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Abstract

Cardiac electrophysiology modelling deals with a complex network of excitable
cells forming an intricated syncytium: the heart. The electrical activity of the
heart shows recurrent spatial patterns of activation, known as cardiac alternans,
featuring multiscale emerging behavior. On these grounds, we propose a novel
mathematical formulation for cardiac electrophysiology modelling and simula-
tion incorporating spatially non-local couplings within a physiological reaction-
diffusion scenario. We formulate, in particular, a space-fractional Bidomain elec-
trophysiological framework, extending and generalising similar works conducted
for the Monodomain model. We characterise one-dimensional excitation patterns
by performing an extended numerical analysis encompassing a broad spectrum of
space-fractional derivative powers and various intra- and extra-cellular conductiv-
ities combinations. Our numerical study demonstrates that: (i) symmetry proper-
ties occur in the conductivity parameters space following the proposed theoretical
framework; (ii) the degree of non-local coupling affects the onset and evolution of
discordant alternans dynamics; (iii) the theoretical framework fully recovers clas-
sical formulations and is amenable for parametric tuning relying on experimental
conduction velocity and action potential morphology.

Heart diseases affect most of the population worldwide. Ir-
regular electrical patterns represent, still today, the primary fac-
tor leading to sudden cardiac death irrespective of the enormous

∗Corresponding author
Email address: nicole.cusimano@outlook.com (Nicole Cusimano)



scientific and technological effort in understanding their intrin-
sic mechanisms. Mathematical and computational tools have un-
doubtedly been key players in this quest, and still are. Today’s
challenge is how to incorporate highly heterogeneous microscopic
features into a reliable numerical tool that can be effectively used
at the scale of a whole heart. We explore this aspect by propos-
ing a generalised space-fractional Bidomain framework for mod-
elling and simulation of cardiac electrophysiology in extended spa-
tial domains. By enriching our previous efforts on this novel ra-
tionale [1], we demonstrate that the onset and evolution of irreg-
ular electrical patterns, such as cardiac alternans, are affected by
the degree of non-local coupling. Our ultimate objective is to un-
veil novel critical mechanisms that can induce the onset cardiac
arrhythmias in view of future clinical validation.

1. Introduction

Understanding the complex dynamics underlying the multiscale features of
excitable biological media is becoming of paramount importance in cardiac mod-
elling, especially for personalised medical treatment [2, 3]. The enormous effort
that has been made to this day in theoretical, experimental, and clinical research
in cardiac electrophysiology still has not been able to fully elucidate important
issues and underlying mechanisms, such as cell-cell communication, emerging
behaviors, irregular rhythms (alternans), and arrhythmias onset [4, 5]. Cardiac
alternans, in particular, are due to increased dispersion of repolarisation leading
to large variations in refractory period and conduction velocity that, in turn, can
induce arrhythmias onset (see, e.g., [6, 7, 8, 9] and references therein). Dispersion
of action potential duration (APD) has been shown to develop during fast pacing
resulting in the alternation of the excitation wave, even when the period remains
constant. Such complex phenomena underlie life-threatening mechanisms still
requiring a clear elucidation.

In such a scenario, mathematical modelling provides a fundamental tool for
the investigation and the advanced mechanistic explanation of strongly coupled
nonlinear phenomena due to the intrinsic spatio-temporal coupling in cardiac
tissue (e.g., [10, 11, 12]). The Bidomain and Monodomain theoretical frame-
works, in particular, have been widely used to assess traveling wave features,
recovering several experimental pieces of evidence but still lacking a precise un-
derstanding of the critical conditions leading to recurrent cardiac alternans pat-

2



terns [13, 14, 15, 16]. Recently, these models have been further generalised to
assess data assimilation and uncertainty quantification procedures that represent a
key tool to reconstruct and predict excitation patterns in cardiac tissue with high
fidelity [17, 18, 19, 20, 21, 22].

The Bidomain model [23] of cardiac tissue is a continuous description in
which the conductive medium is seen as a functional syncytium of electrically
coupled cells. This model assumes cardiac tissue to be the union of two over-
lapping and continuous domains (namely, the intra- and extra-cellular domains)
connected by the cellular membrane. Under these assumptions, macroscopic vari-
ations of electrical intra- and extra-cellular potentials are then derived via Ohm’s
law, the conservation of current and charge, and by assuming only membrane re-
lated sources in the two cellular spaces [24].

Under the assumption of equal anisotropy ratio (i.e., proportionality in the
conductivity tensors of the two spatial domains - see Section 2 for further de-
tails) the Bidomain system of equations reduces to the so-called Monodomain
formulation [24]. While this assumption is known to be unrealistic, many studies
have shown that often differences between Bidomain and Monodomain results are
small enough to be ignored for many applications [25] and the Monodomain has
hence been preferred and extensively used in cardiac simulations due to its lower
computational cost. However, there are some important exceptions in which the
Monodomain formulation does not suffice to model the dynamics of interest, such
as in the case of simulations involving applied currents (e.g., virtual electrode
simulations and defibrillation protocols) [26, 27, 28] or in reproducing complex
alternans patterns within a realistic cardiac domain [29]. Unequal anisotropy ra-
tios and the fact that currents in the extracellular domain influence the dynamics of
the transmembrane potential are indeed key factors in reproducing the experimen-
tally observed features of electrical propagation in these settings, thus still making
the Bidomain a model of considerable interest. In the present contribution we re-
fer, in particular, to quasi-1D cardiac anatomical structures, e.g., Purkinje fibres or
single muscular fibres, as benchmark study. These structures range among several
centimeters and support multiple complex alternans states [30, 31].

While tremendous progress has been made over the years via results produced
either with the Monodomain or the Bidomain models, these formulations are (as
all mathematical models) approximations and, as such, have inherent and well-
known limitations. Considerable effort has been made in recent years in order
to generalise these models as to account for complex spatio-temporal behaviour
observed experimentally and/or to incorporate into the mathematical descriptions
the effects of increasing structural complexity (unveiled by the quick progress in
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modern imaging techniques). A partial list covers: ephaptic coupling [32, 33], a
nonlinear porous-medium approach [34, 35, 29], non-Ohmic conduction [36, 37],
space-fractional [38, 39, 40, 1, 41] and time-fractional electrophysiology [42, 43],
and complex order [44, 45] approaches.

Transport phenomena in highly heterogeneous environments can naturally ex-
hibit features that deviate from classical diffusion simply due to the structural
complexity of the medium in which the phenomena take place. When studying
electrical propagation in cardiac tissue, microscopic structural heterogeneity is
often neglected in modelling electrical propagation at the macroscopic scale, thus
hindering the investigation and characterisation of cardiac conduction modulation
due to the composite tissue microstructure.

