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Abstract We study a class of planar integrate and fire (IF) models called
adaptive integrate and fire (AIF) models, which possesses an adaptation vari-
able on top of membrane potential, and whose subthreshold dynamics is piece-
wise linear (PWL). These AIF models therefore have two reset conditions,
which enable bursting dynamics to emerge for suitable parameter values. Such
models can be thought of as hybrid dynamical systems. We consider a par-
ticular slow dynamics within AIF models and prove the existence of bursting
cycles with N resets, for any integer N. Furthermore, we study the transition
between N- and (N + 1)-reset cycles upon vanishingly small parameter vari-
ations and prove (for N = 2) that such transitions are organised by canard
cycles. Finally, using numerical continuation we compute branches of bursting
cycles, including canard-explosive branches, in these AIF models, by suitably
recasting the periodic problem as a two-point boundary-value problem.
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1 Introduction

Dynamical systems with reset are not only interesting for themselves, as math-
ematical objects, they are also extremely relevant in applications. There are
at least two application areas where these systems are pertinent: first, in neu-
roscience, as models of neural activity; second, in electronic engineering where
resets are one means of control. Neuron models with reset belong to the gen-
eral class of integrate and fire (IF) models, which correspond to hybrid systems
following a differential equation together with one or several reset (algebraic)
rules applied as soon as one variable attains a pre-determined value referred
to as threshold.

In the neuronal context, the variable undergoing a threshold event is the
membrane potential v and the reset consists in stopping the integration of the
model and restarting instantaneously with a new, lower, value for the mem-
brane potential. This mimics the behaviour of neurons’ membrane potential as
it crosses the excitability threshold with the key difference that real neurons
(and other neuron models) emit an action potential (or spike) as soon as they
cross their firing threshold, which corresponds to a large oscillation in v which
naturally brings the potential down, close to its rest value. IF models do not
compute any spikes but instead mark threshold crossings as fixed values of v
and reset v instantaneously to value close to rest. In this way, only the sub-
threshold dynamics is effectively governed by an evolution equation, and the
superthreshold dynamics is replaced by an instantaneous reset. Therefore, the
reset allows such one-dimensional models to support limit cycles and hence
the reset acts as a second state variable.

IF neuron models can be classified according to their subthreshold dynam-
ics, whether it be linear (LIF models) or nonlinear (e.g. quadratic IF or QIF).
They are very popular in neuroscience, both because they are amenable to the-
oretical analysis and also because they are very much suitable to computations
within large networks. What is more, IF models are compatible with electronic
implementation as so-called artificial neurons, and a large body of current re-
search is focused on implementing networks of neuro-inspired systems akin to
IF models within the fast-developing area of neuromorphic computing [9,19].

A number of IF models (e.g. LIF, QIF) are one-dimensional, the membrane
potential v being the only state variable. However, one can build and study
IF type models with additional state variables accounting to, e.g., gating dy-
namics, in which case the reset can then affect more than one variable. As a
consequence, such models can reproduce more complex neuronal oscillations
when classical one-dimensional IF models can only reproduce spiking activity.
This is in particular the case of the Izhikevich model [23], which is effectively a
QIF with one slower recovery variable and hence two reset conditions. This is
also the case of the Adaptive Exponential integrate-and-fire (AdEx) model [§],
in which an exponential term is added in the voltage equation, making it more
amenable to reproduce the rise of membrane potential towards the action
potential. Nevertheless the subsequent decay is still replaced by reset condi-
tions. The AdEx family of IF models has recently been enlarged with the



Spike-adding and reset-induced canard cycles 3

conductance-based AdEx (CAdEx) version [20], more suited to reproduce re-
alistic time series of neuron’s membrane potential. Both the Izhikevich and the
AdEx/CAdExp models can reproduce bursting activity [22]. Indeed, by con-
sidering the reset as one additional variable, the resulting model can be seen
as having two fast (v and “reset”) and one slow (w) variables, which makes it
compatible with minimal slow-fast models of bursting activity; see Section 2
below.

In the present work, we study a family of IF models called adaptive integrate
and fire (AIF) models, with piecewise-linear (PWL) subthreshold dynamics
and one slow adaptation variable. Hence, this model can be considered as a
PWL version of Izhikevich’s model and it can produce bursting oscillations.
This family of IF models has been introduced in [24] and further studied in [10].
Compared to the Izhikevich and the above-mentioned AdExp models, the AITF
model analysed here will have different asymptotic behaviour in the frequency
of spiking oscillations as they appear [22], and/or of spikes during the burst in
the bursting regime. However, it is more amenable to theoretical analysis of
the various attractors sustained by the model, in particular those of bursting
type, which is the main focus of the present article. We study such bursting
oscillations using both theoretical and computational tools. In particular, we
prove the existence of limit cycles with N-resets, for any IV, under certain
assumptions on the slow dynamics of these AIF models. We also put a strong
emphasis on the transition between N- and (N + 1)-reset cycles in the model,
under very small parameter variations, motivated by direct simulations that
suggest the occurrence of canard cycles [6,17,25] in such slow-fast systems
with reset organising spike-adding transitions [14,15] that correspond, in the
IF context, to reset-adding transitions.

Canards are special solutions of multiple-timescale system that possess
strong and unexpected properties. In particular, they follow repelling (locally)
invariant manifolds for long time intervals, and they exist in very narrow
(exponentially-small) parameter ranges. Canards have been found in many
models of neural activity, both biophysical (e.g. Hodgkin-Huxley, Morris-Lecar)
and phenomenological (FitzHugh-Nagumo) and their role in organising the
transition between different activity regimes has long been established: they
provide good approximation of firing threshold in spiking models, and they
also exist along branches of bursting cycles, precisely at the transition be-
tween cycles with N- and (IV + 1)-spikes per burst. However, they have been
little studied in the context of IF models and this is the main topic of the
present work.

We prove the existence of canard cycles at the interface, in parameter space,
between 2- and 3-reset cycles, as an examplary spike-adding transition. On the
computational side, we use numerical continuation to compute families of such
cycles, including canard-explosive branches during spike-adding transitions, by
recasting the planar periodic problem with PWL dynamics and resets into a
two-point boundary value problem (BVP) of an extended problem formed by
considering multiple copies of the original system. This BVP is suitable for
standard numerical continuation, which we perform with the software package



4 Mathieu Desroches et al.

AUTO [16], showing in passing that one can compute parametrised families of
limit cycles in IF systems within this standard framework at little cost. Finally,
we show how the bursting resulting from this family of AIF models is akin to
square-wave bursting and highlight the similarities and differences with smooth
models of square-wave bursting such as the Hindmarsh-Rose burster [14,21,
29].

The rest of the paper is organised as follows. In Section 2, we first introduce
the class of systems that we will study, namely planar slow-fast systems with
resets akin to integrate-and-fire neuron models with a slow adaptation variable.
Then we present the dynamics of the two limiting problems obtained in the
singular limit, that is, the slow and fast subsystems, respectively. Section 3
is devoted to explaining the spike-adding transitions observed in our model
example. We provide a theoretical proof for the existence of cycles with resets
as well as the canard-induced transition that connect them in parameter space.
To fully unveil the canard-mediated spike-adding transition of interest, we
resort to using numerical continuation. We explain in Section 4 how to do
continue cycles with reset across such transitions using two-point boundary-
value problems. Section 5 gives a brief description of the dynamics of a modified
AIF model where the slow adaptation dynamics is coupled to the voltage
variable. Then, Section 6 provides a comparison between AIF models and
smooth square-wave bursters. Finally, we summarise our finding in Section 7
and highlight interesting directions for future work.

