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Abstract. In this paper we introduce and study a bilinear spherical maximal function of
product type in the spirit of bilinear Calderón–Zygmund theory. This operator is different from
the bilinear spherical maximal function considered by Geba et al. in [14]. We deal with lacunary
and full versions of this operator, and prove weighted estimates with respect to genuine bilinear
weights beyond the Banach range. Our results are implied by sharp sparse domination for both
the operators, following ideas by Lacey [20]. In the case of the lacunary maximal operator we
also use interpolation of analytic families of operators to address the weighted boundedness for
the whole range of tuples.

1. Introduction

The theory of multilinear operators has been an active area of research for the past two
decades in harmonic analysis. It finds its roots in the pioneer work by Coifman and Meyer
[7], although it was the remarkable proof of the boundedness of the bilinear Hilbert transform
by Lacey and Thiele [22, 23] that renewed the motivation for the study of multilinear singular
integrals. The multilinear Calderón-Zygmund operators were systematically treated in [16] and
later on, in [25], Lerner et al. developed an appropriate theory of multilinear maximal functions
and multilinear weights. In particular, they established weighted boundedness for multilinear
Calderón-Zygmund operators. Since then there have been several developments in the weighted
theory of multilinear weights, we emphasize the recent works [27, 30] and references therein.

For notational convenience we shall restrict ourselves to the bilinear setting in this paper.
Given locally integrable functions f1 and f2 defined on Rn, the bilinear maximal function
M(f1, f2) is defined by

(1) M(f1, f2)(x) := sup
Q3x

2∏
i=1

1

|Q|

∫
Q
|fi(yi)| dyi,

where the supremum in the above is taken over all cubes Q in Rn containing the point x. The
cubes are always assumed to have their sides parallel to coordinate axes.

Note that the bilinear maximal operator M is dominated by the product of the classical
Hardy-Littlewood maximal functions in a pointwise manner, i.e.,

M(f1, f2) ≤ M(f1)M(f2),

where M denotes the Hardy-Littlewood maximal operator given by

M(f)(x) := sup
Q3x

1

|Q|

∫
Q
|f(y)| dy.

Let 1 < p1, p2 <∞ and p be such that 1
p = 1

p1
+ 1

p2
. Hölder’s inequality yields that the operator

M is bounded from Lp1(w1)× Lp2(w2)→ Lp(w) for all wi ∈ Api , i = 1, 2, and w =
∏2
j=1w

p/pj
j .

Here Ap denotes the class of Muckenhoupt weights, see Subsection 3.1.
In [25], the authors showed that the bilinear maximal operatorM is the appropriate analogue

of the classical Hardy–Littlewood maximal operator. They introduced a suitable analogue of
Muckenhoupt weights in the bilinear setting, the class A~P (see Subsection 3.1), and showed
that the class A~P is bigger than the product of corresponding linear Ap classes. The class A~P
characterizes the weighted boundedness of the bilinear maximal operator M. Moreover, the
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bilinear Calderón-Zygmund operators possess weighted boundedness with respect to bilinear
weights in A~P . We refer the reader to [10, 24, 25] for more details.

Later on, first in [27] and then in [26, 30], the notion of bilinear (or multilinear) weights was
further generalised and extrapolation results were proved, see Subsection 3.1.

Motivated from the discussions above, in this paper we introduce a bilinear spherical maximal
function of product type in the spirit of Calderón–Zygmund theory and investigate its weighted
boundedness with respect to the bilinear weights just mentioned.

1.1. Linear spherical maximal functions and bilinear product-type analogues. Let
f : Rn → C be a measurable function. Consider the average of f over the sphere of radius
0 < r <∞ given by

Arf(x) =

∫
Sn−1

f(x− ry) dσn−1(y),

where dσn−1 is the normalized rotation invariant surface measure on the sphere Sn−1 := {x ∈
Rn : ‖x‖ = 1}. The spherical maximal function was introduced by Stein [32] and is defined as

Mfull(f)(x) := sup
r>0
Arf(x), x ∈ Rn.

Stein proved that Mfull is bounded in Lp(Rn) if and only if n
n−1 < p ≤ ∞ for all n ≥ 3. The

problem in dimension n = 2 was settled later by Bourgain [4] (we refer to [29] for a different
proof of Bourgain’s result).

The dyadic or lacunary version of the spherical maximal function results by taking the supre-
mum over the set {2j : j ∈ Z}, i.e.,

Mlac(f)(x) = sup
j∈Z
A2jf(x).

The lacunary spherical maximal operator Mlac is bounded in Lp(Rn) for all 1 < p ≤ ∞ and
n ≥ 2, see [6, 8] for details. Weighted boundedness properties of the spherical maximal operators
have been studied in [9, 12, 13, 28].

In a recent article, Lacey [20] revisited the spherical maximal function and, using a new
approach that unified the lacunary and full versions, he managed to prove sparse bounds for
these operators which led him to obtain new weighted norm inequalities. We also refer to [20] for
a discussion about the suitability of Ap weights in the context of the spherical maximal function.

In this paper we introduce a bilinear analogue of the spherical maximal function in the spirit
of the bilinear Hardy-Littlewood maximal function (1), which plays a key role in the theory of
bilinear Calderón–Zygmund operators. Define

Mfull(f1, f2)(x) := sup
t>0
Atf1Atf2(x).

As earlier, if we take the supremum in the above over the dyadic numbers, we get bilinear
analogue of the lacunary spherical maximal function. This way, the bilinear lacunary spherical
maximal operator Mlac is defined as

Mlac(f1, f2)(x) := sup
j∈Z
A2jf1A2jf2(x).

We refer to these operators as bilinear spherical maximal functions of product type1.
Note that Mfull(f1, f2) (and Mlac(f1, f2)) is dominated by the product of the linear full

(respectively lacunary) spherical maximal functions in a pointwise sense. Therefore, Hölder’s
inequality immediately yields the Lp1 × Lp2 → Lp estimates for the operators Mfull and Mlac.
In fact, we also get the weighted estimates for the operator with respect to product weights,
see Theorem 5.3. We will prove new weighted estimates for the bilinear spherical maximal
functions with respect to bilinear weights that are beyond the type of weights as described in
Theorem 5.3. This result is stated in Theorem 2.1. We exploit the ideas from [20] and establish
a sparse domination principle for the bilinear spherical maximal functions in Theorem 2.3 so

1In a private communication with the second and third authors, Loukas Grafakos suggested that the terminol-
ogy for this operator should be instead maximal product of spherical averages to better portray the nature of the
operators.
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Figure 1. Triangle Ln on the left and trapezium Fn on the right.

that we deduce weighted estimates as a consequence of known results in the literature. These
weighted estimates cover the best possible range of tuples (p1, p2, p) for the Lp boundedness of
Mfull. Nevertheless, there is a dimensional constraint in this range of (p1, p2, p) that prevents the
operatorMlac from getting weighted boundedness in the range 1 < p1, p2 <∞ via Theorem 2.3.
This restriction is overcome in Theorems 2.4 and 2.5. We also provide weighted boundedness
of operators Mfull and Mlac for the case of power weights in Corollaries 5.4, 5.5, and Theorem
2.4. This makes it easier to compare our results with the Hölder type results, see Section 5.

A different analogue of the spherical maximal function in the bilinear setting has been studied
in the literature. It was introduced in [14] and is defined as follows:

(2) Msph(f1, f2)(x) := sup
t>0

∫
S2n−1

|f1(x− ty)f2(x− tz)| dσ2n−1(y, z).

In [3, 15, 17] the authors proved partial results obtaining Lp1 × Lp2 → Lp estimates for the
operator Msph for a certain range of p1, p2 and p and some assumptions on the dimension n.
In [18] the authors proved the following pointwise domination result

(3) Msph(f1, f2)(x) .Mfull(f1)(x)M(f2)(x),

and extended the Lp1 ×Lp2 → Lp estimates for the operatorMsph to the best possible range of
exponents p1, p2 and p for all n ≥ 2 (note that an estimate similar to (3) holds with the roles of
Mfull and M interchanged due to symmetry). We also refer to the recent papers [1, 11] for the
generalisation of the bilinear spherical maximal function to the multilinear setting. Weighted
estimates for the bilinear maximal operator Msph defined in (2) beyond the ones that can be
obtained trivially from the pointwise estimate (3) remain as an open problem.

The paper is organised as follows. We state the main results in the next section, then in
Section 3 we recall necessary definitions and results and also set notation that we use in the
paper. Section 4 is devoted to prove weighted estimates for the operators under consideration
and we complete the proofs of Theorems 2.1, 2.4, and 2.5 in this section. In Section 5 we discuss
some examples comparing the weighted results obtained in Theorem 2.1 with the Hölder type
results. Next, in Section 6 we give the proof of sparse domination result Theorem 2.3. Finally,
in Section 7 we provide the necessity of some conditions for such a sparse domination.

2. Main results

Our first main result is the following theorem containing weighted estimates for the product
type operators with bilinear weights in the class A~q,~r (see Definition 3.2). In what follows, we

will denote by Ln the triangle with vertexes (0, 1), (1, 0) and
(

n
n+1 ,

n
n+1

)
and by Fn the trapezium

with vertexes (0, 1),
(
n−1
n , 1n

)
,
(
n−1
n , n−1n

)
and

(
n2−n
n2+1

, n
2−n+2
n2+1

)
, see Figure 1.
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Theorem 2.1. Let n ≥ 2. For i = 1, 2, let ( 1
ri
, 1
si

) be in the interior of Ln (respectively

Fn). Assume that t := s1s2
s1+s2−s1s2 > 1. Then for all ~q = (q1, q2),

1
q = 1

q1
+ 1

q2
with ri ≤ qi,

i = 1, 2, and t′ > q, the operator Mlac (respectively Mfull) extends to a bounded operator from
Lq1(w1)× Lq2(w2)→ Lq(w), i.e.,

‖M(f1, f2)‖Lq(w) ≤ C([~w]A~q,~r)

2∏
i=1

‖fi‖Lqi (wi),

where M := Mlac (respectively Mfull), ~w = (w1, w2) ∈ A~q,~r with ~r = (r1, r2, t) defined as in
Definition 3.2 and C([~w]A~q,~r) is a constant depending on the characteristic of the weight.

