst present the arguments underlying the derivation ofPT (R) and
evaluate general expressions which highlight the short-R and large-R behaviour, i.e., the
left and right tails of PT (R), respectively. We then establish a general relation between
the moments of the range and the moments of the random variableD0

%t
0 V(Bt ) dt, which

also permits us to link the moments of the range and the moments of the maximum in
the random di!usivity processes. Lastly, we will concentrate on the particular cases and
evaluate the exact forms ofPT (R) for the three models under study.

The probability density function of the rangeR of the process (4) can be evaluated
by writing down the corresponding Fokker-Planck equation for the position probability
density function %(x, t ) (in which the di!usion coe"cient Dt is a random function of
time), appropriately rescaling the time variable and then solving the resulting di!usion
equation subject to adsorbing boundary conditions. The steps involved in this approach
are well described, e.g., in [43Ð45]. In this procedure we Þnd thatPT (R) can be
conveniently represented by two alternative forms, one of which is suitable for the
analysis of the small-R behaviour of the probability density function of the range, while
the second one is adapted to the large-R asymptotic behaviour.

In the Þrst casePT (R) is given by

PT (R) =
%2

%R2
(R# T (R)), (45)

with

# T (R) =
8
! 2

"#

m= 0

1
(2m + 1)2

"
6
T; ! 2(2m + 1) 2/R 2

7
, (46)

and where"( T; $) is the moment-generating function which is deÞned earlier in (8). We
note that in virtue of ( 46) the knowledge of an exact form (8) of " (T; $) appears to be the
key ingredient for Þnding exact forms ofPT (R) (see also [62] for the role of this function
for the analysis of the Þrst-passage time densities). In turn, the large-$ tail of "( T; $)
(corresponding to such realisations ofBt when D0

%T
0 V(Bt )dt is small) is responsible

for the behaviour of# T (R) in the limit when R & 0. We proceed to show that such
a behaviour can be markedly di!erent depending on how fast"( T; $) vanishes when
$ & ' . In this sense, the three models under study provide representative examples of
di!erent kinds of such a behaviour: in Model I the moment-generating function"( T; $)
vanishes as a power-law when$ & ' and PT (R) approaches a constant value asR & 0,
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Maximum and range of random di!usivity processes 15

while for both Models II and III "( T; $) " exp(#
!

$) in the leading order in the limit
$ & ' , and ln PT (R) exhibits a singular behaviour of the formln PT (R) " # 1/R .

In the second case, the form appropriate for the analysis of the large-R behaviour
can be obtained by the Poisson summation formula

PT (R) =
4

!
!D 0

"#

m= 1

(# 1)m+1 m2

:

exp

)

#
m2R2

4D0
%T

0 V(Bt )dt

+

/

< ' T

0
V(Bt )dt

;

.

(47)

Further on, using the integral identity

exp
6
# c2/ (4b)

7
/
!

b=
2

!
!

' "

0
exp

6
# bq2

7
cos (cq) dq , (48)

we cast (47) into the form

PT (R) =
8
!

"#

m= 1

(# 1)m+1 m2
' "

0
cos(mRq)"( T; q2)dq. (49)

In case of standard Brownian motion the latter expression reduces to the series in the
Þrst line in (3). One observes that in the limit R & ' the integral in the latter
expression is dominated by the behaviour of"( T; q2) in the vicinity of q = 0, which
corresponds to the small-$ asymptotic behaviour of the moment-generating function in
(8) (and hence, to such realisations ofBt for which D0

%T
0 V(Bt )dt is large). However, we

Þnd 1# "( T; q2) = O(q2) for Models I and III (while for Model II there are logarithmic
corrections to the q2-dependence), meaning thatPT (R) decays su"ciently fast in all
three models to ensure the existence of all moments. Hence, the precise form of the
large-R tails of PT (R) cannot be, in principle, deduced from the small-q expansions of
"( T; q2) and we have to perform the corresponding integrals explicitly. In doing so,
we will demonstrate below that the large-R tails of PT (R) are markedly di!erent in all
three models.