Bueno-Orovio et al. [38] were the first to propose a space-fractional Mon-
odomain formulation to tackle this issue, justifying the use of fractional powers of
a classical diffusion operator by making a connection between Riesz potential the-
ory and the total electrical field associated to a heterogeneous biological medium
like cardiac tissue. In this interpretation, a reduction in the fractional exponent
of the space-fractional formulation corresponds to an enhancement of the per-
turbations that secondary sources (i.e., tissue inhomogeneities) give to electrical
potential otherwise associated with a uniform volume conductor. Discontinuities
are present on a variety of scales, both in the intracellular and the extracellular
domains, suggesting that alternative modelling frameworks (such as the one con-
sidered here), which are able to account for the multi-scale nature of the observed
phenomenon without the need of a detailed resolution of the spatial scale all the
way down to the microscopic level, might provide enhanced or complementary
understanding into complex mechanisms that traditional approaches cannot un-
ravel. Moreover, if the structural heterogeneity argument already makes sense in
non-diseased hearts, it is even more valid when considering pathological condi-
tions (e.g., fibrosis, ischaemia, myocite disarray, etc.).

In this manuscript, we consider the space-fractional approach and build on
the motivations proposed in the original work by Bueno-Orovio et al. [38] to for-
mulate a two-domain generalisation of the fractional models previously studied
in these settings: the fractional Bidomain (FBD). While the assumption of frac-
tional diffusion in the extracellular domain could be attributed to the composite
microstructure of cardiac tissue (i.e., the presence of blood vessels and cardiac
interstitial cells, including endothelial, smooth muscle cells, pericytes, peripheral
nerves and fibroblasts, in addition to cardiac myocytes), the assumption of frac-
tional diffusion in the intercellular domain could be associated to the role played
by gap junctions in modulating inter-cellular signal propagation [46, 47] as well
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as to the complexity of the intra-cellular space through which chemical species
(and calcium ions in particular) diffuse [48, 49].

We introduce the novel model and make a preliminary study of the complex
spatio-temporal dynamics resulting from the use of non-local fractional diffusive
operators in one or both cellular domains of the Bidomain formulation. In the
numerical simulations proposed here, we only consider the one-dimensional (1D)
case, laying the foundations for future work in this direction in multiple spatial
dimensions and more realistic settings. Although simplistic, we stress that the
proposed simulations already offer interesting new scenarios compared to our pre-
vious work on non-local cardiac electrophysiology in which the fractional Mon-
odomain was considered [1]. In fact, contrary to the case of the standard Bidomain
in 1D (where inevitable proportionality of scalar conductivities in the intra- and
extra-cellular spaces implies that results can be reproduced via an equivalent Mon-
odomain model), introducing different degrees of non-locality in the two domains
results in spatio-temporal characteristics of the excitation wave propagation that
cannot be simply obtained via an equivalent fractional Monodomain formulation.

In Section 2 we introduce the mathematical formulation of the FBD model,
we define the boundary conditions and the ionic model considered in this work,
we outline the numerical approach adopted and define the stimulation protocols
of our numerical simulations. Our results are presented and discussed in detail in
Section 3, while conclusions are drawn in Section 4.

2. Methods

2.1. The fractional Bidomain formulation
Letting V,ui,ue denote the transmembrane, intra- and extra-cellular potentials,

respectively, then ui =V +ue and the parabolic-parabolic formulation of the stan-
dard Bidomain is as follows:

χ

(
Cm

∂V
∂ t + Iion

)
= ∇ · (σi∇ui)

χ

(
Cm

∂V
∂ t + Iion

)
= −∇ · (σe∇ue)

(1)

where χ is the cell surface-to-volume ratio, Cm is the cell membrane capacitance,
Iion is the ionic current (described by the specific ionic model adopted), and σi, σe
are the conductivity tensors for the intra- and extra-cellular domains, respectively.
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Letting Li denote the diffusive operator Li = (−∇ ·σi∇) (with an analogous
definition for Le), in this work we consider the following space-fractional gener-
alisation of (1):

χ

(
Cm

∂V
∂ t + Iion

)
= −L si

i [ui] ,

χ

(
Cm

∂V
∂ t + Iion

)
= L se

e [ue] ,

(2)

where L si
i and L se

e are fractional powers (defined in spectral sense) of the dif-
fusion operators Li and Le, with fractional exponents si and se (si,se ∈ (0,1])
representing the effect of structural heterogeneity for the intra- and extra-cellular
domains, respectively [40]. Specifically, letting {µ j,ϕ j}∞

j=1 be the set of eigen-
values and corresponding orthonnormal eigenfunctions of the operator Li on the
spatial domain Ω (with suitable homogeneous boundary conditions), the spectral
theorem defines fractional powers L si

i as

L si
i [ f ] =

∞

∑
j=1

µ
si
j f̂ jϕ j, with f̂ j :=

∫
Ω

f ϕ j,

∀ f ∈ L2(Ω) such that ∑ j µ
2si
j | f̂ j|2 < ∞. Analogous definition applies to L se

e .
Note that, when a fractional exponent is equal to one, then the considered

fractional power is nothing but the standard diffusion operator in that particular
domain.

Some considerations are in order. Due to the linearity of the spectral frac-
tional powers of the considered elliptic operators, similarly to the standard case,
system (2) can be formulated in an equivalent “parabolic-elliptic” form, only in-
volving V and ue, which we will refer to as FBD in the rest of this manuscript:

χ

(
Cm

∂V
∂ t

+ Iion

)
=−L si

i [V ]−L si
i [ue] , (3)

0 =−L si
i [V ]− (L si

i +L se
e )[ue]. (4)

Under the assumptions si = se = s and σe = λσi for some λ > 0 (i.e., equal
anisotropy ratio), by following the same steps of the typical Bidomain to Mon-
odomain simplification in the standard case (and by using linearity of the con-
sidered fractional operators) one derives the following fractional Monodomain
equation:

χ

(
Cm

∂V
∂ t

+ Iion

)
=− λ s

1+λ s L
s

i [V ]. (5)
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In fact, under these hypotheses, L s
e = λ sL s

i and hence from (4) we find

L s
i [ue] =−

1
1+λ s L

s
i [V ]. (6)

At this point, a mere substitution of (6) into (3) gives (5).
In the scalar case, when σi and σe are assumed to be constant throughout the

domain, σe = λσi always holds, independently from the particular values of the
two conductivities. Hence, in these settings the FBD formulation can always be
reduced to the fractional Monodomain, provided that the fractional exponents si
and se coincide. However, when si 6= se, by using L se

e = λ seL se
i in (4) we can

only obtain
0 =−L si

i [V ]− (L si
i +λ

seL se
i )[ue],

and the fractional Monodomain simplification no longer follows.