Remark 2.2. Observe that, in Theorem 2.1, we can consider ~q = (q1, q2) with q < 1 as well,
which means that the weighted inequalities hold beyond the Banach range.

The weighted estimates in Theorem 2.1 are indeed consequence of a sparse domination prin-
ciple for the bilinear spherical maximal functions shown in Theorem 2.3 below and the extrap-
olation result in [27, Theorem 1.1]. Actually, one could state an improved result, providing the
quantitative bounds (i.e., giving more explicit information on C([~w]A~q,~r)), including end-points,
and vector-valued inequalities, see Theorem 4.3 and Remark 4.4. For these consequences we
appeal to [26, 27, 30].

Before stating the sparse domination result let us set up the notation. A collection of cubes
S in Rn is said to be η-sparse, 0 < η < 1, if there are sets {ES ⊂ S : S ∈ S} which are pairwise
disjoint and satisfy |ES | > η|S| for all S ∈ S. By the term (p, q, r)-sparse form we mean:

ΛSp,q,r(f, g, h) :=
∑
S∈S
|S|〈f〉S,p〈g〉S,q〈h〉S,r,

see Section 3 for notations.

Theorem 2.3. Let n ≥ 2. For i = 1, 2, let ( 1
ri
, 1
si

) be in the interior of Ln (respectively Fn) and
ρi > ri. Then for any non-negative compactly supported bounded functions f1, f2 and h, there
exists a sparse collection S = Sρ1,ρ2,t such that

〈M(f1, f2), h〉 ≤ CΛSρ1,ρ2,t(f1, f2, h),

where t := s1s2
s1+s2−s1s2 > 1 and M :=Mlac (respectively Mfull).

Furthermore, the ranges of ( 1
ri
, 1
si

), i = 1, 2, are sharp up to endpoints in the sense that no

such result can hold if both ( 1
ri
, 1
si

), i = 1, 2, do not lie in the closure of Ln (respectively Fn).
The condition 1 < t <∞ is also a necessary condition.

We prove the sufficiency part of this theorem in two steps. First, we shall establish an
analogous result for characteristic functions. Then we consider the theorem for general functions.
In this second stage, we use a recursive argument in which both functions involved in the bilinear
sparse form are decomposed into simple functions. We perform this step by taking one of the
functions to be a characteristic function, then keeping this function fixed we decompose the other
function into suitable simple functions. This process along with an application of Carleson
embedding theorem allows us to obtain sparse domination for general compactly supported
bounded function in one place whereas the other function is taken to be a characteristic function.
We repeat the procedure with the second function. The proof of these results and of Theorem 2.3
will be given in Section 6 and in Section 7 (in the latter we prove the necessity of the conditions
for the sparse domination.

Note that in Theorem 2.3 we have the necessary condition 1 < t := s1s2
s1+s2−s1s2 < ∞. This

condition translates into the fact that we cannot choose both r1, r2 ≤ 2n
2n−1 . Thus, in the

case of lacunary spherical maximal operator Mlac in Theorem 2.1, we cannot consider both
q1, q2 ≤ 2n

2n−1 simultaneously. Nevertheless, we cover the complete range of exponents for the
operator Mlac using a different method. We establish non-trivial weighted estimates for Mlac

for tuples (q1, q2, q) with 1 < q1, q2 ≤ 2n
2n−1 and 1

q1
+ 1

q2
= 1

q , see Theorem 2.4 and Theorem 2.5.

We exploit ideas from [19, 31] to obtain these results, based on interpolation of analytic families
of linear operators in [5].
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Observe that this scenario does not occur in the case of Mfull. Indeed, the condition r1, r2 >
n
n−1 holds necessarily for the operator Mfull. Therefore, Theorem 2.3 addresses the question of

weighted boundedness of the operatorMfull with respect to genuine weights ~w = (w1, w2) ∈ A~q,~r
for the entire possible range of tuples (q1, q2, q).

As mentioned previously, we shall establish non-trivial weighted estimates for Mlac for the
tuple (p1, p2, p) with 1 < p1, p2 ≤ 2n

2n−1 and 1
p1

+ 1
p2

= 1
p . For the sake of simplicity we consider

p1 = p2 = p in the following theorem, since the statement of the result for general tuples turns
out to be rather cumbersome.

Theorem 2.4. Let n ≥ 2. The operatorMlac is bounded from Lp(|x|α)×Lp(|x|β) to Lp/2(|x|α+β2 )
with 1 < p ≤ 2n

2n−1 for α, β satisfying:

(1− n)p < α, β < (n− 1)(p− 1) and α+ β > 2(1− n)
(
n− (n− 1)p

)
, n ≥ 2.

We would like to remark that while proving Theorem 2.4, we actually get weighted bound-
edness of operators Mlac for the triplet (p1, p2, p) for more general weights than considered in
Theorem 2.4 above (see Theorem 2.5). Moreover, these weights do not come from the product
type bilinear weights. This point is discussed in detail in Section 5.

Let 1
φlac(

1
r
)

denote the piecewise linear function on the interval (0, 1) whose graph connects

the points (0, 1), ( n
n+1 ,

n
n+1) and (1, 0), i.e.,

(4)
1

φlac(
1
r )

=

{
1− 1

rn , if 0 < 1
r ≤ n

n+1

n(1− 1
r ), if n

n+1 <
1
r < 1.

An inspection of the proof of Theorem 2.4 delivers the following (indeed, this is a byproduct of
Step I in the proof), see Section 3 for the definitions of weights.

Theorem 2.5. Let n ≥ 2. The operator Mlac is bounded from Lp1(w1) × Lp2(w2) to Lp(w),
where 1 < p1, p2 ≤ 2n

2n−1 and for certain weights ~w = (w1, w2) which do not belong to product
type weights ⋃

1<ri<pi

( 2∏
i=1

A pi
ri

∩ RH(φ′
lac

( 1
ri

)

p̃i

)′ )⋃(Rp1 ×Rp2),

where

(5) Rp = {|x|b : 1− n ≤ b < (n− 1)(p− 1)}, n ≥ 2.

3. Notations and definitions

In this section we collect some of the notations and definitions that we use in this paper. With
the letters c, C . . . we denote structural constants that depend only on the dimension and on
parameters. Their values might vary from one occurrence to another, and in most of the cases
we will not track the explicit dependence. We will write γ1 . γ2 if γ1 ≤ cγ2 for a structural
constant c. Given p ≥ 1, the conjugate exponent of p will be denoted by p′, i.e., 1/p+ 1/p′ = 1.

For any cube Q and 1 < p <∞, we define

〈f〉Q,p :=

(
1

|Q|

∫
Q
|f(x)|p dx

)1/p

, 〈f〉Q :=
1

|Q|

∫
Q
|f(x)| dx,

where |Q| denotes the Lebesgue measure of Q.
A weight is a non-negative locally Lebesgue integrable function that is non-zero in a set of

positive measure. We say that a weight w belongs to the Muckenhoupt class Ap if

[w]Ap := sup
Q

( 1

|Q|

∫
Q
w dx

)( 1

|Q|

∫
Q
w1−p′ dx

)p−1
<∞, 1 < p <∞.

The quantity [w]Ap is referred to as the Ap characteristic of w ∈ Ap. For p = 1 the class A1

consists of all w such that

[w]A1 := ess sup
M(w)

w
<∞.
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Given s > 1, a weight belongs to the reverse Hölder RHs if there exists a constant C such
that, for every cube Q in Rn with sides parallel to the coordinate axes,( 1

|Q|

∫
Q
ws dx

)1/s
≤ C

|Q|

∫
Q
w dx <∞.

3.1. Bilinear weights. Let 1 6 p1, p2 <∞ and p be such that

(6)
1

p
=

1

p1
+

1

p2
.

Definition 3.1. [25, Definition 3.5] Let ~p = (p1, p2). For a given pair of weights ~w = (w1, w2),

set w :=
∏2
i=1w

p/pi
i . We say that ~w ∈ A~P if

[~w]A~P := sup
Q

( 1

|Q|

∫
Q
w dx

) 2∏
j=1

( 1

|Q|

∫
Q
w

1−p′j
j dx

)p/p′j
<∞.

When pj = 1,
(

1
|Q|
∫
Qw

1−p′j
j

)1/p′j is understood as (infQwj)
−1. The quantity [~w]A~P is referred to

as the bilinear A~P characteristic of the bilinear weight ~w.

The bilinear A~P class was further generalised recently in [27].

Definition 3.2. [27, Section 1] Let ~p = (p1, p2) and p be as in (6). For a tuple ~r = (r1, r2, r3)
with ri ≤ pi, i = 1, 2, and r′3 > p, where 1 ≤ r1, r2, r3 <∞, we say that ~w = (w1, w2) ∈ A~p,~r if
0 < wi <∞ a.e. for i = 1, 2 and

[~w]A~p,~r := sup
Q⊂Rn

〈w
r′3
r′3−p 〉

1
p
− 1
r′3

Q

2∏
i=1

〈w
ri

ri−pi
i 〉

1
ri
− 1
pi

Q <∞,

where w :=
∏2
i=1w

p/pi
i . When r3 = 1, the term corresponding to w needs to be replaced by 〈w〉1/pQ .

Analogously, when pi = ri, the term corresponding to wi needs to be replaced by ess supQw
−1/pi
i .

Remark 3.3. Note that A~p,(1,1,1) agrees with the class A~P .

The following result describes the bilinear weights A~p,~r in terms of the classical Ap weights.
This provides a useful tool in the study of weighted estimates with respect to bilinear weights.

