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Online Supplement

This Supplement contains additional examples and details for which there was not enough space in the

main paper.

In Appendix A, we show with simple examples how one can prove that the HK variation of the CDE is

bounded uniformly over the interval [a, b] of interest. When this can be done, it proves that the MISE for

the CDE with good RQMC points converges as O(n−2+ε).

Appendix B provides additional examples showing how CDEs can be constructed, sometimes in non-trivial

ways that are adapted to the problem at hand. In Section B.1, we consider the very simple example of a sum

of independent normal random variables, for which the density is known, and the purpose is to see how each

estimator behaves as a function of the dimension (the number of summands) and of the relative variance

of the one we hide. In Section B.2, we consider a six-dimensional example taken from Schields and Zhang

(2016). In Section B.3, we consider a multicomponent system in which each component fails at a certain

random time, and we want to estimate the density of the failure time of the system. In Section B.4, we

explain briefly how accurate density estimation is useful for computing a confidence interval on a quantile

or on the expected shortfall.

Section C provides additional figures for examples in the paper.

Appendix A: Proving bounded HK variation for the CDE: some simple illustrations

Here we show how the HK variation of g≡ g̃′(x, ·) can be bounded uniformly in x∈ [a, b] in our CDE setting,

for Examples 1 to 3 of the paper.
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Example 1. Consider a sum of random variables as in Example 1, with G = G−k summarized by the single

real number S−k. We have F (x | G) = Fk(x− S−k) and f(x | G) = fk(x− S−k). Without loss of generality,

let k = d. Suppose that each Yj is generated by inversion from Uj ∼ U(0,1), so Yj = F−1
j (Uj) and S−d =

F−1
1 (U1) + · · ·+F−1

s (Us) with s= d−1. This gives g̃(x,U) = Fd(x−S−d) = Fd(x−F−1
1 (U1)−· · ·−F−1

s (Us))

and g̃′(x,U) = fd(x− S−d) = fd(x− F−1
1 (U1)− · · · − F−1

s (Us)). The partial derivatives of this last function

are

g̃′v(x,Uv,1) = f
(|v|)
d (x−S−d)

∏
j∈v

∂(F−1
j (Uj))

∂Uj
.

So the functions F−1
j must be differentiable over (0,1) for j = 1, . . . , d− 1, the density fd must be s times

differentiable, and the integral of |g̃′v(x,uv,1)| with respect to uv must be bounded uniformly in x ∈ [a, b].

Under these conditions, the HK variation is bounded uniformly in x over [a, b].

For Example 2, with G = G−2 and Y1 = U1, we have g̃′(x,u) = g̃′(x,U1) = I[U1 ≤ x≤ ε+U1]/ε= I[x− ε≤
U1 ≤ x]/ε. This function is not continuous, but its HK variation (not given by (11) in this case) is 2/ε <∞,

because it is piecewise constant with only two jumps, each one of size 1/ε. Thus, the HK variation is

unbounded when ε→ 0, but it is finite for any fixed ε, independently of x. The behavior with G = G−1 is

similar and the HK variation is 2 in that case, which is much better.

For Example 3, if G = G−2, we have Y1 = σ1Φ−1(U1) where U1 ∼U(0,1). Then, F (x | G−2) = F2(x− Y1) =

Φ((x− Y1)/σ2) and f(x | G−2) = φ((x− σ1Φ−1(U1))/σ2)/σ2 = g̃′(x,U1). Taking the derivative with respect

to u and noting that dΦ−1(u)/du= 1/(φ(Φ−1(u))) yields

g̃′v(x,u) =
φ′((x−σ1Φ−1(u))/σ2)σ1

σ2
2φ(Φ−1(u))

for v = {1}= S (the only subset in this case). Integrating this with respect to u by making the change of

variable z = Φ−1(u) gives ∫ 1

0

g̃′v(x,u)du=
σ1

σ2
2

∫ ∞
−∞
|φ′((x−σ1z)/σ2)|dz,

which is bounded uniformly in x, because |φ′(·)| is bounded by φ(·) multiplied by the absolute value of a

polynomial of degree 1. So the HK variation is bounded uniformly in x.

Appendix B: Additional examples

B.1. A sum of normals

We start with a very simple example in which the density f is known beforehand, so there is no real need

to estimate it, but this type of example is very convenient for testing the performance of various density

estimators. Let Z1, . . . ,Zd be independent standard normal random variables, i.e., with mean 0 and variance

1, and define

X = (a1Z1 + · · ·+ adZd)/σ, where σ2 = a2
1 + · · ·+ a2

d.