2.2. Introducing stimuli and boundary conditions
In order to trigger the propagation of action potentials, electrical stimuli are

typically introduced both in the Bidomain formulation and in the boundary con-
ditions. In the standard parabolic-elliptic formulation one has:

χ

(
Cm

∂V
∂ t

+ Iion

)
−Li[ui] = I(vol)

i , (7)

Li[ui]+Le[ue] = I(vol)
tot , (8)

where I(vol)
tot = I(vol)

i + I(vol)
e is the sum of (time-dependent) intra- and extra-cellular

stimuli per unit volume, and the boundary conditions involve the specification of
currents per unit area applied across the boundary, i.e.,

n · (σi∇ui) = I(surf)
i , n · (σe∇ue) = I(surf)

e .

The compatibility condition∫
Ω

I(vol)
tot dx+

∫
∂Ω

(
I(surf)
i + I(surf)

e

)
dS = 0

is then necessary in order to ensure that the above singular system has a solu-
tion (actually an infinite number of them). Often in practice one assumes I(vol)

tot =

I(surf)
i = I(surf)

e ≡ 0 so that the compatibility condition is ensured. Note that this
assumption does not mean that the extracellular stimulus per unit volume is zero
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but rather I(vol)
e =−I(vol)

i at every point in space and for all times [50]. This will be
used in the rest of this work and notation will be simplified by using Istim instead
of I(vol)

i .
Moreover, by assuming I(surf)

i = I(surf)
e = 0 the boundary conditions of the prob-

lem correspond to zero-flux conditions in the two domains. This is compatible
with the use of spectral fractional operators, where boundary conditions deter-
mine the spectrum and the eigenbasis of the operators considered, and does not
require any special treatment (contrary to the case of inhomogeneous boundary
conditions - see, e.g., [51]). In one spatial dimension, these boundary conditions
reduce to homogeneous Neumann conditions for both ue and V .

2.3. The ionic model
Whether fractional or standard, the Bidomain model is coupled at each point

in space via the Iion term to a system of ordinary differential equations describing
excitability at the single cell level, i.e., how ionic properties and concentrations
change in response to electrical stimulation in various cell compartments and via
the opening and closing of specialised ionic channels in the cell membrane. For
the results presented in this work, we use in our simulations the Beeler-Reuter
ionic model [52]. We chose this particular model because it is biophysically
grounded (thus allowing a direct connection between some of its variables, e.g.,
the calcium concentration, and quantities that are experimentally observable) and
because this model is known to reproduce already various features of ventricular
action potential without being overly complex and hence without requiring very
large computation times. However, the methodology proposed here is indepen-
dent from the particular choice of ionic model, and could be employed in a rather
straightforward manner for the study of fractional tissue dynamics in combination
with different levels of detail in the single cell response. Nevertheless, depending
on the nature of the ionic model considered, some additional parameter tuning
might be necessary in order to recover desirable features of spatio-temporal prop-
agation of excitation waves in the fractional settings (an aspect that is surely very
relevant, for example, in the case of phenomenological models [1, 22]).

2.4. Numerical solution
As in this preliminary study simulations are only performed in 1D, numerical

computations can be simplified by exploiting the Fourier spectral method [53]
(which has the same computational cost in the standard and the fractional cases)
as follows.
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1. We observe that the operators Le and Li coupled to homogeneous Neu-
mann boundary conditions have the same eigenfunctions {ϕ j}∞

j=1 and that
the eigenvalues {η j}∞

j=1 of Le and {µ j}∞
j=1 of Li are such that ∀ j

η j = λ µ j,

where λ > 0 is such that σe = λσi.
2. We write all functions in terms of the Fourier basis:

V (x, t) =
∞

∑
j=1

V̂j(t)ϕ j(x), ue(x, t) =
∞

∑
j=1

ûe j(t)ϕ j(x),

g(x, t) =
∞

∑
j=1

ĝ j(t)ϕ j(x),

where “hats” denote Fourier coefficients, and g :=−χIion + Istim.
3. We use the fact that L si

i ϕ j = µ
si
j ϕ j,∀ j (with analogous relationship for the

extracellular fractional diffusion operator) and rewrite the FBD as

χCm

∞

∑
j=1

∂V̂j

∂ t
ϕ j +

∞

∑
j=1

µ
si
j V̂jϕ j +

∞

∑
j=1

µ
si
j ûe jϕ j =

∞

∑
j=1

ĝ jϕ j

∞

∑
j=1

µ
si
j V̂jϕ j +

∞

∑
j=1

(µsi
j +η

se
j )ûe jϕ j = 0.

4. We exploit orthonormality of the basis {ϕ j} to obtain for each j a system
of equations independent from all other indices, i.e.,

χCm
∂V̂ j
∂ t (t)+µ

si
j V̂j(t)+µ

si
j ûe j(t) = ĝ j(t)

µ
si
j V̂j(t)+(µsi

j +η
se
j )ûe j(t) = 0.

5. By using a semi-implicit scheme with uniform time step ∆ t for the discreti-
sation of the systems above, at each time step n we get[

χCm
∆ t +µ

si
j µ

si
j

µ
si
j µ

si
j +η

se
j

][
V̂ (n+1)

j

û(n+1)
e j

]
=

[
χCm
∆ t V̂ (n)

j + ĝ(n)j
0

]
,
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which can be solved explicitly via substitution giving

û(n+1)
e j =−

µ
si
j

µ
si
j +η

se
j

V̂ (n+1)
j , (9)

V̂ (n+1)
j =

1

χCm
∆ t +µ

si
j −

µ
2si
j

µ
si
j +η

se
j

(
χCm

∆ t
V̂ (n)

j + ĝ(n)j

)
. (10)

6. As we are working with zero-flux boundary conditions, the Fourier basis
functions are cosines and the first eigenvalue for both operators is zero.
Hence, for j = 1 the above must be corrected. In particular, for the trans-
membrane potential we have

V̂ (n+1)
1 = V̂ (n)

1 +
∆ t

χCm
ĝ(n)1 .

On the other hand, due to the singular nature of the problem, ue is only de-
fined up to a constant. We hence define ûe1 so that

∫
Ω

uedx= 0. Specifically,
letting ũe

(n) := ∑
∞
j=2 ûe

(n)
j ϕ j we set

û(n)e1 =
−
∫

Ω
ũe

(n)dx∫
Ω

ϕ1dx
.

7. All computations were done by considering the discrete cosine transform
and a number of basis functions equal to the number of mesh points in the
spatial discretisation grid.

As it is evident from equations (9) and (10), in the simplified settings con-
sidered here, there is a clear unidirectionality between transmembrane potential
and extracellular potential in the solution of the problem. While the extracellular
potential solution is directly determined by the transmembrane potential at each
time step, the converse is not true and only the spectrum of the extracellular dif-
fusion operator (rather than the actual extracellular potential solution) comes into
play in (10). For this particular reason, other than providing in the Appendix an
example of the temporal profile of both V and ue for some selected parametric
combinations, in the rest of this work we will only focus on the spatio-temporal
dynamics of V since all variations in the behaviour of ue could be directly brought
back to corresponding variations in V , due to (9). We stress however that in gen-
eral this unidirectionality does not hold and a truly bidirectional feedback between
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the two electrical potentials is observed. For example, it would be enough for the
boundary conditions not to be exactly the same for V and ue (typically the case in
two- or three-dimensional spatial simulations), and expressing both solutions in
terms of the same eigenfunctions would no longer be possible. Obviously, in the
general case the simplified numerical approach adopted here must be revisited and
possibly alternative (but equivalent) formulations of the fractional operators (with
corresponding solution approaches - e.g., see [40]) might have to be implemented.