Lemma 3.4. [27, Lemma 5.3] Let ~p = (p1, p2) with 1 < p1, p2 < ∞ and ~r = (r1, r2, r3) with

1 ≤ r1, r2, r3 <∞. Let p′ := p3 and 1
r :=

∑3
i=1

1
ri

. Assume that ri ≤ pi for i = 1, 2 and r′3 > p.
Consider

1

δi
=

1

ri
− 1

pi
and

1

θi
=

1− r
r
− 1

δi
, i = 1, 2, 3.

Then ~w = (w1, w2) ∈ A~p,~r if and only if

w
θi
pi
i ∈ A 1−r

r
θi

with [w
θi
pi
i ]A 1−r

r θi
≤ [~w]θiA~p,~r , i = 1, 2

and

w
δ3
p ∈ A 1−r

r
δ3

with [w
δ3
p ]A 1−r

r δ3
≤ [~w]δ3A~p,~r .

In [30], Nieraeth presented an alternative approach to describe the bilinear weights A~p,~r and
defined yet another class of weights that is equivalent to the class defined in [27]. Nieraeth
extended the extrapolation results contained in [27] in several directions.

Definition 3.5. [30, Definition 2.1] Let ~p = (p1, p2), ~q = (q1, q2) with p1, p2 ∈ (0,∞) and
q1, q2 ∈ (0,∞]. Let q be given by 1

q = 1
q1

+ 1
q2

. We say (~p, s) ≤ ~q if ~p ≤ ~q and q ≤ s where

s ∈ (0,∞]. Here ~p ≤ ~q means that pi ≤ qi, i = 1, 2. For weights w1, w2 write w =
∏2
i=1wi. We

say that ~w = (w1, w2) ∈ A~q,(~p,s) if

[~w]~q,(~p,s) := sup
Q

( 2∏
i=1

〈w−1i 〉 1
1
pi
− 1
qi

,Q〈w〉 1
1
q−

1
s
,Q

)
<∞,

where the supremum is taken over all cubes (with sides parallel to coordinate axes) in Rn.
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Remark 3.6. Note that the definition above includes the case qj =∞. In this case the norm is
interpreted as ‖fj‖Lqj (wqjj )

= ‖fjwj‖L∞ . Also, the definition is used with 1
qj

= 0 when qj = ∞.
We refer to [30] for more details on this. We also would like to refer the reader to [26], where
authors consider a slightly different approach to include the end-points cases which allows one or
more indices to take value infinity. Further, note that when qj are finite, the following relation
holds: (wq11 , w

q2
2 ) ∈ A~q,(r1,r2,t) if and only if ~w ∈ A~q,(~r,t′).

4. Proofs of weighted estimates

4.1. Proof of Theorem 2.1. As pointed out earlier, the proof of Theorem 2.1 follows from the
sparse domination result Theorem 2.3 and the already well-known consequences in the literature.

Theorem 4.1. [27, Corollary 2.15] Fix ~r = (r1, r2, r3), with ri ≥ 1 and
∑3

i=1
1
ri
> 1, and a

sparsity constant η ∈ (0, 1). Let T be an operator so that for every f1, f2, h ∈ C∞c (Rn)∣∣∣ ∫
Rn
T (f1, f2)(x)h(x) dx

∣∣∣ . sup
S

ΛS,~r(f1, f2, h),

where the supremum runs over all sparse families with sparsity constant η. Then for all exponents
~q = (q1, q2), with ri < qi for i = 1, 2 and r′3 > q and all the weights ~v = (v1, v2) ∈ A~q,~r, and for
all f1, f2, h ∈ C∞c (Rn), we have

‖T (f1, f2)‖Lq(v) .
2∏
i=1

‖fi‖Lqi (vi),

where 1
q = 1

q1
+ 1

q2
and v = v

q
q1
1 v

q
q2
2 .

The sparse domination result contained in Theorem 2.3 yields the weighted estimates in
Theorem 2.1 by using Theorem 4.1 and the extrapolation result in [27, Theorem 1.1].

4.2. Quantitative bounds in Theorem 2.1. In [30], an improvement of the quantitative
bounds obtained from sparse domination in multilinear forms was achieved. Indeed, the results
in [27] missed the quantitative weighted bounds for the range q < 1.

Theorem 4.2. [30, Corollary 4.2] Let T be a bilinear or positive valued bi-sublinear operator
and assume that for some p1, p2 ∈ (0,∞) and t ∈ [1,∞], we have the sparse domination of the
bilinear operator for every f1, f2, h ∈ C∞c (Rn), i.e.,∣∣∣ ∫

Rn
T (f1, f2)(x)h(x) dx

∣∣∣ . sup
S

ΛS,(p1,p2,t)(f1, f2, h),

then for all ~q = (q1, q2) with q1, q2 ∈ (0,∞] such that (~p, t′) < ~q and all weights ~w ∈ A~q,(~p,t′), the

operator T extends to a bounded operator Lq1(wq11 ) × Lq2(wq22 ) → Lq(wq), where 1
q = 1

q1
+ 1

q2
,

with the bound

‖T‖Lq1 (wq11 )×Lq2 (wq22 )→Lq(wq) . [~w]
max

( 1
p1

1
p1
− 1
q1

,
1
p2

1
p2
− 1
q2

,
1− 1

t′
1
q−

1
t′

)
A~q,(~p,t′)

.

In view of the theorem above, the sparse domination results obtained in Theorem 2.3 together
with the extrapolation in [27, Theorem 1.1] yield the following improved weighted estimates for
the operators Mlac and Mfull.

Theorem 4.3. Let n ≥ 2 and ( 1
ri
, 1
si

), i = 1, 2, be in the interior of Ln (respectively Fn). Assume

that t = s1s2
s1+s2−s1s2 > 1. Then for all ~q = (q1, q2) with q1, q2 ∈ (0,∞] such that ~q > (~r, t′) the

operatorMlac (respectivelyMfull) extends to a bounded operator Lq1(wq11 )×Lq2(wq22 )→ Lq(wq),
where 1

q = 1
q1

+ 1
q2

, with the bound

‖M‖Lq1 (wq11 )×Lq2 (wq22 )→Lq(wq) . [~w]
max

( 1
r1

1
r1
− 1
q1

,
1
r2

1
r2
− 1
q2

,
1− 1

t′
1
q−

1
t′

)
A~q,(~r,t′)

,

where M := Mlac (respectively Mfull) and A~q,(~r,t′), with (~r, t′) = (r1, r2, t
′), is defined as in

Definition 3.5.



8 LUZ RONCAL, SAURABH SHRIVASTAVA AND KALACHAND SHUIN

Remark 4.4. Note that the end-point extrapolation in [26, 30] allows the index qj above to
take value infinity. Moreover, the original Theorem 4.1 contained in [27] includes vector-valued
results. These apply to our sparse domination in Theorem 2.1, so that vector-valued inequalities
are immediately obtained from [27, Corollary 2.15], see also [30, Corollary 4.6].

4.3. Weighted boundedness for the triplet (p1, p2, p).

Proof of Theorem 2.4. The proof of Theorem 2.4 is done in two steps. The first step is to
establish a more general result by using analytic interpolation for a family of bilinear operators.
Then in the second step we use this general result with a suitable choice of exponents to deduce
the theorem.

Step I: Let 1 < p̃1 = p̃2 ≤ 2n
2n−1 . Now consider 2n

2n−1 < p1, p2 < ∞, 1
p = 1

p1
+ 1

p2
, and

( 1
ri
, 1
si

) ∈ Ln, i = 1, 2 with t = s1s2
s1+s2−s1s2 > 1. For ~r = (r1, r2, t) < ~p := (p1, p2, p), let

~w = (w1, w2) ∈ A~p,~r. By Theorem 2.1 we have

(7) ‖Mlac(f1, f2)‖Lp(w) ≤ C1‖f1‖Lp1 (w1)‖f2‖Lp2 (w2).

Also, note that by Theorem 5.3 we have the following weighted estimates for the product weights.

(8) ‖Mlac(f1, f2)‖Lq(v) ≤ C2‖f1‖Lq1 (v1)‖f2‖Lq2 (v2),

for 1 < qi < p̃i,
1
q = 1

q1
+ 1

q2
, vi ∈

(
A qi
ti

∩ RH(φ′
lac

( 1
ti

)

qi

)′ ) ∪ Rqi , v = v
q
q1
1 v

q
q2
2 and ( 1

ti
, 1
ηi

) ∈ Ln for

some ηi ∈ (1,∞) and 1 < ti < qi < η′i, for i = 1, 2.
We consider the linearised operator Mlac as follows

Mlac(f1, f2)(x) = Aτ(x)f1(x)Aτ(x)f2(x),

where τ is a measurable function from Rn to [0,∞). For z ∈ S := {z ∈ C : 0 ≤ Re(z) ≤ 1},
consider the functions

1

l(z)
:=

1− z
p

+
z

q
,

1

li(z)
:=

1− z
pi

+
z

qi
, i = 1, 2.

Choose θ ∈ (0, 1) such that

1

l(θ)
:=

1− θ
p

+
θ

q
=

1

p̃
,

1

li(θ)
:=

1− θ
pi

+
θ

qi
=

1

p̃i
, i = 1, 2.

Note that for any linear operator T and a positive number k ∈ (0, 1) satisfying k
p + k

q < 1 and

k < p̃, we can write the following

‖Tf‖kLp̃ = ‖|Tf |k‖
L
p̃
k

= sup

g∈L
p̃

p̃−k (Rn)
‖g‖

L

p̃
p̃−k (Rn)

=1

∣∣∣ ∫
Rn
|Tf |kg

∣∣∣.

Consider

ṽN (x) = v(x), if v(x) ≤ N and ṽN (x) = N, if v(x) > N,

w̃N (x) = w(x), if w(x) ≤ N and w̃N (x) = N, if w(x) > N.

Let f1, f2 be finite simple functions and g be a non-negative finite simple function such that
‖fi‖Lp̃1 (Rn) = 1, for i = 1, 2 and ‖g‖

L
p̃

p̃−k (Rn)
= 1.