2 ATF models and their slow-fast analysis
2.1 Adaptive integrate-and-fire (AIF) models

We consider the following family of AIF models
v =lv|—w+1T

w' =eF(v,w),

(1)

where [ is a regular parameter representing an applied constant current, 0 <
€ < 1 is a small parameter, the 0 limit of which is relevant to the full system,
and F' is a smooth function, which we will take to be linear in both arguments,
for simplicity and without loss of generality on the dynamics of interest. We
append to system (1) the following reset rules: for v = v¢p,, we have

(Uv w) — (Vres, W+ k), (2)

meaning that as soon as v reaches some threshold value vy, the values of
state variables v and w are reset to vyes and w + k, respectively. System (1) is
parametrised by the fast time 7 and it is useful to rescale time so as to introduce
the slow time ¢t = e7, which brings system (1) in its slow-time formulation,
namely

ev=v|—w+IT

w = F(v,w). ®)



Spike-adding and reset-induced canard cycles 5

The reset rules (2) remain unchanged in the slow-time formulation.

Classical IF models like the linear one (LIF) or the quadratic one (QIF)
possess only one state variable, the membrane potential, and one reset rule
associated with it. However, these minimal IF models can only account for
rest and spiking dynamics. Emulating more complex dynamical regimes, such
as that of bursting oscillations, requires to introduce a second variable, which
usually accounts for recovery or adaptation of the membrane dynamics and
allows for a modulations of rest and spiking states in time; the second variable
will also be subject to reset conditions.

In the present work, we will study system (1) in several configurations, de-

pending on the slow adaptation dynamics given by function F, in the regime
where such systems can produce bursting oscillations, that it, oscillatory so-
lutions that alternate between a fast phase termed burst and corresponding
to spiking with a slow amplitude modulation, and a slow phase termed qui-
escence corresponding to quasi-stationary dynamics. An example of such a
periodic bursting solution obtained for F'(v,w) = —w is depicted in Figure 1;
its burst phase has 5 spikes, represented by 5 threshold-crossings and resets.
Panel (a) displays the solution in the phase plane (v, w) together the critical
manifold Sy (see below for a definition), the switching line {v = 0}, the reset
line {v = vty }, the threshold line {v = wvyes}. Panel (b) shows the v time
profile for this solution together with the reset and the threshold lines. This
time series has several key features of classical square-wave bursting [22] and
we will see that system (1) can indeed be seen as a piecewise-linear square-
wave burster with reset. As such, it can be compared to smooth square-wave
bursters like the Hindmarsh-Rose model [21] or a 3D version of the Morris-
Lecar model studied, e.g., in [22].
Note that system (1) can be made to behave qualitatively like the QIF model,
that is, as a type-1 excitable system where the oscillatory regime comes through
a saddle-node on invariant circle (SNIC) bifurcation. The way to achieve this
is by setting parameter k to 0, which effectively removes the reset for w, as well
as choose vyes < 0, which mimics the SNIC scenario from the QIF model. This
is to be expected since system (1) has a V-shaped piecewise-linear nullcline for
variable v, which can be seen as an approximation of the parabolic nullcline
of the QIF model. In this setup, considering a slow periodic forcing in place of
the parameter (e.g. I) displaying the SNIC bifurcation would yield parabolic
bursting oscillations, just like in the periodically forced QIF model [18] or the
equivalent Atoll model [22]. However, here again the asymptotics of the oscil-
lations’ frequency in both cases would be different. In the present article, we
focus on the case where w does undergo a reset, which brings bursting oscil-
lations akin to square-wave in the system in an endogenous manner, without
the need for any periodic forcing, that is, with only one slow variable w.

The presence of the small parameter € in system (1) endows it with a
slow-fast structure, whereby v is a fast variable and w is a slow variable. In
the form given in (1), it is parametrised by the fast time 7 and (1) is the
fast-time version of the model under consideration. Its € = 0 limit yields the
fast subsystem or layer problem, that is, a family of one-dimensional ODEs
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Fig. 1 Typical bursting dynamics of system (1) for F(u,w) = —w and the following fixed
parameter values: I = 0.1, e = 0.01, b = 0, vres = 0.2, vgny = 1, k = 0.05. In (a), the stable
five-reset solution is shown together with the critical manifold Sp, the reset line {v = vres}
and the threshold line {v = vg, }. In (b), the time profile of the v-component of the solution
is shown, together with reset and threshold lines.

on v parametrised by w, which becomes a parameter in this singular limit,
together with one reset condition. In contrast, taking the ¢ = 0 limit of the
ATF model in its slow-time parametrisation (3) yields a differential-algebraic
equation (DAE) termed slow subsystem or reduced system. It consists of a
differential equation for w (unchanged from (3)) constrained by the algebraic
condition 0 = |v| —w + I, without any reset conditions.

The critical manifold Sy of system (1)—(2), or equivalently of system (3)—
(2), is by definition the € = 0 limit of its fast nullcline. Therefore in the present
case we have

So = {0 = |v| —w+I}.

Note that both the slow-time and fast-time parametrisations of the AIF model
are equivalent as long as ¢ # 0. However their ¢ = 0 limits differ, and this is
why the system is said to be singularly perturbed. The critical manifold plays
a key role in both subsystems: it is the one-dimensional phase space of the
slow subsystem as well as the set of equilibria of the fast subsystem.

2.2 Fast subsystem analysis of (1)—(2)

The fast subsystem does not depend on the choice of F since the dynamics of
w is frozen in the € = 0 limit of (1). It reads
v =lv|—w+1T
w' =0 (4)
UV = Vthy — U = Upes.

Given that the equilibria of the fast subsystem must lie on Sy, one can easily
show that (4) has no equilibria for w < I, one equilibrium for w = I — which
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Fig. 2 Singular flows of (1)-(2) we consider from the family of adaptive integrate-and-
fire systems: slow flow (green arrows) on the critical manifold Sp; fast flow (black arrows)
along fast fibers (black lines) with stable (filed circles) and unstable (unfiled circles); fast
subsystems limit cycles (black segment with arrow) and nonsmooth homoclinic bifurcation
(red segment with arrow and star). In panel (a), we take F(v,w) = —w; in panel (b), we
consider F(v,w) = v — b, which allows for a slow flow equilibrium (unfiled green circle).

can be considered stable for the {v < 0} system and unstable for the {v > 0}
system — and two equilibria for w > I, namely a stable one located in the
{v < 0} zone and an unstable one located in the {v > 0} zone. Hence, the
system undergoes a nonsmooth saddle-node bifurcation of equilibria at w = I.

Due to the reset condition, one can easily prove that the fast subsystem
possesses one stable limit cycle for w < wves + I, that is, up to the intersec-
tion point between the reset line and the critical manifold. As w approaches
this value from below, the period of the cycle grows unboundedly and when
W = Vyes + I, then the first reset brings the system exactly at the (unstable)
equilibrium where it stays for all future times. Therefore, what happens at
W = Vyes + I is a nonsmooth homoclinic bifurcation; see Figure 2(a) where
the fast flow is indicated on lines y = constant with black arrows, stable (un-
stable) fast subsystem equilibria represented by a black dot (circle) and the
nonsmooth homoclinic connection by a red segment.