Relation (49) between PT (R) and the moment-generating function"( T; $) of
D0

%T
0 V(Bt )dt implies a simple and quite general relation between the moments of

the range and the moments of the latter random variable. Indeed, multiplying both
sides of (47) by Rq (q % 0) we Þnd that whenever the moments ofD0

%T
0 V(Bt )dt exist,

the following relation holds

(R q
T ) =

' "

0
Rq PT (R)dR

=
4 (2q # 4)

!
!

$
!

q+ 1
2

"
( (q# 1)

: !
D0

' T

0
V(Bt )dt

" q/ 2
;

, (50)

where ( (z) is the Riemann zeta function (note that forq = 0, 1, 2, one has to take the
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Maximum and range of random di!usivity processes 16

limit as q approaches one of these integer values). For instance, we Þnd

(R T ) =
4

!
!

: !
D0

' T

0
V(Bt )dt

" 1/ 2
;

, (51)

(R 2
T ) = (8 ln 2)

&!
D0

' T

0
V(Bt )dt

"(
, (52)

and so on. Next, resorting again to the usual "replica trick" we also deduce from (50) a
linear relation between the averaged logarithm of the range and the averaged logarithm
of D0

%T
0 V(Bt )dt, which thus connects the "typical" behaviour of these two random

variables,

(ln R T ) = lim
q% 0

1
q

,
(R q

T ) # 1
-

=
1
2

&
ln

!
D0

' T

0
V(Bt )dt

"(
# 1 # &/2 #

4
3

ln 2 + 12 ln A

,
1
2

&
ln

!
D0

' T

0
V(Bt )dt

"(
+ 0.7723. (53)

In (53) A , 1.2824 is GlaisherÕs constant Ð a mathematical constant related to the
asymptotical behaviour of the BarnesG-function (double Gamma-function) [80]. The
latter emerges, e.g., in the normalisation of the joint distributions of eigenvalues in
Gaussian ensembles of the Random Matrix Theory and, hence,A plays an important
role in the asymptotic analysis of some characteristic properties of such ensembles (see,
e.g., [81]).

We emphasise that (50) and (53) are general formulae which are valid for any
positive functional V(Bt ) of Brownian motion Bt . In particular, they also hold in the
trivial case whenV(Bt ) - 1, i.e., whenR T = R (BM )

T , the range of standard Brownian
motion. For this latter case expression (53) yields the following result for the typical
rangeR(BM )

typ of standard Brownian motion,

R(BM )
typ = aexp

!
ln

,
R (B M )

T /a
- "

=
A12

24/ 3 exp(1 + &/2)

$
D0T , 2.1647

$
D0T, (54)

wherea is an auxiliary length scale which was introduced in order to get dimensionless
units. While the scaling of the typical range with

!
D0T appears quite intuitive, the

proportionality factor , 2.1647 in (54) is rather nontrivial. In particular, its relation
to the GlaisherÕs constantA is surprising. Note that the expected value of the range in
(51) also scales as

!
D0T, but the proportionality factor 4/

!
! , 2.2568 is somewhat

larger. As a consequence, for most of realisations of trajectories of standard Brownian
motion their ranges appear to be smaller than the range averaged over all realisations,
which implies that some less probable, atypical realisations dominate the value of the
range. This, in turn, implies that even in the case of simple standard Brownian motion
the knowledge of the full probability density function of the range is vital.

We now evaluate explicit expressions forPT (R) for the three models of random
di!usivity presented in section 2 and discuss their asymptotic behaviour.
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Maximum and range of random di!usivity processes 17

4.1. Model I

In Model I we haveV(Bt ) = !( Bt ) and, hence, the exponential function of
%T

0 !( Bt )dt
in (46) is simply the moment-generating function of the occupationtime of Brownian
motion on a positive half-axis in the time interval(0, T). Explicitly one has (see [53] for
more details)

"( T; $) = exp ( # $D0T/ 2) I 0 ($D0T/ 2) , (55)

such that

# (I )
T (R) =

8
! 2

"#

m= 0

1
(2m + 1)2

exp
!

#
! 2(2m + 1) 2D0T

2R2

"
I 0

!
! 2(2m + 1) 2D0T

2R2

"
.

