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Abstract. We establish a comparison principle providing accurate upper bounds for the
modulus of vector valued minimizers of an energy functional, associated when the potential
is smooth, to elliptic gradient systems. Our assumptions are very mild: we assume that the
potential is lower semicontinuous, and satisfies a monotonicity condition in a neighbourhood
of its minimum. As a consequence, we give a sufficient condition for the existence of dead
core regions, where the minimizer is equal to one of the minima of the potential. Our results
extend and provide variational versions of several classical theorems, well-known for solutions
of scalar semilinear elliptic PDE.
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1. Introduction

The scope of this paper is to establish a general comparison principle providing accurate
upper bounds for the modulus of vector valued minimizers of the energy functional

(1.1) Eω(v) :=

ˆ
ω

[1

2
|∇v(x)|2 +W (v(x))

]
dx, v ∈ W 1,2(ω;Rm), ω ⊂ Rn, n,m ≥ 1,

where W : Rm → [0,∞) is a nonnegative, lower semicontinuous potential (cf. Theorem 2.2
below). Concerning the behaviour of W in a neighbourhood of one of its zero, supposed to
be located at the origin, we shall only make two basic monotonicity assumptions (cf. H3

below). Namely, that in a neighbourhood of 0:

(m1) Wrad(|u|) ≤ W (u), where Wrad : [0, q]→ [0,∞) is a nondecreasing, lower semicontin-
uous function1,

(m2) and u 7→ W (u)−Wrad(|u|) is nondecreasing on the rays emanating from the origin.

Thus, our result applies to a large class of potentials, including for instance the interesting
particular case of the characteristic function of Rm \{0}. Phase transition problems involving
nonsmooth potentials are often considered in the literature. We mention in particular the
work [4] on free boundaries; the density estimates obtained in [8] (resp. [1]) in the scalar
(resp. vector) case; the properties of minimal surfaces and minimizers studied in [17]; the
heteroclinic orbit problem examined in [18]; the structure of minimizers described in [10]

1We shall see in Theorem 2.2 that the upper bound obtained for the modulus of the minimizer, only
depends on the profile of the function Wrad.
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in the one dimensional case n = m = 1. Although the potential W may be a very rough
function, we recall that the minimizers of (1.1) are continuous maps (cf. Lemma 4.2).

Comparison principles are useful in phase transition problems, to study the convergence of
a solution to the minima of the potential. The most typical situation occurs (cf. [2, Lemma
4.4]) when W : Rm → [0,∞) is a smooth potential such that

(1.2) W ≥ 0,W (0) = 0, and ∇W (u) · u ≥ c|u|2, holds for |u| ≤ q

(i.e. the minimum 0 is nondegenerate), and u ∈ C2(Ω;Rm) is a smooth solution to ∆u(x) =
∇W (u(x)) in Ω ⊂ Rn, such that |u| ≤ q holds in Ω. Then, in view of the inequality

(1.3) ∆|u|2(x) ≥ 2∇W (u(x)) · u(x) ≥ 2c|u(x)|2,∀x ∈ Ω,

the maximum principle implies that

(1.4) |u(x)|2 ≤ Φ(x),∀x ∈ Ω,

where Φ : Ω→ R is the solution of the problem2

(1.5) ∆Φ = 2cΦ in Ω, and Φ = q2 on ∂Ω.

On the other hand, we would also like to recall a classical result (cf. [14, Theorem 7.2]), on
the existence of dead core solutions in the scalar case. Let W ∈ C1([0, q];R) be a potential
defined on the interval [0, q], and assume also that

(1.6a) W is convex,

(1.6b) W (0) = W ′(0) = 0, and W ′ > 0 on (0, q],

(1.6c)

ˆ q

0

ds√
W (s)

<∞.

Then, in every ball BR := {x ∈ Rn : |x| < R}, the equation

(1.7) ∆u(x) = W ′(u), x ∈ BR,

admits a nonnegative dead core solution, that is, a solution of (1.7) satisfying

(1.8a) u ≡ 0 in an open set ω such that ω ⊂ BR,

(1.8b) u > 0 in BR \ ω.
Actually, the condition (1.6c) is necessary and sufficient for the existence of dead cores.
Indeed, the conditions (1.6a), (1.6b), and

(1.9)

ˆ q

0

ds√
W (s)

=∞,

ensure the validity of the strong maximum principle (cf. [14, Theorem 1.1]): a nonnegative
solution u of ∆u ≤ W ′(u) defined in a connected open set Ω ⊂ Rn, is either positive or
identically zero on Ω. The sufficiency of (1.9) for the strong maximum principle to hold is
due to Vázquez [20], while necessity is due to Benilan et al. [7]. We refer to [14, 15, 16] and
the references therein, for general statements of maximum and comparison principles, as well
as for the theory of dead core solutions.

2We refer again to [2, Appendix A] for the decay properties of Φ.
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As far as vector valued minimizers u of (1.1) are concerned (with W a nonnegative, lower
semicontinuous potential satisfying the monotonicity assumptions (m1)-(m2)), we shall see
in Theorem 2.4 below, that the condition

(1.10)

ˆ q

0

ds√
Wrad(s)

<∞,

still implies the existence of dead core regions, where the minimizers u vanish3. However, in
our variational setting, the convexity of W considered in (1.6a) for solutions of (1.7) is not
anymore required. Theorem 2.4 follows from the bound obtained in Theorem 2.2, and also
provides a general computation of the distance of the dead core from the boundary of the
domain. Estimates for the dead core have initially been established e.g. in [5, 6, 9, 12, 19],
and we refer to [16, Section 8.4.] for further explicit examples. Finally, we point out that in
the scalar case (m = 1), if instead of (1.10) we assume that

(1.11)

ˆ q

0

ds√
W (s)

=∞ (with W (u) ≡ Wrad(|u|))

holds, then the existence of dead cores is partially ruled out by the following variational version
of the maximum principle (cf. Proposition 2.5 below): a minimizer u : Rn ⊃ Ω → [−q, q] of
(1.1) that is positive at the boundary of a subdomain ω ⊂⊂ Ω, is also positive on ω.

2. Main results

Now, we shall state more precisely our assumptions and main results. Let us assume that
Bq ⊂ Rm is the open ball of radius q > 0 centered at the origin, and that W : Bq → [0,∞) is
a potential such that

H1 W ≥ 0 and W (0) = 0,
H2 W is lower semicontinuous and bounded on Bq,
H3 W (u) = Wrad(|u|) + W0(u), with Wrad : [0, q] → [0,∞) a nondecreasing, lower semi-

continuous function, and W0 : Bq → [0,∞) a function such that W0(rξ) ≤ W0(sξ)
holds for every 0 ≤ r ≤ s ≤ q, and every unit vector ξ ∈ Rm.