2.3 Slow subsystem analysis of (1)—(2)

Contrary to the fast subsystem, the slow subsystem does depend upon the
choice of F. We will consider two cases with different slow flow directions in
each one of them and hence different spike-adding sequences albeit organised
by canard solutions in both cases. The first case that we will study, and which
our theoretical results will be based upon, corresponds to the case F(v,w) =
b — w, where b is a parameter. Hence the slow subsystem, ¢ = 0 limit of
system (3), becomes

(5)
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For b = 0, the flow of the slow subsystem, typically referred to as slow
flow, is trivial and points down along each branch of the critical manifold
without having any equilibria; see Figure 2(a) where the slow flow is indicated
by green arrows on the critical manifold Sy. In particular, the corner point of
the critical manifold is the PWL equivalent of a jump point. This means that,
for £ > 0 small enough, trajectories switch from slow to fast motion near this
point. With a two-piece PWL critical manifold, this point cannot be a canard
point (i.e. a turning point of the slow flow) as, in order to have a canard point
in a PWL setting, one must have three linearity zones to approximate the
quadratic fold point of the critical manifold of the smooth slow-fast system [1,
12]. For b = I, there is a semistable equilibrium point on Sy, and for b > I there
is a pair of stable equilibria on Sy which therefore appear via a nonsmooth
saddle-node bifurcation at b = I. However, we will not consider the case b # 0
here.

In Section 5, we will also consider an alternative AIF model corresponding
to a type II neuronal model, for which we take F'(v,w) = v — b. In this case,
the slow flow has an equilibrium that is unstable for b > 0, and this allows
for the slow flow to go up along the repelling part of the critical manifold,
see Figure 2(b). This will have some importance when investigating the reset-
induced canard solutions in this configuration.

3 Spike-adding in system (1)—(2) with F(v,w) =b —w
3.1 Setup

The present work is mainly focused on explaining so-called spike-adding occur-
ring under parameter variation in system (1) in the case where F(v,w) = b—w,
for which we will provide a theoretical analysis of the phenomenon using meth-
ods from nonsmooth dynamical systems theory [7]. We will give elements con-
cerning the case F'(v,w) = v — b at the end of the paper mostly to highlight
the similarities and differences in the spike-adding transitions. To do so, we
will first define limit cycles with n resets, for some integer n > 1, which we will
term n-reset cycles. Let us also denote by ¢ an evolution operator for t > 0 of
system (1) (or equivalently (3)) with reset condition (2), which is a forward
time composition of flows and resets. Operator ¢ satisfies the standard two
properties of evolution operators, that is ¢° = id, where id denotes the iden-
tity, and ¢'t* = @' 0 ¢°, where times ¢t and s are both positive and “o” denotes
composition. Note however that the evolution operator ¢ includes resets, which
act in zero time, and their order of occurrence is strictly determined given an
initial state (vg,wp).

Definition 1 An n-reset periodic cycle L(v,w,n), where n is a positive inte-
ger, is a subset of the state space of system (1)(or (3))—(2) such that each point
Py = (v, wp) € L satisfies ¢(vg, wo,t) = ¢p(vo, wo,t +T) € L, for some T > 0
and any t > 0. Moreover, there are n time instants when system (1)(or (3))—
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(2) reaches the threshold value v = vy, for ¢ € (0, T, starting an evolution at
any point (vg,wo) € L.

Definition 2 An n-reset limit cycle L(v,w,n) (or just n-reset cycle), where
n is a positive integer, is a subset of the state space of system (1)(or (3))-
(2) such that L is an n-reset periodic cycle and a limit set of system (1)(or

(3))-(2).

Remark 1 Given that the reset is instantaneous, in Definition 1 we have used
the time interval in which we count the time instances of resets for t € (0, 1.
This ensures that if the initial vy is equal to vy, then we do not count it as
reaching the threshold twice. Note that if we chose ¢ € [0, T') then if vy = Vyes
we would miss out one reset, and hence the latter choice of the time interval
is not used in Definition 1.

Remark 2 Since we consider only positive times, an n—reset cycle according
to Definition 2 would imply an attractor since only w—limit sets would be
possible in the model system. However, unstable n-reset periodic orbits are
also possible in system (1)(or (3))—(2). Thus an n-reset cycle in the text will
refer to either a stable or unstable n-reset periodic cycle.

We first present numerical evidence that system (1)—(2) can undergo spike-
adding transitions within very narrow parameter intervals. Figure 3 depicts
a transition between 2- and 3-reset cycles, obtained by direct simulation and
which is occurring under parameter variation in the system, for F'(v, w) = —w.
This is a good incentive to look at this system with analytical tools in order
to decipher the mechanisms underpinning such complex dynamics happening
within such a narrow parameter band. In particular, we will consider how the
asymptotic dynamics changes when we vary parameter k. The two simulations
shown in Figure 3 are performed for the following fixed parameter values:
I =01 =0.05 b =0, ves = 0.2, vy, = 1, and for a minute variation
of parameter k giving rise to three different periodic attractors with canard
segments. Although the difference in the value of k is remarkably small, the
difference in the asymptotic dynamics is of order 1: in panel (a) (k = 0.15033),
the dynamics is attracted towards a stable limit cycles with three fast oscil-
lations or spikes whereas in panel (b) (k = 0.15034) it is attracted towards
a stable limit cycle with four spikes; finally, the periodic attractor displayed
in panel (c¢) (k = 0.15037) has two spikes per period. Note that spikes here
are discontinuous, even though in the figure, the cycles appear as continuous
curves for convenience.

3.2 Analysis through reset-induced canard cycles
In the current section, we will explain the spike-adding mechanism presented

above through direct simulations. To this aim, we will first prove the existence
of periodic cycles with N resets, for any integer N > 1.
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Fig. 3 Simulation of system (1)—(2) with F'(v,w) = —w, and for the following fixed pa-
rameter values: I = 0.1, e = 0.05, b = 0, vres = 0.2, v¢py = 1. We set k to: (a) k = 0.15033,
which leads to a three-reset cycles; (b) k = 0.15034, which leads to a four-reset cycle; (c)
k = 0.15037, which leads to a two-reset cycle. Top panels show the solution in the phase
plane together with the critical manifold Sp, the reset line {v = vres} and the threshold line
{v = vgnr }; bottom panels show the time profile for v over one period, together with reset
and threshold lines.

3.2.1 Existence of cycles with resets

Consider system (1)—(2) with b = 0, and parameters ves, I, k and vy, positive.
We first rewrite the system in a piecewise manner as

vV=v—w+1,

+ . 6

f w' = —ew, for 0<wv < v, 0
v':—’l)f’erI,

-, 7

f w' = —ew, for v <0, @

and the reset condition as
R: (v, w)r— (Vres, w+ k) for V = Uthe. (8)

The flow solutions corresponding to f* are given by

be v(t)=—-I+ 17{'}95 (exp(—et) —exp(t)) + (vo + I) exp(t),
w(t) = wo exp(—et),

(9)

v(t) = I+ 720 (exp(—t) — exp(—et)) + (vo — I) exp(~1),

b w(t) = wo exp(—et).

(10)
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The attracting and repelling parts of the critical manifold of the system are
defined as:

St ={(v,w) eERTU{0} xR : w=v+1}

- _ (11)
Sy ={(v,w) eR™ xR : w=—-v+1I},

respectively. Likewise, attracting and repelling slow manifolds of the full sys-
tem are defined as:

ST ={(v,w) eERTU{0} xR : w=(1+¢)(v+1)}

_ _ (12)
ST ={(v,w) eR™ xR : w=(e-1)(v—-1)},

respectively; see [26] for details.

Proposition 1 Consider system (6)-(8) with positive parameters vy, = O(1),
I = O(vyes). Then for every € > 0 small enough and wg > (1 + €)(vyes + 1),
there exists k > 0 such that the system possesses a limit cycle characterised by
N > 1 resets and a periodic point (Vpes, Wo).

Proof Starting from given point (vg,wp) = (Vres,wp) the system evolves to
some point (0,wy) where w; = wyexp(—et;). Note that v’ is negative at the
initial point and it remains negative following all points along the trajectory
until it can become 0 on S, . So, there must exist ¢; > 0 when the trajectory
reaches {v = 0}.

