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Abstract. We study the extremal properties of a stochastic process xt defined by
the Langevin equation ẋt =

√
2Dt ξt, in which ξt is a Gaussian white noise with

zero mean and Dt is a stochastic "diffusivity", defined as a functional of independent
Brownian motion Bt. We focus on three choices for the random diffusivity Dt: cut-off
Brownian motion, Dt ∼ Θ(Bt), where Θ(x) is the Heaviside step function; Geometric
Brownian Motion, Dt ∼ exp(−Bt); and a superdiffusive process based on squared
Brownian motion, Dt ∼ B2

t . For these cases we derive exact expressions for the
probability density functions of the maximal positive displacement and of the range of
the process xt on the time interval t ∈ (0, T ). We discuss the asymptotic behaviours
of the associated probability density functions, compare these against the behaviour
of the corresponding properties of standard Brownian motion with constant diffusivity
(Dt = D0) and also analyse the typical behaviour of the probability density functions
which is observed for a majority of realisations of the stochastic diffusivity process.

1. Introduction

The statistics of extreme values (EVs) of stochastic processes has been in the focus of

extensive research in the mathematical (see, e.g., [1–3]) and physical (see, e.g., [4–15])

literature over several decades. More recently, EV properties have also received attention

in the areas of mathematical finance [18,19] in which stochastic processes represent one

of the main components in the modelling of the dynamics of asset prices, of computer
science [20,21], as well as of the analysis of "records" of different kinds [19,22,23]. Apart

from "simple" EV problems asking for the maximum behaviour of a variable, "dual"

EVs of the min-max and max-min families are relevant in game theory [24] or reliability

engineering [25], for which a universal Gumbel limit law emerges [26, 27].
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Maximum and range of random diffusivity processes 2

Typically, one computes several types of EVs, which are either interrelated or

independent of each other, and hence, provide complementary information about the

process xt under consideration. Commonly considered EVs are, for instance, the

persistence probability for not crossing the initial value x0 of the process [10], the related

probability that the process does not reach a given threshold or a given point in space

up to time t (i.e., the "survival" probability) [5], or the first-passage time to a given
threshold or spatial location [4–10, 13–15]. For one-dimensional processes, one often

considers the maximal positive M or negative M displacements and the range R (also

called the span or the extent) of xt (here and henceforth we assume that x0 = 0) on a

given time interval:‡

MT = max
0≤t≤T

{xt} ≥ 0, MT = − min
0≤t≤T

{xt} ≥ 0, RT = MT +MT ≥ 0. (1)

Here T represents the length ("observation time") of the time series xt under

consideration. When a random process xt evolves on a one-dimensional lattice, the

range R defines another important property, namely, the number of distinct visited sites

up to time T [28]. We also note that complementary characteristics of extremal values
of Brownian motions such as the distribution of times between minima and maxima has

been evaluated recently [29, 30].

Knowledge of the EV statistics is conceptually important for the understanding of

various facets of the stochastic process xt and is relevant for diverse physical phenomena

and also in applications in finance, sociophysics and biology, since EVs often trigger

a particular response of the system. A prominent application is molecular chemical
reaction kinetics, in which a diffusing molecule hits a reaction centre [31]. For instance,

during gene regulation a protein needs to diffusively search a specific binding site on

the cellular DNA [32]. Recent research demonstrated that for typical biochemical

situations with extremely low reactant concentrations knowledge beyond mean chemical

rates [31] is essential, due to the significant separation of relevant time scales even in

simple geometries [33, 34]. Notably, geometry-control of reaction time scales in gene
regulation [35, 36] is closely related to the most likely reaction time [33, 34]. We also

mention that the knowledge of EVs is often very beneficial for a non-perturbative analysis

of complicated functionals of xt, permitting for a construction of convergent bounds and,

hence, for obtaining non-trivial exact results [37–42].

Most of the available analyses pertain to the paradigmatic process of Brownian

motion, or to lattice random walks. In particular, the exact probability density function
PT (M) of the maximal positive displacement MT of a one-dimensional Brownian motion

has already been derived exactly in the early work by Lévy [1]: Denoting the diffusion

coefficient as D0 and supposing that t ∈ (0, T ) one has

PT (M) =
1√

πD0T
exp

(

− M2

4D0T

)

, (2)

‡ Note that these quantities are related to the caliper size or spanning diameter in polymer physics,
where these extension parameters, obtained from projection to a given axis, are used as a proxy for the
radius of gyration [16, 17].
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Maximum and range of random diffusivity processes 3

normalised to the positive semi-axis M ≥ 0, compare figure 1. Subsequently, the

probability density function PT (R) of the range of Brownian motion was obtained [2]

(see also [43–45])

PT (R) =
4√

πD0T

∞
∑

m=1

(−1)m+1m2 exp

(

−m2R2

4D0T

)

=
16D0T

R3

∞
∑

m=0

(

2π2(2m+ 1)2D0T

R2
− 1

)

exp

(

−π2(2m+ 1)2D0T

R2

)

. (3)

These two series representations are exact and thus equivalent. The series in the first

line highlights the asymptotic behaviour in the limit R → ∞, while the one in the second

line is appropriate for the analysis in the small-R (or long-T ) limit. Note also that while

PT (M = 0) is finite for any finite T , the probability density function PT (R) abruptly
drops to zero when R → 0, see the entire shape in figure 1. Further on, more complicated

multivariate joint distributions of maxima, minima and the range were evaluated [7],

while correlations between maxima or between values of the range achieved on different

time intervals were studied in [46–49]. A remarkable result has recently been obtained for

the distribution of the time instant at which the range of Brownian motion first reaches

a prescribed value [50]. Concurrently a variety of first-passage phenomena associated
with Brownian motion have been analysed using exact approaches [4–13]. On top of this

several accurate approximation schemes have been analysed, permitting one to consider

first-passage events in rather complicated, experimentally-relevant geometries [51, 52].

However, the progress in the theoretical analysis of EV statistics for more general

processes, in particular, other than standard Brownian motion and especially non-

Markovian processes, remains limited, and typically only the behaviour of the expected
values of the EVs is known [4–10,13].

In this paper we derive exact compact expressions for the probability density

function PT (M) of the maximal displacement and for the probability density function

PT (R) of the range for three random-diffusivity stochastic processes introduced recently

in [53]. In these models, the process xt evolves in a one-dimensional system according

to the Langevin equation

dxt

dt
=
√

2D0V (Bt) ξt, x0 = 0, (4)

where ξt is standard white Gaussian noise with zero mean and covariance ξtξt′ = δ(t−t′),

D0 is a constant scale factor, and V (Bt) is a dimensionless random diffusivity defined

as a functional of independent Brownian motion Bt:

Bt=0 = 0, 〈Bt〉 = 0, 〈BtBt′〉 = 2DB min{t, t′}, (5)

with the diffusivity DB. Here and henceforth, angular brackets denote averaging

with respect to all possible realisations of the Brownian motion Bt, while the overline

corresponds to averaging over realisations of the white noise process ξt. We note that

different versions of the model in (4) corresponding to different choices of the functional
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Maximum and range of random diffusivity processes 4
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Figure 1. Probability density functions of the extremal behaviour of standard
Brownian motion. Panels (a,b) show the Gaussian law (2) for the maximum M on
linear and log-log scales. Panels (c,d) show the probability density (3) for the range.
In all panels we depict the functions for the observation times T = 1 and T = 2. We
chose D0 = 1.