With the notations introduced as above, consider the following function

(9) ψ(z) :=

∫
Rn

∣∣∣Aτ(x)f1,z(x)Aτ(x)f2,z(x)ṽ
z
q

N w̃
1−z
p

N g

(1− k
l(z)

)

k(1− kp̃ )
∣∣∣kdx,

where

fj,z(x) := |fj(x)|
p̃j
lj(z) eiuj (vj + ε)

−z
qj (wj + ε)

z−1
pj , j = 1, 2,
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for z ∈ S, ε > 0 and uj ∈ [0, 2π]. Note that we have the following expression for ψ(θ), θ ∈ (0, 1),

ψ(θ) =

∫
Rn

∣∣ 2∏
j=1

Aτ(x)(fj(vj + ε)
− θ
qj (wj + ε)

θ−1
pj )(x)ṽ

θ
q

N w̃
1−θ
p

N

∣∣kg(x)dx.

For each x ∈ Rn, the functions Aτ(x)fj,z(x), ṽ
z
q

N (x), w̃
1−z
p

N (x) and g

(1− k
l(z)

)

k(1− kp̃ ) (x) are analytic in the
domain {z ∈ C : 0 < Re(z) < 1}. Therefore the integrand in (9) is a continuous in z ∈ S
and subharmonic in the domain {z ∈ C : 0 < Re(z) < 1}. Also, using the Hölder’s inequality
with exponents p

k and p
p−k , it is easy to see that ψ is a bounded function. Moreover, the

Hölder’s inequality with exponents p
k and p

p−k and the fact that ‖fi‖Lp̃i (Rn) = 1, i = 1, 2 and

‖g‖
L

p̃
p̃−k (Rn)

= 1, yield that

|ψ(it)| ≤ Ck1 .
Similarly, using the Hölder’s inequality with exponents q

k and q
q−k , we get

|ψ(1 + it)| ≤ Ck2 .
The constants C1, C2 are independent of ε,N and τ .

We invoke the maximum modulus principle for subharmonic functions to deduce that

|ψ(θ)| =
∫
Rn

∣∣ 2∏
j=1

Aτ(x)(fjv
− θ
qj

j,ε w
θ−1
pj

j,ε )(x)ṽ
θ
q

N w̃
1−θ
p

N

∣∣kg(x)dx ≤ Ck(1−θ)1 Ckθ2 .

Here we have used the notation vj,ε = vj + ε and wj,ε = wj + ε for j = 1, 2. Therefore, using a
duality argument we obtain that(∫

Rn

(∣∣Aτ(x)(f1v− θ
q1

1,ε w
θ−1
p1

1,ε )(x)Aτ(x)(f2v
− θ
q2

2,ε w
θ−1
p2

2,ε )(x)
∣∣ṽ θqN w̃ 1−θ

p

N

)p̃
dx
) 1
p̃

≤ C
(∫

Rn
|f1|p̃1

) 1
p̃1

(∫
Rn
|f2|p̃2

) 1
p̃2 .

Since the set of finite simple functions is dense in Ls(Rn), 1 ≤ s < ∞, we get the estimate
above for all Lp̃1(Rn) functions f1 and f2 (note that we have assumed p̃1 = p̃2). Next, recall
that the constants C1, C2 are independent of ε, N and τ . Let ε→ 0 and N →∞ and replace fi

by fiv
θ
qi
i w

1−θ
pi
i , i = 1, 2, in the above to get that(∫

Rn

(∣∣Aτ(x)(f1)(x)Aτ(x)(f2)(x)
∣∣v θqw 1−θ

p

)p̃
dx
) 1
p̃

≤ C
(∫

Rn
|f1|p̃1(v

θ
q1
1 w

1−θ
p1

1 )p̃1
) 1
p̃1

(∫
Rn
|f2|p̃2(v

θ
q2
2 w

1−θ
p2

2 )p̃2
) 1
p̃2 .

Since the constant C is independent of τ , therefore we get the boundedness of the operator
Mlac, i.e.

(10)
(∫

Rn

(∣∣Mlac(f1, f2)(x)
∣∣v θqw 1−θ

p

)p̃
dx
) 1
p̃

≤ C
(∫

Rn
|f1|p̃1(v

θ
q1
1 w

1−θ
p1

1 )p̃1
) 1
p̃1

(∫
Rn
|f2|p̃2(v

θ
q2
2 w

1−θ
p2

2 )p̃2
) 1
p̃2 .

Step II: We shall use the estimate (10) for radial weights with a suitable choice of exponents
to conclude the proof of Theorem 2.4. Indeed, we make the following choice. For ε > 0, let
p1 = p2 = 2n

2n−1 + 2ε, r1 = r2 = 2n
2n−1 + ε and ( 1

ri
, 1
si

) ∈ Ln. Check that for this choice of ( 1
ri
, 1
si

),

t = s1s2
s1+s2−s1s2 > 1 and set ~r = (r1, r2, r3) with r3 = t. Let ~w = (|x|α′ , |x|β′) ∈ A~p,~r and note that

the estimate (7) holds for bilinear A~p,~r weights. Next, for 0 < δ < p̃1−1, choose q1 = q2 = p̃1−δ
and ~v = (|x|a, |x|b) with 1− n ≤ a, b < (n− 1)(p̃1 − δ− 1). Then we know that the estimate (8)
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holds for Mlac. Therefore, by the previous steps the operator Mlac satisfies the estimate (10)
for the above choice of exponents and we get

(11)
(∫

Rn

∣∣∣Mlac(f1, f2)
∣∣∣p̃(|x| (a+b)θp̃1−δ

+
(α′+β′)(1−θ)(2n−1)

2(n+ε(2n−1)) )p̃
) 1
p̃

≤ C
(∫

Rn
|f1|p̃1(|x|

aθ
p̃1−δ

+
α′(1−θ)(2n−1)
2n+2ε(2n−1) )p̃1

) 1
p̃1

(∫
Rn
|f2|p̃2(|x|

bθ
p̃2−δ

+
β′(1−θ)(2n−1)
2n+2ε(2n−1) )p̃2

) 1
p̃2

with θ ∈ (0, 1) and (1−θ)(2n−1)
n+ε(2n−1) + 2θ

p̃1−δ = 1
p̃ = 2

p̃1
.

Now, we show that the exponents of weights in the estimate above may be chosen suitably
so that they satisfy the hypothesis of Theorem 2.4. Observe that by Lemma 3.4 we have that
~w = (|x|α′ , |x|β′) ∈ A~p,~r implies that

|x|
α′θ1(2n−1)
2n+2ε(2n−1) ∈ A( 1−r

r
)θ1
, |x|

β′θ2(2n−1)
2n+2ε(2n−1) ∈ A( 1−r

r
)θ2
, and |x|

(α′+β′)δ3(2n−1)
2n+2ε(2n−1) ∈ A 1−r

r
δ3
,

where

1

δi
=

1

ri
− 1

pi
,

1

θi
=

1− r
r
− 1

δi
and p3 = p′, i = 1, 2, 3.

Substituting the values of the various parameters, we obtain

1− r
r

=
(2n− 2)(1 + ε(2n− 1))

2n+ ε(2n− 1)
,

1

θi
=
ε(2n− 1)(2n− 2)− 1

2n+ ε(2n− 1)
+

2n− 1

2n+ 2ε(2n− 1)
, for i = 1, 2,

1

δ3
=

ε(2n− 1)2

2n+ ε(2n− 1)
+

2n− 1

n+ ε(2n− 1)
− 1.

Since ε can be chosen arbitrarily small, therefore taking ε → 0 we get (1− n) 2n
2n−1 < α′, β′ < 0

and (1− n) 2n
2n−1 < α′ + β′ < 0.

Now taking δ → p̃1 − 1, we get θ = 2n
p̃1
− (2n − 1). Since the range of α′ and β′ is an open

set, we get that Mlac is bounded from Lp̃1(|x|α) × Lp̃2(|x|β) to Lp̃(|x|α+β2 ) for α, β satisfying
satisfying

(1− n)p̃1 < α, β < 0 and α+ β > 2(1− n)
(
n− (n− 1)p̃1

)
.

Further, using the product-type weighted boundedness of Mlac for p̃1 = p̃2, we get Mlac is

bounded from Lp̃1(|x|a)× Lp̃2(|x|b) to Lp̃(|x|a+b2 ) for 1− n ≤ a, b < (n− 1)(p̃1 − 1).
This proves the desired result for the operator Mlac. �

5. Comparing Theorem 2.1 with Hölder type results

In this section we compare the weighted estimates obtained in Theorem 2.1 with the esti-
mates that can be deduced using Hölder’s inequality for both the operator Mlac and Mfull.
For 1 < p < ∞, define the sets Lp := {w : Mlac maps Lp(w) to Lp(w)} and Fp := {w :

Mfull maps Lp(w) to Lp(w)}. Recall also the definition of Rp in (5) and let R̃p be defined as

(12) R̃p := {|x|b : 1− n < b < (n− 1)(p− 1)− 1}, n ≥ 2.

In [13], Duoandikoetxea and Vega proved the following weighted estimates for spherical maximal
functions with respect to radial weights.

Theorem 5.1. [13] Rp ⊆ Lp, 1 < p <∞ and R̃p ⊆ Fp, n
n−1 < p <∞.

Let 1
φfull(

1
r
)

denote the piecewise linear function on (0, n−1n ) whose graph connects the points

(0, 1), (n
2−n
n2+1

, n
2−n+2
n2+1

) and (n−1n , n−1n ), defined similarly as (4). Recently, in [20] Lacey proved
the weighted estimates for the operators with respect to general weights using sparse domination
principle.