Our comparison principle applies to maps u ∈ W 1,2
loc (Ω;Rm) defined in an open set Ω ⊂ Rm,

such that

(2.1) ‖u‖L∞(Ω;Rm) ≤ q,

and u is a local minimizer of the energy functional (1.1), for perturbations satisfying (2.1).
That is, for every bounded open set ω with Lipschitz boundary, such that ω ⊂ Ω, and every
perturbation v = u+ ξ such that ξ ∈ W 1,2

0 (ω;Rm) and ‖v‖L∞(ω;Rm) ≤ q, we assume that

(2.2) Eω(u) ≤ Eω(v).

For instance, if Ω is a smooth domain, and if we extend W on the whole space Rm by setting

W̃ (u) =

{
W (u) when |u| ≤ q,

W ( qu|u|) when |u| ≥ q,

3In particular, whenever the function Wrad is discontinuous at 0, dead core regions appear.
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one can check that assumptions (2.1) and (2.2) hold, for every minimizer u of

ẼΩ(v) :=

ˆ
Ω

[1

2
|∇v(x)|2 + W̃ (v(x))

]
dx,

in the class of maps v ∈ W 1,2(Ω;Rm) satifying the boundary condition

v = φ on ∂Ω, with φ ∈ W 1,2(Ω;Rm), and ‖φ‖L∞(Ω;Rm) ≤ q.

In the following Theorem 2.2, we shall establish an upper bound for the modulus of the local
minimizer u. Our comparison function ΨR is defined in

Proposition 2.1. We assume that Wrad : [0, q]→ [0,∞) is a bounded, nondecreasing, lower
semicontinuous function. Let BR ⊂ Rn be the open ball of radius R > 0 centered at the origin,
let

W̃rad(r) =

{
Wrad(|r|) when |r| ≤ q,

Wrad(q) when |r| ≥ q,

and let

JBR(h) :=

ˆ
BR

[1

2
|∇h(x)|2 + W̃rad(h(x))

]
dx.

Then, there exists a unique minimizer ΨR of JBR in the class AR := {h ∈ W 1,2(Ω;R) : h =
q on ∂BR}, satisfying the following properties:

(i) ΨR is radial (i.e. ΨR(x) = ΨR,rad(|x|), ∀x ∈ BR), and continuous on BR,
(ii) the function ΨR,rad is nondecreasing on the interval [0, R],
(iii) if ψR is another minimizer of JBR in the class AR, then we have ψR ≤ ΨR in BR.

Similarly, there exists a unique minimizer ΨR of JBR in the class AR, satisfying the following
properties:

(i) ΨR is radial (i.e. ΨR(x) = ΨR,rad(|x|), ∀x ∈ BR), and continuous on BR,
(ii) the function ΨR,rad is nondecreasing on the interval [0, R],

(iii) if ψR is another minimizer of JBR in the class AR, then we have ΨR ≤ ψR in BR.

Remark 1. In general, the minimizer of JBR in the class AR is not unique. For instance, let
us assume that n = 2, and

W̃rad(r) =

{
0 if r = 0,

1 if r > 0.

Then, a computation (cf. Lemma 3.6) shows that when R = R0 :=
√

2e q, JBR admits exactly
two radial minimizers in the class AR, namely ΨR ≡ q, and

ΨR(x) =

{
0 if |x| ≤

√
2 q,

2q ln( |x|√
2 q

) if
√

2 q ≤ |x| ≤ R0.

On the other hand, when R > R0 (resp. R < R0), JBR admits only one radial minimizer in
the class AR, namely

ΨR(x) = ΨR(x) =

{
0 if |x| ≤ aR,

q ln(|x|)−ln aR
lnR−ln aR

if |x| ≥ aR,
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where aR is the only solution of
√

2 a ln(R/a) = q in the inteval ( R√
e
, R) (resp. ΨR = ΨR ≡ q).

Thus, Proposition 2.1 implies that this is the only minimizer of JBR in the class AR.

We refer to Lemma 3.4 below, for further properties of the comparison functions ΨR and
ΨR. In particular, we study their dependence on R, and we establish that the minimizer of
JBR in the class AR is unique, for every R ∈ (0,∞) \ D, where D is a countable subset of
(0,∞).

Next, we state the comparison principle:

Theorem 2.2. We assume that hypotheses H1-H3 hold, and that the map u ∈ W 1,2
loc (Ω;Rm)

satisfies (2.1) and (2.2). Let ΨR be the radial minimizer defined in Proposition 2.1. Then,

for every closed ball BR(x0) contained in Ω, we have

(2.3) |u(x)| ≤ ΨR(x− x0), on BR(x0).

Remark 2. In the case where m = 1, W0 ≡ 0, and W (u) = Wrad(|u|), the bound provided by
Theorem 2.2 is optimal, since the function ΨR : BR → [0, q] is a minimizer of (1.1) satisfying
(2.1).

Remark 3. Theorem 2.2 covers the case where the profile of W is not uniform along the rays
emanating from the origin. For instance, if we take W (u) = |u|α(u/|u|) in the unit ball B1, with
α : Sm−1 → (0,∞) a continuous function, then setting α := maxSm−1 α, and α := minSm−1 α,

we can apply Theorem 2.2 in the ball of radius q := e−α
−1

, with Wrad(s) = sα, ∀s ∈ [0, q],
since the functions [0, q] 7→ W (sξ)−Wrad(s) are nondecreasing, for every ξ ∈ Sm−1.

Remark 4. Let Wrad : [0, q] → [0,∞) (resp. Vrad : [0, q] → [0,∞)) be two bounded,
nondecreasing, lower semicontinuous functions, and let ΨR (resp. ΦR) be the corresponding
comparison functions provided by Proposition 2.1. If moreover we assume that the function
Vrad −Wrad is nondecreasing on [0, q], then an application of Theorem 2.2 with u = ΦR, and
W (u) = Vrad(|u|), shows that ΦR ≤ ΨR holds on BR. Thus, the optimal comparison function
ΨR provided by Proposition 2.1, is obtained by choosing the greatest function Wrad satisfying
H3. This also explains why the profile of the comparison function ΨR, corresponding to the
potential Wrad(s) = sα (α > 0), flattens as α decreases.

We also have the following useful version of Theorem 2.2 at the boundary of Ω:

Theorem 2.3. We assume that hypotheses H1-H3 hold. Let Ω ⊂ Rn be a bounded, open set
with Lipschitz boundary, and let u ∈ W 1,2(Ω;Rm) be a map satisfying (2.1), and (2.2) for
every v = u + ξ such that ξ ∈ W 1,2

0 (Ω;Rm), and ‖v‖L∞(Ω;Rm) ≤ q. Then, if the ball BR(x0)
intersects ∂Ω, and if u = 0 on BR(x0) ∩ ∂Ω, we have

(2.4) |u(x)| ≤ ΨR(x− x0), on BR(x0) ∩ Ω.