(56)

The latter expression together with (45) yields our result (12).
The small-R behaviour of # (I )

T (R) and, hence, of the probability density function
P(I )

T (R) can be derived directly from (56) by taking advantage of the asymptotic
expansion

exp (# x) I 0(x) +
1

!
2! 3x

"#

k= 0

$2(k + 1/ 2)
k!(2x)k

, (57)

which holds for large values of the argumentx. Inserting this expansion into (56) and
performing the summation overm we Þnd

# (I )
T (R) +

8R
! 9/ 2

!
D0T

"#

k= 0

6
1 # 2& 3& 2k

7 ( (3 + 2k)$2(k + 1/ 2)
k!

!
R2

! 2D0T

" k

. (58)

By virtue of expression (45) the asymptotic small-R expansion forP(I )
T (R) is obtained

from (58) by merely multiplying the latter by R and di!erentiating the resulting
expression twice with respect toR. In doing so we arrive at a rather curious conclusion
that, in contrast to the behaviour of the probability density function of the range of
standard Brownian motion, P(I )

T (R) does not vanish in the limit R & 0 but rather
approaches the non-trivial constant value

P(I )
T (R) +

14( (3)
! 7/ 2

!
D0T

(R & 0). (59)

Therefore, despite the fact that the processxt in Model I exhibits the "di!usive"
behaviour (x2

t ) = D0t, its rather intricate character causes signiÞcant departures from
the behaviour of standard Brownian motion Ð here, the fact thatxt may pause at the
origin for a random time (having a broad distribution without even the Þrst moment)
onceBt goes initially to negative values, entails a Þnite value of the probability density
at R = 0. This behaviour is also in line with the divergence ofP(I )

T (M ) in the limit
M & 0. Note that in (59) the amplitude decays as the inverse square root ofT.
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Maximum and range of random di!usivity processes 18

To construct the asymptotic large-R expansion of P(I )
T (R) we turn to the

representation in (49). Using (55) we then have
' "

0
cos(mRq)e& D 0T q2/ 2I 0

!
D0T

2
q2

"
dq =

1
!

4! D0T
exp

!
#

m2R2

8D0T

"
K 0

!
m2R2

8D0T

"
, (60)

and, hence,P(I )
T (R) is cast into the form in (13). The leading, large-R behaviour is

provided by the Þrst term in the series in the latter equation,

P(I )
T (R) +

8
!R

exp
!

#
R2

4D0T

"
(R & ' ), (61)

i.e., the right tail of the distribution P(I )
T (R) vanishes faster than a Gaussian function

due to the additional factor 1/R .

4.2. Model II

In Model II the dimensionless di!usivity is governed by Geometric Brownian motion:
V(Bt ) = exp( # Bt /a ). In this case, one has (see [82] and also [83,84])

" (T; $) =
2
!

' "

0
exp

!
#

DB T z2

4a2

"
cosh

, !z
2

-
K i z

,
2a

$
$D0/ DB

-
dz. (62)

Combining (62), (45) and (46), we thus arrive at our result (15). The small-R asymptotic
behaviour of # (II )

T (R) and, hence, ofP(II )
T (R) (see (15)) can be conveniently accessed

by taking advantage of the Kontorovich-Lebedev-type representation in (62). Using the
large-x expansion

K iz (x) =

*
!
2x

exp(# x)
!

1 #
1 + 4z2

8x
+

(1 + 4z2)(9 + z2)
2!(8x)2

+ O
!

1
x3

" "
, (63)

we Þnd from (46) that # (I I )
T (R) (see (15)) admits the following form in the limit R & 0,

# (I I )
T (R) =

8
! 2

!
2aR

!
!

D0DB T

" 1/ 2

exp
!

! 2a2

4DB T

" "#

m= 0

1
(2m + 1)5/ 2

* exp

)

#
2! (2m + 1) a

R

*
D0

DB

+ =

1 #
' 2 + 8 ' + 4! 2

8' 2

R
2! (2m + 1) a

*
DB

D0

+
9' 4 + 80' 3 + 192' 2 + 40! 2' 2 + 192! 2' + 16! 4

128' 4

)
R

2! (2m + 1) a

*
DB

D0

+ 2

+ O
!