V (Bt) have been extensively studied in recent years within the context of diffusion

in complex heterogeneous environments [54–65], dynamics of particles involved in

polymerisation processes [66,67] which can be anomalous in the non-Stokesian limit [68],
as well as in the mathematical finance literature (see, e.g., [69]). We also mention that

stochastically varying diffusivities were identified in simulations of diffusing proteins

with fluctuating shape [70], and switching between low and high mobility states was

observed in simulations of protein-crowded membranes [71] and the motion of tracer

particles in the cytoplasm of mammalian cells [72].

Following [53] we define the three random diffusivity models under study here as
follows:

(I) In Model I we consider the choice V (Bt) = Θ(Bt) for the functional V , where

Θ(x) is the Heaviside step function with the property Θ(x) = 1 for x ≥ 0 and zero

otherwise. In this model, the process xt undergoes standard Brownian motion once

Bt > 0, and it pauses at its current location whenever Bt is negative. Here, the mean-

squared displacement 〈x2
t 〉 = D0t shows Brownian behaviour, however, the diffusion

coefficient is smaller by a factor of two than the diffusion coefficient of standard Brownian

motion with V = 1.

(II) In Model II we choose V (Bt) = exp(−Bt/a), where a is a scale parameter of

dimension length. This choice for V (Bt) corresponds to Geometric Brownian motion, as

assumed for the time evolution of an asset price in the paradigmatic Black-Scholes

Page 4 of 32AUTHOR SUBMITTED MANUSCRIPT - NJP-112470.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

Gianni Pagnini



Maximum and range of random diffusivity processes 5

model [73]. In this model, diffusion is strongly anomalous and the mean squared

displacement has an exponential time dependence, 〈x2
t 〉 ∼ exp(t).

(III) In Model III we choose V (Bt) = B2
t /a

2. Here, the process xt accelerates when

Bt goes away from the origin in either direction, and we are thus facing a superdiffusive

behaviour as the process xt in (4) exhibits a random ballistic growth with time.

We focus here on the generalisation of expressions (2) and (3), derived for Brownian
motion, to the above defined three models of random diffusivity. We thus seek the

exact expressions for probability density functions of the maximum and of the range,

respectively, defined as

PT (M) = 〈PT (M)〉 , PT (M) = δ (M −MT ) (6)

and

PT (R) = 〈PT (R)〉 , PT (R) = δ (R −RT ) , (7)

where PT (M) and PT (R) denote the probability density functions calculated for a given

realisation of Bt (and thus a given realisation of diffusivity). We note that the latter
realisation-dependent distributions are evidently given by expressions (2) and (3) with

D0T replaced by the integral D0

∫ T

0 V (Bt) dt, implying that PT (M) and PT (R) are,

respectively, a Gaussian function or an infinite sum of Gaussians with random variances.

As we proceed to show, the averaging over realisations of Bt can be performed exactly for

the three models under study and requires only the knowledge of the moment-generating

function Υ(T ;λ) of the random variable D0

∫ T
0 V (Bt)dt,

Υ(T ;λ) =

〈

exp

(

−λD0

∫ T

0

V (Bt) dt

)〉

. (8)

This function can indeed be calculated exactly for many cases (see, e.g., [3, 21] and

references therein) and, in particular, for the models we study here. We proceed to show

that the averaged distributions, i.e., PT (M) and PT (R), exhibit a markedly different

behaviour, as compared to the distributions in (2) and (3). We will compare these

predictions against the estimates of the "typical" behaviour of these distributions (see,
e.g. [74, 75]),

P (typ)
T (M) = pNM exp (〈ln(PT (M)/p)〉) , (9)

P (typ)
T (R) = pNR exp (〈ln(PT (R)/p)〉) , (10)

where NM and NR are normalisation constants, while p is an irrelevant auxiliary

parameter of inverse length that is introduced to deal with dimensionless quantities

under the logarithm but cancels anyway. We will demonstrate that their functional
form is supported by some atypical realisations of the process Bt.

The paper is organised as follows. In section 2 we briefly summarise our main

results. In two subsequent sections 3 and 4, we present the details of the derivations

of our main results, analyse their asymptotic behaviour and their moments, and also
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Maximum and range of random diffusivity processes 6

estimate their effective broadness by calculating the coefficients of variation of the

respective distributions. Additionally, we compare our analytical predictions with the

results of numerical simulations. Section 3 is devoted to the maximum, in section

4 we consider the range. Next, in section 5 for the example of the distribution of the

maximum, we will discuss its "typical" shape which should be observed for a majority of

realisations of the process Bt (or for small statistical samples) and demonstrate that the
exact form obtained for PT (M) (and for PT (R)) defined in (6) stems from some atypical

realisations of the stochastic diffusivity process. Concluding remarks are provided in

section 6.

2. Main results

In this section we summarise our main results for the probability density functions
PT (M) and PT (R), (6) and (7), for the three models under study. The parameters

entering these results were defined above in the description of our models.

2.1. Model I

For Model I we find that

P (I)
T (M) =

1√
π3D0T

exp

(

− M2

8D0T

)

K0

(

M2

8D0T

)

, (11)

where K0(z) is the modified Bessel function of the second kind of the zeroth order.

In turn, the exact probability density function P (I)
T (R) can be written in either of two

equivalent forms: (i) as we proceed to show, the analysis of the short-R behaviour (i.e.,

the behaviour of the left tail of the probability density function PT (R)) can be realised

from the following expression,

P (I)
T (R) =

8

π2

∞
∑

m=0

1

(2m+ 1)2

× d2

dR2

(

R exp

(

−π2(2m+ 1)2D0T

2R2

)

I0

(

π2(2m+ 1)2D0T

2R2

))

, (12)

where I0(z) is the modified Bessel function of the first kind; (ii) in turn, the behaviour

of the right tail is conveniently given by an alternative series expansion,

P (I)
T (R) =

4√
π3D0T

∞
∑

m=1

(−1)m+1m2 exp

(

−m2R2

8D0T

)

K0

(

m2R2

8D0T

)

. (13)

Expressions (12) and (13) are related to each other through the Poisson summation

formula.
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Maximum and range of random diffusivity processes 7

2.2. Model II

For Model II we obtain the following exact expression for the probability density function
of the maximum,

P (II)
T (M) =

2a
√

πT (DBM2 + 4D0a2)
exp

(

− a2

DBT
arcsinh2

(

√

DB

D0

M

2a

))

. (14)

The detailed discussion of its rather unusual asymptotic behaviour is presented in the

next section. In turn, the probability density function P (II)
T (R) of the range obeys the

exact expression

P (II)
T (R) =

∂2

∂R2

(

RΨ(II)
T (R)

)

,

Ψ(II)
T (R) =

16

π3

∞
∑

m=0

1

(2m+ 1)2

×
∫ ∞

0

exp

(

−DBT

4a2
z2
)

cosh
(πz

2

)

Kiz

(

2π(2m+ 1)a

R2

√

D0

DB

)

dz , (15)

where Kiz(x) is the modified Bessel function of the second type of purely imaginary

order. This latter form is suitable for the analysis of the short-R behaviour (see section

4). An alternative form appropriate for the analysis of the large-R behaviour follows
from (15) via the Poisson summation formula and reads

P (II)
T (R) =

8a√
πT

∞
∑

m=1

(−1)m+1m2

√

(DBm2R2 + 4a2D0)
exp

(

− a2

DBT
arcsinh2

(

√

DB

D0

mR

2a

))

.