In Lemma 3.5 below, we determine the conditions implying the existence of dead core
regions for the comparison function ΨR. Therefore, by combining Theorem 2.2 with Lemma
3.5, we also give in Theorem 2.4 a sufficient condition for the existence of dead core regions4,
in the case of vector minimizers:

4As a consequence of Theorem 2.3 and Lemma 3.5, we also deduce the existence of dead core regions at
the boundary of Ω.
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Theorem 2.4. In addition to hypotheses H1-H3, we assume that

H4 Wrad(s) > 0, ∀s ∈ (0, q], and Iq :=
´ q

0
ds√
Wrad(s)

<∞.

Then, if the map u ∈ W 1,2
loc (Ω;Rm) satisfies (2.1) and (2.2), we have u(x) = 0, provided that

d(x, ∂Ω) ≥ (4n+
√

2)Iq.

In the scalar case, if hypothesis H4 does not hold, then the existence of dead cores is
partially ruled out by the following variational version of the maximum principle:

Proposition 2.5. Let m = 1, and let ω be a bounded open set with Lipschitz boundary, such
that ω ⊂ Ω. We assume that hypotheses H1-H3 hold for W (u) = Wrad(|u|) (W0 ≡ 0), and
moreover that

(2.5)

ˆ q

0

ds√
W (s)

=∞ or W ≡ 0 in a neighbourhood of 0.

Then, if the function u ∈ W 1,2
loc (Ω;R) satisfies (2.1), (2.2), and u > 0 on ∂ω, we also have

u(x) > 0, ∀x ∈ ω.

The plan of the next sections is as follows. In section 3 we give the proofs of Propositions
2.1 and 2.5, as well as Theorems 2.2 and 2.3. In section 4 we recall that the minimizers of
(1.1) are continuous, and we also establish the validity of Pohozaev identity for minimizers
of (1.1). This identity is crucial in the proof of Lemma 3.5.

3. Proofs of Propositions 2.1 and 2.5, and Theorems 2.2 and 2.3

We first establish the existence of a radial minimizer of JBR in the class AR.

Lemma 3.1. Under the assumptions of Proposition 2.1:

• There exists a minimizer ψR of JBR in the class AR, which is radial (i.e. ψR(x) =
ψR,rad(|x|), ∀x ∈ BR), and continuous on BR.
• For such a radial minimizer, the function ψR,rad is nondecreasing on the interval

[0, R].

Proof. Let ψ̃ be a minimizer of JBR in the class AR := {h ∈ W 1,2(Ω;R) : h = q on ∂BR}.
We first notice that 0 ≤ ψ̃ ≤ q, since otherwise the competitor min(ψ̃+, q) ∈ AR has less

energy. We also know that ψ̃ is continuous in BR (cf. Lemma 4.2). Starting from ψ̃, we can
construct

ψ̃
(1)
0 (x) = ψ̃(|x1|, x2, . . . , xn),

which is another minimizer of JBR in AR, invariant by the reflection (x1, x2, . . . , xn) 7→
(−x1, x2, . . . , xn). Indeed, we have JBR∩{x1>0}(ψ̃) = JBR∩{x1<0}(ψ̃), since otherwise either the

competitor x 7→ ψ̃(−|x1|, x2, . . . , xn) or the competitor ψ̃
(1)
0 has less energy than ψ̃. Similarly,

we can construct a minimizer

ψ̃
(1)
1 (x) = ψ̃(|x1|, |x2|, . . . , xn),

which coincides with ψ̃ on {x ∈ BR : x1 > 0, x2 > 0}, and is invariant by the reflections
(x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn) and (x1, x2, . . . , xn) 7→ (x1,−x2, . . . , xn). By repeating

this process, we obtain for every k ≥ 2, a minimizer ψ̃
(1)
k , which coincides with ψ̃ on {x ∈
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BR : 0 < x2 < tan(π/2k)x1}, and is invariant by the dihedral group D2k generated by the
reflections with respect to the hyperlanes x2 = 0, and x2 = tan(π/2k)x1. It is clear that

‖ψ̃(1)
k ‖W 1,2(BR;R) is uniformly bounded, thus (up to subsequence) we have

ψ̃
(1)
k ⇀ ψ̃(1)

∞ in W 1,2(BR;R), and ψ̃
(1)
k → ψ̃(1)

∞ a.e. in BR.

By the weakly lower continuity of the L2 norm, it follows that

(3.1a)

ˆ
BR

|∇ψ̃(1)
∞ |2 ≤ lim inf

k→∞

ˆ
BR

|∇ψ̃(1)
k |

2,

while by Fatou’s lemma and the lower semicontinuity of W̃rad, we get

(3.1b)

ˆ
BR

W̃rad(ψ̃(1)
∞ ) ≤

ˆ
BR

lim inf
k→∞

W̃rad(ψ̃
(1)
k ) ≤ lim inf

k→∞

ˆ
BR

W̃rad(ψ̃
(1)
k ).

As a consequence, ψ̃
(1)
∞ is another minimizer of JBR in AR. By construction, given x ∈ BR,

such that l12 :=
√
x2

1 + x2
2, we have

|ψ̃(1)
k (x1, x2, x3, . . . , xn)− ψ̃(l12, 0, x3, . . . , xn)| ≤

sup
{
|ψ̃(z1, z2, x3, . . . , xn)− ψ̃(l12, 0, x3, . . . , xn)| :

√
(z2

1 − l12)2 + z2
2 ≤

πl12

2k

}
.

Therefore, letting k →∞, it follows that ψ̃
(1)
∞ (x1, x2, x3, . . . , xn) = ψ̃(

√
x2

1 + x2
2, 0, x3, . . . , xn).

Next, we proceed by induction, and starting from ψ̃
(1)
∞ , we consider for every k ≥ 2,

a minimizer ψ̃
(2)
k , which coincides with ψ̃

(1)
∞ on {x ∈ BR : 0 < x3 < tan(π/2k)x1}, and

is invariant by the dihedral group D2k generated by the reflections with respect to the

hyperlanes x3 = 0, and x3 = tan(π/2k)x1. As previously ψ̃
(2)
∞ := limk→∞ ψ̃

(2)
k is a mini-

mizer of JBR in AR, such that ψ̃
(2)
∞ (x1, x2, x3, x4, . . . , xn) = ψ̃

(1)
∞ (
√
x2

1 + x2
3, x2, 0, x4, . . . , xn) =

ψ̃(
√
x2

1 + x2
2 + x2

3, 0, 0, x4, . . . , xn). The process terminates after a finite number of exactly

n−1 steps, when we get a minimizer ψR := ψ̃
(n−1)
∞ of JBR in AR, such that ψR(x1, x2, . . . , xn) =

ψ̃(
√
x2

1 + . . .+ x2
n, 0, . . . , 0).