R3

(2m + 1)3

" >

, ' =
DB T

a2
. (64)

We notice next that the leading in theR & 0 behaviour is provided by the term with
m = 0. As a consequence, we arrive at the asymptotic formula

P(II )
T (R) + 32

!
4D 3

0

! 2D 5
B T2

" 1/ 4 , a
R

- 5/ 2
exp

)
! 2a2

4DB T
#

*
D0

DB

2! a
R

+

(R & 0). (65)
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Maximum and range of random di!usivity processes 19

Therefore, in Model II the probability density function vanishes asR & 0, in contrast
to Model I. Note also that the essential singularity in Model II is somewhat weaker,
ln P(II )

T (R) . 1/R , as compared to the singular behaviour speciÞc to standard Brownian
motion, for which one hasln P(BM )

T (R) . 1/R 2, see (3).
The analysis of the large-R asymptotic behaviour of P(II )

T (R) hinges on the
expansion (49). Inserting (62) into ( 49) and evaluating the two-fold integral

2
!

' "

0
exp

!
#

DB T
4a2

z2

"
cosh

, !z
2

- ' "

0
cos(mRx)K iz

)

2a

*
D0

DB
x

+

dx dz

=
!

!a
$

(DB m2R2 + 4a2D0) T
exp

)

#
a2

DB T
arcsinh2

) *
DB

D0

mR
2a

+ +

, (66)

we Þnd that expression (49) for Model II admits the explicit form in ( 16). Inspecting
the latter formula we notice that the dominant large-R behaviour is provided by the
term with m = 1. As a consequence, we get

P(II )
T (R) +

8a
!

!D B T R
exp

)

#
a2

DB T
ln2

) *
DB

D0

R
a

+ +

(R & ' ), (67)

whose form is nearly identical (apart from numerical factors) to the asymptotic result
(30) describing the right tail of the probability density function P(II )

T (M ).

4.3. Model III

In Model III the random di!usivity is given by V(Bt) = B 2
t /a 2 and the moment-

generating function is (see [53,85,86])

" (T; $) =
1

5
cosh(cT

!
$)

, c = 2
$

DB D0/ a2 , (68)

Hence, we Þnd that

# (III )
T (R) =

8
! 2

"#

m= 0

1
(2m + 1)2

1

cosh1/ 2

!
2! (2m + 1)

!
D0DB T

aR

" . (69)

The latter expression, together with (45) and (46), result in (18). The small-R
asymptotic behaviour ofP(III )

T (R) can be obtained directly from (69) by noticing that
the series converges very rapidly and the dominant behaviour is provided by the zeroth
term, i.e.,

# (III )
T (R) +

8
!

2
! 2

exp
!

#
!

!
D0DB T
aR

"
. (70)
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Maximum and range of random di!usivity processes 20

Substituting the latter asymptotic form into ( 45) and di!erentiating, we arrive at

P(I II )
T (R) +

8
!

2D0DB T2

a2R3
exp

!
#

!
!

D0DB T
aR

"
(R & 0), (71)

which shows thatP(III )
T (R) vanishes exponentially fast whenR & 0.

The large-R asymptotic behaviour of the probability density function of the range
in Model III can be determined as follows. Using again relation (68) we get

' "

0
cos(mRq)"( T; q2)dq=

1

2c
!

2! T

.

.

.

.$
!

1
4

+ i
mR
2cT

" .
.
.
.

2

, (72)

which yields our result (19). Noticing Þnally that in the limit R & ' the dominant
contribution to the expansion in (19) comes from the termm = 1 we thus arrive at the
asymptotic formula

P(III )
T (R) +

4
!

2
!

! (D0DB T2)1/ 4

*
a
R

exp
!

#
!aR

4
!

D0DB T

"
(R & ' ). (73)

Figure 4 illustrates the behaviour of the probability density function PT (R) and its
asymptotic forms for the three models. To emphasise the crossover behaviours as well
as the asymptotic forms of the probability density functions we show the results both
on linear and log-log scales. Note speciÞcally that while Models II and III exhibit a
suppression of the probability density functions to zero in the limitR & 0, in Model I
a Þnite value atR = 0 is reached.