Finally, we notice that the term involving the eigenvalues of the fractional
diffusion operators in (10) can be rewritten as

µ
si
j −

µ
2si
j

µ
si
j +η

se
j
=

µ
si
j η

se
j

µ
si
j +η

se
j
,

which shows that (in the considered simplified settings) there is symmetry in the
dependence of the transmembrane potential V from the eigenvalues of L si

i and
L se

e . Moreover, due to the fact that the eigenvalues of these fractional operators
are fractional powers of

η j = σe

(
jπ
L

)2

, µ j = σi

(
jπ
L

)2

,

where L is the 1D cable length, then it can be expected that the results obtained
with a particular combination of fractional exponents and conductivities can also
be obtained with the “mirror” parameterisation of the model, i.e., when swapping
si with se and σi with σe. See further discussion on this in Section 3.1.

2.5. Protocols
Cable excitation was triggered via the application of a sufficiently strong stim-

ulus. Each applied stimulus lasted for 1 ms, was injected on a small region (of size
0.05 cm independently from the cable length) at the left end of the domain, and
the stimulus amplitude was equal to 100 mA·cm−3.

Activation and recovery times for all simulations were computed via a fixed
threshold set equal to roughly 90% of standard full repolarisation (−75 mV). At
all points in space, AP duration (APD, or more precisely APD90) is computed as
the difference between the corresponding recovery and activation times. Mean
conduction velocity (CV) was always measured on the central portion of the do-
main equal to half the domain size (namely, on 25% to 75% of the cable length).
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This quantity was computed as the reciprocal of the coefficient obtained via a lin-
ear least squares fit of the activation times (i.e., isochrones of the wavefront) of all
mesh points in the considered region.

The first set of simulations considers a cable of length L = 3 cm paced at a
fixed basic cycle length (BCL) of 1000 ms until steady-state is reached. When
measuring the mean CV, steady-state was defined as an absolute relative error
below 1% between consecutive beats. In the alternans study discussed below,
steady-state was reached when the absolute difference between the APD of two
consecutive odd beats and two consecutive even beats was below 0.01 ms. The
objective of this first set of simulations was to study the dependence of the conduc-
tion velocity from σi and σe for various combinations of the fractional parameters
si and se.

The length of the cable is then increased (to L = 6 cm and L = 9 cm) and the
onset of concordant and/or discordant alternans is assessed in different settings
via a dynamic restitution protocol.

Cardiac alternans refers to beat-to-beat alternation in the APD with a repeated
“long-short” pattern as stimulation progresses. Alternans can be concordant (CA)
when the APD at all points in the domain follows the same pattern, or discordant
(DA) when alternation is out-of-phase in different regions of the spatial domain.
In the latter case, the intermediate regions (points in 1D) where APD does not
change in subsequent beats are referred to as nodal lines (or simply nodes). In
the dynamic restitution protocol, the cable is initially paced at a large BCL and
pacing frequency is progressively increased (by gradually reducing the pacing
BCL) until failure in propagation is observed (i.e., 2:1 response is recorded). At
each considered BCL the cable is paced until APD steady-state is reached before
considering the next (reduced) BCL.

All simulations were performed in MATLAB (R2017b, The MathWorks Inc.,
Natick, Massachusetts, US) on the high performance computing cluster Radon1
of the Johann Radon Institute for Computational and Applied Mathematics (RI-
CAM) in Linz, Austria, and all results were post-processed on a 2.5GHz Intel
Core i5 processor. Radon1 is a high performance computing cluster with 1168
computing cores and 10.7 TB of memory.

A rough number of the numerical simulations performed for this work and an
estimate of the computation time required by each of them is given in Table A.1.
Fortunately, due to the independence of each parametric combination considered,
parallel computing could be used in order to run simultaneously multiple simula-
tions, thus significantly reducing the total computation time.
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3. Results

3.1. CV surface and isolines
Since the introduction of space-fractional diffusion affects both spatial and

temporal features of the propagating action potential, including the CV of the ex-
citation front (see e.g., [54]), in the first set of simulations we studied how CV
varies as a function of σi and σe for various combinations of the fractional expo-
nents si and se. Figure 1 a) shows the projection of the CV surface computed for
si = se = 1 (i.e., standard diffusion in both domains) onto the (σi,σe) plane, high-
lighting a particular level set, namely the CV = 49.5 cm s−1 isoline. Without loss
of generality, this isoline has been considered as a reference (and labelled CVref)
for comparing results in the various non-local settings considered, that is, to match
CV for the various combinations of si and se analysed in this section. However,
we have also performed the analysis proposed here with refined mesh sizes and
considering both smaller and larger reference values of the CV for comparison be-
tween different parameter sets. While no qualitative differences were observed in
terms of CV surface shape and isoline position (results not shown), richer dynam-
ical behaviour could be observed at lower CV when analysing alternans dynamics
and node formation (see comments at the end of Section 3.3).

Notice that in the standard case the units for both conductivities are mS ·cm−1,
but in presence of fractional exponents strictly smaller than one, physical units for
the conductivity parameters of the corresponding fractional operators should be
rescaled accordingly in order to ensure balance in the various terms involved in
the FBD model. This is assumed always to be the case and to avoid the use of
unnecessarily heavy notation, throughout this section we will not report units for
σi nor σe.

Figure 1 b) illustrates the specific combinations of the fractional exponents
considered here. While green combinations are points for which si = se, and
as such the corresponding results could be derived by an equivalent fractional
Monodomain formulation as discussed in Section 2.1, off-diagonal combinations
(red and black points) truly provide novel insights and the corresponding results
could not be produced without the proposed FBD model. Notice that red points
are mirror images of the points in black (with respect to the diagonal si = se).
Due to the simplified settings in which the problem has been formulated, there is
a symmetry in the role played by the conductivities σi and σe, when the values
of si and se are swapped (as mentioned in Section 2.4). Therefore, numerical
simulations were only performed for green and black points, but results could be
extended also to red combinations via symmetry.
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Figure 1: a) Projection of CV surface for si = se = 1 onto the (σi,σe) plane. The black line
indicates the CVref isoline. b) Combinations of the fractional parameters si and se considered in
this work. Red points indicate mirror images with respect to the si = se diagonal (dashed line) of
black combinations of the fractional exponents. Numerical simulations were only performed for
green and black points but results could be extended also to red combinations via symmetry of the
considered problem (see main text for discussion).