Given a radial radial minimizer ψR of JBR in the class AR, we can easily see by contra-
diction that the function ψR,rad is nondecreasing on the interval [0, R]. Indeed, assume that
ψR,rad(r) > ψR,rad(s) holds for some 0 ≤ r < s ≤ R. Then, the competitor

(3.2) ζ(x) :=

{
ψR(x) if s ≤ |x| ≤ R,

min(ψR(x), ψR,rad(s)) if |x| ≤ s,

has less energy than ψR, which is impossible. Finally, in view of the monotonicity of ψR,rad,
the continuity of ψR up to BR is clear. �

In the next Lemma, we consider a perturbation of the functional JBR for λ ∈ (0, 1) (cf.
(3.3)). We shall use the corresponding comparison functions ψλR provided by Lemma 3.1, to
obtain an upper bound for the modulus of the local minimizer u considered in Theorem 2.2.
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Lemma 3.2. We assume that hypotheses H1-H3 hold, and that the map u ∈ W 1,2
loc (Ω;Rm)

satisfies (2.1) and (2.2). Given λ ∈ (0, 1), let

(3.3) JλBR(h) :=

ˆ
BR

[1

2
|∇h(x)|2 + λW̃rad(h(x))

]
dx,

and consider a radial minimizer ψλR of JλBR in the class AR, provided by Lemma 3.1. Then,

for every closed ball BR(x0) contained in Ω, we have

(3.4) |u(x)| ≤ ψλR(x− x0), on BR(x0).

Proof. Without loss of generality, we assume that x0 = 0. We recall that u is continuous on
Ω (cf. Lemma 4.2), and consider on the open set Ω0 := {x ∈ Ω : u(x) 6= 0} the polar form:

(3.5) u(x) = ρ(x)n(x), with ρ(x) := |u(x)|, n(x) :=
u(x)

|u(x)|
.

An easy computation shows that

(3.6) |∇u(x)|2 = |∇ρ(x)|2 + |ρ(x)|2|∇n(x)|2 on Ω0.

Next, we define on BR the comparison map:

(3.7) ũ(x) =

{
u(x) when ρ(x) ≤ ψλR(x)

ψλR(x)n when ρ(x) > ψλR(x),

where ψλR is a radial minimizer of JλBR in the class AR, provided by Lemma 3.1. It is obvious

that u = ũ on ∂BR. One can also check that |ũ| ≤ |u| holds on BR, and ũ is continuous
on BR. Our claim is that ũ ∈ W 1,2(BR;Rm). Let U := {x ∈ BR : ψR(x) > 0}. We
notice that either U = BR, or U = {x : R′ < |x| < R}, for some R′ ∈ (0, R). Now, given

x ∈ Ω0 ∩ U , it is clear that ũ(x) = min(ψR(x),ρ(x))
ρ(x)

u(x) holds in an open neighbourhood Vx
of x, where ρ(x) ≥ ε > 0. As a consequence, ũ ∈ W 1,2(Vx;Rm), as a product of maps
belonging to W 1,2(Vx;Rm) ∩ L∞(Vx;Rm). Otherwise, if u vanishes for some x ∈ U , we have
ũ = u in a neighbourhood of x. This proves that ũ ∈ W 1,2

loc (U ;Rm). Moreover, setting
ρ̃(x) = |ũ(x)| = min(ψR(x), ρ(x)), we computeˆ

U

|∇ũ|2 =

ˆ
Ω0∩U

(|∇ρ̃|2 + ρ̃2|∇n|2)

≤
ˆ

Ω0∩U
(|∇ρ|2 + ρ2|∇n|2) +

ˆ
BR

|∇ψR|2 =

ˆ
U

|∇u|2 +

ˆ
BR

|∇ψR|2 <∞,

thus ũ ∈ W 1,2(U ;Rm). Finally, in the case where U 6= BR i.e. U = {x : R′ < |x| < R}, we
have ũ ≡ 0 in BR′ . This proves our claim that ũ ∈ W 1,2(BR;Rm).

At this stage, we utilize the minimality of u to deduce that

EBR(u) = EBR∩{ρ>ψλR}(u) + EBR∩{ρ≤ψλR}(u)

≤ EBR∩{ρ>ψλR}(ũ) + EBR∩{ρ≤ψλR}(u) = EBR(ũ),
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or equivalently

(3.8) EBR∩{ρ>ψλR}(u) =

ˆ
BR∩{ρ>ψλR}

[ |∇ρ|2
2

+
|ρ|2|∇n|2

2
+Wrad(ρ) +W0(ρn)

]
≤
ˆ
BR∩{ρ>ψλR}

[ |∇ψλR|2
2

+
|ψλR|2|∇n|2

2
+Wrad(ψλR) +W0(ψλRn)

]
= EBR∩{ρ>ψλR}(ũ).

Similarly, by the minimality of ψλR, and since (ρ− ψλR)+ ∈ W 1,2
0 (BR), it follows that

JλBR(ψλR) = JλBR∩{ρ>ψλR}
(ψλR) + JλBR∩{ρ≤ψλR}

(ψλR)

≤ JλBR∩{ρ>ψλR}
(ρ) + JλBR∩{ρ≤ψλR}

(ψλR) = JλBR(ψλR + (ρ− ψλR)+),

or equivalently

JλBR∩{ρ>ψλR}
(ψλR) =

ˆ
BR∩{ρ>ψλR}

[ |∇ψλR|2
2

+ λWrad(ψλR)
]

(3.9)

≤
ˆ
BR∩{ρ>ψλR}

[ |∇ρ|2
2

+ λWrad(ρ)
]

= JλBR∩{ρ>ψλR}
(ρ).

Gathering the previous results from (3.8) and (3.9), we conclude that

(3.10a) I1 + I2 + I3 + I4 ≤ 0

with

(3.10b) I1 :=

ˆ
BR∩{ρ>ψλR}

[ |∇ρ|2
2

+ λWrad(ρ)− |∇ψ
λ
R|2

2
− λWrad(ψλR)

]
≥ 0 (cf. (3.9)),

(3.10c) I2 :=

ˆ
BR∩{ρ>ψλR}

(|ρ|2 − |ψλR|2)

2
|∇n|2 ≥ 0,

(3.10d) I3 :=

ˆ
BR∩{ρ>ψλR}

(W0(ρn)−W0(ψλRn)) ≥ 0 (cf. H3),

(3.10e) I4 := (1− λ)

ˆ
BR∩{ρ>ψλR}

(Wrad(ρ)−Wrad(ψλR)) ≥ 0 (cf. H3).