(16)

2.3. Model III

For Model III the probability density function of the maximum has the exact form

P (III)
T (M) =

a√
8π3D0DB T

∣

∣

∣

∣

Γ

(

1

4
+ i

aM

4
√
D0DB T

)∣

∣

∣

∣

2

, (17)

where Γ(z) is the Gamma function. The probability density function of the range admits

the exact expansion

P (III)
T (R) =

8

π2

∞
∑

m=0

1

(2m+ 1)2
∂2

∂R2











R

cosh1/2

(

2π(2m+ 1)

√
D0DB T

aR

)











, (18)

which is suitable in the short-R limit, while the right tail of the distribution can be

accessed via an equivalent expansion,

P (III)
T (R) =

√
2a√

π3D0DB T

∞
∑

m=1

(−1)m+1m2

∣

∣

∣

∣

Γ

(

1

4
+ i

maR

4
√
D0DB T

)∣

∣

∣

∣

2

. (19)

The rest of the paper presents the details of the derivations of our main results and a

discussion of their behaviour.
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Maximum and range of random diffusivity processes 8

3. Probability density function of the maximal displacement

We present the details of derivations of the exact expressions for the probability density

function PT (M) summarised earlier in section 2. We find it expedient to base our

analysis here on the exact expressions for the first-passage time density H(t|M) that
was derived for all three models under study in a recent paper [65]. An alternative

approach which takes advantage of the moment-generating function (8) will be used

later on in section 5 and will permit us to access the typical behaviour of the probability

density.

Let ST (M) denote the survival probability, i.e., the probability that the process xt,

starting at the origin x0 = 0 at t = 0, does not reach a point M > 0 within the time
interval t ∈ (0, T ). This probability can be expressed as

ST (M) =

∫ ∞

T

H(t|M)dt, (20)

where H(t|M) is the probability density function of the event that the process xt

reached the point M for the first time at the time instant t. As a consequence, the

desired probability density function PT (M), which defines the probability density that
the maximal positive displacement of the process xt within the time interval t ∈ (0, T )

is exactly equal to M obeys

PT (M) =
dST (M)

dM
=

∫ ∞

T

dH(t|M)

dM
dt. (21)

In the case of standard Brownian motion (Dt = D0) the survival probability ST (M) =

erf(M/
√
4D0T ), where erf(x) is the error function, H(t|M) is the celebrated Lev́y-

Smirnov distribution, and, eventually, PT (M) is given by (2).

3.1. Model I

For Model I the first-passage time density obeys [65]

H(I)(t|M) =
M√

4π3D0t3
exp

(

− M2

8D0t

)

K0

(

M2

8D0t

)

. (22)

Differentiating the latter expression with respect to M , inserting the result into (21)
and integrating it over t, we find our compact expression (11). Note that the density in

(22) resembles—but is not identical to—the density P (I)
T (M).

Moreover, due to the presence of K0(z), the distribution of the maximum exhibits

a different asymptotic behaviour in the limits of small and large M as compared to

behaviour (2) of Brownian motion. From (11) the asymptotic limit M → ∞ produces

to leading order

P (I)
T (M) + 2

πM
exp

(

− M2

4D0T

)

(M → ∞), (23)
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Maximum and range of random diffusivity processes 9

that is, the probability density decreases with M faster, due to the additional factor

1/M , than expression (2). For the opposite limit M → 0 we find that

P (I)
T (M) + 1√

π3D0T

(

ln

(

16D0T

M2

)

− γ

)

(M → 0), (24)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Expression (24) implies that

P (I)
T (M) logarithmically diverges in this limit, while expression (2) remains bounded.

Overall we observe that the probability density function (11) is shifted towards smaller
M values compared to the distribution (2). In particular, the expected (with respect to

the distribution in (11)) value of the maximal displacement of the process xt in Model

I obeys

〈MT 〉 =
4

π3/2

√

D0T , (25)

i.e., it grows with T exactly at the same rate as the expected maximum of Brownian

motion, MBM
T = 2√

π

√
D0T , but has a slightly smaller prefactor (4/π3/2 ≈ 0.72 while

2/π1/2 ≈ 1.12). The expression in (25) can be generalised to derive the moments of the

maximum of the process xt for Model I of arbitrary, not necessarily integer order q ≥ 0,

〈Mq
T 〉 =

Γ2

(

q + 1

2

)

πΓ
(q

2
+ 1
) (4D0T )

q/2 . (26)

From this expression we also derive the coefficient of variation v(I)M of the distribution

(11):

v(I)M =

√

〈M2
T 〉 − 〈MT 〉

2

〈MT 〉
=

√

π3 − 16

16
≈ 0.968. (27)

By definition, this property measures the relative weight of fluctuations around the mean

value. Hence, for Model I these fluctuations are of nearly the same order as the expected

value itself, such that P (I)
T (M) is effectively broad [11,12]. Note that the distribution of

the maximum of a standard Brownian motion, (2), appears to be somewhat narrower;

there, the coefficient of variation v(BM)
M =

√

(π − 2)/2 ≈ 0.756 is smaller than v(I)M .

3.2. Model II

For Model II the exact expression for the probability density function of the first-passage

time is given by [65]

H(II)(t|M) =
a√

πDBt3
arcsinh

(

M

2a
√

D0/DB

)

× exp

(

− a2

DBt
arcsinh2

(

M

2a
√

D0/DB

))

. (28)
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Maximum and range of random diffusivity processes 10

Again, differentiating (28) over M and integrating the resulting expression over t, we

arrive at our result in (14). The small-M asymptotical behaviour of expression (14)

obeys

P (II)
T (M) + 1√

πD0T
exp

(

− M2

4D0T

)

(M → 0). (29)

Rather surprisingly, this limiting behaviour is exactly the same as that of (2) for the

maximum of standard Brownian motion. In contrast, the large-M asymptotic behaviour

is very different from that of standard Brownian motion and follows

P (II)
T (M) + 2a√

πDBTM
exp

(

− a2

DBT
ln2

(

√

DB

D0

M

a

))

(M → ∞), (30)

i.e., the right tail of the distribution P (II)
T (M) is that of a log-normal distribution. In

view of such a "heavy" tail one expects that higher values of M are more likely than in

case of a standard Brownian motion.

The moments of the distribution P (II)
T (M) of arbitrary order q ≥ 0 can be obtained

by a straightforward integration of expression (14), leading us to

〈Mq
T 〉 =

2√
π

(

4a2D0

DB

)q/2 ∫ ∞

0

exp
(

−x2
)

[

sinh

(√
DBT

a
x

)]q

dx

=

(

a2D0

DB

)q/2 ∞
∑

n=0

(−1)n
(

q

n

)

exp

(

DBT

4a2
(q − 2n)2

)

×
(

1 + erf

(√
DBT

2a
(q − 2n)

))

, (31)

where
(

q
n

)

denotes the binomial coefficient. Naturally, when q is an integer the series is

truncated at n = q, as can be observed directly from the expression in the first line of

(31). From (31) we have, in particular,

〈MT 〉 =
(

4a2D0

DB

)1/2

exp (τ/4) erf
(√

τ/2
)

,

〈M2
T 〉 =

1

2

(

4a2D0

DB

)

exp (τ)
(

1− exp (−τ)
)

,

〈M3
T 〉 =

1

4

(

4a2D0

DB

)3/2

exp (9τ/4)

×
(

erf
(

3
√
τ/2
)

− 3 exp (−2τ) erf
(√

τ/2
)

)

, (32)

and so on. Here we used the notation τ = DBT/a2. We observe that in the case of

Model II there is no unique time scale, in contrast to Model I (and also to Model III
below). This is a direct consequence of the fact that the right tail of P (II)

T (M) decreases

with M slower than an exponential function, which gives rise to the behaviour specific

to the so-called strongly anomalous superdiffusion for which a growth of the moments

with time is not characterised by a unique exponent (see, e.g., [76–78]).
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Maximum and range of random diffusivity processes 11

The first two expressions in (32) permit us to evaluate the coefficient of variation

v(II)M of the probability density function P (II)
T (M) in (14):

v(II)M =

√

1− 2 exp (−τ/2) erf2(
√
τ/2)− exp(−τ)

√
2erf(

√
τ/2)

exp (τ/4) . (33)

Remarkably, v(II)M diverges exponentially, v(II)M + exp(τ/4)/
√
2 as τ → ∞ (i.e., the

observation time T tends to infinity). This signifies that moments of arbitrary order

are not representative of the actual behaviour and knowledge of the full distribution

P (II)
T (M) is crucial.