At (0,wr), v' < 0 as this is not the set Sy and so the system will follow ¢_
until it crosses S; at some point (v1,ws), and then the trajectory will start
mowing back to the right until some point (0, w;;) is reached. Note that there
must exist some time t5 > 0, which is the flight time from (0, w;) to (vy,w1),
since at all points along the trajectory, from (0,wy) to (v1,w1), v' < 0 (it is
0 only at (vi,w;)) and w’ < 0. Similarly, there must exist some time t3 > 0,
which is the flight time from (v1,w1) to (0,w;s) since at all points along the
trajectory, from (vy,w1) to (0,wrr), v’ > 0 (it is 0 only at (v1,w;)) and w’ < 0.
Furthermore 0 < wyy < I since wy; = wgexp(—e(t1 + t2 + t3)) > 0 and the
trajectory crossed S, only at (vy,w1).

Consider first the case N = 1. At (0,wyy), v" > 0 and it remains so along
the trajectory until vy, is reached at vy = venr, wrrr = woexp(—e(t; +ta +
t3 + t4)). Again, the existence of ¢4 > 0 is guaranteed since v’ > 0 along the
trajectory. At this point we apply the reset map (8) and obtain the final point
VIV = Vres, Wy = wo exp(—e(ty + t2 + t3 + t4)) + k. For a periodic cycle to
exist, we require that there exists some value of k£ > 0 which satisfies

k
1 —exp(—e(ty +ta+t3+ 1))

wo > (14 ¢&)(vyes + I)-
Using vector fields f*, we may show that t| +to + t3 4+ t4 = O(1/¢). We may
then set k = (1 4 €)(vyes + I), and the inequality above is satisfied.

Consider now the case N = 2. All the steps are the same until the point
wry # wy is reached. In this case, the inequality condition wyy > (14¢)(vyes +
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I) is violated and from (vyes,wry) the trajectory evolves towards threshold
Venr- Again, v’ is positive along the trajectory segment from (vypes, wry ) until
the threshold is reached and the existence of t5 > 0, which is the flight time
from (Vres, Wry) to (Vgnr, Wy ), is guaranteed with

wy = woexp(—e(ty +ta+t3+ta +t5)) + kexp(—e(ts)).
At (Vgnr, wy ), the reset map is applied, which yields the final point
V= Upes, Wpg = wpexp(—e(ty +ta+t3+ts+1t5)) + kexp(—e(ts)) + k.
For the 2—reset periodic cycle to exist, we require

B k(1 + exp(—¢(t5)))
"1 —exp(—e(ty +ty +t3+ty+1t5))

wo > (14 &) (vyes + 1)

and
k(1 + exp(—¢(t5))) exp(—e(ts + b2 + t5 +t4))
1 —exp(—e(ti +t2 +t3+ta +1t5))
The second inequality simplifies to

k(14 exp(—e(t1 + 12 +15+t4)))
1-— exp(fs(tl + t2 + t3 + t4 + t5))

Without loss of generality, let us assume that point wry is at least O(e) away
from the slow manifold ST, that is (1 + €)(ves + 1) — wry > €. In this case
one can verify that t5 = O(1).

Let D = 1—exp(—e(t1+ta+ts+tsa+ts)) and T = (1+¢)(ves+1). One may
then write the two inequalities as k(1 +exp(—e(t1 +ta +t3+1t4))) < TD—eD
and k(1 4 exp(—e(ts))) > TD. Since as before, t; +to +t5 + ¢4 = O(1/¢) and
ts = O(1), it is clear that (14 exp(—e(t; +ta+1t3+14))) < (1 +exp(—e(ts))),
and some k > 0 may be chosen ensuring that both inequalities are satisfied.
For example, one may choose k = 3/5T D. This completes the case for N = 2.

We now turn to the existence of an N-cycle, by which is meant a cycle
with N resets for NV > 3. Define first the values of variable w immediately
after resets, that is when v reaches vy, and is set to v = vye5. Thus, let w; for

+ k< (1+4+¢e)(vpes + ).

< (1+4¢)(ves + I).

i=1,2, ..., N correspond to the values of w at times t; +to+t5+, ..., +t;13,
fori=1, ..., N, where T; = t; +to +t3+, ..., +t;13 refers to the time of ith
reset. Specifically,
w; = w(T;) when lirjr} (t) = Vthr- (13)
tlT;

We then have:
wy = e—E(t1+t2+t3+t4)wO + k,

we = efs(t1+t2+t3+t4+t5)w0 + kefé‘t5 + k,
(14)
— e—E(tl+t2+t3+t4+t5+~--+tN+3)w0 + ke—E(t5+t6+m+tN+3) + ...

kemsltottrtttiee) | pemetnea 4k,
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As in the case for N = 1 or N = 2, using vector fields f* we can show that
t1+to+t3+ts = O(1/e). Without loss of generality, let us suppose that wy_1
is at least O(e) away from SZ, that is (1 + €)(vres + 1) — wy—1 > €. Using
vector field f*, we may then show that ¢;13 = O(1) (for i = 2,...,N) and if
k > tny3(vres + I)e + O(g?) we have that:

t1 +tat+ts+ts >tngs >INt > Ingr > .00 > s, (15)

and

WN > WN—_1 > ...> Wy > W1. (16)

For the existence of an N-reset cycle, we require
wN:w0>(1+5)(vres+I)>wN_1>...>w2>w1. (17)

It implies that

e—&(t5+t6+...+t1\]+3) + e—&(t6+t7+...+t1\]+3) +...+ e—EtN+3 + 1

wo =k
0 1 — e—c(t1ittat...+tN3)

(1 +<€)(’Ures +I> > WN_1 > WN—2 > ...> Wq.
(18)

Clearly, k > tn13(vres+1)e+O(?) may be chosen so that condition (16) holds
and by appropriately adjusting the threshold parameters (1 + €)(vyes + I) one
may ensure that condition (18) holds as well. This completes the proof.

We should note here that the number of resets is a function of system param-
eters, and the structure unraveled by Proposition 1 guarantees that at least
one periodic cycle with some finite number of resets may be found. However,
it does not touch upon whether or not there is an upper bound on the number
of resets.

3.2.2 Existence of canard cycles with resets

Proposition 2 Consider system (6)-(8) with positive parameters vy, = O(1) >
Vresy L = O(Vyes). Then for every e > 0 small enough and wy = (1+¢€)(vpes+1),
there exists k > 0 such that the system possesses an N -reset periodic cycle and
a periodic point (Vres, Wo) with the following set of inequalities (18):

w0:(1+5)(vres+l):wN>wN,1 > WN_9 > ...> W, (19)
where w;, 1 < i < N — 1, are the values of the w-component of the system

immediately after the ith reset as defined by equation (13). Such a periodic
cycle is a canard cycle.
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Proof Directly from Proposition 1, it follows that there exists an N-reset peri-
odic cycle with periodic point (vg, wg) = (Vres, Wo ), Where wg > (1+¢)(vpes+1).
Without loss of generality, let us assume that we chose the parameters such
that wo — (1 + €)(vres + 1) < J, with 0 < 0 < 1. Then under small decrease
of k all the conditions for the existence of N-reset cycle are satisfied, and by
the continuity we will have that wy = (1 + &)(ves + I) for & < k*. Since
wo = (14 ¢€)(vres + I) € ST then a segment of the cycle lies on the repelling
part of the slow manifold, and hence the N-reset cycle is an N-reset canard
cycle.

Proposition 3 Consider system (6)-(8) with parameters viny = O(1) > vyes,
I = O(vres), and some k*, all positive. Let us further assume that a canard
cycle with N = 2 number of resets as described by Proposition 2 exists for
a given set of parameter values. Then for some k, sufficiently close to but
different from k*, there exists a periodic cycle in the system characterised by
N + 1 of resets, and a periodic point (vres, Wo) such that the inequality

wo = (1 +€)(Ures +I) =WN4+1 > WN > WN_1 > WN_2 > ...> W1 (20)

holds. Moreover, we have that |{wy4+1 — wy| < €. Such a periodic cycle is a
canard cycle.