Consequently, we have

(3.11a) I2 :=

ˆ
BR∩{ρ>ψλR}

(|ρ|2 − |ψλR|2)

2
|∇n|2 = 0,

(3.11b) I4 := (1− λ)

ˆ
BR∩{ρ>ψλR}

(Wrad(ρ)−Wrad(ψλR)) = 0,

and since λ ∈ (0, 1), we deduce that

(3.11c)

ˆ
BR∩{ρ>ψλR}

(Wrad(ρ)−Wrad(ψλR)) = 0.

9



Now, let us assume by contradiction that the open set V := BR ∩ {ρ > ψλR} is nonempty,

and let Ṽ be a nonempty connected component of V . It follows from (3.11a) that ∇n ≡ 0
holds in Ṽ , thus we have n ≡ n0 in Ṽ , for a unit vector n0 ∈ Rm, as well as u = ρn0 in Ṽ .
Our next claim is that

(3.12) Wrad(ψλR) = Wrad(ρ) ≡ Const. in Ṽ .

Indeed, let us first assume by contradiction that Wrad(ψλR(x0)) + 2ε < Wrad(ρ(x0)) holds

for some x0 ∈ Ṽ , and ε > 0. Then, by the lower semicontinuity of Wrad(ρ), we have
Wrad(ψλR(x0)) + ε < Wrad(ρ) in an open neighbourhood Ṽx0 ⊂ Ṽ of x0. On the other hand,
since Wrad is nondecreasing on [0, q], while |x| 7→ ψλR(|x|) is nondecreasing on [0, R], it is

clear that Wrad(ψλR) ≤ Wrad(ψλR(x0)) holds on the set S := {x ∈ Ṽx0 : |x| ≤ |x0|} (which
has positive Lebesgue measure). As a consequence, we have Wrad(ρ) −Wrad(ψλR)) ≥ ε > 0

on S, in contradiction with (3.11c). This proves that Wrad(ψλR) ≡ Wrad(ρ) in Ṽ . Next,

we assume by contradiction that Wrad(ψλR(x1)) < Wrad(ψλR(x2)) holds for some x1, x2 ∈ Ṽ .
Let q1 := ψλR(x1), q2 := ψλR(x2) (with q1 < q2, since Wrad is nondecreasing), and let
s := max{r ∈ [0, q] : Wrad(r) = q1}. We notice that s ∈ [q1, q2], thus in view of the
continuity of ψλR, there exists x3 ∈ Ṽ such that ψλR(x3) = s. By definition of s, we have
Wrad(ψλR(x3)) < Wrad(ρ(x3)), which is a contradiction. This establishes (3.12).

To prove the bound

(3.13) |u(x)| ≤ ψλR(x), on BR,

it remains to show that

(3.14) ∆ψλR ≤ 0, and ∆ρ ≥ 0 in Ṽ .

Indeed, since the boundary condition ρ− ψλR ≤ 0 is satisfied on ∂Ṽ , the maximum principle

would give that ρ ≤ ψλR holds in Ṽ , in contradiction with our assumption that Ṽ is nonempty.

To check (3.14), we utilize the minimality of u and ψλR, as well as (3.12). Given x0 ∈ Ṽ , let
s := ψλR(x0), t := ρ(x0), and 2κ := t − s > 0. In view of (3.14) is is clear that Wrad is

constant on [s, t]. Let also Ṽx0 ⊂ Ṽ be an open neighbourhood of x0, such that ψλR ≤ s + κ

and ρ ≥ t−κ hold in Ṽx0 . Now, given φ ∈ C1
0(Rn;R), such that suppφ ⊂ Ṽx0 , and 0 ≤ φ ≤ κ,

we have for every ε ∈ (0, 1):

(3.15a)
JλBR(ψλR + εφ)− JλBR(ψλR)

ε
=

ˆ
BR

|∇ψλR + ε∇φ|2 − |∇ψλR|2

2ε
≥ 0,

(3.15b)
EBR(u− εφn0)− Eλ

BR
(u)

ε
=

ˆ
BR

|∇ρ− ε∇φ|2 − |∇ρ|2

2ε
+

ˆ
BR

(W0((ρ−εφ)n0)−W0(ρn0)) ≥ 0.

Finally, since W0((ρ− εφ)n0) ≤ W0(ρn0), we let ε→ 0 in (3.15), and deduce that

(3.16a)

ˆ
BR

∇ψλR · ∇φ ≥ 0, i.e. ψλR is superharmonic in Ṽx0 ,

(3.16b)

ˆ
BR

∇ρ · ∇φ ≤ 0, i.e. ρ is subharmonic in Ṽx0 .
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This establishes (3.14), and completes the proof of (3.13). �

Now, we are able to complete the proofs of Proposition 2.1, as well as Theorems 2.2 and
2.3. The proof of Proposition 2.1 follows from the next lemma.

Lemma 3.3. For every λ > 0, let ψλR be a radial minimizer of

JλBR(h) :=

ˆ
BR

[1

2
|∇h(x)|2 + λW̃rad(h(x))

]
dx,

in the class AR, provided by Lemma 3.1. Then,

(3.17) 0 < λ < µ⇒ ψµR ≤ ψλR.

Moreover, setting

(3.18a) ΨR(x) := lim
λ→1−

ψλR(x), ∀x ∈ BR,

(3.18b) ΨR(x) := lim
λ→1+

ψλR(x), ∀x ∈ BR,

the functions ΨR and ΨR are minimizers of JBR in the class AR, satisfying the properties (i),
(ii), and (iii) listed in Proposition 2.1.

Proof. By applying Lemma 3.2 to the minimizer u = ψ1
R of JBR , we obtain that ψ1

R ≤ ψλR,
∀λ ∈ (0, 1). More generally, by applying Lemma 3.2 to the minimizer u = ψµR of JµBR , and

choosing the comparison function ψλR, with 0 < λ < µ, we deduce (3.17). Next, we notice that
ψλR is uniformly bounded in W 1,2(BR), provided that λ remains bounded. Thus, as λ → 1
and λ < 1, we have (up to subsequence):

(3.19) ψλR ⇀ ζ in W 1,2(BR;R), and ψλR → ζ a.e. in BR.

As a consequence, ζ is equal to the function ΨR defined in (3.18a). In addition, by the weakly
lower continuity of the L2 norm, it follows that

(3.20a)

ˆ
BR

|∇ΨR|2 ≤ lim inf
λ→1−

ˆ
BR

|∇ψλR|2,

while by Fatou’s lemma and the lower semicontinuity of Wrad, we get

(3.20b)

ˆ
BR

Wrad(ΨR) ≤
ˆ
BR

lim inf
λ→1−

Wrad(ψλR) ≤ lim inf
λ→1−

ˆ
BR

λWrad(ψλR).