3.3. Model III

Lastly, for Model III the first-passage time density is [65]

H(III)(t|M) =
aM

2
√
2π3D0DB t2

∣

∣

∣

∣

Γ

(

1

4
+

iaM

4
√
D0DB t

)∣

∣

∣

∣

2

. (34)

Differentiating this expression with respect to M and integrating over t, we arrive at

our result in (17).

For small M , the Gamma function in (17) tends to a constant (with corrections of

order O(M2)), and hence, one has

P (III)
T (M) =

aΓ2(1/4)√
8π3D0DB T

(

1 +O
(

M2
))

(M → 0). (35)

In turn, for M → ∞, the asymptotic behaviour of P (III)
T (M) is given by

P (III)
T (M) +

(

2a

π
√
D0DB TM

)1/2

exp

(

− πa

4
√
D0DB T

M

)

(M → ∞), (36)

i.e., the right tail of the probability density function of the maximal displacement is

an exponential function and hence, is also "heavier" than the Gaussian tail of the

corresponding probability distribution of the maximum of standard Brownian motion.

Evidently, expression (17) also favours higher values of the maximum M than the

probability density function (2).

The moments of the distribution (17) obey

〈Mq
T 〉 =

(

4
√
D0DB T

a

)q

fq, (37)

where the dimensionless numerical amplitude fq is given by

fq =

√

2

π3

∫ ∞

0

xq

∣

∣

∣

∣

Γ

(

1

4
+ ix

)∣

∣

∣

∣

2

dx . (38)

Page 11 of 32 AUTHOR SUBMITTED MANUSCRIPT - NJP-112470.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

Gianni Pagnini



Maximum and range of random diffusivity processes 12

2 4 6 8 10

1

2

3

4

Figure 2. Amplitude fq in (37) from (38) as a function of q. See discussion in text.

We were unable to perform the integral in the latter equation and, hence, to derive
an explicit expression for fq, except for the particular case when q is an even integer,

q = 2n. In this latter case, fq is given by

f2n = (−1)n
(

d2n

dz2n
1

√

cosh(z/2)

)∣

∣

∣

∣

∣

z=0

=
An

23n
, (39)

where An are integers forming Sloane’s sequence A126156 [79]. In particular,

f0 = 1, f2 =
1

8
, f4 =

7

64
, f6 =

139

512
. (40)

The numerical factor fq as a function of q is depicted in figure 2. We realise that fq
turns out to be a non-monotonic function of q. Lastly, we estimate numerically the

value of the coefficient of variation of P (III)
T (M) to get

v(III)M ≈ 1.012, (41)

implying that fluctuations around the mean value of the maximum exceed the latter

such that the distribution is effectively broad.

Figure 3 presents the exact probability density functions PT (M) (solid curves)

and their asymptotic forms (dashed and dash-dotted curves) for the three models,

highlighting the ranges of validity of the small-M limit as well as the onset of the large-
M asymptotic behaviours. The results are shown on both linear and log-log scales, to

highlight the asymptotic behaviour as well as the respective crossovers. Note specifically

the divergence of PT (M) in the limit M → 0 for Model I.

3.4. Relation between the moments of the maximum and of the random diffusivity

To close this section we present a general relation between the moments of the maximum

and the moments of the random variable D0

∫ T
0 V (Bt)dt,

〈Mq
T 〉 =

2q√
π
Γ

(

q + 1

2

)

〈

(

D0

∫ T

0

V (Bt)dt

)q/2
〉

, (42)
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Maximum and range of random diffusivity processes 13
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Figure 3. Probability density function PT (M) of the maximal displacement along
with the small-M and large-M asymptotic behaviours for Model I (a,b), Model II
(c,d), and Model III (e,f), plotted on linear (a,c,e) and log-log (b,d,f) scale. We set
D0 = 1, T = 1, a = 1, and DB = 1. Compare this behaviour to the Brownian limit in
figure 1.

which holds for arbitrary q ≥ 0. This relation can be proven directly by using the

definition in (21) and also a general expression for the first-passage time distribution

presented in our previous work [65]. Below we will merely demonstrate the validity of
(42) by establishing a relation between the moments of the maximum and the moments

of the range. Using the standard "replica trick" we find the following simple expression

that connects the typical behaviour of the maximum and the typical behaviour of the

random variable D0

∫ T

0 V (Bt)dt,

〈ln (MT )〉 = lim
q→0

1

q

(

〈Mq
T 〉 − 1

)

=
1

2

〈

ln

(

D0

∫ T

0

V (Bt)dt

)〉

− γ

2
, (43)
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Maximum and range of random diffusivity processes 14

where γ is again the Euler-Mascheroni constant. In particular, in the special case

V (Bt) ≡ 1 (i.e., when the process xt in (4) is standard Brownian motion), equation (43)

reproduces the known result

ln
(

M(BM)
T

)

=
1

2
(ln (D0T )− γ) . (44)

4. Probability density function of the range

In this section, we first present the arguments underlying the derivation of PT (R) and

evaluate general expressions which highlight the short-R and large-R behaviour, i.e., the

left and right tails of PT (R), respectively. We then establish a general relation between
the moments of the range and the moments of the random variable D0

∫ t

0 V (Bt) dt, which

also permits us to link the moments of the range and the moments of the maximum in

the random diffusivity processes. Lastly, we will concentrate on the particular cases and

evaluate the exact forms of PT (R) for the three models under study.

The probability density function of the range R of the process (4) can be evaluated

by writing down the corresponding Fokker-Planck equation for the position probability
density function Π(x, t) (in which the diffusion coefficient Dt is a random function of

time), appropriately rescaling the time variable and then solving the resulting diffusion

equation subject to adsorbing boundary conditions. The steps involved in this approach

are well described, e.g., in [43–45]. In this procedure we find that PT (R) can be

conveniently represented by two alternative forms, one of which is suitable for the

analysis of the small-R behaviour of the probability density function of the range, while
the second one is adapted to the large-R asymptotic behaviour.

In the first case PT (R) is given by

PT (R) =
∂2

∂R2
(RΨT (R)), (45)

with

ΨT (R) =
8

π2

∞
∑

m=0

1

(2m+ 1)2
Υ
(

T ; π2(2m+ 1)2/R2
)

, (46)

and where Υ(T ;λ) is the moment-generating function which is defined earlier in (8). We
note that in virtue of (46) the knowledge of an exact form (8) of Υ(T ;λ) appears to be the

key ingredient for finding exact forms of PT (R) (see also [62] for the role of this function

for the analysis of the first-passage time densities). In turn, the large-λ tail of Υ(T ;λ)

(corresponding to such realisations of Bt when D0

∫ T
0 V (Bt)dt is small) is responsible

for the behaviour of ΨT (R) in the limit when R → 0. We proceed to show that such

a behaviour can be markedly different depending on how fast Υ(T ;λ) vanishes when
λ → ∞. In this sense, the three models under study provide representative examples of

different kinds of such a behaviour: in Model I the moment-generating function Υ(T ;λ)

vanishes as a power-law when λ → ∞ and PT (R) approaches a constant value as R → 0,

Page 14 of 32AUTHOR SUBMITTED MANUSCRIPT - NJP-112470.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

Gianni Pagnini



Maximum and range of random diffusivity processes 15

while for both Models II and III Υ(T ;λ) ∼ exp(−
√
λ) in the leading order in the limit

λ → ∞, and lnPT (R) exhibits a singular behaviour of the form lnPT (R) ∼ −1/R.