Theorem 5.2. [20] The following estimates hold.
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• Let 1 < r < p < φ′lac(
1
r ), then A p

r
∩ RH(φ′

lac
( 1r )

p

)′ ⊆ Lp.
• Let n

n−1 < r < p < φ′full(
1
r ), then A p

r
∩ RH(φ′

full
( 1r )

p

)′ ⊆ Fp.
For ~p = (p1, p2, p) with 1

p = 1
p1

+ 1
p2

, define

L~p :=
{
~w = (w1, w2) :Mlac maps Lp1(w1)× Lp2(w2) to Lp(w)

}
and

F~p :=
{
~w = (w1, w2) :Mfull maps Lp1(w1)× Lp2(w2) to Lp(w)

}
.

In view of Theorems 5.1 and 5.2, Hölder’s inequality yields the following weighted estimates for
bilinear spherical maximal functions with respect to product type bilinear weights.

Theorem 5.3. The following holds:

• ∏2
i=1A pi

ri

∩ RH(φ′
lac

( 1
ri

)

pi

)′ ⊆ L~p for all 1 < ri < pi < φ′lac(
1
ri

) and
∏2
i=1Rpi ⊆ L~p, where

pi > 1, i = 1, 2.

• ∏2
i=1A pi

ri

∩ RH(φ′
full

( 1
ri

)

pi

)′ ⊆ F~p for all n
n−1 < ri < pi < φ′full(

1
ri

) and
∏2
i=1 R̃pi ⊆ F~p,

where pi >
n
n−1 , i = 1, 2.

We show that Theorem 2.1 addresses the weighted boundedness of bilinear operatorsMlac and
Mfull with respect to bilinear weights that are not of product type as covered by Theorem 5.3
above. Note that it is enough to consider the case of p1 = p2 = p and point out the difference
between the two weighted estimates for power weights.

5.1. The case of full spherical maximal operator Mfull. The following result may be
deduced from Theorem 2.1.

Corollary 5.4. The operator Mfull is bounded from Lp(|x|α)×Lp(|x|β) to L
p
2 (|x|α+β2 ), for α, β

satisfying the following conditions:

(i) For n ≥ 2 and n
n−1 < p ≤ n2+1

n2−n ,

−2n

n− 1

(
p(n− 1)− 2

)
< α, β < 0 with

−2n

n− 1

(
p(n− 1)− 2

)
< α+ β < 0

or, for n ≥ 3, and n
n−1 < p ≤ n2+1

n2−n

−
(
n(p+ 1)− 3p

)
< α, β < n(p− 1)− p with − 2(n− p) < α+ β < 2

(
n(p− 1)− p

)
or, for n = 2, and 2 < p < 5

2

−2

3
(p− 2) < α, β <

2

3
(p− 2) with 0 < α+ β <

4

3
(p− 2).

(ii) For n ≥ 2 and n2+1
n2−n < p <∞,

−2(n− 1) < α, β < 0 with − 2(n− 1) < α+ β < 0.

(iii) For n ≥ 2 and n2+1
n2−n < p ≤ n2+1

n−1 ,

−n
n+ 1

(
p(n− 1)− 2

)
< α, β <

n

n+ 1

(
p(n− 1)− 2

)
with 0 < α+ β <

2n

n+ 1

(
p(n− 1)− 2

)
or

−n
n2 + 1

(
(n− 1)(n− 2)p+ n2 + 1

)
< α, β <

n

n2 + 1

(
(n2 − n)p− n2 − 1

)
with

−2n

n2 + 1

(
n2 + 1− p(n− 1)

)
< α+ β <

2n

n2 + 1

(
(n2 − n)p− n2 − 1

)
.

(iv) For n ≥ 2 and n2+1
n−1 < p <∞,

−n(n− 1) < α, β < n(n− 1) with 0 < α+ β < 2n(n− 1).
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Proof. Proof of (i). Consider p1 = p2 = p with n
n−1 < p ≤ n2+1

n2−n . Choose r1 = r2 = p − ε,
where 0 < ε < p− n

n−1 . For this choice of ri we have 1
si

= 2− n+1
(n−1)(p−ε) . Therefore,

1

t
=

1

s1
+

1

s2
− 1 = 4− 2(n+ 1)

(n− 1)(p− ε) − 1 =
3(n− 1)(p− ε)− 2(n+ 1)

(n− 1)(p− ε) .

Recall that we need to make sure of the condition t′ > p
2 . This gives us that ε < p[(p+1)(n−1)−(n+1)]

(n−1)(p+1) .

Therefore, we have that

0 < ε < min
{
p− n

n− 1
,
p[(p+ 1)(n− 1)− (n+ 1)]

(n− 1)(p+ 1)

}
.

We shall use Lemma 3.4 to get the condition on the exponent of power weights. Following the
notation therein, we can write down the parameters r, θi and δ3 with the above choice of ri, si
as follows

1− r
r

=
2(n− 1)(p− ε)− 4

(n− 1)(p− ε)
1

θi
=

(2p+ 1)(n− 1)(p− ε)− p(n+ 3)

p(p− ε)(n− 1)
, for i = 1, 2

1

δ3
=

2(n− 1)p(p− ε)− 2p(n+ 1) + 2(n− 1)(p− ε)
p(p− ε)(n− 1)

.

We know that (|x|α)
θ1
p ∈ A 1−r

r
θ1

and (|x|α+β2 )
2δ3
p ∈ A 1−r

r
δ3

imply

−n
(
(2p+ 1)(n− 1)(p− ε)− p(n+ 3)

)
(n− 1)(p− ε) < α <

nε

p− ε
and

−n
(
2(n− 1)p(p− ε)− 2p(n+ 1) + 2(n− 1)(p− ε)

)
(n− 1)(p− ε) < α+ β <

2nε

p− ε
Since the conditions above hold for arbitrarily small ε, taking ε→ 0, we get that

−2n
(
p(n− 1)− 2

)
n− 1

< α < 0 with
−2n

(
p(n− 1)− 2

)
n− 1

< α+ β < 0.

Observe that due to symmetry of the bilinear operator we get the same condition on β as given
above for α.

This proves the first condition in (i). The proof for the other cases in (i) as well as the other
parts (ii)-(iv) may be completed by using the same idea, therefore we skip it. �

Now it is easy to compare the exponents of power weights obtained in Corollary 5.4 with
that of the Hölder type power weights as given in Theorem 5.3. Recall that in Theorem 5.3 we

have that Mfull maps Lp(|x|a) × Lp(|x|b) to L
p
2 (|x|a+b2 ) for 1 − n < a, b < (n − 1)(p − 1) − 1.

Further, note that this range of exponents a and b is the best possible, except possibly at the
point 1 − n, that can be obtained through the classical full spherical maximal function Mfull

along with the Hölder inequality. On the other hand observe that in Corollary 5.4 we get a
significantly better range of α and β for which the operator Mfull maps Lp(|x|α) × Lp(|x|β) to

L
p
2 (|x|α+β2 ) for n

n−1 < p < ∞. This is the advantage of our method, that give us improved
weighted estimates for the operator Mfull with respect to genuine bilinear weights that are not
possible using the Hölder’s inequality.

5.2. The case of lacunary spherical maximal operator Mlac. As in the previous case, we
can deduce the following weighted estimates operator Mlac with respect to power weights.

Corollary 5.5. Let n ≥ 2. The operatorMlac is bounded from Lp(|x|α)×Lp(|x|β) to L
p
2 (|x|α+β2 )

for α, β satisfying the following conditions:
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(i) For 2n
2n−1 < p ≤ n+1

n ,

−2n(n− 1)(p− 1) < α, β < 0 with − 2n(n− 1)(p− 1) < α+ β < 0

or

−
(
n− p

2

)
< α, β < n(p− 1)− p

2
with − n(2− p) < α+ β < 2n(p− 1)− p.

(ii) For n+1
n < p <∞,

−2(n− 1) < α, β < 0 with − 2(n− 1) < α+ β < 0.

(iii) For n+1
n < p ≤ n+ 1,

−n(n− 2)p

n+ 1
− n < α, β <

n2p

n+ 1
− n with − 2n

(
1− p

n+ 1

)
< α+ β <

2n2p

n+ 1
− 2n

or for 2 < p ≤ n+ 1

−(n− 1)(p− 1) < α, β < (n− 1)(p− 1) with 0 < α+ β < 2(n− 1)(p− 1).

(iv) For n+ 1 ≤ p <∞,

−n(n− 1) < α, β < n(n− 1) with 0 < α+ β < 2n(n− 1).

We skip the proof of the corollary above because it uses similar computations as in the case of
Corollary 5.4. Moreover, it can be verified that the range of exponents covered in Corollary 5.5 is

better than that given in Theorem 5.3 for the Lp(|x|α)×Lp(|x|β) to L
p
2 (|x|α+β2 ) boundedness of

the operatorMlac for all 1 < p <∞. As a final remark, observe that part (ii) is not comparable
to parts (iii) and (iv) in both corollaries. For example, in the case ofMlac, the individual range
of α, β in (iv) is better than the individual range of α, β in (ii) for n+1 < p <∞, but we cannot
choose both α, β negative due to the condition 0 < α+β < 2n(n− 1). However, in (ii) we could
do that.

6. Sparse domination: proof of Theorem 2.3 (sufficiency)

In this section we prove the sufficient part of Theorem 2.3. We have exploited the corre-
sponding ideas for the linear case from [20]. As announced, we will proceed proving the sparse
domination for characteristic functions and later extend it to general functions. The argument
when passing from characteristic functions to general functions is a bit tricky and we use a two-
step procedure without which we would obtain an extra condition restricting the result to the
Banach range. We follow a unified approach, stating as simultaneously as possible the results
for both Mlac and Mfull.

Theorem 6.1. Let n ≥ 2. For i = 1, 2, let ( 1
ri
, 1
si

) be in the interior of the triangle Ln
(respectively the trapezium Fn). Then for characteristic functions f1 = χF1, f2 = χF2 and
compactly supported bounded function h, where F1, F2 are bounded measurable subsets of Rn,
there exists a sparse collection S = Sr1,r2,t such that

〈M(f1, f2), h〉 ≤ CΛSr1,r2,t(f1, f2, h),

where t := s1s2
s1+s2−s1s2 > 1 and M :=Mlac (respectively Mfull).