Finally, in view of the minimality of ψλR, we deduce that

(3.21a) JλBR(ψ1
R) ≥ JλBR(ψλR),

(3.21b) JBR(ψ1
R) = lim inf

λ→1−
JλBR(ψ1

R) ≥ lim inf
λ→1−

JλBR(ψλR) ≥ JBR(ΨR).

That is, ΨR is a minimizer of JBR in the class AR. Moreover, by construction ΨR is radial,
and nondecreasing as a function of |x| (cf. Lemma 3.1). It remains to establish that ΨR also

satisfies property (iii) of Proposition 2.1. Indeed, if ψ̃ is another minimizer of JBR in AR, we

have in view of Lemma 3.2 applied to ψ̃ instead of u:

(3.22) ψ̃(x) ≤ ψλR(x), ∀x ∈ BR,∀λ ∈ (0, 1)⇒ ψ̃(x) ≤ ΨR(x),∀x ∈ BR.
11



Therefore, ΨR is the minimizer described in Proposition 2.1, which is uniquely determined
by property (iii).

Similarly, by taking the limit of the minimizers ψλR, as λ→ 1 and λ > 1, we can show that
the function ΨR defined in (3.18b), is a radial minimizer of JBR in the class AR. It remains to

establish that ΨR also satisfies property (iii) of Proposition 2.1. To see this, let ψ̃ be another
minimizer of JBR in AR. As in the proof of Lemma 3.1, we can construct for every unit vector

ν ∈ Rn, a radial minimizer ψ̃ν of JBR in AR, such that ψ̃(sν) = ψ̃ν(sν), ∀s ∈ [0, R]. In view
of (3.17), we have

(3.23) ψλR(x) ≤ ψ̃ν(x),∀x ∈ BR, ∀λ > 1,∀ν ∈ Sn−1 ⇒ ΨR(x) ≤ ψ̃(x), ∀x ∈ BR.

Therefore, ΨR is the minimizer described in Proposition 2.1, which is uniquely determined
by property (iii). �

Proof of Theorem 2.2. The desired bound (2.4) follows by letting λ → 1 (with λ < 1) in
(3.4), and using (3.18a). �

Proof of Theorem 2.3. We consider on BR ∩ Ω the comparison map:

(3.24) ũ(x) =

{
u(x) when ρ(x) ≤ ψλR(x)

ψλR(x)n when ρ(x) > ψλR(x),

and reproduce the arguments in the proof of Theorem 2.2. �

From Lemma 3.3 and Proposition 2.1, we also deduce the following useful result:

Lemma 3.4. For every R > 0, and λ > 0, we consider the functional

JλBR(h) :=

ˆ
BR

[1

2
|∇h(x)|2 + λW̃rad(h(x))

]
dx,

and the corresponding comparison functions Ψλ
R and Ψ

λ

R provided by Proposition 2.1. Then,
we have

(a) Ψλ
R(x) = Ψκ2λ

R
κ

(x
κ
), and Ψ

λ

R(x) = Ψ
κ2λ
R
κ

(x
κ
), ∀x ∈ BR, ∀κ, λ > 0.

(b) Ψµ
R ≤ Ψ

µ

R ≤ Ψλ
R ≤ Ψ

λ

R, provided that 0 < λ < µ.

(c) Ψ
1
R
κ

(x
κ
) ≤ Ψ1

R(x), ∀x ∈ BR, ∀κ ∈ (0, 1).

(d) There exists a countable set D ⊂ (0,∞), such that for every R ∈ (0,∞)\D, we have
ΨR = ΨR, and thus the minimizer of JBR in the class AR is unique.

Proof. (a) follows from a simple rescaling argument. On the other hand, (b) is a consequence
of (3.17), while the proof of (c) is obvious from (a) and (b). Next, let Q be a countable

dense subset of the unit ball B1. If Ψλ
1 6= Ψ

λ

1 , for some λ0 > 0, then there exists x0 ∈ Q,

such that the function (0,∞) 3 λ 7→ Ψ
λ

1(x0) is discontinuous at λ0. Let D̃ be the set of

λ0 > 0 such that the function λ 7→ Ψ
λ

1(x0) is discontinuous at λ0, for some x0 ∈ Q. We notice

that D̃ is countable, since the functions (0,∞) 3 λ 7→ Ψ
λ

1(x0) are nonincreasing. Thus, for

λ ∈ (0,∞) \D, we have Ψλ
1 ≡ Ψ

λ

1 ⇔ Ψ1√
λ
≡ Ψ

1√
λ, and this proves (d).

�
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At this stage, we determine in Lemma 3.5 below, the conditions implying the existence of
dead core regions for the comparison function ΨR. The proofs of Theorem 2.4 and Proposition
2.5 follow immediately from Lemma 3.5.

Lemma 3.5. In addition to the assumptions of Proposition 2.1, we suppose that Wrad(s) > 0,
∀s ∈ (0, q]. Then,

• if
´ q

0
ds√
Wrad(s)

=∞, we have ΨR > 0, ∀x ∈ BR,

• if Iq :=
´ q

0
ds√

2Wrad(s)
< ∞, the function ΨR vanishes in the ball BR−

√
2Iq

, provided

that R ≥ (4n+
√

2)Iq.

Proof. In the case where Iq :=
´ q

0
ds√

2Wrad(s)
<∞, we define the function

γ : [0, q]→ [0, Iq], γ(s) =

ˆ s

0

1√
2Wrad

.

Since γ is strictly increasing, we denote its inverse function by β := γ−1, β : [0, Iq] → [0, q],

and it is clear that s2 − s1 ≤
√

2Wrad(q)(γ(s2) − γ(s1)) holds for 0 < s1 ≤ s2 ≤ q. Thus, β
belongs to W 1,∞(0, Iq). In addition, we have

γ′(s) =
1√

2Wrad(s)
for a.e. s ∈ (0, q), and β′(t) =

√
2Wrad(β(t)) for a.e. t ∈ (0, Iq).