In the second case, the form appropriate for the analysis of the large-R behaviour

can be obtained by the Poisson summation formula

PT (R) =
4√
πD0

∞
∑

m=1

(−1)m+1m2

〈

exp

(

− m2R2

4D0

∫ T
0 V (Bt)dt

)

/

√

∫ T

0

V (Bt)dt

〉

.

(47)

Further on, using the integral identity

exp
(

−c2/(4b)
)

/
√
b =

2√
π

∫ ∞

0

exp
(

−bq2
)

cos (cq) dq , (48)

we cast (47) into the form

PT (R) =
8

π

∞
∑

m=1

(−1)m+1m2

∫ ∞

0

cos(mRq)Υ(T ; q2)dq. (49)

In case of standard Brownian motion the latter expression reduces to the series in the

first line in (3). One observes that in the limit R → ∞ the integral in the latter

expression is dominated by the behaviour of Υ(T ; q2) in the vicinity of q = 0, which

corresponds to the small-λ asymptotic behaviour of the moment-generating function in
(8) (and hence, to such realisations of Bt for which D0

∫ T

0 V (Bt)dt is large). However, we

find 1−Υ(T ; q2) = O(q2) for Models I and III (while for Model II there are logarithmic

corrections to the q2-dependence), meaning that PT (R) decays sufficiently fast in all

three models to ensure the existence of all moments. Hence, the precise form of the

large-R tails of PT (R) cannot be, in principle, deduced from the small-q expansions of

Υ(T ; q2) and we have to perform the corresponding integrals explicitly. In doing so,
we will demonstrate below that the large-R tails of PT (R) are markedly different in all

three models.

Relation (49) between PT (R) and the moment-generating function Υ(T ;λ) of

D0

∫ T

0 V (Bt)dt implies a simple and quite general relation between the moments of

the range and the moments of the latter random variable. Indeed, multiplying both

sides of (47) by Rq (q ≥ 0) we find that whenever the moments of D0

∫ T
0 V (Bt)dt exist,

the following relation holds

〈Rq
T 〉 =

∫ ∞

0

Rq PT (R)dR

=
4 (2q − 4)√

π
Γ

(

q + 1

2

)

ζ(q − 1)

〈

(

D0

∫ T

0

V (Bt)dt

)q/2
〉

, (50)

where ζ(z) is the Riemann zeta function (note that for q = 0, 1, 2, one has to take the
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Maximum and range of random diffusivity processes 16

limit as q approaches one of these integer values). For instance, we find

〈RT 〉 =
4√
π

〈

(

D0

∫ T

0

V (Bt)dt

)1/2
〉

, (51)

〈R2
T 〉 = (8 ln 2)

〈(

D0

∫ T

0

V (Bt)dt

)〉

, (52)

and so on. Next, resorting again to the usual "replica trick" we also deduce from (50) a
linear relation between the averaged logarithm of the range and the averaged logarithm

of D0

∫ T

0 V (Bt)dt, which thus connects the "typical" behaviour of these two random

variables,

〈lnRT 〉 = lim
q→0

1

q

(

〈Rq
T 〉 − 1

)

=
1

2

〈

ln

(

D0

∫ T

0

V (Bt)dt

)〉

− 1− γ/2− 4

3
ln 2 + 12 lnA

≈ 1

2

〈

ln

(

D0

∫ T

0

V (Bt)dt

)〉

+ 0.7723. (53)

In (53) A ≈ 1.2824 is Glaisher’s constant – a mathematical constant related to the

asymptotical behaviour of the Barnes G-function (double Gamma-function) [80]. The
latter emerges, e.g., in the normalisation of the joint distributions of eigenvalues in

Gaussian ensembles of the Random Matrix Theory and, hence, A plays an important

role in the asymptotic analysis of some characteristic properties of such ensembles (see,

e.g., [81]).

We emphasise that (50) and (53) are general formulae which are valid for any

positive functional V (Bt) of Brownian motion Bt. In particular, they also hold in the
trivial case when V (Bt) ≡ 1, i.e., when RT = R(BM)

T , the range of standard Brownian

motion. For this latter case expression (53) yields the following result for the typical

range R(BM)
typ of standard Brownian motion,

R(BM)
typ = a exp

(

ln
(

R(BM)
T /a

)

)

=
A12

24/3 exp(1 + γ/2)

√

D0T ≈ 2.1647
√

D0T , (54)

where a is an auxiliary length scale which was introduced in order to get dimensionless

units. While the scaling of the typical range with
√
D0T appears quite intuitive, the

proportionality factor ≈ 2.1647 in (54) is rather nontrivial. In particular, its relation

to the Glaisher’s constant A is surprising. Note that the expected value of the range in

(51) also scales as
√
D0T , but the proportionality factor 4/

√
π ≈ 2.2568 is somewhat

larger. As a consequence, for most of realisations of trajectories of standard Brownian

motion their ranges appear to be smaller than the range averaged over all realisations,

which implies that some less probable, atypical realisations dominate the value of the
range. This, in turn, implies that even in the case of simple standard Brownian motion

the knowledge of the full probability density function of the range is vital.

We now evaluate explicit expressions for PT (R) for the three models of random

diffusivity presented in section 2 and discuss their asymptotic behaviour.
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Maximum and range of random diffusivity processes 17

4.1. Model I

In Model I we have V (Bt) = Θ(Bt) and, hence, the exponential function of
∫ T
0 Θ(Bt)dt

in (46) is simply the moment-generating function of the occupation time of Brownian

motion on a positive half-axis in the time interval (0, T ). Explicitly one has (see [53] for

more details)

Υ(T ;λ) = exp (−λD0T/2) I0 (λD0T/2) , (55)

such that

Ψ(I)
T (R) =

8

π2

∞
∑

m=0

1

(2m+ 1)2
exp

(

−π2(2m+ 1)2D0T

2R2

)

I0

(

π2(2m+ 1)2D0T

2R2

)

.

(56)

The latter expression together with (45) yields our result (12).

The small-R behaviour of Ψ(I)
T (R) and, hence, of the probability density function

P (I)
T (R) can be derived directly from (56) by taking advantage of the asymptotic

expansion

exp (−x) I0(x) +
1√
2π3x

∞
∑

k=0

Γ2(k + 1/2)

k!(2x)k
, (57)

which holds for large values of the argument x. Inserting this expansion into (56) and

performing the summation over m we find

Ψ(I)
T (R) + 8R

π9/2
√
D0T

∞
∑

k=0

(

1− 2−3−2k
) ζ(3 + 2k)Γ2(k + 1/2)

k!