Then X is also standard normal, with density f(x) = φ(x)
def
= exp(−x2/2)/

√
2π and cdf P[X ≤ x] = Φ(x) for

x ∈ R. The term ajZj in the sum has variance a2
j . We pretend we do not know this and we estimate f(x)

over the interval [−2,2], which contains slightly more than 95% of the density. We also tried larger intervals,

such as [−5,5], and the IVs for the CDE were almost the same.
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To construct the CDE, we define G−k as in Example 1, for any k = 1, . . . , d. That is, we hide Zk and

estimate the cdf by

F (x | G−k) = P

[
akZk ≤ xσ−

d∑
j=1, j 6=k

ajZj

∣∣∣∣∣G−k
]

= Φ

(
xσ

ak
− 1

ak

d∑
j=1, j 6=k

ajZj

)
.

The CDE becomes

f(x | G−k) = φ

(
xσ

ak
− 1

ak

d∑
j=1, j 6=k

ajZj

)
σ

ak
= φ

(
xσ

ak
− 1

ak

d∑
j=1, j 6=k

ajΦ
−1(Uj)

)
σ

ak

def
= g̃′(x,U)

for x∈R, where U = (U1, . . . ,Uk−1,Uk+1, . . . ,Ud), Zj = Φ−1(Uj), and the Uj are independent U(0,1) random

variables. Assumption 1 is easily verified, so this CDE is unbiased.

For CMC+MC (independent sampling), we get an exact formula for the variance of the CDE from Exam-

ple 3, by taking in that example Y2 = akZk/σ and Y1 = X − Y2, whose variances are σ2
2 = (ak/σ)2 and

σ2
1 = 1−σ2

2 , and plugging these values into (6). With the same argument as in the second part of Example 1

in the supplement, we can show that VHK(g̃′(x, ·))<∞, uniformly in x over any bounded interval [a, b], so

Proposition 3 applies. We expect to observe this empirically.

For the GLRDE, with Yj = Zjaj/σ ∼ N (0, a2
j/σ

2), we obtain ∂(log fj(yj))/∂yj = −yjσ2/a2
j , hj(yj) = 1,

hjj(yj) = 0, and then Ψj =−Yjσ2/a2
j =−Zjσ/aj . Note that we could also replace Yj by Zj and fj by φj (the

standard normal density), which would give ∂(logφj(zj))/∂zj =−zj , hj(zj) = aj/σ, hjj(yj) = 0, and again

Ψj =−Zjσ/aj .

In our first experiment, we take aj = 1 for all j, and k = d. By symmetry, the true IV is the same for

any other k. Table 1 reports the estimated rate ν̂ and the estimated value of e19 =− log2(IV) for n= 219,

for various values of d and sampling methods. The rows marked CDE-1 give the results for k = d, while

those labeled CDE-Avg are for a convex combination (7) with equal weights β` = 1/d for all `= k− 1, after

computing the CDE for each k from the same simulations.

For MC, the rates ν̂ agree with the (known) exact asymptotic rates of ν = 1 for the CDE and GLRDE, and

ν = 0.8 for the KDE. By looking at e19, we see that the MISE with MC is much smaller for the CDE than for

the GLRDE and KDE, for example for d= 2 by a factor of about 32 for CDE-1 and about 70 for CDE-avg.

For d = 20, the gains are more modest. RQMC methods provide huge improvements for small d with the

CDE. We observe rates ν̂ larger than 2 for d= 2 and 3. These rates also hold for larger d asymptotically, but

they take longer to kick in, so we would need to have much larger values of n to observe them. By looking at

the exponents e19, we see that for d= 3, for example, the MISE goes from 2−17 for the GLRDE and KDE

to about 2−42 for CDE-avg with Sobol’ points with LMS. This is a MISE reduction by a factor of about

225 ≈ 33 millions! The large values of ν̂ imply of course that this factor is smaller for smaller n. When d is

large, such as d= 20, RQMC brings only a small gain. The values of ν̂ are sometimes noisy. For the GLRDE

with Lat+s and d = 5, for example, the large ν̂ = 1.45 comes from the fact that the IV for n = 214 (not

shown) is unusually large (an outlier). Looking at e19 gives a more robust assessment of the performance.

The GLRDE performs better than the KDE under RQMC for small d, but is not competitive with the CDE.