Proof 1If there exists a canard cycle with two resets as described in Proposition
2, then we have

, . (e (1L emets)emeltattta)
'LUO = (1 +5)(Ures + I) = k 1 7(efs(t1+‘..<>kt5) > k ( 1 — efz(t1+...+t5)
(21)
Moreover,
wyy = wse—E(t1+t2+ts)’

where point wy; is the point of crossing {v = 0} by flow ¢_. Times 1, to
and 3 are the flow times from initial point (vyes, (1 + €)(vres + I)) until the
point of crossing {v = 0} by flow ¢_ (the times are defined in the proof of
Proposition 1). We know that ¢, + t2 + t3 = O(1/e). Note that k* = O(vyes)
for equation (21) to hold. From (21), we further have that

1+ 6)(vres + I)(l — e_f(t1+...+t5))

. (
k= (1+ets)

(22)

Consider now some some k # k* sufficiently close to k*, and such that we have
wy = w = (14€) (Vres+1) > wa = (14€) (vyes+1)—0(k) = wype =tatt) f o=t 4

where w; = wrre~ (%) + k and wq = wrre~ctiT5) 4+ ke—ets + k.

Since k is sufficiently close to k*, t) = O(t4) and t; = O(t5), and then
wa > wi. We now seek to find some time tg(k) > 0 after which point (vpes, wo)
under flow ¢4, and a reset, is mapped onto wy = (1+¢)(vyes + I) for a suitable
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k # k* and sufficiently close to k*. Let us suppose that such a k exists. Then,
it must be equal to

1+ 6)(Ures + I)(l — e_s(t1+"'+t21+t/5+t6))

k= (
(1 +e—8t’5 +e—6(tg+t6))

(23)

and tg(k) is a solution of
506) ry , DlR)EE
l+e 1+e’

For §(k) sufficiently small, that is for (k) = |ws — wa| < &(vpes + I) < € there
exists the solution tg(k) such that

1=-1 + ('Ures + I)eiEtG —

O(3(k)et) = O(1).

On the time interval [0,%g], the velocity of the v-component is equal to © =
—e(v+1)+d(k)(14¢), thus for 6(k) sufficiently small and hence for k appropri-
ately chosen, the average value of the velocity may be such tg = O(vyes/€) and
O(8(k)ete) = O(1). This ensures the existence of a canard cycle with 3-resets.

Note that we are not able to determine the sign of k* — k, that is, whether
it is by increasing or decreasing the bifurcation parameter that we will find
the 3-reset canard cycle. Moreover, we conjecture that if there exists a canard
cycle with N > 2 number or resets, as described in Proposition 2, then in
some sufficiently small neighbourhood of the bifurcation parameter, there exist
canard cycles with N +1, N +2,--- 2N resets in system (6)-(8). This will be
further explained in the following section.

3.2.3 Transition from 2-reset to 3-reset cycles

We now explain the 2- to 3-reset transition of the periodic cycle observed
in our model example. We shall start by considering a 2-reset periodic cycle
existing for some k*, all other parameters being fixed. Thus, we first assume
that Proposition 1 holds for N = 2.

We will now construct a return map from a segment on {v = w5} back
to itself under the action of flows ¢+ and the reset map. We have a 2-reset
periodic cycle with periodic point, say wg on {v = vyes }. We choose k* and all
other system parameters such that we have periodic point wf some distance
¢ = ((k) away from the point of intersection of the slow manifold St with
{v = Vyes}- That is w — ¢ = (1 + €)(vyes + I). Moreover, we choose k* such
that the 2-reset limit cycle is stable. By considering explicit flow solutions (9)
and (10), which allow us to determine the variation matrices for the flows,
and discontinuity maps, one can show that the nontrivial Floquet multiplier
of the 2-reset cycle is mainly determined by the exponential terms multiplying
the initial point wg, that is the expansion is dominated by the term exp(t.)
(where t. is the total time of evolution following flow ¢) and contraction
by the term exp(—t.) (where t. is the time of evolution following flow ¢_).
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Hence, for k appropriately chosen, we will have ¢, > t., from which we can
ensure local contraction and so the 2-reset cycle is an attractor. The effect of
the discontinuity matrices on the stability may be considered negligible.

Consider now a local return map, which maps an interval containing wg,
say I, back to itself, with I corresponding to a segment of Poincaré section
IT = {v = Vpes, w = (W§ — §,wh + &)}, where ¢ > £ > 0 and £ is sufficiently
small. The return map, say P,, such that P, : II — II is defined as

Pc : ('Uresy wn) — (vre37wn+l>7 with

Watt = ROP(O (R(P(64 (PO- (P61 (). D) D D)
where n € N and the dot symbol corresponds to an appropriate time of evo-
lution which brings the flow solution of the 2-reset cycle to either {v = 0} or
{v = vyes}. The projection mapping P is a standard projection (along the flow
lines generated by vector fields fi) onto switching set {v = 0}, or threshold
set {v = vyes }, which is non-identity for points in I different from wg. Finally,
R denotes the reset map (2).

Since we choose k* such that the 2-reset limit cycle is stable, it then follows
that for £ sufficiently small P, is a contraction for all points in I. Moreover,
it may be further verified that P, is an injection with reversed orientation.
Decreasing k implies that ¢, becomes shorter and t. becomes longer since,
by continuity, the periodic point (on the Poincaré section IT) moves towards
(1 + &)(vres + I) as a function of k. This implies that the 2-reset cycle has to
undergo a period-doubling bifurcation for some k < k*, and the 2-reset cycle
becomes unstable by further decrease in k. Further decrease in k implies that
the 4-reset cycle born in the period-doubling bifurcation will become a 4-reset
maximal canard cycle, and it is either this periodic cycle, or a chaotic attrac-
tor which may be born in a period-doubling cascade (on an extremely small
parameter variation), which will collide with the 3-reset maximal canard cycle
that exits in some neighbourhood of the 2-reset maximal canard cycle as de-
scribed in Proposition 3. By continuity (see Proposition 2), the 2-reset canard
cycle becomes a 2-reset maximal canard cycle under variation of k, which is
extremely unstable due to its segment along the repelling slow manifold SI.

Starting from the 3-reset maximal canard cycle, again by continuity with
respect to k, one may expect to see a branch of 3-reset cycles within an open
set of parameter values. Symbolically, this scenario could be denoted as 2 +»
(4)(:) + 3, which means that the continuous transition from the 2-reset to
the 3-reset cycle has to occur via a 4-reset cycle possibly followed by a chaotic
attractor that we represent by (-). The exact scenario depends on the dynamics
of a local map around a periodic point of the 3-reset maximal canard cycle.

Let w3, denote the periodic point of the 3-reset maximal canard cycle. It
is the periodic point on the maximal 3-reset canard cycle on {v = w5}, and
it is given by

w3, = G4 (R(P4 (R(4 (P(P—((vres, (1 +€)1), t2)), t3)), ta)), L), (25)
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where t5 is the flow time back to the set {v = 0}, and the subsequent times
ts, t4 and t5, are flow times to the set {v = vy, } along the 3-reset maximal
canard cycle. Finally, R denotes the reset map (2).