For a cube Q ⊂ Rn with side-length lQ = 2q, define AQfi(x) = A2q−3(fiχ 1
3
Q)(x), i = 1, 2.

Note that AQfi is supported in 2
3Q. The following lemma involving stopping time arguments is

the key result in the proof of Theorem 6.1.

Lemma 6.2. Let n ≥ 2. For i = 1, 2, let ( 1
ri
, 1
si

) be in the interior of the triangle Ln (respectively

the trapezium Fn), with the additional condition 1
s1

+ 1
s2
> 1. Let f1 = χF1, f2 = χF2, where

F1, F2 are measurable subsets of Q0 and h be a bounded function supported in Q0. Let C0 > 1
be a constant and let D0 be a collection of dyadic subcubes of Q0 such that

sup
Q′∈D0

sup
Q:Q′⊂Q⊂Q0

( 〈fi〉Q,ri
〈fi〉Q0,ri

+
〈h〉Q,t
〈h〉Q0,t

)
≤ C0, for i = 1, 2,

where t = s1s2
s1+s2−s1s2 > 1. Then,
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(i) If ( 1
ri
, 1
si

) are in the interior of Ln, with the additional condition 1
s1

+ 1
s2
> 1,

|〈 sup
Q∈D0

AQf1AQf2, h〉| . |Q0|〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t,

(ii) If ( 1
ri
, 1
si

) are in the interior of Fn, with the additional condition 1
s1

+ 1
s2
> 1,

|〈 sup
Q∈D0

sup
2q−4≤t≤2q−3

At(f1χ 1
3
Q)(x)At(f2χ 1

3
Q), h〉| . |Q0|〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t.

We assume Lemma 6.2 for a moment and complete the proof of Theorems 2.3 and 6.1.

6.1. Proof of Theorem 6.1. We will present the proof for Mlac, and after that we will point
out the main differences in the proof forMfull. First note that using standard arguments we can
reduce our work to proving analogous results for the dyadic version of the maximal functions
under consideration. Indeed, let f1 and f2 be positive functions with their support contained
inside a cube Q0. Fix a dyadic lattice D and consider the maximal function

MD(f1, f2)(x) := sup
Q∈D
|AQf1(x)AQf2(x)|.

Since supp(fi) ⊂ Q0, we get that AQfi = 0 if Q ∩ Q0 = ∅ and also AQfi = 0 for large enough
cubes. To justify this, note that we are assuming that h is supported in the cube Q0. Therefore,
we need to check that for x ∈ Q0, AQfi(x) = 0, for large enough cube Q (with respect to Q0).
From the definition of AQfi, we have

AQfi(x) =

∫
Sn−1

fi(x− 2q−3y)χ 1
3
Q(x− 2q−3y) dσ(y).

Observe that for large enough cube Q with side length lQ > 16lQ0 , x − 2q−3y /∈ Q0. Since
supp(fi) ⊂ Q0, then AQfi(x) = 0.

All in all, in view of the above, it is enough to prove corresponding sparse domination for the
bilinear maximal operator

MD∩Q0(f1, f2)(x) = sup
Q∈D∩Q0

|AQf1(x)AQf2(x)|.

Then, 〈Mlac(f1, f2), h〉 can be dominated by the sum of finitely many sparse forms. By the
definition of supremum, one can find a universal sparse form in the sparse domination.

We proceed to prove the sparse domination result for the operator MD∩Q0 . Let C0 be a
constant and EQ0 denote the collection of maximal dyadic subcubes of Q0 satisfying

(13) 〈f1〉Q,r1 > C0〈f1〉Q0,r1 or 〈f2〉Q,r2 > C0〈f2〉Q0,r2 or 〈h〉Q,t > C0〈h〉Q0,t.

Let EQ0 = ∪P∈EQ0
P . Note that we can choose C0 > 1 so that |EQ0 | < 1

2 |Q0|. Writing

FQ0 = Q0 \ EQ0 , we have that |FQ0 | ≥ 1
2 |Q0|.

Next, denote

(14) D0 := {Q ∈ D ∩Q0 : Q ∩ EQ0 = ∅}
and observe that for Q ∈ D0 we get that

(15) 〈f1〉Q,r1 ≤ C0〈f1〉Q0,r1 and 〈f2〉Q,r2 ≤ C0〈f2〉Q0,r2 and 〈h〉Q,t ≤ C0〈h〉Q0,t.

For, if (13) holds, then there exists P ∈ EQ0 such that P ⊃ Q. This will contradict the definition
of D0. In a similar way, note that if Q′ ∈ D0 and Q′ ⊂ Q ⊂ Q0, then we also have (15). These
two observations together give us that, for i = 1, 2,

(16) sup
Q′∈D0

sup
Q:Q′⊂Q⊂Q0

〈fi〉Q,ri ≤ C0〈fi〉Q0,ri and sup
Q′∈D0

sup
Q:Q′⊂Q⊂Q0

〈h〉Q,t ≤ C0〈h〉Q0,t.

Now we claim, using a standard linearisation argument, that it is enough to prove sparse
domination for a suitable linearised form. For, let Q be the collection of all dyadic subcubes of
Q0. Given Q ∈ Q, consider the set

HQ :=
{
x ∈ Q : AQf1(x)AQf2(x) ≥ 1

2
sup
P∈Q
AP f1(x)AP f2(x)

}
.
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Note that for any x ∈ Q0, there exists a cube Q ∈ Q such that x ∈ HQ. Set BQ = HQ \⋃
Q′⊇QHQ′ . Observe that {BQ}Q∈Q are pairwise disjoint and

⋃
Q∈QBQ =

⋃
Q∈QHQ. Then

〈 sup
P∈Q
AP f1AP f2, h〉 =

∑
Q∈Q

∫
BQ

sup
P∈Q

(AP f1(x)AP f2(x))h(x)dx

≤ 2
∑
Q∈Q

∫
BQ

AQf1(x)AQf2(x)h(x)dx

≤ 2
∑
Q∈Q

∫
Rn
AQf1(x)AQf2(x)h(x)χBQ(x)dx

= 2
∑
Q∈Q
〈AQf1AQf2, hQ〉

≤ 2
∑

Q∈D∩Q0

〈AQf1AQf2, hχBQ〉

where hQ = hχBQ . The estimate above allows us to work with a linearised form instead of the
supremum. Notice that this argument uses the full collection of dyadic subcubes of the given
cube Q0. So, in particular,∣∣〈 sup

Q∈D0

AQf1AQf2, h〉
∣∣ ≤ ∣∣〈 sup

Q∈Q
AQf1AQf2, h〉

∣∣ ≤ ∣∣∣2 ∑
Q∈Q
〈AQf1AQf2, hQ〉

∣∣∣
≤ 2
∣∣ ∑
Q∈D∩Q0

〈AQf1AQf2, hχBQ〉
∣∣.

Therefore, it suffices to prove the sparse domination for∑
Q∈D∩Q0

〈AQf1AQf2, hχBQ〉.

Next, observe that for any cube Q ∈ D∩Q0 we either have Q ∈ D0 or Q ⊂ P for some P ∈ EQ0 .
Therefore,

(17)
∑

Q∈D∩Q0

〈AQf1AQf2, hχBQ〉 =
∑
Q∈D0

〈AQf1AQf2, hχBQ〉+
∑

P∈EQ0

∑
Q⊂P
〈AQf1AQf2, hχBQ〉.

We would like to remark here that so far we have not required that f1 and f2 are characteristic
functions. Now we invoke Lemma 6.2 to get that

(18)
∑
Q∈D0

〈AQf1AQf2, hχBQ〉 . |Q0|〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t.

Let {Pj} be an enumeration of cubes in EQ0 . Then we can rewrite the remaining term as∑
P∈EQ0

∑
Q⊂P
〈AQf1AQf2, hχBQ〉 =

∞∑
j=1

∑
Q∈Pj∩D

〈AQf1AQf2, hχBQ〉.

We repeatedly use the estimate above for each j and put all the terms together to get a sparse
collection S so that the following holds∑

Q∈D∩Q0

〈AQf1AQf2, hχBQ〉 .
∑
S∈S
|S|〈f1〉S,r1〈f2〉S,r2〈h〉S,t.

This completes the proof of Theorem 6.1 for Mlac.
In order to prove the corresponding results for the operator Mfull, we require a bilinear

analogue of local spherical maximal functions. It is defined as follows

(19) M̃(f1, f2)(x) := sup
t∈[1,2]

Atf1(x)Atf2(x).
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Again standard arguments reduce the task to consider a dyadic version with the maximal func-
tion

sup
Q∈D∩Q0

|M̃Q(f1, f2)(x)|,

where

M̃Q(f1, f2)(x) := sup
2q−4≤t≤2q−3

At(f1χ 1
3
Q)(x)At(f2χ 1

3
Q)(x).

Note that a linearisation trick as earlier tells us that it suffices to replace the supremum (19)
with the form ∣∣ ∑

Q∈D0

〈M̃Q(f1, f2), hQ〉
∣∣,

with hQ = hχBQ and BQ = EQ \
⋃
Q′⊃QEQ′ , where

EQ =
{
x ∈ Q ∈ Q : M̃Q(f1, f2)(x) ≥ 1

2
sup
P∈Q
M̃P (f1, f2)(x)

}
.

The remaining part of the proof can be completed following the lacunary case.

6.2. Proof of Theorem 2.3. We will make use of Theorem 6.1 in proving Theorem 2.3. The
proof is unified in both lacunary and full cases.