As an illustrative example of the analytical symmetry, in Figure 2 a) we plot
the CV surface projection onto the (σi,σe) plane for si = 0.95, se = 0.85 (left) and
its mirror combination si = 0.85, se = 0.95 (right). The same reference isoline
is indicated in the two plots with the color black and red, respectively, and then
both lines are plotted on the same diagram in Figure 2 b) for better visualisation
purposes. Here, we also select two particular combinations of conductivities lying
on the black isoline (labelling them with A and B, respectively) and use the same
letters to identify the pairs of σi and σe on the red isoline that give the exact same
results due to the symmetric nature of the problem.

Figure 3 shows differences in the CV surface and in the location of the same
isoline for four different combinations of the fractional parameters:

(top left) si = se = 1,
(top right) si = se = 0.85,
(bottom left) si = 0.9 and se = 0.8,
(bottom right) si = 1 and se = 0.7.

In all cases, as it is natural to expect, the CV increases smoothly and mono-
tonically as the conductivities increase, and (in line with what observed for the
fractional Monodomain [1]) the increase is much more gradual when considering
smaller fractional exponents.
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Figure 2: a) CV surface projections and location of the CVref isoline for si = 0.95,se = 0.85 and
its mirror parameter combination (si = 0.85,se = 0.95). b) Identification of two particular (σi,σe)
pairs (labelled A and B, respectively) on the considered isoline for si = 0.95,se = 0.85 (black) and
corresponding (σi,σe) pairs on the isoline for si = 0.85,se = 0.95 (red).

Moreover, when si = se = s (top row of Figure 3) there is symmetry with re-
spect to the main diagonal σi = σe (following from the discussion at the end of
Section 2.4) and the corresponding surfaces could be ordered according to the
fractional parameter s as they do not intersect. However, for mixed combinations
si 6= se (bottom row of Figure 3) non-linear effects emerge, and reciprocal posi-
tions of the considered surfaces (and their corresponding level sets) are no longer
preserved in the entire space. Additional discussion in this regard is provided in
the next subsection. Note that, in order to locate the same isoline for all consid-
ered combinations of si and se, the region of parameters (σi,σe) explored had to
be suitably adjusted as evident from the four panels.

An illustrative example of action potential and extra-cellular potential profile
for the above-mentioned four combinations of fractional exponents is given in
Figure A.8 in the Appendix and the particular pairs of conductivities selected (in
order to recover the same CV in all cases) are reported in Table A.3.

In Figure 4, the reference isoline CVref is drawn on the same plot for all con-
sidered combinations of fractional parameters listed in the legend (and also illus-
trated in the top right diagram with the corresponding colours to aid visualisa-
tion). Recall that, in light of the discussion previously made, for all combinations
of fractional parameters, isolines corresponding to mirror parameter combinations
could be easily obtained by simply reflecting the relevant isolines with respect to
the diagonal σi = σe.
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Figure 3: CV surface projection onto (σi,σe) space for four different (non-symmetric) combina-
tions of the fractional parameters. In all plots, the black line indicates the CVre f isoline.

3.2. CV fitting
In light of the large number of simulations performed for this study and to

further elucidate the dependency of the CV from the FBD parameters, we found
that (in the considered simplified settings) the CV can be described as a function
of the conductivities and of the fractional exponents by the following analytic
expression:

CV (σi,σe,si,se) = asi,se

(
σ

si
i σ se

e

bsi,seσ
si
i +σ

se
e

) 1
si+se

, (11)

where asi,se,bsi,se are two positive constants depending on the fractional exponents.
Specific values of a and b for some selected combinations (si,se) with cor-

responding 95% confidence intervals (CI) are shown in Table A.2, together with
other goodness-of-fit statistics, such as, the sum of squared errors (SSE), the R-
square coefficient, and the root mean squared error (RMSE). For all considered
combinations (si,se), surface fitting was computed on an underlying 65 x 65 grid,
i.e., on a total of 4225 (σi,σe) pairs.

We observe that Table A.2 hints at the fact that bsi,se = 1 when si = se. One
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could in fact replace b with some constant csi−se without really affecting any of
the fitting statistics except for the corresponding CI, which would in general be-
come much larger due to the change in the order of magnitude of the considered
constant.

In the spatially-homogeneous 1D case, σe = λσi for some λ > 0 always holds.
Therefore, equation (11) can be rewritten as

CV (σi,si,se) = asi,se

(
λ seσ

si+se
i

bsi,seσ
si
i +λ seσ

se
i

) 1
si+se

,

which, under the assumption se = si = s and by using that bs = 1, reduces to

CV (σi,s) = as

(
λ sσ2s

i
(1+λ s)σ s

i

) 1
2s

=Cs
√

σi,

in perfect agreement with previously obtained results for the fractional Mon-
odomain [1].

We remark that expression (11) is amenable to further generalisation in two-
and three-dimensional domains.

3.3. Alternans dynamics and node formation
Having identified the same reference isoline for all considered combinations

of fractional parameters, we are able to select suitable values of the conductivities
in order to match the CV in all simulations. However, the following questions
remain:

• Once CV has been matched, how do other experimentally relevant features
of the travelling excitation wave, such as APD, vary as a function of differ-
ent levels of non-locality in the fractional Bidomain?

• For a given combination of fractional parameters, are there qualitative and/or
quantitative differences in the observed response to paced stimulation when
σi and σe are varied along the same isoline?

• What is the effect (if any) of varying the domain size on the observed be-
haviour?

This section aims at answering the above questions and highlighting particular
challenges that come into play when space-fractional non-locality is introduced in
an already complex model formulation.

18



In order to address the above-mentioned questions, for each combination of si
and se we identify a set of pairs (σi,σe) on the corresponding CVref isoline and
run a different simulation for each of these parametric settings. All simulations
consist in stimulating the cable via a dynamical protocol in which the pacing BCL
is progressively reduced until 2 : 1 response is observed (as described in detail
in Section 2.5) and assessing spatio-temporal variations in APD, especially the
insurgence of concordant or discordant alternans.

Figure 5 provides an example of the type of diagrams that were used to per-
form the analysis. In this particular simulation, the cable length is L = 6 cm, the
fractional parameters are si = se = 1 (i.e., standard diffusion in both domains) and
the conductivities are σi = 3.25 and σe = 1.9.