We now define a segment .J, which will serve us as a local Poincaré section
such that J = (w3, —n, wj, +n), with n sufficiently small. A local return map
Psrc, where Psge : J — J, wy, — wp41, is then given by

w1 = R(P(¢4(P(0— (P(d1 (R(P ()4 ((vres; wn), t0))), 11)), t2)), £3)))

*
... for w,, > ws,,

Wni1 = R(P(¢+ (R(P (¢4 ((vres; wn), t4))), t5)))
... for w, < w3,

(26)

The map Psgrc is a continuous, piecewise-linear injection with reversed
orientation to leading order in w,. The dynamics of piecewise-linear con-
tinuous maps has been extensively studied, among others, in e.g. [2-5,28].
Note that additional flow time flows ¢y and ¢; are solution times along the
3-reset maximal canard cycle from point (vies, w3,.) to v = vy, and from
(Vress (1 4 €)(vyes + 1)) to (0, (1 + €)I), respectively. The other times are the
same as in (25). Finally, R is, as before, the reset map (2), and P is a standard
projection map along the flow lines.

The above scenario will also occur for reset cycles with a higher number
of resets. Note, though, that to prove such cases an additional care must be
taken, when considering the continuity argument for the existence of periodic
points with respect to parameter variation, and the existence of local Poincaré
maps for open intervals. Moreover, a transition, say from a 3- to 4-reset cycles
will occur via a continuous transition through a 6- and possibly a 5-reset
cycle (and maybe a chaotic attractor), or a 6-reset cycle (and then a chaotic
attractor). In the notations previously introduced, this would be described as
34 (6)(-) < 4.

4 Numerical bifurcation approach

Canard solutions will occur in model system (1)-(2) with F(v, w) = —w within
certain intervals of paremeter values. As we explained in Sec. 3.2, transitons
between these solutions organise the spike-adding scenario, and these transi-
tions are accompanied by exponentially-small phenomena that are difficult to
capture numerically. We therefore use a boundary-value approach in combi-
nation with pseudo-arclength continuation, in order to compute branches of
limit cycles and/or parametrised families of an orbit segments.

To this aim, we use the software package AUTO, which a priori cannot
deal with nonsmooth systems. However, one can define a higher-dimensional
problem with carefully-chosen boundary conditions that effectively will allow
to compute families of limit cycles of the system of interest. Our strategy
to achieve such computations can be described as follows. First, we enlarge
the problem so that every segment in a linearity zone, and every segment in
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between resets, becomes solution to one copy of the original system. Second,
we define boundary conditions to ensure the match-up between all such orbit
segments by accounting for crossings of the switching manifold {v = 0} as
well as for threshold crossings and associated resets. Finally, we verify the
well-posedness of the numerical problem and perform arclength continuation.

We will now present the numerical results obtained via the above pro-
cedure. Namely, we could compute explosive branches of limit cycles of the
original problem along spike-adding transitions. There are of course a number
of limitations to this approach and we wish to highlight two of them.

The first limitation is that it is hard to detect stability and bifurcations with-
out having to implement oneself additional test-functions, for which one would
have to substantially complicate the numerical setup, and possibly even edit
the AUTO code. This defeats the purpose of the numerical procedure we intro-
duce here, which is to efficiently compute, within an existing software, branches
of limit cycles in a hybrid system like (1)-(2) undergoing canard-mediated
spike-adding transitions, which are quite challenging to find by direct simula-
tions. In order to perform our computations, we need to preprocess the initial
periodic solution obtained by direct simulation and write down a well-posed
two-point boundary-value problem outlined below. This simplicity is a great
advantage of our approach.

The second limitation and drawback of our numerical approach with AuTO
is that the two-point boundary-value problem (BVP) that we setup can give
spurious solutions. However, we can avoid these by stopping the continua-
tion as soon as the integration time of one segment, forming the overall cycle,
becomes negative. Future work may include implementations of a numerical
method that would avoid these spurious solutions as well as detect bifurcations
and transitions discussed in current work.

Our strategy to compute branches of N-reset limit cycles in system (1)-
(2) is therefore to use a boundary-value problem approach in tandem with
numerical continuation. Of course, the system is piecewise linear and so one can
obtain a lot of information analytically about the families of periodic solutions,
including the existence of cycles containing reset-induced canard segments.
However, the associated branches of solutions are “explosive” in parameter
space, and so it may be tedious if not outright impossible to compute such
families using direct simulation. In short, a boundary-value approach discussed
here is better suited to such a task.

Given that standard continuation packages like AUTO do not a priori handle
nonsmooth dynamical systems, even more so systems with resets as we men-
tioned earlier, we need to decompose a typical bursting cycle with N resets
into N + 2 segments along which the system is linear, together with appropri-
ate boundary conditions. There are N — 1 segments which correspond to parts
of the trajectory where v lies between v,..s and vy, and one segment where v
lies between 0 and wvyy,. There are two additional segments which correspond
to what will always be the initial part of the trajectory in our computations,
namely a segment from the reset line {v = vy¢s } until the switching line {v = 0}
where the trajectory is repelled away from the right branch of the critical man-
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Fig. 4 Typical bursting cycles of system (1)-(2) where F(v,w) = —w and with N = 4

resets. The cycle can be decomposed into N 4+ 2 = 6 segments which are connected to each
other via either a boundary or reset conditions. Blue dots correspond to boundary points
where continuity conditions must be applied and red dots correspond to boundary points
where reset conditions must be applied. Finally, the green dot corresponds to the initial
condition on {v = vres}.

ifold, and a second segment from the switching line back to itself, where the
trajectory approaches the attracting branch of the critical manifold, follows it
until the corner where it switched back to the right linearity zone, and there
is enters the next flow segment, see Figure 4 for an illustration on a 4-reset
cycle. There are two types of boundary conditions here:

a. continuity conditions across the switching line {v = 0},
b. reset rules.

A given N-reset bursting cycle corresponds to a multi-point boundary-value
problem, which is not directly implementable in AUTO. For this reason, we
transform the original planar system into a 2(N +2)-dimensional system which
corresponds to N + 3 identical copies of the original system (1)-(2). The non-
smoothness across the switching line and the reset rules are implemented as
boundary conditions. Therefore, for the numerical problem associated with
branches of limit cycles of system (1)—(2), we consider the following trans-
formed system:

v% = |v;| —w; + 1T (27)

w; = 5(b - w’i)a
for ¢ =1...N + 3. Every orbit segment of the original problem along a cycle
like the 4-reset bursting cycle shown in Figure 4 corresponds to one segment
solution of one planar component of the extended system (27). The N + 2
copies of the original system forming the extended one can be put in any
given order, but, for simplicity, we order them according to the order in which
each corresponding segment is encountered while moving with the flow (here,
counter-clockwise) along the bursting cycle. Consequently, every such segment
@ is a solution to subsystem (v;,w;) of the extended system (27). It has an
integration time T; associated with it, and such that: ). T; = T is the period
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of the bursting cycle under consideration assuming that the resets are instan-
taneous. Note that, as is customary in numerical continuation, one rescales
time by the integration time of the initial guess of the two-point boundary
problem (periodic of not) which allows one to make the integration time an
explicit parameter that can be solved for at every computational step. It then
follows that, in the rescaled problem, the time vector runs from 0 to 1.

We may now perform a continuation of a two-point boundary value problem
of the 2(IN+2)-dimensional system (27), with a number of boundary conditions
and a number of free parameters which must be chosen so as to satisfy the
well-posedness equation:

NBC — NDIM + 1 = NCIP, (28)

where NBC corresponds to the total number of boundary conditions, NDIM is
the dimension of the problem and NICP is the number of free (continuation)
parameters that we can vary. It turns out that one can make this numerical
problem well-posed and, hence, solvable by AUTO, by simply freeing all inte-
gration times T;, ¢ = 1... N 4 2 and one relevant systems parameter, which
in our computations will be k. That is, we will free IV + 3 parameters in order
to compute a one-parameter family of cycles of the original system. This is
consistent with the idea that we wish to compute a branch of limit cycles of
the original system (1)—(2) which, in the smooth context, would require to free
one system parameter as well as the period of oscillations 7. In the present
case, as T is the sum of all Ty, it is natural to free all of them.