In Þgure5 we compare the probability density functionsPT (M ) and PT (R) for the
three random di!usivity models. Note the di!erent large-M asymptotic behaviours for
the di!erent models as discussed above. The analytical results are also confronted
with Monte Carlo simulations. These simulations were obtained with the Euler
integration scheme applied to the Langevin equation (4). For each realisation an
independent Brownian motion run is generated to compute the dimensionless random
di!usivity through the speciÞc functional V(Bt ). In this way the two noises are
varied simultaneously and independently. Perfect agreement with analytical formulas is
observed even for a moderately large sampling with 10 000 realisations.

4.4. Relation between the moments of the maximum and of the range

We derive a general expression for the moments of the range for the processes in (4).
To this end, we observe that for the three models studied here the probability density
function PT (R) can be formally written as

PT (R) = 4
"#

m=1

(# 1)m+1 m2PT (M = mR), (74)

where PT (M ) is the corresponding probability density function of the maximum. One
may expect that this relation is valid in general for an arbitrary process deÞned in (4)
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Figure 4. Probability density function PT (R) of the range and its small-R and large-
R asymptotic behaviours, for Model I (a,b) , Model II (c,d) , and Model III (e,f ) ,
plotted on linear (a,c,e) and log-log(b,d,f ) scales. We setD0 = 1 , T = 1 , a = 1 , and
DB = 1 . Compare this behaviour to the Brownian limit in Þgure 1.

but we are not in the position to prove it here. Then, multiplying both sides of the
latter expression byRq we obtain, through a simple change of the integration variable,
the following intricate relation between the moments of the range and the moments of
the maximum,

(R q
T ) = 4

6
1 # 22& q

7
( (q# 1)(M q

T ). (75)

In particular, we get

(R T ) = 2(M T ) (76)

(R 2
T ) = 4 ln(2)(M 2

T ), (77)

(R 3
T ) =

! 2

3
(M 3

T ), (78)
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Maximum and range of random di!usivity processes 22

Figure 5. Comparison of the probability density functions PT (M ) (a) and PT (R)
(b) for the three random di!usivity models. Solid lines show the analytical formulas
whereas symbols represent the empirically renormalised histograms obtained from
Monte Carlo simulations with 104 runs (time step 10! 2). We set D0 = 1 , T = 100,
a = 1 , and DB = 1 .

and so on. While the Þrst relation (76) is obvious, relations (77) and (78) are non-trivial
results. Lastly, comparing (76) and (50), we arrive at (42), which we presented without
a derivation in the previous section.

As a direct consequence of relation (75) we can write down exact closed-form
expressions for the moments of the range of arbitrary (not necessarily integer) order. In
turn, the latter permit us to evaluate the coe"cients of variation of the distributions of
the range. For Model I we Þnd

v(I )
R =

*
! 3 ln(2) # 16

16
, 0.586, (79)

which is about 30 per cent smaller than the coe"cient of variation (27) of the
corresponding distribution of the maximum. The coe"cient of variation of the range
for Model II is given explicitly by

v(II )
R =

$
ln(2)

5
1 # 2exp (# ' / 2) erf2(

!
' / 2)/ ln(2) # exp(# ' )

!
2erf(

!
' / 2)

exp (' / 4) , (80)

and, hence, grows as
$

ln(2)/ 2exp(' / 4) in the limit ' & ' . This growth is
thus somewhat slower than for the corresponding coe"cient of variation (33) of the
distribution of the maximum due to the additional numerical factor

$
ln(2) , 0.833.

Lastly, for Model III the numerical value of the coe"cient of variation of P(III )
T (R) is

v(III )
R , 0.635, (81)

i.e., is again somewhat smaller than the corresponding valuev(III )
M for the maximum,

equation (41). We thus conclude that distributions of the range in all three models
under study arenarrower than the corresponding probability density functions of the
maxima.
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5. Typical behaviour of the probability density function of the maximum