Figure 5 a) shows the mean APD along the cable for all beats of the dynamical
protocol. The mean APD values for the n-th odd and n-th even beats are plotted
in correspondence to the same abscissa, n, whose value has been omitted in these
plots (as not truly informative). What has been indicated instead via the green hor-
izontal axis is the value of the pacing cycle length (BCL) as it is reduced through-
out the simulation and vertical lines denote the beat at which each reduction oc-
curred. When vertical lines are close together, only a few beats were necessary to
reach steady-state, while as pacing BCL was reduced and more complex dynamics
emerged, the cable had to be paced for longer (i.e., for a larger number of consec-
utive beats) at the same BCL in order to reach stationarity. As one expects at low
pacing frequency (i.e., at larger BCL), the average APD for odd and even beats is
initially the same and slowly decreases as BCL is reduced. However, when pacing
BCL is reduced below a certain “critical” value (here BCL = 305 ms), a marked
difference (bifurcation) between odd and even beats emerges, likely indicating the
insurgence of alternans (see below), and this difference is further increased with
subsequent reductions of the BCL.

Figure 5 b) was built in a similar way in order to visualise variations in the
maximum and minimum APD alternans (in absolute value) along the cable for
all beats of the protocol. More specifically, absolute APD alternans for the n-
th beat is here computed as the absolute difference between the n-th even and
the n-th odd APD profiles in space. In the considered example, as we suspected
when analysing Figure 5 a), alternans emerge at BCL = 305 ms and one can see
that, while the maximum absolute alternans is large, the minimum is zero, thus
indicating the presence of discordant alternans and of (at least) one node. The
presence of concordant alternans could be similarly assessed but in that case, both
minimum and maximum APD absolute alternans would be distinctively above
zero (not shown).
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Figure 5: Dynamical restitution protocol for si = se = 1, σi = 3.25 and σe = 1.9, on a cable of
length L = 6 cm. a) Mean APD along cable for all odd and even beats computed. b) Minimum
and maximum APD alternans along cable for all beats. In both a) and b), vertical lines indicate
change of pacing BCL (values reported in green). c) Steady-state APD of odd and even beats for
four selected BCL, see highlighted regions of a) and b). d) Evolution of APD and insurgence of
alternans at BCL = 305 ms (i.e., yellow region).
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In order to confirm the qualitative behaviour expected after analysing Fig-
ures 5 a) and b), we could show on the same plot the steady-state APD along
the considered cable at different pacing BCL. This is done in Figure 5 c) and the
colour-code used to plot the stationary odd and even beats at each selected BCL is
consistent with the colour used to highlight the portion of simulation results in a)
and b) corresponding to the same BCL, namely, 500 ms (blue), 370 ms (orange),
305 ms (yellow), and 290 ms (purple). We can see that at larger BCL (500 and
370 ms) odd and even APD profiles are essentially indistinguishable but the mean
APD corresponding to BCL = 370 ms is smaller than the one at 500 ms. For
smaller values of BCL (305 and 290 ms) discordant alternans emerge, the max-
imum absolute amplitude of these alternans is larger at BCL = 290 ms, and the
node moves closer to the pacing end of the cable as BCL is reduced.

Finally, to obtain further insight in the transition between absence and pres-
ence of alternans at the critical BCL (i.e, 305 ms), in Figure 5 d) we show three
snapshots illustrating how the APD profiles change as the number of beats at the
considered BCL increases (numbers reported in yellow indicate which particular
APD profiles are shown in each plot).

Restitution surfaces for APD and local CV as a function of BCL and position
along the cable could also be used to assess the complex spatio-temporal mecha-
nisms underlying the formation of concordant and/or discordant alternans for dif-
ferent parameter combinations. A representative example is given in Figures A.9
and A.10 in the Appendix.

Due to the symmetric nature of the considered simplified problem, in all cases
in which si = se = s, varying the conductivities along the reference isoline did not
produce any qualitative nor quantitative change in the observed dynamics for that
particular value of s.

However, this was no longer true when si 6= se, and even small deviations
from the standard Bidomain case si = se = 1 (i.e., the introduction of mild levels
of non-locality in both domains) exhibited interesting differences in the resulting
dynamical response. An example of this is given in Figure 6, where three different
combinations of σi,σe (labelled A, B, and C, respectively) are selected along the
CVref isoline of the FBD with exponents si = 0.975 and se = 0.9. For each of these
combinations the dynamical restitution protocol was applied on a cable of length
L = 9 cm and the results are shown in three separate panels within the figure.

In each panel of Figure 6, we provide the evolution of mean APD of odd/even
beats and minimum/maximum APD alternans throughout the performed simula-
tion, as well as the steady-state APD profile in space for three selected BCL, cor-
responding to relevant changes in the observed dynamics for the example shown

21



0 10 20

i

0

20

40

60

80
e

s
i
=0.975, s

e
=0.9

A

B
C

100

200

300

M
e
a
n
 A

P
D

 (
m

s
)

o
d
d
/e

v
e
n
 b

e
a
ts A: 

i
 = 1.5, 

e
 = 53.5

6
0
0

3
7
0

3
1
5

3
1
0

3
0
5

3
0
0

2
9
5

2
9
0

0

100

200

300

M
in

/m
a
x
 A

P
D

a
lt
e
rn

a
n
s
 (

m
s
)

6
0
0

3
7
0

3
1
5

3
1
0

3
0
5

3
0
0

2
9
5

2
9
0

BCL (ms)

0 2 4 6 8

x (cm)

0

200

400

s
te

a
d
y
-s

ta
te

A
P

D
 (

m
s
)

100

200

300

M
e
a
n
 A

P
D

 (
m

s
)

o
d
d
/e

v
e
n
 b

e
a
ts

B: 
i
 = 1.9, 

e
 = 12.3

6
0
0

3
7
0

3
1
5

3
1
0

3
0
5

3
0
0

2
9
5

2
9
0

0

100

200

300

M
in

/m
a
x
 A

P
D

a
lt
e
rn

a
n
s
 (

m
s
)

6
0
0

3
7
0

3
1
5

3
1
0

3
0
5

3
0
0

2
9
5

2
9
0

BCL (ms)

0 2 4 6 8

x (cm)

0

200

400

s
te

a
d
y
-s

ta
te

A
P

D
 (

m
s
)

100

200

300

M
e
a
n
 A

P
D

 (
m

s
)

o
d
d
/e

v
e
n
 b

e
a
ts

C: 
i
 = 9.8, 

e
 = 3

6
0
0

3
7
0

3
1
5

3
1
0

3
0
5

3
0
0

2
9
5

2
9
0

0

100

200

300

M
in

/m
a
x
 A

P
D

a
lt
e
rn

a
n
s
 (

m
s
)

6
0
0

3
7
0

3
1
5

3
1
0

3
0
5

3
0
0

2
9
5

2
9
0

BCL (ms)

0 2 4 6 8

x (cm)

0

200

400

s
te

a
d
y
-s

ta
te

A
P

D
 (

m
s
)

BCL = 315 ms BCL = 310 ms BCL = 305 ms

Figure 6: Dynamic behaviour and insurgence of alternans for three different combinations of
(σi,σe) on the CVref isoline of si = 0.975,se = 0.9.
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here. In the red panel (point A: σi = 1.5,σe = 53.5), the mean APD starts ex-
hibiting differences between odd and even beats at BCL = 310 ms, and these
differences then become significantly larger at BCL = 305 ms. Similarly, small
alternans appear at 310 ms while discordant alternans of much larger amplitude
becomes visible at 305 ms. As shown by the steady-state profile, in this case there
are two nodes forming along the cable (one around x = 2 cm and another one
around x = 5 cm). In the green panel (point B: σi = 1.9,σe = 12.3), large discor-
dant alternans emerge already at BCL = 310 ms, this time only with one node,
and a second node forms when the BCL is further reduced to 305 ms. Finally,
in the blue panel (point C: σi = 9.8,σe = 3), the onset of alternans is already at
BCL = 315 ms, and while the alternans behaviour is discordant from then on,
only one node forms and simply moves closer to the stimulated end of the cable
as BCL is further reduced.