Next, we consider the restriction of the minimizer ΨR to the ball Br ⊂ Rn (with Iq < r < R),
and setting

(3.25) φr(x) :=

{
β(|x| − r + γ(ΨR(r))) if r − γ(ΨR(r)) ≤ |x| ≤ r,

0 if |x| ≤ r − γ(ΨR(r)),

we obtain a function φr ∈ W 1,2(Br) such that φr = ΨR on ∂Br. A computation shows that

JBr(φr) = |Sn−1|
ˆ γ(ΨR(r))

0

(t+ r − γ(ΨR(r)))n−12Wrad(β(t))dt

≤ 2|Sn−1|Wrad(ΨR(r))Iqr
n−1,

where |Sn−1| denotes the measure of the unit sphere Sn−1 ⊂ Rn. On the other hand, Pohozaev
identity (4.1) applied to ΨR in the ball Br implies that

|Sn−1|rn
(
Wrad(ΨR,rad(r))− 1

2
|Ψ′R,rad(r)|2

)
≤ nJBr(ΨR) ≤ nJBr(φr), for a.e. r ∈ (Iq, R),

where in the last inequality we have used the minimality of ΨR. Therefore, we deduce that(
Wrad(ΨR,rad(r))− 1

2
|Ψ′R,rad(r)|2

)
≤ 2nIqr

−1Wrad(ΨR,rad(r)), for a.e. r ∈ (Iq, R).

In particular, for a.e. r ∈ (4nIq, R), we have Wrad(ΨR,rad(r)) ≤ |Ψ′R,rad(r)|2. Now, let (l, R)

be the intersection of the intervals (4nIq, R) and {r ∈ (0, R) : ΨR,rad(r) > 0}. Since ΨR,rad is
strictly increasing on the interval (l, R), we denote its inverse function by χR : (δ, q)→ (l, R).
Proceeding as previously, we can see that given 0 < ε � 1, the function χR is Lipschitz
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on (δ + ε, q), and moreover the inequality χ′R(s) ≤ 1√
Wrad(s)

holds for a.e. s ∈ (δ, q). As a

consequence, it follows that

R− r ≤
ˆ q

ΨR,rad(r)

1√
Wrad

≤
√

2 Iq,∀r ∈ (l, R).

This proves that the function ΨR vanishes in the ball BR−
√

2Iq
, provided that R ≥ (4n+

√
2)Iq.

Conversely, we are going to establish that when n = 1, the existence of a dead core region
for βR := ΨR implies that Iq :=

´ q
0

ds√
2Wrad(s)

≤ R. In view of Pohozaev identity (4.1), we

have ˆ r

0

(
Wrad(βR)− 1

2
|β′R|2

)
= r
(
Wrad(βR(r))− 1

2
|β′R(r)|2

)
for a.e. r ∈ (0, R),

which implies that

1

2
|β′R(r)|2 −Wrad(βR(r)) = H for a.e. r ∈ (0, R),(3.26)

for some constant H5. By assumption β vanishes on a small interval [0, ε], thus it follows
from (3.26), that actually

1

2
|β′R(r)|2 = Wrad(βR(r)) for a.e. r ∈ (0, R).(3.27)

Let (l, R] be the interval where βR > 0. Since βR is strictly increasing on the interval (l, R),
we denote its inverse function by γR : (0, q) → (l, R). As previously, we can see that γR is
locally Lipschitz on (0, q), and that γ′R(s) = 1√

2Wrad(s)
holds for a.e. s ∈ (0, q). Therefore, we

conclude that Iq :=
´ q

0
ds√

2Wrad(s)
≤ R.

So far we have proved that
´ q

0
ds√

2Wrad(s)
=∞, implies that βR(r) > 0, for every R > 0, and

r ∈ (0, R). Actually, the functions βR are positive on the whole interval [−R,R]. Indeed, in
view of Lemma 3.4 (c), we have βR(r) ≥ Ψ2R(2r), ∀r ∈ [−R,R]. Next, Theorem 2.2 applied
in Ω = (−6R, 2R), with u(s) = β4R(2R + s) and Ψ2R(s), gives the inequality β4R(2R + s) ≤
Ψ2R(s), ∀s ∈ [−2R, 2R], from which we deduce that 0 < β4R(2R+2r) ≤ βR(r), ∀r ∈ (−R,R).
To complete the proof of Lemma 3.5, it remains to establish that the condition

´ q
0

ds√
2Wrad(s)

=

∞, also implies the positivity of the functions ΨR, in higher dimensions n ≥ 2. To see this,
we apply Theorem 2.2 in Ω = (−R,R)n, to the minimizer u(x1, x2, . . . , xn) = βR(x1), and we
get 0 < βR(r) ≤ ΨR,rad(r), ∀r ∈ [0, R]. Finally, in view of Lemma 3.4 (c), we conclude that
the functions ΨR are positive. �

Remark 5. In view of Lemma 3.4, if ΨR or ΨR has a dead core, then ΨS and ΨS have also
a dead core for every S > R. As a consequence, assuming that Iq <∞, there exists a critical
value R0 such that ΨR has a dead core for R > R0, while ΨR does not have a dead core for
R < R0. Lemma 3.5 establishes that R0 ≤ (4n +

√
2)Iq holds in any dimension n. On the

other hand, in Lemma 3.6 below, we determine the value of R0, when n = 2 and Wrad is the

5We point out that (3.26) expresses the conservation of the total mechanical energy for the solutions of
the Hamiltonian system u′′(x) = ∇W (u(x)). This property still holds for minimizers of (1.1), in the case of
nonsmooth potentials
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characteristic function of R \ {0}. We refer to [16, Section 8.4.] for the general theory of
dead cores in the smooth case, and in particular to [16, Theorems 8.4.2., 8.4.3., 8.4.4.] for the
properties of the function ΨR. In [16, Section 8.4.], several explicit examples of dead cores
are also provided.

Proof of Proposition 2.5. In view of the continuity of u (cf. Lemma 4.2), we have u ≥ ε
on ∂ω, for some ε > 0. Let BR be a ball containing the domain ω. By increasing R, we
may assume that the functional JBR admits a unique minimizer Φ in the class B := {h ∈
W 1,2(Ω;R) : h = ε on ∂BR} (cf. Proposition 2.1, and Lemma 3.4). In addition, it is clear
that (Φ− u)+, (u− Φ)− ∈ W 1,2

0 (ω). Thus, in view of the minimality of Φ and u, we have on
the one hand

(3.28a) EBR(Φ) ≤ EBR(Φ− (u− Φ)−)⇔ E{Φ>u}(Φ) ≤ E{Φ>u}(u),

and on the other hand

(3.28b) Eω(u) ≤ Eω(u+ (Φ− u)+)⇔ E{Φ>u}(u) ≤ E{Φ>u}(Φ).

That is, E{Φ>u}(Φ) = E{Φ>u}(u), which means that Φ− (u−Φ)− is a minimizer of JBR in the
class B. By uniqueness of the minimizer Φ, we conclude that u ≥ Φ on ω. In the case where
Wrad(s) > 0, ∀s ∈ (0, q], we have seen in Lemma 3.5 that Φ > 0. Otherwise, if Wrad(η) = 0,
for some η ∈ (0, q), it is straightforward that Φ ≥ η (cf. the proof of Lemma 3.1). �

Finally, we close this section by detailing the computation mentioned in Remark 1:

Lemma 3.6. Let n = 2, and

W̃rad(r) =

{
0 if r = 0,

1 if r > 0.