Under MC, the GLRDE is slightly worse than the KDE.
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Table 1 Values of ν̂ and e19 for a CDE, a convex combination of CDEs, a GLRDE, and a KDE, for a sum of

d= k normals with aj = 1, over [−2,2].
ν̂ e19

d= 2 d= 3 d= 5 d= 10 d= 20 d= 2 d= 3 d= 5 d= 10 d= 20

CDE-1

MC 0.99 0.98 1.02 1.00 1.02 22.1 21.4 20.8 19.8 19.2
Lat+s 2.83 2.00 1.85 1.40 1.04 52.3 39.8 32.1 23.6 19.7
Lat+s+b 2.69 2.11 1.69 1.14 1.05 50.5 41.5 31.1 21.8 20.0
Sob+LMS 2.62 2.10 1.81 1.04 1.04 49.3 40.7 31.1 21.3 19.7

CDE-avg

MC 1.06 0.92 1.03 1.01 1.01 23.4 22.1 21.6 20.6 19.8
Lat+s 2.79 1.84 1.33 1.19 1.05 53.3 39.8 32.2 23.0 20.6
Lat+s+b 2.65 1.90 1.71 1.05 1.08 51.6 41.4 32.3 23.4 21.3
Sob+LMS 2.60 2.10 1.92 1.02 1.03 49.8 42.0 33.0 22.7 20.5

GLRDE

MC 0.98 0.95 1.03 1.05 1.00 17.0 16.1 15.9 14.9 14.1
Lat+s 1.51 1.56 1.45 0.94 1.06 28.2 24.9 22.1 17.8 17.2
Lat+s+b 1.49 1.41 1.05 1.06 1.04 27.3 23.9 20.4 18.8 17.6
Sob+LMS 1.49 1.33 1.15 0.99 1.16 27.5 24.0 21.0 18.3 17.4

KDE

MC 0.79 0.80 0.76 0.75 0.77 17.0 17.0 16.9 16.9 17.0
Lat+s 1.08 1.39 0.92 0.97 0.76 25.1 22.4 19.4 18.2 17.4
Lat+s+b 1.23 0.94 0.72 0.73 0.74 24.1 20.1 18.1 17.3 17.2
Sob+LMS 1.18 0.98 0.83 0.74 0.77 24.4 20.8 17.9 17.2 17.1

Table 2 Values of ν̂ and e19 with a CDE for selected choices of G−k, for a linear combination of d= 11 normals

with a2
j = 21−j .

ν̂ e19
k= 1 k= 2 k= 5 k= 11 k= 1 k= 2 k= 5 k= 11

MC 1.00 1.02 1.01 1.00 22.2 21.0 18.8 15.5
Lat+s 1.43 1.48 1.34 1.04 30.3 28.5 22.8 15.6
Lat+s+b 1.57 1.65 1.28 1.02 33.5 30.8 22.1 15.6
Sob+LMS 1.78 1.56 1.21 1.02 34.1 30.4 21.7 15.7

In our second experiment, we take a2
j = 21−j for j = 1, . . . , d. Now, the choice of k for the CDE makes a

difference, and the best choice will obviously be k= 1, i.e., hide the term that has the largest variance. Note

that with MC, Var[X] = 2− 2−d, and when we apply CMC by hiding akZk from the sum, we hide a term

of variance a2
k = 21−k and generate a partial sum S−k of variance 2− 21−k− 2−d. Both terms have a normal

distribution with mean 0. The results of Example 3 hold with these variances. Table 2 reports the numerical

results for d= 11 and k= 1,2,5,11.

The MC rates ν̂ agree again with the theory, but here the IV depends very much on the choice of k, and

this effect is more significant when k is smaller. For example, for Sobol’ points, the IV with k = 1 is about

300,000 times smaller than with k = 11. The reason is that with k = 11, we hide only a variable having a

very small variance, so the CDE for one sample is a high narrow peak, and the HK variation of g̃′(x,u) is

very large. For k= 1 or 2, we have the opposite and the integrand is much more RQMC-friendly.

B.2. Buckling strength of a steel plate

This is a six-dimensional example, taken from Schields and Zhang (2016). It models the buckling strength

of a steel plate by

X =

(
2.1

Λ
− 0.9

Λ2

)(
1− 0.75Y5

Λ

)(
1− 2Y6Y2

Y1

)
, (1)
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where Λ = (Y1/Y2)
√
Y3/Y4, and Y1, . . . , Y6 are independent random variables whose distributions are given

in Table 3. Each distribution is either normal or lognormal, and the table gives the mean and the coefficient

of variation (cv), which is the standard deviation divided by the mean. We estimate the density of X over

[a, b] = [0.5169,0.6511], which contains about 99% of the density (leaving out 0.5% on each side). There is a

nonzero probability of having Y4 ≤ 0, in which case X is undefined, but this probability is extremely small

and this has a negligible impact on the density estimator over [a, b], so we just ignore it (alternatively we

could truncate the density of Y4). There are also negligible probabilities that the density estimates below are

negative and we ignore this.