Now, the well-posedness equation (28) implies that the total number of
boundary conditions must be equal to 3(N + 2). This number is consistent
with the fact that the extended system is nothing else than N + 2 identical
copies of the original planar system. To continue an orbit segment, periodic or
not, of a planar system in one system parameter with free integration time and
one needs three boundary conditions. Hence the number 3(N + 2) conditions
for N 4 2 independent planar systems in which one frees the integration time
for each planar independent component and one system parameter shared by
all components, e.g. k. In the case of a periodic continuation problem in a
planar system as ours, to compute a branch of limit cycles one indeed needs
to free one system parameter as well as the period, as we mentioned. Then
one needs three conditions: two periodic boundary conditions and one phase
condition. Therefore the overall number of conditions that we obtain is consis-
tent. These then correspond to three conditions per planar component (v;, w;)
of the extended system, which we can formulate as follows:
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Fig. 5 Transition between 2-reset cycles and 3-reset cycles via canard solutions. Multiple
branches are shown, they have been computed by solving parametrised families of the two-
point boundary-value problem (29)-(30). Panels (9) and (17) have been highlighted as they
correspond to stable 3-reset and 2-reset cycles, respectively. Finally, we remark that the
transition between families of 2-reset and 3-reset cycles is discontinuous, as is illustrated in

panels (a) and (b).

fori=1...N + 2 with:

and with the convention that wy = wy 2.

(&) Qg = Oa
Qg

f1
Bi

:62:07

= Ures, ] ¢ {273}7

Uthr, l ¢ {172}7
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This formulation allows us to compute families of solution of the initial
system (1)-(2) with a fixed number of resets through canard transitions. In
Figure 5 we show the results of such computations for branches of 2-reset
cycles and 3-reset cycles, respectively. The branches do not connect. How-
ever they come exponentially close to each other as part of their respective
canard regimes. Note that one needs stopping conditions when solving the nu-
merical problem (29)-(30), which otherwise can admit spurious solutions. For
system (1)-(2), the only conditions that need to be implemented which ensure
this are: T; > 0 at all steps and for ¢ = 1... N + 2 for branches of N-reset
cycles.

5 AIF model with different adaptation dynamics

We now consider a modified system where the slow equation depends on the
fast variable v, and so the slow and fast varibales are no longer decoupled. The
fast-time formulation is given by:

o=l —w+ T

31
w' =e(v—10), (1)
and the slow-time formulation reads
o=\l —-w+1T1
[ (32)

w=uv-—0b,

to which we have the same reset conditions as before, namely (2). System (31)-
(32) has the same critical manifold as system (1) with F(v,w) = —w, the slow
nullcline being perpendicular to fast fibers.

System (32) has a geometry more akin to a van der Pol or a FitzHugh-
Nagumo model in the smooth slow-fast context. Together with the reset con-
dition (2), the dynamics of system (32) is comparable to that of a square-
wave burster like the Hindmarsh-Rose (HR) model in the canard-mediated
spike-adding regime studied in, e.g., [14]. In particular, the slow flow points
upwards along the critical manifold, and this is why the spike-adding process
will be more comparable to what was described in [14]. Amongst other fea-
tures, within a one-parameter transition, varying e.g. parameter k as before,
one will find family of reset-induced cycles with canard segments. However, due
to the particular setup of such systems with reset, there are similarities and
differences with the smooth case, as illustrated in Figure 6. Panel (a) shows
what looks like a continuous branch of limit cycles undergoing an explosive
transition. However, when zooming in (panel (b)), one realises that these are
in fact two branches with explosive segments that are exponentially close to
each other. On the left, a branch of two-reset cycles undergoing a canard ex-
plosion whereby, for specific k-values within an exponentially-small interval,
the dynamics after the second reset follows upwards the slow manifold. Such
cycles have an increasingly longer canard segment, up to the maximal canard,
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Fig. 6 Two types of maximal canards in system (31) plotted in the phase plane (lower
panels), together with the associated solution branches (upper panels), at the transition
between families of 2- and 3-reset cycles. Panels (a) and (c¢): the maximal canard is the
upper limit (in terms of the Lo-norm) of the family of headless canard cycles with 2 resets.
Panels (b) and (d): the maximal canard is the upper limit of the family of canard cycles
with head and with 3 resets (the head corresponding to the third reset).

which is well-defined as a grazing bifurcation point in this nonsmooth context.
On the right, a family of cycles with three-reset each.

Along the explosive part of the branch, the cycles follow the slow manifold
after the second reset, but “from the other side” compared to the branch
corresponding to the maximal canard cycle in panel (c). In particular, this
family of reset-induced canard cycles follow the slow manifold and then escape
its vicinity towards the right, hence hitting the threshold line again and having
a third reset. Hence we find another maximal canard cycle (panel (d)) which
grazes with the threshold line from the other side of the slow manifold than
the one shown in panel (c). We conjecture that these different maximal canard
cycles, exponentially close in parameter space but well separated in the Lo-
norm projection, will converge towards each other as k tends to 0. This is a
difference with the smooth case, due to the particular setup, nevertheless the
spike-adding process is akin to what is observed in smooth slow-fast systems.

6 Comparison with smooth square-wave bursters

The dynamics of system (1)—(2) with F(v,w) = —w is akin to square-wave
bursting, a phenomenon which can be captured within the framework of smooth
slow-fast ODEs, with two fast and one slow variables [27]. The square-wave
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Fig. 7 Comparison between the nonsmooth systems with resets that we study (panels (a)-
(b)), and smooth square-wave bursters like the extended Morris-Lecar model [30] (panels
(c)-(d)); right panels are zoomed views of left ones.

bursting scenario requires that the fast subsystem, when the original slow vari-
able is considered as a parameter, is bistable between equilibria and limit cy-
cles. It also requires that the bistability zone of the fast subsystem is bounded
by two bifurcations, namely a saddle-node bifurcation of equilibria and a sad-
dle homoclinic bifurcation so as to form a hysteretic cycle. This notion refers to
the existence of two families of attractors of the fast subsystem, each of them
being bounded by a bifurcation which destabilises the associated branch. In the
full system, once a suitable slow dynamics has been put on the main parameter
of the fast subsystem, a hysteretic cycle allows for an alternation between a
slow passage near the first branch of attractors of the fast subsystem up to the
first bifurcation (in the present case, a nonsmooth fold bifurcation) and a slow
passage near the second branch of attractors up to the second bifurcation (in
the present case, a nonsmooth saddle homoclinic bifurcation). This alternation
between two phases of slow passages, often referred to as the quiescent phase
and the burst phase, is essential for bursting dynamics to arise, in particular
square-wave bursting, like in the system we consider here.

In the present hybrid model, we do have bistability between equilibria
and limit cycles in the fast subsystem, and a hysteretic cycle. Therefore sys-
tem (1)—(2) can be seen as a nonsmooth hybrid square-wave burster. Note
that the system (1) has one fast and one slow variable, and the reset condition
corresponds to a second fast (in fact, infinitely fast since the reset is instan-
taneous) variable. Moreover, in the simplest square-wave bursting framework,
e.g. the Hindmarsh-Rose model, which is a polynomial square-wave burster,
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the bursting is obtained by putting a suitable slow dynamics on the parameter
displaying bistability and a hysteresis cycle. This slow variable must oscillate
along the hysteresis cycle of the fast subsystem, which requires a feedback term
from one of the fast variables. In contrast, here, the reset instantaneously de-
creases the value of v and increments that of w. In this way, due to the reset,
the dynamics of w is decreasing in the left half-plane {v < 0} and it is in-
creasing each time v hits the threshold value. This can be obtained in a 3D
smooth slow-fast square-wave burster provided the w-dynamics (slow) has a
term in v, and then the resulting dynamics would be entirely comparable to
the dynamics of system (1)—(2).