Step I: Let f1 and h be non-negative compactly supported bounded functions with support
in the cube Q0 and f2 = χF2 , where F2 ⊂ Q0. We use the same argument as in the proof of
Theorem 6.1 up to the estimate (17) with the same notation and here D0 is defined with respect
to f1, χF2 and h. In fact, it is enough to prove an analogue of estimate (18) for the setting under
consideration, i.e., we need to show that∑

Q∈D0

〈AQf1AQχF2 , hQ〉 . |Q0|〈f1〉Q0,ρ1〈χF2〉Q0,r2〈h〉Q0,t,

where ρ1 > r1.
In order to use Theorem 6.1, we first need to decompose the function f1 into suitable char-

acteristic functions. Consider Em = {x ∈ Q0 : 2m ≤ f1(x) ≤ 2m+1}. Then there exists m0 > 1
such that Em = ∅ for all m > m0. Denote fm1 = f1χEm . Thus, we use Theorem 6.1 for each
pair of characteristic functions χEm and χF2 and obtain the sparse domination for the functions
fm1 and χF2 as follows∑

Q∈D0

〈AQfm1 AQχF2 , hQ〉 ≤ 2m+1
∑
Q∈D0

〈AQχEmAQχF2 , hQ〉

. 2m+1
∑

Q∈D∩Q0

〈AQχEmAQχF2 , hQχFQ0
〉

. 2m+1
∑
S∈Sm

|S|〈χEm〉S,r1〈χF2〉S,r2〈hχFQ0
〉S,t

where Sm is the sparse family corresponding to characteristic functions χEm and χF2 .
Next, using the stopping time condition on the functions h and f2 = χF2 as given in (16), we

get ∑
S∈Sm

|S|〈χEm〉S,r1〈χF2〉S,r2〈hχFQ0
〉S,t . 〈h〉Q0,t〈χF2〉Q0,r2

∑
S∈Sm

|S|〈χEm〉S,r1 .

Choose ρ̃1 > r1 and consider ρ̃1
′ > 1 such that 1

ρ̃1
+ 1

ρ̃1
′ = 1. Now, using an easy consequence of

the Carleson embedding theorem (see [21]) we get that∑
S∈Sm

|S|〈χEm〉S,r1 =
∑
S∈Sm

|S|
1
ρ̃1 〈χEm〉S,r1 |S|

1
ρ̃′1

≤
( ∑
S∈Sm

|S|〈χEm〉ρ̃1S,r1
) 1
ρ̃1

( ∑
S∈Sm

|S|
) 1
ρ̃′1

≤ 〈χEm〉Q0,ρ̃1 |Q0|.
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Finally, using [2, Lemma 4.6 and Lemma 4.7], we obtain

(20) |〈 sup
Q∈D0

AQf1AQχF2 , hQ〉| . |Q0|〈f1〉Q0,ρ1〈χF2〉Q0,r2〈h〉Q0,t,

where ρ1 > ρ̃1.
Note that we can decompose

∑
Q∈D∩Q0

〈AQf1AQχF2 , hχBQ〉 as

(21)∑
Q∈D∩Q0

〈AQf1AQχF2 , hχBQ〉 =
∑
Q∈D0

〈AQf1AQχF2 , hχBQ〉+
∑

P∈EQ0

∑
Q⊂P
〈AQf1AQχF2 , hχBQ〉.

Now from (20) we get that

(22)
∑
Q∈D0

〈AQf1AQχF2 , hχBQ〉 . |Q0|〈f1〉Q0,ρ1〈χF2〉Q0,r2〈h〉Q0,t.

Let {Pj} be an enumeration of cubes in EQ0 defined with f1, χF2 and h. Then we can rewrite
the remaining term as∑

P∈EQ0

∑
Q⊂P
〈AQf1AQχF2 , hχBQ〉 =

∞∑
j=1

∑
Q∈Pj∩D

〈AQf1AQχF2 , hχBQ〉.

We repeatedly use the estimate above for each j and put all the terms together to get a sparse
collection S so that the following holds∑

Q∈D∩Q0

〈AQf1AQχF2 , hχBQ〉 .
∑
S∈S
|S|〈f1〉S,ρ1〈χF2〉S,r2〈h〉S,t.

Step II: Now consider f1, f2 and h are non-negative compactly supported bounded function
with support in the cube Q0. We use the same argument as in the proof of Theorem 6.1 up
to the estimate (17) with the same notation and D0 is defined with respect to f1, f2 and h. It
suffices to prove an analogue of estimate (18) for the setting under consideration, i.e., we need
to show that ∑

Q∈D0

〈AQf1AQf2, hQ〉 . |Q0|〈f1〉Q0,ρ1〈f2〉Q0,ρ2〈h〉Q0,t,

where ρ1 > r1 and ρ2 > r2.
Note that we already have an analogue of estimate (18) for general compactly supported

bounded function f1 and f2 = χF2 a characteristic function in (20). Therefore, in order to
prove the required estimate for general compactly supported bounded functions f1 and f2 we
decompose the function f2 such that f2 =

∑n0
n=1 f

n
2 with fn2 = f2χFn , where Fn = {x ∈ Q0 :

2n ≤ f2(x) ≤ 2n+1} and Fn = ∅ for n > n0. From this point onward the proof follows in a
similar fashion as in Step I. Finally, we get the following estimate

|〈 sup
Q∈D0

AQf1AQf2, hQ〉| . |Q0|〈f1〉Q0,ρ1〈f2〉Q0,ρ2〈h〉Q0,t,

where ρ1 > r1 and ρ2 > r2.

Remark 6.3. Observe that the argument in which we freeze one of the characteristic functions
when passing from characteristic functions to general functions is crucial. Dealing with both
characteristic functions simultaneously yields the extra condition 1

r1
+ 1

r2
< 1, restricting the

result to the Banach range.

6.3. Proof of Lemma 6.2. Finally we provide the proof of Lemma 6.2. This is the most
technical and tedious part of the paper. We will begin by giving the proof in the lacunary case,
and after that we will sketch the significantly different parts in case of Mfull.

First note that one can use the same linearisation trick as in the proof of Theorem 6.1. This
would mean that it is enough to prove the following estimate∑

Q∈D0

〈AQf1AQf2, hQ〉 . |Q0|〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t,
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where AQfi(x) = A2q−3(fiχ 1
3
Q)(x), and so

AQfi(x) =

∫
Sn−1

fi(x− 2q−3y)χ 1
3
Q(x− 2q−3y) dσ(y).

Since lQ = 2q, we see that for y ∈ Sn−1 we have 1
3Q+ 2q−3y ⊂ 2

3Q and hence supp(AQfi) ⊂ 2
3Q.

Now define

ÃQfi(x) = A2q−3(fiχ 1
2
Q)(x).

Observe that supp(ÃQfi) ⊂ Q and since fi’s are non-negative functions, therefore

AQfi(x) =

∫
Sn−1

fi(x− 2q−3y)χ 1
3
Q(x− 2q−3y) dσ(y)

≤
∫
Sn−1

fi(x− 2q−3y)χ 1
2
Q(x− 2q−3y) dσ(y) = ÃQfi(x),

for a.e. x and i = 1, 2. In view of these observations, it is enough to prove that∑
Q∈D0

〈ÃQf1ÃQf2, hQ〉 . |Q0|〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t.

The important observation here is that with this localization we will be able to separately
distinguish the dyadic (bad) cubes in which the cancellation property can be applied. Here we
have used the same notation as in Theorem 6.1. For i = 1, 2, let

γfi = {collection of maximal dyadic subcubes P ⊂ Q0 : 〈fi〉P,ri > 2C0〈fi〉Q0,ri}.
Applying the Calderón-Zygmund decomposition to each fi at the height αi = 2C0〈fi〉Q0,ri ,
i = 1, 2, we can decompose

fi = bi + gi,

where ‖gi‖L∞ . 〈fi〉Q0,ri and

bi =
∑
P∈γfi

(
fi − 〈fi〉P

)
χP =

q0−1∑
k=−∞

∑
P∈Bi(k)

(
fi − 〈fi〉P

)
χP =:

q0−1∑
k=−∞

Bi,k,

with lQ0 = 2q0 and Bi(k) = {P ∈ γfi : lP = 2k}. Now,∣∣ ∑
Q∈D0

〈ÃQf1ÃQf2, hQ〉
∣∣ ≤ ∣∣ ∑

Q∈D0

〈ÃQg1ÃQg2, hQ〉
∣∣+
∣∣ ∑
Q∈D0

〈ÃQg1ÃQb2, hQ〉
∣∣

+
∣∣ ∑
Q∈D0

〈ÃQb1ÃQg2, hQ〉
∣∣+
∣∣ ∑
Q∈D0

〈ÃQb1ÃQb2, hQ〉
∣∣

=: GG+GB +BG+BB.

We estimate all the four parts separately. Note that in view of the symmetry in GB and BG
parts, it is enough to estimate one of them.

Estimate for GG (both functions good) part. Using the fact that t > 1, we have

GG ≤
∑
Q∈D0

‖ÃQg1ÃQg2‖L∞‖hQ‖L1 . 〈f1〉Q0,r1〈f2〉Q0,r2

∑
Q∈D0

∫
|h(x)χBQ(x)|dx

. 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0 |Q0|

. 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t|Q0|.
Estimate for BG (one function bad and one function good) part. Arguing with a
similar argument as in the proof of Theorem 6.1 in our paper we note that, for all Q ∈ D0 and
P ∈ γf1 , if P ∩Q 6= ∅, then P ( Q, by the stopping argument. Therefore, for any Q ∈ D0 with
lQ = 2q, we have

〈ÃQb1ÃQg2, hQ〉 =
∑
k<q

〈ÃQB1,kÃQg2, hQ〉 =
∞∑
k=1

〈ÃQB1,q−kÃQg2, hQ〉.
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Thus, ∣∣ ∑
Q∈D0

〈ÃQb1ÃQg2, hQ〉
∣∣ =

∣∣ ∞∑
k=1

∑
Q∈D0

〈ÃQB1,q−kÃQg2, hQ〉
∣∣.