Table 3 Distribution of each parameter for the buckling strength model.

parameter distribution mean cv
Y1 normal 23.808 0.028
Y2 lognormal 0.525 0.044
Y3 lognormal 44.2 0.1235
Y4 normal 28623 0.076
Y5 normal 0.35 0.05
Y6 normal 5.25 0.07

For this example, computing the density of X conditional on G−5 or G−6 (i.e., when hiding Y5 or Y6) is

relatively easy, so we will try and compare these two choices. If we hide one of the variables that appear in

Λ, the CDE would be harder to compute (it would require to solve a polynomial equation of degree 4 for

each sample), and we do not do it. Let us define

V1 =
2.1

Λ
− 0.9

Λ2
, V2 = 1− 2Y6Y2

Y1

, and V3 = 1− 3Y5

4Λ
.

Then we have

X ≤ x ⇔ Y5 ≥
(

1− x

V1V2

)
4Λ

3

and

f(x | G−5) = f5

((
1− x

V1V2

)
4Λ

3

)
4Λ

3V1V2

= φ

(
(1−x/(V1V2)) 4Λ/3− 0.35

0.0175

)
4Λ

0.0525 ·V1V2

.

Similarly,

f(x | G−6) = f6

((
1− x

V1V3

)
Y1

2Y2

)
Y1

2Y2V1V3

= φ

(
(1−x/(V1V3))Y1/(2Y2)− 5.25

0.3675

)
Y1

0.735 ·Y2V1V3

.

For GLRDE using Y6, let C = (2.1/Λ− 0.9/Λ2) (1− 0.75Y5/Λ). We have X = h(Y) = C(1− 2Y6Y2/Y1),

h6(Y) = 2CY2/Y1, h66(Y) = 0, ∂ log f6(Y6)/∂Y6 =−(Y6−µ6)/σ2
6 , and Ψ6 = Y1(Y6−µ6)/(2CY2σ

2
6).

Table 4 summarizes the results. We see again that with a very simple conditioning, the CDE with RQMC

performs extremely well and much better than the GLRDE and the KDE. It is also much better to condition

on G−6 than on G−5, and combining the two provides no significant improvement. The GLRDE is better than

the KDE under RQMC, but not under MC. Figure 1 displays the IV as a function of n in a log-log-scale for

the CDE with G−5 and G−6. It unveils a slightly more erratic behavior of the MISE for the shifted lattice

rule (Lat+s) than for the other methods; the performance depends on the choice of parameters of the lattice

rule and their interaction with the particular integrand.
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Table 4 Values of ν̂ and e19 with a CDE for G−5, G−6, their combination, GLRDE, and the KDE, for the

buckling strength model.

ν̂ e19
G−5 G−6 comb. GLRDE KDE G−5 G−6 comb. GLRDE KDE

MC 1.00 1.00 1.00 0.98 0.76 13.5 15.4 15.4 10.2 11.7
Lat+s 1.89 1.56 1.56 1.29 0.81 20.0 24.9 24.9 16.6 13.7
Lat+s+b 1.46 1.65 1.60 1.19 0.85 17.5 25.1 25.1 15.9 12.7
Sob+LMS 1.40 1.75 1.75 1.16 0.81 17.7 25.5 25.5 15.9 12.4

14 16 18

−20

−15

−10

log2 n

lo
g
2
M

IS
E

MC

Lat+s

Lat+s+b

Sob+LMS

14 16 18

−25

−20

−15

−10

log2 n

MC

Lattice+Shift

Lattice+Baker

Sob+LMS

Figure 1 MISE vs n in log-log scale for the G = G−5 (left) and G = G−6 (right) for the buckling strength model.