(

R2

π2D0T

)k

. (58)

By virtue of expression (45) the asymptotic small-R expansion for P (I)
T (R) is obtained

from (58) by merely multiplying the latter by R and differentiating the resulting

expression twice with respect to R. In doing so we arrive at a rather curious conclusion

that, in contrast to the behaviour of the probability density function of the range of

standard Brownian motion, P (I)
T (R) does not vanish in the limit R → 0 but rather

approaches the non-trivial constant value

P (I)
T (R) + 14ζ(3)

π7/2
√
D0T

(R → 0). (59)

Therefore, despite the fact that the process xt in Model I exhibits the "diffusive"

behaviour 〈x2
t 〉 = D0t, its rather intricate character causes significant departures from

the behaviour of standard Brownian motion – here, the fact that xt may pause at the
origin for a random time (having a broad distribution without even the first moment)

once Bt goes initially to negative values, entails a finite value of the probability density

at R = 0. This behaviour is also in line with the divergence of P (I)
T (M) in the limit

M → 0. Note that in (59) the amplitude decays as the inverse square root of T .
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Maximum and range of random diffusivity processes 18

To construct the asymptotic large-R expansion of P (I)
T (R) we turn to the

representation in (49). Using (55) we then have
∫ ∞

0

cos(mRq)e−D0Tq2/2I0

(

D0T

2
q2
)

dq =
1√

4πD0T
exp

(

−m2R2

8D0T

)

K0

(

m2R2

8D0T

)

, (60)

and, hence, P (I)
T (R) is cast into the form in (13). The leading, large-R behaviour is

provided by the first term in the series in the latter equation,

P (I)
T (R) + 8

πR
exp

(

− R2

4D0T

)

(R → ∞), (61)

i.e., the right tail of the distribution P (I)
T (R) vanishes faster than a Gaussian function

due to the additional factor 1/R.

4.2. Model II

In Model II the dimensionless diffusivity is governed by Geometric Brownian motion:

V (Bt) = exp(−Bt/a). In this case, one has (see [82] and also [83, 84])

Υ(T ;λ) =
2

π

∫ ∞

0

exp

(

−DBTz2

4a2

)

cosh
(πz

2

)

Kiz

(

2a
√

λD0/DB

)

dz. (62)

Combining (62), (45) and (46), we thus arrive at our result (15). The small-R asymptotic

behaviour of Ψ(II)
T (R) and, hence, of P (II)

T (R) (see (15)) can be conveniently accessed
by taking advantage of the Kontorovich-Lebedev-type representation in (62). Using the

large-x expansion

Kiz (x) =

√

π

2x
exp(−x)

(

1− 1 + 4z2

8x
+

(1 + 4z2)(9 + z2)

2!(8x)2
+O

(

1

x3

))

, (63)

we find from (46) that Ψ(II)
T (R) (see (15)) admits the following form in the limit R → 0,

Ψ(II)
T (R) =

8

π2

(

2aR

π
√
D0DBT

)1/2

exp

(

π2a2

4DBT

) ∞
∑

m=0

1

(2m+ 1)5/2

× exp

(

−2π(2m+ 1)a

R

√

D0

DB

)[

1− τ 2 + 8τ + 4π2

8τ 2
R

2π(2m+ 1)a

√

DB

D0

+
9τ 4 + 80τ 3 + 192τ 2 + 40π2τ 2 + 192π2τ + 16π4

128τ 4

(

R

2π(2m+ 1)a

√

DB

D0

)2

+O

(

R3

(2m+ 1)3

)

]

, τ =
DBT

a2
. (64)

We notice next that the leading in the R → 0 behaviour is provided by the term with
m = 0. As a consequence, we arrive at the asymptotic formula

P (II)
T (R) + 32

(

4D3
0

π2D5
BT

2

)1/4
( a

R

)5/2
exp

(

π2a2

4DBT
−
√

D0

DB

2πa

R

)

(R → 0). (65)
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Maximum and range of random diffusivity processes 19

Therefore, in Model II the probability density function vanishes as R → 0, in contrast

to Model I. Note also that the essential singularity in Model II is somewhat weaker,

lnP (II)
T (R) ∝ 1/R, as compared to the singular behaviour specific to standard Brownian

motion, for which one has lnP (BM)
T (R) ∝ 1/R2, see (3).

The analysis of the large-R asymptotic behaviour of P (II)
T (R) hinges on the

expansion (49). Inserting (62) into (49) and evaluating the two-fold integral

2

π

∫ ∞

0

exp

(

−DBT

4a2
z2
)

cosh
(πz

2

)

∫ ∞

0

cos(mRx)Kiz

(

2a

√

D0

DB
x

)

dx dz

=

√
πa

√

(DBm2R2 + 4a2D0)T
exp

(

− a2

DBT
arcsinh2

(

√

DB

D0

mR

2a

))

, (66)

we find that expression (49) for Model II admits the explicit form in (16). Inspecting

the latter formula we notice that the dominant large-R behaviour is provided by the

term with m = 1. As a consequence, we get

P (II)
T (R) + 8a√

πDBT R
exp

(

− a2

DBT
ln2

(

√

DB

D0

R

a

))

(R → ∞), (67)

whose form is nearly identical (apart from numerical factors) to the asymptotic result
(30) describing the right tail of the probability density function P (II)

T (M).

4.3. Model III

In Model III the random diffusivity is given by V (Bt) = B2
t /a

2 and the moment-

generating function is (see [53, 85, 86])

Υ(T ;λ) =
1

√

cosh(cT
√
λ)

, c = 2
√

DBD0/a2 , (68)

Hence, we find that

Ψ(III)
T (R) =

8

π2

∞
∑

m=0

1

(2m+ 1)2
1

cosh1/2

(

2π(2m+ 1)

√
D0DBT

aR

) . (69)

The latter expression, together with (45) and (46), result in (18). The small-R

asymptotic behaviour of P (III)
T (R) can be obtained directly from (69) by noticing that

the series converges very rapidly and the dominant behaviour is provided by the zeroth
term, i.e.,

Ψ(III)
T (R) + 8

√
2

π2
exp

(

−π
√
D0DB T

aR

)

. (70)
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Maximum and range of random diffusivity processes 20

Substituting the latter asymptotic form into (45) and differentiating, we arrive at

P (III)
T (R) + 8

√
2D0DBT 2

a2R3
exp

(

−π
√
D0DB T

aR

)

(R → 0), (71)

which shows that P (III)
T (R) vanishes exponentially fast when R → 0.

The large-R asymptotic behaviour of the probability density function of the range

in Model III can be determined as follows. Using again relation (68) we get

∫ ∞

0

cos(mRq)Υ(T ; q2)dq =
1

2c
√
2π T

∣

∣

∣

∣

Γ

(

1

4
+ i

mR

2cT

)∣

∣

∣

∣

2

, (72)

which yields our result (19). Noticing finally that in the limit R → ∞ the dominant
contribution to the expansion in (19) comes from the term m = 1 we thus arrive at the

asymptotic formula

P (III)
T (R) + 4

√
2

√
π (D0DBT 2)1/4

√

a

R
exp

(

− πaR

4
√
D0DB T

)

(R → ∞). (73)

Figure 4 illustrates the behaviour of the probability density function PT (R) and its

asymptotic forms for the three models. To emphasise the crossover behaviours as well

as the asymptotic forms of the probability density functions we show the results both
on linear and log-log scales. Note specifically that while Models II and III exhibit a

suppression of the probability density functions to zero in the limit R → 0, in Model I

a finite value at R = 0 is reached.

In figure 5 we compare the probability density functions PT (M) and PT (R) for the

three random diffusivity models. Note the different large-M asymptotic behaviours for

the different models as discussed above. The analytical results are also confronted
with Monte Carlo simulations. These simulations were obtained with the Euler

integration scheme applied to the Langevin equation (4). For each realisation an

independent Brownian motion run is generated to compute the dimensionless random

diffusivity through the specific functional V (Bt). In this way the two noises are

varied simultaneously and independently. Perfect agreement with analytical formulas is

observed even for a moderately large sampling with 10 000 realisations.