Overall we can already observe the following trends (which will be later con-
firmed with Figure 7): (i) onset of alternans happens at larger BCL when reducing
the conductivity corresponding to the smaller fractional exponent, while (ii) the
qualitative behaviour observed in the dynamic response becomes richer and more
complex (i.e., two nodes instead of one in this case) as we move along the isoline
in the opposite direction, that is, as the conductivity corresponding to the smaller
fractional exponent increases. In order to better understand these trends, we per-
formed a large number of simulations (on cables of two different lengths, namely
L = 9 cm and L = 6 cm) and summarise the obtained results in Figure 7.

Figure 7 a) gives the BCL at which onset of alternans occurred for each com-
bination of fractional parameters considered in this work, when varying both con-
ductivities on the corresponding reference isoline. For completeness, in addition
to the isolines corresponding to black and green points in Figure 1 b) (shown all
together already in Figure 4) we also plot the isolines corresponding to mirror
combinations of the fractional parameters (i.e., the red points in Figure 1 b)). Ini-
tially, 10 pairs of conductivities were selected per isoline but, in the cases si 6= se,
additional intermediate points (up to 25 in total) were considered in order to obtain
a refined picture of the dynamical variations observed, and linear interpolation was
then used to smooth out colour variations along the entire curve. In both plots, we
see that onset of alternas occurs at larger BCL when both conductivities are large
and the isoline is thus further away from the axes. The critical BCL decreases
when at least one of the conductivities can be reduced and for mixed combina-
tions si 6= se this occurs when decreasing the conductivity corresponding to the
larger fractional exponent.

Although very minor variations are present when comparing alternans onset
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Figure 7: a) Pacing BCL at which alternans dynamics occurred when varying conductivities along
the CVref isoline for all considered combinations of si and se. b) Qualitative dynamic behaviour
observed along the same isolines. Each considered (σi,σe) pair was classified according to the on-
set of concordant alternans (CA - blue) or discordant alternans (DA) exhibiting either one (black)
or two (red) nodes. In both a) and b), results were obtained for a cable of length L = 9 cm (left)
and L = 6 cm (right).
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on the two cables (visible perhaps only in the transitions between green and yel-
low), the qualitative dynamical behaviour observed in the two cases is different, as
shown in Figure 7 b). Here, for both cable lengths we use three different colours
to identify the qualitative behaviour observed in the fast-pacing regime (i.e., short
BCL) in correspondence of all selected nodes. Specifically, we distinguish be-
tween concordant alternans (blue) and discordant alternans with either one (black)
or two (red) nodes. If during the dynamic protocol a transition between these
states (e.g., discordant alternans with one and two nodes) was observed, only the
final behaviour (i.e., discordant two nodes) was used in the classification of the
considered node. As we can see, for both cable lengths the more complex dy-
namical behaviour occurs along the isolines that are closer to the axes. However,
discordant alternans with two nodes only form on the L = 9 cm cable, indicating
that richer dynamics typically occurs only when cable length is sufficiently large
(a well-known fact for the standard diffusion case [55] and from experimental evi-
dence [29, 6, 56, 57]). For both plots we “zoom in” into two regions of the param-
eter space exhibiting particularly interesting qualitative behaviour, that is, exhibit-
ing transitions between alternans dynamics. In the bottom left plot, corresponding
to the longer cable, for example, we highlight with a yellow rectangular selection
the transition between discordant alternans with one and two nodes along the or-
ange isoline (si = 0.975,se = 0.9) and the transition between concordant alternans
and discordant alternans with one node on the green isoline (si = 0.9,se = 0.8).
Similarly, in the bottom right plot corresponding to the L = 6 cm cable, we high-
light the transition along the yellow isoline (si = 0.95,se = 0.85) and two tran-
sitions occurring on the purple isoline (si = 0.925,se = 0.825). Note that, in the
“zoom in” plots only the isolines for green and black combinations of si and se
of Figure 1 b) are plotted to facilitate visualisation, but all isolines were used to
produce the full plots in the first two rows of the figure.

To complete this section we mention that we also investigated the role played
by the particular choice of CVref on the above analysis on alternans dynamics
and node formation. The selected value of CV = 49.5 cm s−1 corresponds in
fact to fairly normal physiological conditions, while it is known that in patho-
logical settings CV can be significantly reduced. The qualitative dynamic be-
haviour obtained on the isolines corresponding to a reduced reference CV, namely
CVref = 25 cm s−1 are provided in Figure A.11. Once again we find that for si 6= se
the resulting dynamics depends on the particular selection of σi and σe along the
reference isoline, whereas in the si = se case no such differences are observed.
However, as it is natural to expect, the slower starting CV allows a much richer
dynamical behaviour on longer cables and the formation of alternans (in suitable
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parametric settings) also on the shortest cable considered here (i.e., L = 3 cm).
This feature is in line with recent spatio-temporal correlation analyses measuring
and formulating the characteristic length of the action potential wave in the heart
during regular pacing and alternans dynamics[11, 58].

4. Discussion

Even in healthy scenarios, cardiac tissue is a highly heterogeneous structure
and discontinuities in electrical stimulus propagation arise on a variety of length
scales. Intercellular electrical propagation, for example, is highly non-Ohmic due
to the role played by gap junctions in the transmission of signal between con-
nected myocytes, whereas the extracellular space is a complex mix of entities
characterised by different conduction properties. Critical length-scales appear, in
fact, as an emerging phenomenon of syncytium coordination. For example, the
characteristic length of the tissue changes from around 40 cm during one-to-one
responses down to about 3 cm at the transition from period-doubling bifurcation
to fibrillation. Besides, spatio-temporal alternans regimes show consecutive os-
cillations of the normalised decay length which is critically linked to subcellular
mechanisms regulating cell-cell communication. In such a scenario, the use of a
model based on the homogenisation principle (i.e., based on the idea that there is
a clear separation of scales between the level at which discontinuities arise and
the level at which the transport phenomena is observed, thus implying that micro-
scopic structure has negligible macroscopic effects) is questionable. This becomes
even more important when analysing pathological scenarios typically associated
with structural remodelling and significant enhancement of microscopic hetero-
geneity.