B.3. Density of the failure time of a system

We consider a d-component system in which each component starts in the operating mode (state 1) and fails

(jumps to state 0) at a certain random time, to stay there forever. Let Yj be the failure time of component

j for j = 1, . . . , d. For t≥ 0, let Wj(t) = I[Yj > t] be the state of component j and W(t) = (W1(t), . . . ,Wd(t))
t

the system state, at time t. The system is in the failed mode at time t if and only if Φ(W(t)) = 0, where

Φ : {0,1}d→ {0,1} is called the structure function. Let X = inf{t ≥ 0 : Φ(W(t)) = 0} be the random time

when the system fails. We want to estimate the density ofX. A straightforward way of simulating a realization

of X is to generate the component lifetimes Yj = inf{t≥ 0 :Wj(t) = 0} for j = 1, . . . , d, and then compute X

from that.

As in Section 4.3, the GLRDE method of Section 2.5 does not work for this example, because hj(Y) 6= 0

only when X = Yj , and there is no j for which this is certain to happen.

If the Yj are independent and exponential, one can construct a CMC estimator of the cdf F (x) = P[X ≤ x]

as follows (Gertsbakh and Shpungin 2010, Botev et al. 2013). Generate all the Yj ’s and sort them in increasing

order. Then, erase their values and retain only their order, which is a permutation π of {1, . . . , d}. Compute

the critical number C = C(π), defined as the number of component failures required for the system to fail

(that is, the system fails at the Cth component failure, for the given π). Note that C can also be computed

by starting with all components failed and resurrecting them one by one in reverse order of their failure, until

the system becomes operational. Computing C using this reverse order is often more efficient (Botev et al.

2016). Then compute the conditional cdf P[X ≤ x | π], where X is the time of the Cth component failure.

This is an unbiased estimator of F (x) with smaller variance than the indicator I[X ≤ x]. It can also be
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shown that in an asymptotic regime in which the component failure rates converge to 0 so that 1−F (x)→ 0,

the relative variance of this CMC estimator of 1− F (x) remains bounded whereas it goes to infinity with

the conventional estimator I[X >x]; i.e., the CMC estimator has bounded relative error (Botev et al. 2013,

2016). This X is a sum of C independent exponentials, so it has a hypoexponential distribution, whose cdf

has an explicit formula that can be written in terms of a matrix exponential, and developed explicitly as

a sum of products in terms of the rates of the exponential lifetimes, as explained below. By taking the

derivative of the conditional cdf formula with respect to x, one obtains the conditional density.

More specifically, let component j have an exponential lifetime with rate λj > 0, for j = 1, . . . , d. For a

given realization, let π(j) be the jth component that fails and let C(π) = c for the given π, let A1 be the time

until the first failure, and let Aj be the time between the (j − 1)th and jth failures, for j > 1. Conditional

on π, we have X =A1 + · · ·+Ac where the Aj ’s are independent and Aj is exponential with rate Λj for all

j ≥ 1, with Λ1 = λ1 + · · ·+λd, and Λj = Λj−1−λπ(j−1) for all j ≥ 2. The conditional distribution of X is then

hypoexponential with cdf

P[X ≤ x | π] = P[A1 + · · ·+Ac ≤ x | π] = 1−
c∑

j=1

pje
−Λjx,

where

pj =

c∏
k=1,k 6=j

Λk

Λk−Λj

.

See Gertsbakh and Shpungin (2010), Appendix A, and Botev et al. (2016), for example. Taking the derivative

with respect to x gives the CDE

f(x | π) =

c∑
j=1

Λjpje
−Λjx,

in which c, the Λj and the pj depend on π. This conditional density is well defined and computable everywhere

in [0,∞). There are instability issues for computing pj when Λk −Λj is close to 0 for some k 6= j, but this

can be addressed by a stable numerical algorithm of Higham (2009).

All of this can be generalized easily to a model in which the lifetimes are dependent, with the dependence

modeled by a Marshall-Olkin copula (Botev et al. 2016). In that model, the Yj represent the occurrence

times of shocks that can take down one or more components simultaneously.

It is interesting to note that although f(x | π) is an unbiased estimator of the density f(x) at any x, this

estimator is a function of the permutation π only, so it takes its values in a finite set, which means that

the corresponding g̃(u) is a piecewise constant function, which is not RQMC-friendly. Therefore, we do not

expect RQMC to bring a very large gain.

Table 5 Values of ν̂ and e19 with the CDE, for the network reliability example.

ν̂ e19
MC 1.00 19.9
Lat+s 1.22 23.9
Lat+s+b 1.19 23.8
Sob+LMS 1.33 23.9
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Figure 2 Density (left) and log IV as a function of logn (right) for the network failure time.