4.4. Relation between the moments of the maximum and of the range

We derive a general expression for the moments of the range for the processes in (4).
To this end, we observe that for the three models studied here the probability density

function PT (R) can be formally written as

PT (R) = 4
∞
∑

m=1

(−1)m+1m2PT (M = mR), (74)

where PT (M) is the corresponding probability density function of the maximum. One

may expect that this relation is valid in general for an arbitrary process defined in (4)
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Figure 4. Probability density function PT (R) of the range and its small-R and large-
R asymptotic behaviours, for Model I (a,b), Model II (c,d), and Model III (e,f),
plotted on linear (a,c,e) and log-log (b,d,f) scales. We set D0 = 1, T = 1, a = 1, and
DB = 1. Compare this behaviour to the Brownian limit in figure 1.

but we are not in the position to prove it here. Then, multiplying both sides of the

latter expression by Rq we obtain, through a simple change of the integration variable,

the following intricate relation between the moments of the range and the moments of

the maximum,

〈Rq
T 〉 = 4

(

1− 22−q
)

ζ(q − 1)〈Mq
T 〉. (75)

In particular, we get

〈RT 〉 = 2〈MT 〉 (76)

〈R2
T 〉 = 4 ln(2)〈M2

T 〉, (77)

〈R3
T 〉 =

π2

3
〈M3

T 〉, (78)
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Maximum and range of random diffusivity processes 22

Figure 5. Comparison of the probability density functions PT (M) (a) and PT (R)
(b) for the three random diffusivity models. Solid lines show the analytical formulas
whereas symbols represent the empirically renormalised histograms obtained from
Monte Carlo simulations with 104 runs (time step 10−2). We set D0 = 1, T = 100,
a = 1, and DB = 1.

and so on. While the first relation (76) is obvious, relations (77) and (78) are non-trivial

results. Lastly, comparing (76) and (50), we arrive at (42), which we presented without

a derivation in the previous section.

As a direct consequence of relation (75) we can write down exact closed-form

expressions for the moments of the range of arbitrary (not necessarily integer) order. In
turn, the latter permit us to evaluate the coefficients of variation of the distributions of

the range. For Model I we find

v(I)R =

√

π3 ln(2)− 16

16
≈ 0.586, (79)

which is about 30 per cent smaller than the coefficient of variation (27) of the
corresponding distribution of the maximum. The coefficient of variation of the range

for Model II is given explicitly by

v(II)R =
√

ln(2)

√

1− 2 exp (−τ/2) erf2(
√
τ/2)/ ln(2)− exp(−τ)

√
2erf(

√
τ/2)

exp (τ/4) , (80)

and, hence, grows as
√

ln(2)/2 exp(τ/4) in the limit τ → ∞. This growth is
thus somewhat slower than for the corresponding coefficient of variation (33) of the

distribution of the maximum due to the additional numerical factor
√

ln(2) ≈ 0.833.

Lastly, for Model III the numerical value of the coefficient of variation of P (III)
T (R) is

v(III)R ≈ 0.635, (81)

i.e., is again somewhat smaller than the corresponding value v(III)M for the maximum,

equation (41). We thus conclude that distributions of the range in all three models

under study are narrower than the corresponding probability density functions of the

maxima.
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5. Typical behaviour of the probability density function of the maximum

As yet, our discussion of the averaged versus a typical behaviour concerned only the

maximum and the range themselves. The results for PT (M) and PT (R) we have

presented so far correspond to a standard way of performing the averaging, i.e., when the
averaging is first performed with respect to thermal histories at a fixed realisation of the

stochastic diffusivity process Bt and then over all possible realisations of Bt. Conversely,

realisation-dependent distributions PT (M) and PT (R) are evidently random functions

themselves which fluctuate from one realisation of Bt to the next, and it is, of course,

not clear a priori to which extent their first moments, i.e., precisely PT (M) and PT (R),

are representative of the actual behaviour of these properties. In principle, it may well
happen that PT (M) and PT (R) are supported by some atypical, rare realisations of Bt

which nonetheless provide a dominant contribution to their values. If true, in order

to observe our predictions for PT (M) and PT (R) one may need very large statistical

samples. Note that in figure 5 we presented a convincing evidence for the predicted

functional forms but the number of realisations used to perform the averaging was

sufficiently high, 104. That may not be the case for experimental studies for which such
a large number is beyond reach.

Following the analysis of a typical kinetic behaviour in the so-called target problem

with respect to fluctuations in the starting points of searchers (see Ref. [74] and the

recent Ref. [75]), we concentrate on the properties defined in (9). Here, one first performs

an averaging over thermal histories at a fixed realisation of Bt and then averages the

logarithm of the realisation-dependent probability density over all possible realisations
of Bt. Because the logarithm is a slowly-varying function of its argument, one expects

that its averaged behaviour is rather insensitive to rare anomalous realisations and is

thus representative of a typical behaviour which should be observed for a majority of

trajectories Bt, or seen for small statistical samples. The resulting expression is then

exponentiated to produce an estimate of typical distributions. We will be concerned here

only with the typical behaviour of the distribution of the maximum—the analysis of the
typical distribution of the range appears to be somewhat more involved and lengthy,

but we do not expect any significant new features, as compared to the behaviour of the

maximum.

Recalling that for any given realisation of Bt, the probability density function

PT (M) is given by (2) with D0T replaced by D0

∫ T
0 V (Bt)dt, we then have that

〈ln(PT (M)/p)〉 = −1

2

〈

ln

(

πp2D0

∫ T

0

V (Bt)dt

)〉

−
〈

1

D0

∫ T

0 V (Bt)dt

〉

M2

4
(82)
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and hence,

P (typ)
T (M) = p

NM√
π
exp

(

− 1

2

〈

ln

(

p2D0

∫ T

0

V (Bt)dt

)〉

−
〈

1

D0

∫ T

0 V (Bt)dt

〉

M2

4

)

. (83)

Integrating the latter expression over M we find that the normalisation is given by

NM =

〈

1

D0

∫ T
0 V (Bt)dt

〉1/2

exp

(

1

2

〈

ln

(

p2D0

∫ T

0

V (Bt)dt

)〉)

(84)

such that, eventually, we have the following estimate of the typical behaviour

P (typ)
T (M) =

1√
π

〈

1

D0

∫ T

0 V (Bt)dt

〉1/2

exp

(

−
〈

1

D0

∫ T

0 V (Bt)dt

〉

M2

4

)

. (85)

Therefore, we arrive at the conclusion that if the first inverse moment of the random

variable D0

∫ T

0 V (Bt)dt exists, the distribution P (typ)
T (M) is a Gaussian function, similar

to the case of a standard Brownian motion, (2), with a variance that is reciprocal to

the negative moment of D0

∫ T

0 V (Bt)dt. Both results become identical, of course, when

V (Bt) = 1.

The first inverse moment of D0

∫ T
0 V (Bt)dt can be calculated straightforwardly by

simply integrating Υ(T ;λ) in (8) over λ from zero to infinity. In doing so, we realise that

for Model I this negative moment does not exist, because Υ(T ;λ) decays as 1/
√
λ in the

limit λ → ∞ (see (55)) and hence, the integral diverges at the upper integration limit.

On the other hand, the average of 1/(D0

∫ T

0 V (Bt)dt) over any finite statistical sample of

trajectories Bt is evidently finite and hence, in virtue of (85) for such samples P (typ)
T (M)

should have a Gaussian shape. In figure 6 we compare the ensemble-averaged P (I)
T (M)

(Eq. (11), solid curve) and P (typ)
T (M) (Eq. (85), dashed curve) against an empirical

histogram obtained from Monte Carlo simulations with 100 realisations of trajectories

Bt only, i.e. for a statistical sample which is 100 times less than the one used to produce

figure 5. Note that here 〈1/(D0

∫ T
0 V (Bt)dt)〉 is evaluated numerically by averaging

over this finite set of realisations. We observe that for sufficiently small values of M ,
(i.e. those close to the most probable value of M), for such a moderately small sample

the estimate P (typ)
T (M) indeed agrees with the numerically evaluated distribution better

than P (I)
T (M). For larger values of M , however, the Gaussian tail of P (I)

T (M) seems to

be closer to the numerical curve than that of P (typ)
T (M) even for such a small sample.