As yet, our discussion of the averaged versus a typical behaviour concerned only the
maximum and the range themselves. The results forPT (M ) and PT (R) we have
presented so far correspond to a standard way of performing the averaging, i.e., when the
averaging is Þrst performed with respect to thermal histories at a Þxed realisation of the
stochastic di!usivity processBt and then over all possible realisations ofBt . Conversely,
realisation-dependent distributionsPT (M ) and PT (R) are evidently random functions
themselves which ßuctuate from one realisation ofBt to the next, and it is, of course,
not clear a priori to which extent their Þrst moments, i.e., preciselyPT (M ) and PT (R),
are representative of the actual behaviour of these properties. In principle, it may well
happen that PT (M ) and PT (R) are supported by some atypical, rare realisations ofBt

which nonetheless provide a dominant contribution to their values. If true, in order
to observe our predictions forPT (M ) and PT (R) one may need very large statistical
samples. Note that in Þgure5 we presented a convincing evidence for the predicted
functional forms but the number of realisations used to perform the averaging was
su"ciently high, 104. That may not be the case for experimental studies for which such
a large number is beyond reach.

Following the analysis of a typical kinetic behaviour in the so-called target problem
with respect to ßuctuations in the starting points of searchers (see Ref. [74] and the
recent Ref. [75]), we concentrate on the properties deÞned in (9). Here, one Þrst performs
an averaging over thermal histories at a Þxed realisation ofBt and then averages the
logarithm of the realisation-dependent probability density over all possible realisations
of Bt . Because the logarithm is a slowly-varying function of its argument, one expects
that its averaged behaviour is rather insensitive to rare anomalous realisations and is
thus representative of a typical behaviour which should be observed for a majority of
trajectories Bt , or seen for small statistical samples. The resulting expression is then
exponentiated to produce an estimate of typical distributions. We will be concerned here
only with the typical behaviour of the distribution of the maximumÑthe analysis of the
typical distribution of the range appears to be somewhat more involved and lengthy,
but we do not expect any signiÞcant new features, as compared to the behaviour of the
maximum.

Recalling that for any given realisation ofBt , the probability density function
PT (M ) is given by (2) with D0T replaced byD0

%T
0 V(Bt )dt, we then have that

(ln(PT (M )/p )) = #
1
2

&
ln

!
! p2D0

' T

0
V(Bt )dt

"(
#

:
1

D0
%T

0 V(Bt )dt

;
M 2

4
(82)
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and hence,

P(typ)
T (M ) = p

NM!
!

exp

)

#
1
2

&
ln

!
p2D0

' T

0
V(Bt )dt

"(

#

:
1

D0
%T

0 V(Bt )dt

;
M 2

4

+

. (83)

Integrating the latter expression overM we Þnd that the normalisation is given by

NM =

:
1

D0

%T
0 V(Bt )dt

; 1/ 2

exp
!

1
2

&
ln

!
p2D0

' T

0
V(Bt )dt

"("
(84)

such that, eventually, we have the following estimate of the typical behaviour

P(typ)
T (M ) =

1
!

!

:
1

D0
%T

0 V(Bt )dt

; 1/ 2

exp

)

#

:
1

D0
%T

0 V(Bt )dt

;
M 2

4

+

. (85)

Therefore, we arrive at the conclusion that if the Þrst inverse moment of the random
variable D0

%T
0 V(Bt )dt exists, the distribution P(typ)

T (M ) is a Gaussian function, similar
to the case of a standard Brownian motion, (2), with a variance that is reciprocal to
the negative moment ofD0

%T
0 V(Bt )dt. Both results become identical, of course, when

V(Bt) = 1 .
The Þrst inverse moment ofD0

%T
0 V(Bt )dt can be calculated straightforwardly by

simply integrating "( T; $) in (8) over $ from zero to inÞnity. In doing so, we realise that
for Model I this negative moment does not exist, because"( T; $) decays as1/

!
$ in the

limit $ & ' (see (55)) and hence, the integral diverges at the upper integration limit.
On the other hand, the average of1/ (D0

%T
0 V(Bt )dt) over anyÞnite statistical sample of

trajectories Bt is evidently Þnite and hence, in virtue of (85) for such samplesP(typ)
T (M )

should have a Gaussian shape. In Þgure6 we compare the ensemble-averagedP(I )
T (M )