Then, when R = R0 :=
√

2e q, the functional JBR admits exactly two radial minimizers in the
class AR, namely ΨR ≡ q, and

ΨR(x) =

{
0 if |x| ≤

√
2 q,

2q ln( |x|√
2 q

) if
√

2 q ≤ |x| ≤ R0.

On the other hand, when R > R0 (resp. R < R0), JBR admits only one radial minimizer in
the class AR, namely

ψR(x) =

{
0 if |x| ≤ aR,

q ln(|x|)−ln aR
lnR−ln aR

if |x| ≥ aR,

where aR is the only solution of
√

2 a ln(R/a) = q in the interval ( R√
e
, R) (resp. ψR ≡ q).

Proof. We have seen in Lemma 3.1 that the radial minimizers ψR of JBR in the class AR, are
such that the function ψR,rad is nondecreasing on the interval [0, R]. Moreover, due to our

specific choice of W̃rad, these minimizers ψR are harmonic functions on the set {x ∈ BR :
ψR(x) > 0}. Thus, either ψR ≡ q and JBR(ψR) = πR2, if {x ∈ BR : ψR(x) > 0} = BR, or

ψR(x) =

{
0 if |x| ≤ a,

q ln(|x|)−ln a
lnR−ln a

if |x| ≥ a,
for some a ∈ (0, R),
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and JBR(ψR) = π(R2 − a2) +
πq2

(lnR− ln a)
,

if {x ∈ BR : ψR(x) > 0} = {x ∈ BR : a < |x| < R}. Finally, by studying the variations of the

functions (0, R) 3 a 7→ gR(a) := −πa2 + πq2

(lnR−ln a)
, one can show that gR vanishes or takes

negative values on (0, R), iff R ≥ R0 :=
√

2e q. Moreover, when R = R0, we have gR ≥ 0 on
(0, R), and gR only vanishes for a =

√
2 q = R0√

e
. Otherwise, if R > R0, gR attains its negative

minimum at the point aR ∈ ( R√
e
, R), solving the equation

√
2 a ln(R/a) = q. We also point

out that the function R 7→ R
aR

is decreasing from (R0,∞) onto (1,
√
e). This completes the

proof of Lemma 3.6. �

4. Pohozaev identity and continuity for minimizers

Pohozaev identity is commonly used for smooth solutions of semilinear elliptic systems (cf.
for instance [2, Remark 3.1]). We prove below that the identity also holds for minimizers of
(1.1).

Lemma 4.1. Let W be a nonnegative, bounded and lower semicontinuous function defined
on Bq, and let u ∈ W 1,2

loc (Ω;Rm) be a map defined in the domain Ω ⊂ Rn, and satisfying (2.1)

as well as (2.2). Then, given a ball BR(x0) ⊂ Ω, we have
(4.1)ˆ

Br(x0)

(n− 2

2
|∇u|2 + nW (u)

)
= r

ˆ
∂Br(x0)

(1

2
|∇u|2 +W (u)−

∣∣∣∂u
∂ν

∣∣∣2), for a.e. r ∈ (0, R),

where ν stands for the outer nornal to the ball Br(x0).

Proof. Without loss of generality, we may assume that x0 = 0. Let r ∈ (0, R), and s ∈ (r, R)
be fixed. Given x ∈ Bs \ {0}, we write x = tσ, with t := |x|, and σ ∈ Sn−1. Moreover, we set
|ut(t, σ)|2 := |∂u

∂t
(t, σ)|2, and |∇σu(t, σ)|2 = |∇u(t, σ)|2 − |ut(t, σ)|2. Next, we consider in Bs,

the comparison map

(4.2) ũ(x) = ũ(t, σ) =

{
u(x

κ
) when 0 ≤ t = |x| ≤ κr,

u(r + (s− r) t−κr
s−κr , σ) when κr ≤ t ≤ s,

where κ ∈ (0, s
r
) is fixed. It is clear that ũ = u on ∂Bs, thus by the minimality of u, we have

(4.3) EBs(ũ)− EBs(u) ≥ 0,∀κ ∈
(
0,
s

r

)
.

Setting f(κ) := EBs(ũ), a long but otherwise trivial computation shows that

f(κ) =

ˆ
Br

[κn−2

2
|∇u|2 + κnW (u)

]
+

ˆ s

r

ˆ
Sn−1

(
(s− κr) t− r

s− r
+ κr

)n−1 s− r
s− κr

|ut(t, σ)|2

2
dtdσ

+

ˆ s

r

ˆ
Sn−1

(
(s− κr) t− r

s− r
+ κr

)n−3
t2
s− κr
s− r

|∇σut(t, σ)|2

2
dtdσ

+

ˆ s

r

ˆ
Sn−1

(
(s− κr) t− r

s− r
+ κr

)n−1 s− κr
s− r

W (u(t, σ))dtdσ,
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and

(4.4) f ′(1) =

ˆ
Br

[n− 2

2
|∇u|2 + nW (u)

]
+

r

s− r

ˆ
Bs\Br

(
(n− 1)

s

t
− (n− 2)

) |ut(t, σ)|2

2

+
r

s− r

ˆ
Bs\Br

(
(n− 3)

s

t
− (n− 2)

) |∇σut(t, σ)|2

2
+

r

s− r

ˆ
Bs\Br

(
(n− 1)

s

t
− n)

)
W (u(t, σ)).

Therefore, in view of (4.3), and since f(1) = EBs(u), we deduce that f ′(1) = 0. Finally,
letting s→ r in (4.4), we obtain for a.e. r ∈ (0, R):

0 =

ˆ
Br

[n− 2

2
|∇u|2 + nW (u)

]
+ r

ˆ
∂Br

( |ut|2
2
− |∇σu|2

2
−W (u)

)
.

�

Remark 6. Proceeding as in [2, page 91], one can also derive from Pohozaev identity the
monotonicity formula d

dr
(r−(n−2)EBr(x0)(u)) ≥ 0, holding for a.e. r ∈ (0, R), under the as-

sumptions of Lemma 4.1. We refer to the expository papers [11, 13] for a detailed account of
monotonicity formulae.

Next, we recall the continuity of bounded minimizers of (1.1). This property is crucial in
the proof of Theorem 2.2.

Lemma 4.2. Let W be a nonnegative, bounded and lower semicontinuous function defined
on Bq, and let u ∈ W 1,2

loc (Ω;Rm) be a map satisfying (2.1) and (2.2). Then, u is continuous
in Ω.

Proof. We refer to [3, Lemma 2.1] where a logarithmic estimate is established for the local
minimizer u, implying in particular its Hölder continuity. �
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