Upon an increase of the number of realisations of Bt, we get progressively bigger values

of 〈1/(D0

∫ T
0 V (Bt)dt)〉 and therefore the variance in the Gaussian function in (85)

vanishes meaning that P (typ)
T (M) converges to the delta-function, while the Gaussian

tail of P (I)
T (M) is characterised by a finite variance. This implies that for progressively

larger statistical samples P (typ)
T (M) may describe correctly the shape of the numerically
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evaluated distribution only in a close vicinity of M = 0, while for the almost entire

range of variation of M the ensemble-averaged distribution P (I)
T (M) should provide an

accurate estimate of the actual behaviour (see figure 5).

The first inverse moment of D0

∫ T

0 V (Bt)dt is finite for both Models II and III. For

Model II we have
〈

1

D0

∫ T
0 V (Bt)dt

〉

=
DB

2a2D0

∫ ∞

0

z dz coth
(πz

2

)

exp

(

−DBT

4a2
z2
)

, (86)

where the integral in the right-hand-side is finite for any finite value of the parameter

DBT/4a2. The latter integral cannot be performed exactly but its behaviour can be

readily understood by noticing that for any z ≥ 0 we have

2

π
≤ z coth

(πz

2

)

≤ z +
2

π
. (87)

As a consequence, we find that the first inverse moment of D0

∫ T

0 V (Bt)dt obeys the

following two-sided inequality

1

aD0

√

DB

πT
≤
〈

1

D0

∫ T

0 V (Bt)dt

〉

≤ 1

aD0

√

DB

πT

(

1 + a

√

π

DBT

)

. (88)

In the limit T → ∞ these bounds become sharp and hence, define the leading behaviour

of the first inverse moment exactly.

For Model III the first inverse moment of D0

∫ T
0 V (Bt)dt has the simpler form

〈

1

D0

∫ T
0 V (Bt)dt

〉

=
c1a2

2D0DBT 2
, c1 =

∫ ∞

0

z dz
√

cosh(z)
≈ 5.563 . (89)

Comparison of our analytical predictions for the ensemble-averaged and the typical
behaviours for Models II and III against the histograms obtained from Monte Carlo

simulations with just 100 realisations of the stochastic process Bt is presented in figure

6. Here, for P (typ)
T (M) we used our result in (85) with the respective variance given by

our analytical expressions in (86) (Model II) and (89) (Model III). We observe that for

Model II for small values of M again P (typ)
T (M) provides a better estimate of the actual

behaviour than P (II)
T (M)—the former predicts higher values of the probabilities while

the latter underestimates them: a trend that is confirmed by our numerical observations.

This is not the case for larger values of M . Perhaps somewhat surprisingly, the heavy

log-normal tail of P (II)
T (M) appears in a good agreement with numerics even for such

a moderately small sample size for values of M as large as 103. In turn, for Model III

there is no significant difference between P (typ)
T (M) and P (III)

T (M) for small values of

M , a circumstance that does not permit to make any conclusive statement. On the
contrary, in the large-M domain, the ensemble-average result P (III)

T (M) seems to be

more accurate.
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Figure 6. Comparison of the probability density functions PT (M) (solid curves) and
the estimate P (typ)

T (M) from (85) of the typical behaviour (dashed curves) for the three
random diffusivity models. Symbols represent the empirically renormalised histograms
obtained from Monte Carlo simulations with 102 runs (the time step of 10−2). We set
D0 = 1, T = 100, a = 1, and DB = 1.

6. Conclusion

Deviations from standard Brownian motion have been measured in a vast range of

systems, starting with Richardson’s cubic law for the relative diffusion of tracers in

turbulent media in 1926 [87]. Such "anomalous diffusion" has given rise to a rich variety

of statistical models accounting for various physical aspects effecting deviations from

standard Brownian motion [88–90]. As a particular case, random diffusivity models were
introduced in the context of the modelling of complex measured NMR signals [91]. The

randomness of the diffusivity can be assumed to be due to an inhomogeneous particle

ensemble in a homogeneous environment, or due to identical particles in a heterogeneous

environment. When the diffusivity distribution is fixed in time the dynamics resulting

from such random diffusivities is captured by the framework of superstatistics [92] or grey

Brownian motion [93]. When particles move in quenched environments with finite patch
sizes and specific jump rules interesting dynamic effects and non-Gaussian phenomena

have recently been revealed [94, 95].

Originally devised to reproduce the observed crossover behaviour from non-

Gaussian to Gaussian displacement statistics in systems showing a Brownian scaling of

the mean squared displacement [96, 97], diffusive processes with stochastically evolving

diffusivities were devised as an "annealed" approach to the motion of the test particle in a
heterogeneous environment. Such diffusing diffusivity models with stationary diffusivity

dynamics were analysed in terms of the mean squared displacement and the displacement

distribution. Despite the different formulations several core features turn out to be

robust among these models [54, 55, 57–59,98].

Here we studied a stochastic process xt driven by white Gaussian noise, whose
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amplitude is being modulated by a stochastically varying diffusivity Dt for three different

choices: (I) cut-off Brownian motion Bt with Dt ∼ Θ(Bt); (II) Geometric Brownian

Motion, Dt ∼ exp(−Bt); and (III) squared Brownian motion, Dt ∼ B2
t . In contrast to

the above-mentioned diffusing diffusivity models, that are all Brownian, the three choices

here effect non-stationary diffusivity dynamics, and the resulting diffusion exhibits both

normal and anomalous diffusive scaling.
In the analysis we concentrated on the extremal properties in terms of the maximum

and the range of these three random diffusivity models. We obtain analytical expressions

for the probability density functions of the maximum and the range of the processes for

a given observation time. Our discussion reveals both similarities and differences of the

extremal properties of these models among each other as well as compared to standard

Brownian motion. In particular, we unveil that Model I shows significant differences
from Brownian motion while the small-maximum limit of Model II coincides exactly

with the Brownian behaviour. We also show that the distributions of the maximum are

generically broader than the distributions of the range, as evidenced by the analysis of

the coefficients of variation of the corresponding distributions. Our discussion finally

unveils the difference between the ensemble and the typical behaviour of the probability

density functions, an important ingredient for the analysis of finite-sized data sets.
The analysis of given stochastic time series representing a set of trajectories of

diffusing test particles has more recently received considerable attention. A number of

statistical observables has been introduced and discussed (see, e.g., [89, 90, 99, 100]) to

allow the physical classification of recorded data. For instance, it has been shown how

to use Bayesian maximum likelihood [101,102] or machine learning [103,104] to classify

a measured system and extract its physical parameters. Specifically, the power spectral

analysis of single, finite-length trajectories was shown to distinguish different forms of
random diffusivity models [53]. A more recent twist on data analysis of stochastic

processes uses large-deviation approaches, for instance, for the time averaged mean

squared displacement [105, 106].

While it is not surprising that the extreme value behaviour encoded in the

probability density functions of the maximum and the range studied here was shown to

distinguish the three, quite different, random diffusivity models investigated here, we
also demonstrated that the rectified Brownian motion of Model I exhibits significant

differences to standard Brownian motion. It should therefore be interesting to

investigate whether these two distributions allow one to distinguish between the diffusing

diffusivity models encoding Brownian yet non-Gaussian motion [54,55,57–59], and how

these measures change for projections of higher dimensional versions of these models.
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