For a numerical illustration, we take the same graph as in Section 4.3. For j = 1, . . . ,13, Yj is exponential

with rate λj and the Yj are independent. The system fails as soon as there is no path going from the source

to the sink. For simplicity, here we take λj = 1 for all j, although taking different λj ’s brings no significant

additional difficulty. We estimate the density over the interval (a, b] = (0,1.829], which cuts off roughly 1%

of the probability on the right side. Table 5 and Figure 2 give the results. The density of X estimated with

n= 220 random samples is shown on the left and the IV plots are on the right. Despite the discontinuity of

g̃, RQMC outperforms MC in terms of the IV by a factor of about 24 = 16 for n= 219, and also by improving

the empirical rate ν̂ to about −1.2 for lattices and even better with Sobol’ points. The Sobol’ points used

here were constructed using LatNet Builder (Marion et al. 2020) with a CBC search based on the t-value of

all projections up to order 6, with order-dependent weights γk = 0.8k for projections of order k.

B.4. Estimating a quantile with a confidence interval

For 0< q < 1, the q-quantile of the distribution of X is defined as ξq = F−1(q) = inf{x : F (x)≥ q}. Given n

i.i.d. observations of X, a standard (consistent) estimator of ξq is the q-quantile of the empirical distribution,

defined as ξ̂q,n = X(dnqe), where X(1), . . . ,X(n) are the n observations sorted in increasing order (the order

statistics). We assume that the density f(x) is positive and continuously differentiable in a neighborhood of

ξq. Then we have the central limit theorem (CLT):

√
n(ξ̂q,n− ξq)/σξ⇒N (0,1) for n→∞,

where σ2
ξ = q(1− q)/f2(ξq) (Serfling 1980). This provides a way to compute a confidence interval on ξq, but

requires the estimation of f(ξq), which is generally difficult. Some approaches for doing this include finite

differences with the empirical cdf, batching, and sectioning (Asmussen and Glynn 2007, Nakayama 2014a,b).

In our setting, one can do better by taking the q-quantile ξ̂cmc,q,n of the conditional cdf

F̂cmc,n(x) =
1

n

n∑
i=1

F (x | G(i)).

That is, ξ̂cmc,q,n = inf{x : F̂cmc,n(x)≥ q}. This idea was already suggested by Nakayama (2014b), who pointed

out that this estimator obeys a CLT just like ξ̂q,n, but with the variance constant σ2
ξ replaced by σ2

cmc,ξ =

Var[F (ξq | G)]/f2(ξq)≤ σ2
ξ . This is an improvement on the quantile estimator itself. Our CDE approach also
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provides an improved estimator of the density f(ξq) which appears in the variance expression. We estimate

f(ξq) by f̂cde,n(ξ̂cmc,q,n). This provides a more accurate confidence interval of ξq.

Further improvements on the variances of both the quantile and density estimators can be obtained by using

RQMC to generate the realizations G(i). In particular, if g̃(ξq,u) = F (ξq | G) is a sufficiently smooth function

of u, Var[ξ̂cmc,q,n] can converge at a faster rate than O(n−1). When using RQMC with nr randomizations to

estimate a quantile, the quantile estimator will be the empirical quantile of all the nr ×n observations.

A related quantity is the expected shortfall, defined as cq = E[X |X > ξq] = ξq −E[(ξq −X)+]/q which is

often estimated by its empirical version (Hong et al. 2014)

ĉq,n = ξ̂q,n−
1

nq

n∑
i=1

(ξ̂q,n−Xi)
+.

This estimator obeys the CLT
√
n(ĉq,n− cq)/σc⇒N (0,1) for n→∞, where σ2

c = Var[(ξq −X)+]/q2, if this

variance is finite (Hong et al. 2014). By improving the quantile estimator, CDE+RQMC can also improve the

expected shortfall estimator a well as the estimator of the variance constant σ2
c and the quality of confidence

intervals on cq. We leave this as a topic for future work.
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Figure 3 Estimated density (left) and log IV as a function of logn (left) for the Asian option.
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Figure 4 Estimated density (left) and log IV as a function of logn (right) for the single queue over a finite-horizon.
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Figure 5 Estimated density (left) and log IV as a function of logn (right) for the single queue in steady-state.

Appendix C: Some additional figures

Figure 3 shows the estimated density in [a, b] (left panel) and the IV as a function of n in log-log scale for

the bridge CDE in Example 4.6.

Figure 4 shows the estimated density in [a, b] (left panel) and the IV as a function of n in log-log scale for

the finite-horizon queueing system in Example 4.4. Figure 5 does the same for the infinite-horizon case.
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