(Eq. (11), solid curve) and P(typ)
T (M ) (Eq. (85), dashed curve) against an empirical

histogram obtained from Monte Carlo simulations with100 realisations of trajectories
Bt only, i.e. for a statistical sample which is100times less than the one used to produce
Þgure 5. Note that here (1/ (D0

%T
0 V(Bt )dt)) is evaluated numerically by averaging

over this Þnite set of realisations. We observe that for su"ciently small values ofM ,
(i.e. those close to the most probable value ofM ), for such a moderately small sample
the estimateP(typ)

T (M ) indeed agrees with the numerically evaluated distribution better
than P(I )

T (M ). For larger values ofM , however, the Gaussian tail ofP(I )
T (M ) seems to

be closer to the numerical curve than that ofP(typ)
T (M ) even for such a small sample.

Upon an increase of the number of realisations ofBt , we get progressively bigger values
of (1/ (D0

%T
0 V(Bt )dt)) and therefore the variance in the Gaussian function in (85)

vanishes meaning thatP(typ)
T (M ) converges to the delta-function, while the Gaussian

tail of P(I )
T (M ) is characterised by a Þnite variance. This implies that for progressively

larger statistical samplesP(typ)
T (M ) may describe correctly the shape of the numerically
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evaluated distribution only in a close vicinity of M = 0, while for the almost entire
range of variation ofM the ensemble-averaged distributionP(I )

T (M ) should provide an
accurate estimate of the actual behaviour (see Þgure5).

The Þrst inverse moment ofD0
%T

0 V(Bt )dt is Þnite for both Models II and III. For
Model II we have

:
1

D0
%T

0 V(Bt )dt

;

=
DB

2a2D0

' "

0
z dzcoth

, !z
2

-
exp

!
#

DB T
4a2

z2

"
, (86)

where the integral in the right-hand-side is Þnite for any Þnite value of the parameter
DB T/ 4a2. The latter integral cannot be performed exactly but its behaviour can be
readily understood by noticing that for anyz % 0 we have

2
!

/ z coth
, !z

2

-
/ z +

2
!

. (87)

As a consequence, we Þnd that the Þrst inverse moment ofD0
%T

0 V(Bt )dt obeys the
following two-sided inequality

1
aD0

*
DB

!T
/

:
1

D0
%T

0 V(Bt )dt

;

/
1

aD0

*
DB

!T

!
1 + a

*
!

DB T

"
. (88)

In the limit T & ' these bounds become sharp and hence, deÞne the leading behaviour
of the Þrst inverse moment exactly.

For Model III the Þrst inverse moment ofD0

%T
0 V(Bt )dt has the simpler form

:
1

D0
%T

0 V(Bt )dt

;

=
c1a2

2D0DB T2
, c1 =

' "

0

z dz
$

cosh(z)
, 5.563. (89)

Comparison of our analytical predictions for the ensemble-averaged and the typical
behaviours for Models II and III against the histograms obtained from Monte Carlo
simulations with just 100realisations of the stochastic processBt is presented in Þgure
6. Here, forP(typ)

T (M ) we used our result in (85) with the respective variance given by
our analytical expressions in (86) (Model II) and ( 89) (Model III). We observe that for
Model II for small values ofM againP(typ)

T (M ) provides a better estimate of the actual
behaviour than P(II )

T (M )Ñthe former predicts higher values of the probabilities while
the latter underestimates them: a trend that is conÞrmed by our numerical observations.
This is not the case for larger values ofM . Perhaps somewhat surprisingly, the heavy
log-normal tail of P(II )

T (M ) appears in a good agreement with numerics even for such
a moderately small sample size for values ofM as large as103. In turn, for Model III
there is no signiÞcant di!erence betweenP(typ)

T (M ) and P(III )
T (M ) for small values of

M , a circumstance that does not permit to make any conclusive statement. On the
contrary, in the large-M domain, the ensemble-average resultP(III )

T (M ) seems to be
more accurate.
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Figure 6. Comparison of the probability density functions PT (M ) (solid curves) and
the estimate P(typ)

T (M ) from (85) of the typical behaviour (dashed curves) for the three
random di!usivity models. Symbols represent the empirically renormalised histograms
obtained from Monte Carlo simulations with 102 runs (the time step of 10! 2). We set
D0 = 1 , T = 100, a = 1 , and DB = 1 .