Our two models with F(v,w) = —w and F(v,w) = v — b together with the
reset rules (2) effectively behave as nonsmooth square-wave bursting systems,
as shown in Figure 7 where we compare them with a smooth square-wave
burster, namely the extended Morris-Lecar model [30]. The main points of
comparison are as follows. First, the critical manifold Sy is V-shaped in the
nonsmooth models and S-shaped in the smooth one, with a lower fold point
that organises the transition from the quiescent phase of the bursting solution
to its burst phase, and which corresponds to a saddle-node bifurcation of
the fast subsystem, nonsmooth or smooth depending on the case. Second, the
burst phase corresponds to a family of stable limit cycles of the fast subsystem,
which in the nonsmooth system are organised via the threshold and reset lines.
Finally, a homoclinic bifurcation of the fast subsystem, nonsmooth or smooth,
ends the burst. It is marked by a brown star in the figure. The spike-adding
transition are comparable in both cases, and mediated by canard solutions,
as shown for the nonsmooth model in the present article and, for the smooth
model, in e.g. [14].

There are nevertheless marked differences and we would like to briefly
comment on three of them. Firstly, the nonsmooth framework allows for bifur-
cations, in particular grazing bifurcations, associated with maximal canards,
unlike the smooth case where no bifurcations typically accompany this transi-
tion. Second, the nonsmooth framework allows for the existence of two different
types of maximal canards, associated with two different solution branches of
limit cycles with NV and N + 1 resets, respectively. One providing an upper
limit (for the Lg-norm) to the family of “headless” canard cycles with N re-
sets, and the other providing an upper limit to the family of canard cycles with
“head” with N + 1 resets (the head of the canard corresponding to the last
reset, see Figure 6. In the context of smooth slow-fast systems, there is only
one type of maximal canards, and one can conjecture that, as the reset pa-
rameter k tends to 0, the two different maximal canards from the nonsmooth
system converge towards a joint object that is akin to the smooth maximal
canard. Note in passing that in both contexts the maximal canards, indeed,
correspond to solutions following the repelling part of the critical manifold for
the longest possible segment. However due to the different geometries of the
critical manifolds in both cases, there is a geometrical difference between the
location of the maximal canard in nonsmooth reset systems and that of the
maximal canard in the smooth systems. The maximal canards in nonsmooth
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systems follows the repelling part of Sy until it meets the threshold line, at
which point, by definition, the orbit either has a tangent intersection with the
threshold line and turns back towards the switching line (first type of maxi-
mal canard, illustrated in Figure 6 (c)), or a transversal intersection with the
threshold line and undergoes a reset (first type of maximal canard, illustrated
in Figure 6 (d)). In contrast, in smooth systems the maximal canard follows
the repelling part of the critical manifold until its upper fold point, where the
critical manifold becomes attracting again. Finally, there are differences in the
bifurcation structure, with a discontinuous adding structure in the nonsmooth
case (given that the number of resets must be constant on every branch),
whereas the bifurcation structure is continuous (at least for small enough ¢)
in the smooth case.

7 Conclusion and perspectives

We have studied a slow-fast piecewise-linear adaptive integrate-and-fire model
and finely investigated its bursting regime. In particular, we have analysed
canard-induced spike-adding transitions, where canard segments appear upon
a one-parameter variation linked with a reset. We have proven the existence
of canard cycles and the transition between N-reset and (N + 1)-reset cycles.
The question of stability of such cycles along solution branches is quite subtle,
in particular in the canard regime, and will deserve further attention in a
follow-up study which will be entirely dedicated to this question.

The question of persistence of these canard structure in higher-dimensions
is of course extremely pertinent and we plan to work on the generalisation of
the present results to systems with more fast and (more interestingly) more
slow variables. We have considered two versions of the model, depending on
the slow dynamics, and which correspond to two different excitable scenarios.
Indeed, system (5) is akin to a type-1 neuron model, even though we only
considered it in its periodic regime. However, the reset-induced canard mech-
anism also exists in the excitable regime of (1) for F(v,w) = b — w (that is
when b > I), and one could prove the existence of trajectories containing ca-
nard segments (related to the excitability threshold in this context) by using
similar map-arguments as we have done here. In contrast, system (1) with
F(v,w) = v — b is akin to a type-2 neuron model, even though here as well
we have studied it only in its periodic regime. The excitable regime in both
versions of the model will be an interesting topic for future work.

We have performed accurate numerical analysis of the model, with both
direct simulations and numerical continuation which allowed us to reliably
compute families of N-reset limit cycles up to the canard regime. In parameter
space, the spike-adding transitions are discontinuous but branches of N-reset
and (N + 1)-reset cycle are exponentially close to each other due to the canard
regimes that bound them. In order to apply standard numerical continuation
(with the software package AUTO) to this nonsmooth problem with reset, we
have recasted the 2D numerical problem with periodic boundary conditions as
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a 2(N + 2)D equivalent two-point boundary value problem which, with suit-
able boundary conditions as well as stopping conditions (when the numerical
solution does not correspond anymore to a solution to the original system),
allowed us to compute branches of limit cycles of this system. Future work
will involve improving this numerical continuation approach, in particular by
implementing test functions to detect bifurcations in this setup as well as
automatic stopping conditions and branch switching.

Although the models we have studied are phenomenological, there ex-
ists more biophysically plausible versions of such AIF models, in particular
conductance-based versions of them. In a recent work [20], the CAdEx model
was extensively studied as a single unit and also within networks. Most of
the dynamics uncovered in this biophysical version can be obtained with the
models we studied in the present work; in particular the delayed bursting show-
cased in [20] clearly correspond to the bursting cycles with canard segments
that we have investigated. Both our theoretical and computational results can
be adapted to the biophysical extensions, which is an interesting point of focus
for future work. In particular, it will be interesting to study the behaviour of
the present AIF model in the context of networks, where its PWL dynamics
will not create additional computational complexity and its amenability to
analysis might shed further light onto the excitable structure at population
level.

The link with smooth bursting models is a natural questions and we have
presented elements of comparison with smooth square-wave bursting systems,
since this is the type of bursting one obtains with systems (1)—(31) with linear
F(v,w). Under parameter variation, we highlihted a number of similarities
with smooth square-wave bursters in the role of canard solutions in organizing
the transition to bursting as well as shaping the burst itself. To this extent,
given that the subthreshold model is a PWL slow-fast system with a V-shaped
critical manifold, there is no fold-initiated canard in this model, and the canard
cycles that we computed and analysed in the present work are akin to jump-on
canards already present in many smooth slow-fast systems.

We also noticed important discrepancies with the smooth case, namely: the
geometry of the critical manifold affecting that of the maximal canards; the
presence of two types of maximal canards in the nonsmooth framework, as
well as the discontinuous bifurcation structure of the spike-adding regime. An
interesting future question in this direction is to obtain a deeper understanding
of maximal canards in both contexts. More generally, we plan to study PWL
slow-fast systems with reset as a framework for constructing and analysing
neuro-inspired systems displaying complex oscillations (bursting, mixed-mode
oscillations, etc.) in a minimal setup amenable to precise analysis and precise
computations while retaining all salient features of their smooth counterparts.
In our opinion, such systems offer the advantage of the simplified singular
perturbation framework of PWL slow-fast systems [11-13] with less linearity
zones due to the reset. What is more, they are relevant as models of electronic
circuits and artificial neurons (both PWL systems and systems with resets)
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and hence have the potential to provide a very good mathematical template
to study neuronal and neuromorphic systems.
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