Fractional-order models have successfully been used to reproduce macroscopic
effects accounting for microscopic heterogeneities, without the need to resolve
complex spatial structures down to the microscopic level. As the use of space-
fractional operators in the context of cardiac modelling is a relatively recent ap-
proach (which presents its own mathematical challenges), several aspects have yet
to be clarified, especially in relation to the formulation of physically meaningful
models for a robust and reasonable comparison with experimental data.

So far, the space-fractional approach has been used only to generalise the clas-
sical Monodomain model. In this work, we propose a space-fractional Bidomain
formulation based on a spectral representation of the diffusion operators for elec-
trical propagation of stimuli through the intra- and extra-cellular domains, and
we perform a simulation study in order to investigate fundamental properties of
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the derived model. In order to understand the interplay between model param-
eters and relevant quantities of interest, we consider the newly formulated FBD
in simplified computational settings (i.e., 1D with spatially constant conductivi-
ties) and leave the analysis of more complex geometries with possibly anisotropic
characteristics for future investigation.

The presented work highlights the symmetric role of fractional exponents and
conductivity parameters of the FBD in the considered simplified settings, it gen-
eralises previously established results obtained by the authors on the dependency
of the CV at low pacing frequency for the fractional Monodomain, and highlights
critical differences in APD behaviour following dynamical pacing observed for
different parametric combinations with initially matched CV. While the particular
choice of conductivities along a selected isoline does not affect APD dynamics
for the classical Bidomain formulation (as for all other choices of equal fractional
exponents characterising the two domains), this is no longer true when si 6= se. In
these settings, in fact, we observed that the asymmetry of the reference CV iso-
line in parametric space translates into different dynamical scenarios depending
on the particular choice of the (σi,σe) pair, with larger values of the conductivity
parameter corresponding to the highest fractional exponent typically giving richer
dynamics in terms of alternans and node formation. This adds to the challenges
already existing for the classical Bidomain formulation in the proper estimation
of suitable conductivities [59] and undoubtedly requires further investigation in
higher spatial dimensions to better elucidate the effects of non-locality in either
(or both) spatial domains. Finally, in line with well-established results for the
standard case, for any particular parameter combination of the FBD we observe
richer dynamical responses (allowing the formation of discordant alternans - if
previously absent - and potentially increasing the number of nodes formed at a
given BCL) when increasing the cable length or reducing the reference CV.

Besides the simplified settings and low dimensionality of the considered prob-
lem, one important limitation of the present work is the particular selection of the
Beeler-Reuter model for the description of the underlying cellular mechanisms at
the single-cell level. The alternans dynamics observed in this work is essentially
related to the APD restitution properties and to the changes observed in APD resti-
tution as a function of the fractional parameters in the FBD. However, intracellular
calcium handling is known to be another important factor of alternans dynamics,
independent from APD restitution [3, 60]. The Beeler-Reuter cellular descrip-
tion explicitly models intra-cellular calcium, but its dynamics is in essence zero-
dimensional. Therefore, when we analysed calcium variations in tissue (results
not shown), we observed alternans that are intrinsically voltage-driven and very
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much exhibit the same qualitative features observed here for the APD. Working
with a model allowing for both voltage- and calcium-driven alternans is important
and will surely be considered by us for future investigation in this direction.

From a multi-scale modeling perspective, the present contribution drives at-
tention to complex emergent dynamics due to intra- and inter-cellular couplings
in excitable systems. Specifically, non-local connectivity is known to distinguish
cellular syncytia due to gap junction and functional networks behavior [61, 62,
63, 64, 65]. We aim, therefore, to further stimulate the community in investigat-
ing complex emerging phenomena in cardiac electrophysiology in view of a more
effective translation of a scientific rationale into the clinical practice.
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Appendix A. Additional tables and figures

Table A.1: Rough number of simulations (i.e., different parametric combinations) considered for
the results presented in this work and corresponding estimate of the computation time required for
each of these simulations.

Objective CVref # Simulations Time per simulation
CV surface analysis and iso-
lines identification

45.9 34500 1 to 2 minutes
other 42250 3 to 5 minutes

Dynamic protocol response
and alternans analysis

49.5 300 1 to 4 hours
25 150 2.5 to 15 hours

Table A.2: Fitting constants for equation (11) and corresponding goodness-of-fit statistics.
si se asi,se CI bsi,se CI SSE R-squared RMSE
1 1 46.75 [46.74,46.76] 1 [0.999,1.001] 165.4 1 0.1979
1 0.85 46.18 [46.08,46.29] 2.609 [2.594,2.624] 3582 0.9981 0.921

0.975 0.9 42.33 [42.29,42.36] 1.602 [1.599,1.606] 922.4 0.9996 0.4674
0.95 0.85 38.59 [38.54,38.64] 1.934 [1.927,1.940] 1383 0.9992 0.5723

0.925 0.825 35.04 [34.99,35.10] 1.975 [1.967,1.982] 1279 0.999 0.5503
0.85 0.85 25.67 [25.65,25.69] 1 [0.998,1.002] 367.3 0.9997 0.2949

Table A.3: Combinations of parameters used to produce the solution profiles of Figure A.8
si se σi σe
1 1 3.25 1.9

0.85 0.85 10.5 7.61
0.9 0.8 11.5 9.28
1 0.7 4.03 37
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Figure A.8: Action potential (left) and extra-cellular potential profile (right) at the mid-point of
a 3 cm long cable for four different parametric combinations. Conductivities have been tuned to
produce the same CV in all cases.
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Figure A.9: APD restitution surfaces (top row) and 2D cross-sectional visualisations along dif-
ferent vertical planes (second row: x = 6 cm, third row red: BCL = 310 ms, third row black:
BCL = 305 ms) for two different parameter combinations, namely, column a) si = se = 1,σi =
3.25,σe = 1.9 and column b) si = 0.9,se = 0.975,σi = 12.3,σe = 1.9.
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Figure A.10: CV restitution surfaces (top row) and 2D cross-sectional visualisations along dif-
ferent vertical planes (second row: x = 6 cm, third row red: BCL = 310 ms, third row black:
BCL = 305 ms) for two different parameter combinations, namely, column a) si = se = 1,σi =
3.25,σe = 1.9 and column b) si = 0.9,se = 0.975,σi = 12.3,σe = 1.9.
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Figure A.11: Qualitative dynamic behaviour observed along the isoline CV = 25 cm s−1. Each
considered (σi,σe) pair was classified according to the onset of concordant alternans (CA - blue) or
discordant alternans (DA) exhibiting either one (black), two (red), three (green) or more (magenta)
nodes. Three cable lenghts (L = 3,6,9 cm) and five different (si,se) pairs were considered to
generate these plots.
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