6. Conclusion

Deviations from standard Brownian motion have been measured in a vast range of
systems, starting with RichardsonÕs cubic law for the relative di!usion of tracers in
turbulent media in 1926 [87]. Such "anomalous di!usion" has given rise to a rich variety
of statistical models accounting for various physical aspects e!ecting deviations from
standard Brownian motion [88Ð90]. As a particular case, random di!usivity models were
introduced in the context of the modelling of complex measured NMR signals [91]. The
randomness of the di!usivity can be assumed to be due to an inhomogeneous particle
ensemble in a homogeneous environment, or due to identical particles in a heterogeneous
environment. When the di!usivity distribution is Þxed in time the dynamics resulting
from such random di!usivities is captured by the framework of superstatistics [92] or grey
Brownian motion [93]. When particles move in quenched environments with Þnite patch
sizes and speciÞc jump rules interesting dynamic e!ects and non-Gaussian phenomena
have recently been revealed [94,95].

Originally devised to reproduce the observed crossover behaviour from non-
Gaussian to Gaussian displacement statistics in systems showing a Brownian scaling of
the mean squared displacement [96, 97], di!usive processes withstochastically evolving
di!usivities were devised as an "annealed" approach to the motion of the test particle in a
heterogeneous environment. Such di!using di!usivity models with stationary di!usivity
dynamics were analysed in terms of the mean squared displacement and the displacement
distribution. Despite the di!erent formulations several core features turn out to be
robust among these models [54,55,57Ð59,98].

Here we studied a stochastic processxt driven by white Gaussian noise, whose
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amplitude is being modulated by a stochastically varying di!usivityDt for three di!erent
choices: (I) cut-o! Brownian motion Bt with Dt " !( Bt ); (II) Geometric Brownian
Motion, Dt " exp(# Bt ); and (III) squared Brownian motion, Dt " B 2

t . In contrast to
the above-mentioned di!using di!usivity models, that are all Brownian, the three choices
here e!ect non-stationary di!usivity dynamics, and the resulting di!usion exhibits both
normal and anomalous di!usive scaling.

In the analysis we concentrated on the extremal properties in terms of the maximum
and the range of these three random di!usivity models. We obtain analytical expressions
for the probability density functions of the maximum and the range of the processes for
a given observation time. Our discussion reveals both similarities and di!erences of the
extremal properties of these models among each other as well as compared to standard
Brownian motion. In particular, we unveil that Model I shows signiÞcant di!erences
from Brownian motion while the small-maximum limit of Model II coincides exactly
with the Brownian behaviour. We also show that the distributions of the maximum are
generically broader than the distributions of the range, as evidenced by the analysis of
the coe"cients of variation of the corresponding distributions. Our discussion Þnally
unveils the di!erence between the ensemble and the typical behaviour of the probability
density functions, an important ingredient for the analysis of Þnite-sized data sets.

The analysis of given stochastic time series representing a set of trajectories of
di!using test particles has more recently received considerable attention. A number of
statistical observables has been introduced and discussed (see, e.g., [89, 90, 99, 100]) to
allow the physical classiÞcation of recorded data. For instance, it has been shown how
to use Bayesian maximum likelihood [101,102] or machine learning [103,104] to classify
a measured system and extract its physical parameters. SpeciÞcally, the power spectral
analysis of single, Þnite-length trajectories was shown to distinguish di!erent forms of
random di!usivity models [53]. A more recent twist on data analysis of stochastic
processes uses large-deviation approaches, for instance, for the time averaged mean
squared displacement [105,106].

While it is not surprising that the extreme value behaviour encoded in the
probability density functions of the maximum and the range studied here was shown to
distinguish the three, quite di!erent, random di!usivity models investigated here, we
also demonstrated that the rectiÞed Brownian motion of Model I exhibits signiÞcant
di!erences to standard Brownian motion. It should therefore be interesting to
investigate whether these two distributions allow one to distinguish between the di!using
di!usivity models encoding Brownian yet non-Gaussian motion [54,55,57Ð59], and how
these measures change for projections of higher dimensional versions of these models.
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