Note that (ÃQ)∗f(x) = χ 1
2
Q(x)A2q−3f(x). Indeed, for compactly supported bounded functions

f and g, we have

〈ÃQf, g〉 =

∫
Rn
ÃQf(x)g(x) dx

=

∫
Rn

(∫
Sn−1

fχ 1
2
Q(x− 2q−3y) dσ(y)

)
g(x) dx

=

∫
Rn
f(x)χ 1

2
Q(x)

(∫
Sn−1

g(x+ 2q−3y) dσ(y)
)
dx

=: 〈f, (ÃQ)∗g〉,
where

(ÃQ)∗g(x) = χ 1
2
Q(x)A2q−3g(x).

Hence,

BG =
∣∣ ∑
Q∈D0

∫
b1(x)(ÃQ)∗(ÃQg2 · hQ)(x)dx

∣∣
=
∣∣ ∑
Q∈D0

∞∑
k=1

∑
P∈B1(q−k)

∫
P
B1,q−k(x)(ÃQ)∗(ÃQg2 · hQ)(x) dx

∣∣
=
∣∣ ∑
Q∈D0

∞∑
k=1

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQg2 · hQ)(x) dx

∣∣.
Now, observe that in the above line only those P will survive for which P ∩ 1

2Q 6= ∅. Further,
we can write∣∣ ∑

Q∈D0

∞∑
k=1

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQg2 · hQ)(x) dx

∣∣ ≤ I + II,

where

I :=
∣∣ ∑
Q∈D0

3∑
k=1

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQg2 · hQ)(x) dx

∣∣
and

II :=
∣∣ ∑
Q∈D0

∞∑
k=4

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQg2 · hQ)(x) dx

∣∣.
Here we have separated subcubes of kth generation with k ≥ 4 in part II so that we can use [20,
Lemma 2.3]. For the part I we do not need to use the cancellation condition on B1,q−k as there
are only finitely many terms with respect to k and the sizes of subcubes P in these generations
are comparable with the size of original cube Q with an absolute constant.

Recall that if P ∩ Q 6= ∅, then P ( Q (by stopping time argument). Therefore, all the P ’s
are dyadic subcubes of Q. Also, observe that all the dyadic subcubes of Q of second and higher
generations which intersect (except with edges) with 1

2Q, are contained in 1
2Q. In fact, all the

second generation subcubes of Q which are around the center of Q, are contained in 1
2Q, and

the other second generation subcubes of Q along the boundary of Q do not intersect with 1
2Q,

i.e, for any P ∈ B1(q−k), k ≥ 2, with P ∩ 1
2Q 6= ∅, implies P ⊂ 1

2Q. In particular, this property
will be used in estimating part II for all k ≥ 4.
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Now, we first deal with part I, in which we cannot use the cancellation property (since the
dyadic cubes of first generation P are all intersecting 1

2Q, but P 6⊂ 1
2Q). Nevertheless, we will

not need the decay to conclude the estimate in this case2:

I :=
∣∣ ∑
Q∈D0

3∑
k=1

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQg2 · hQ)(x) dx

∣∣
=
∣∣ 3∑
k=1

∑
Q∈D0

∫
Pk
B1,q−k(x)(ÃQ)∗(ÃQg2 · hQ)(x) dx

∣∣,
where

⋃
P∈B1(q−k)

P = Pk. Since, P ∈ B1(q− k) are disjoint subcubes of Q, we get Pk ⊆ Q. Now,

I =
∣∣ 3∑
k=1

∑
Q∈D0

∫
Rn
ÃQ(B1,q−kχPk)(x)ÃQg2(x)hQ(x) dx

∣∣
≤

3∑
k=1

∑
Q∈D0

‖ÃQ(B1,q−kχPk)‖
Ls
′
1
‖ÃQg2 · hQ‖Ls1

.
3∑

k=1

∑
Q∈D0

|Q|〈B1,q−k〉Q,r1〈ÃQg2 · hQ〉Q,s1 .

In the second last line we have applied Hölder’s inequality with respect to s′1 and s1, where
1
s1

+ 1
s′1

= 1 and in the last line we have applied Lr1 → Ls
′
1 boundedness of the averaging

operator A2q−3 , for ( 1
r1
, 1
s′1

) belonging to the interior of L′n.

Let us now estimate the part II. The key point here is that, for small enough cubes, we first
write the dual and then use the cancellation:

II : =
∣∣∣ ∑
Q∈D0

∞∑
k=4

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQg2 · hQ)(x) dx

∣∣∣
≤
∞∑
k=4

∑
Q∈D0

∑
P∈B1(q−k)

1

|P |

×
∣∣∣ ∫

P

∫
P
B1,q−k(x)χ 1

2
Q(x)[A2q−3(ÃQg2 · hQ)(x)−A2q−3(ÃQg2 · hQ)(x′)] dxdx′

∣∣∣.
Observe that in the last line we have used the fact that if P ∈ B1(q−k), k ≥ 4 with P ∩ 1

2Q 6= ∅,
then P ⊂ 1

2Q. Therefore
∫
P B1,q−kχ 1

2
Q(x) dx = 0. Now, write x′ = x − y, then y ∈ P − P .

Applying this change of variable we get

II ≤
∞∑
k=4

∑
Q∈D0

∑
P∈B1(q−k)

1

|P |

×
∣∣∣ ∫

P−P

∫
P
B1,q−kχ 1

2
Q(x)[A2q−3 − τyA2q−3 ](ÃQg2 · hQ)(x) dx dy

∣∣∣
.
∞∑
k=4

∑
Q∈D0

∑
P∈B1(q−k)

1

|P0|

×
∫
P0

∣∣∣ ∫
P
B1,q−kχ 1

2
Q(x)[A2q−3 − τyA2q−3 ](ÃQg2 · hQ)(x) dx

∣∣∣ dy,(23)

2Note that we are applying the Calderón-Zygmund decomposition for the functions f1, f2. Therefore,∫
P
B1,q−k(x)dx = 0 may not imply

∫
P
B1,q−k(x)χ 1

2
Q(x) dx = 0, unless P ⊆ 1

2
Q.
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where P − P ⊂ P0 and lP0 = 2lP . Observe that the quantity within the modulus sign in (23) is
a function of y. We apply duality for the L1(P0)-norm. For H ∈ L∞(P0) we write (23) as∑

P∈B1(q−k)

1

|P0|

∫
P0

∫
P
B1,q−kχ 1

2
Q(x)[A2q−3 − τyA2q−3 ](ÃQg2 · hQ)(x) dxH(y) dy

=
1

|P0|

∫
P0

∫
Pk
B1,q−kχ 1

2
Q(x)[A2q−3 − τyA2q−3 ](ÃQg2 · hQ)(x) dxH(y) dy

≤ ‖H‖L∞
1

|P0|

∫
P0

∣∣∣ ∫
Pk
B1,q−kχ 1

2
Q(x)[A2q−3 − τyA2q−3 ](ÃQg2 · hQ)(x) dx

∣∣∣dy
= ‖H‖L∞

1

|P0|

∫
P0

∣∣∣ ∫
Rn
B1,q−kχ 1

2
Q∩Pk(x)[A2q−3 − τyA2q−3 ](ÃQg2 · hQ)(x) dx

∣∣∣dy
= ‖H‖L∞

1

|P0|

∫
P0

∣∣∣ ∫
Rn

[A2q−3 −A2q−3τ−y]B1,q−kχ 1
2
Q∩Pk(x)(ÃQg2 · hQ)(x) dx

∣∣∣ dy.
Observe that for all k ≥ 4, the side length lP ≤ 2q−4 and hence we have |y| ≤ 2q−3. Now,

applying [20, Lemma 2.3] we get

II .
∞∑
k=4

∑
Q∈D0

1

|P0|

∫
P0

( |y|
lQ

)η
|Q|〈B1,q−kχPk〉Q,r1〈ÃQg2 · hQ〉Q,s1 dy

≤
∞∑
k=4

∑
Q∈D0

1

|P0|

∫
P0

( |y|
lQ

)η
|Q|〈B1,q−k〉Q,r1〈ÃQg2 · hQ〉Q,s1 dy.

Further, since y ∈ P0 we have |y| . 2q−k+1. This implies that

BG .
∞∑
k=1

2−ηk
∑
Q∈D0

|Q|〈B1,q−k〉Q,r1〈ÃQg2 · hQ〉Q,s1 .

Further, note that

〈ÃQg2 · hQ〉Q,s1 =
( 1

|Q|

∫
Q

(ÃQg2)s1(x)hs1Q (x)dx
) 1
s1 ≤ ‖ÃQg2‖L∞〈hQ〉Q,s1
. 〈f2〉Q0,r2〈hQ〉Q,s1

and 〈B1,q−k〉Q,r1 . 〈χF1,q,k
〉Q,r1 + 〈f1〉Q0,r1〈χE1,q,k

〉Q,r1 , where F1,q,k are disjoint subsets of F1

and E1,q,k are disjoint subsets of Q0. Putting these estimates together we get

BG . 〈f2〉Q0,r2

∞∑
k=1

2−ηk
∑
Q∈D0

|Q|〈χF1,q,k
〉Q,r1〈hQ〉Q,s1

+ 〈f1〉Q0,r1〈f2〉Q0,r2

∞∑
k=1

2−ηk
∑
Q∈D0

|Q|〈χE1,q,k
〉Q,r1〈hQ〉Q,s1 =: BG1 +BG2.

We estimate both the terms separately. For the term BG1, note that ( 1
r1
, 1
s1

) in the interior of

Ln, which implies that 1
r1

+ 1
s1
> 1. Choose τ > 0 such that 1

r1
− τ + 1

s1
= 1. Write 1

r1
− τ = 1

ṙ1
and note that ṙ1 > r1. We have, by using that F1,q,k ⊆ F1 and the stopping time condition for
the function f1,

〈χF1,q,k
〉Q,r1 =

( 1

|Q|

∫
Q
χr1F1,q,k

) 1
ṙ1

( 1

|Q|

∫
Q
χr1F1,q,k

)τ
≤
( 1

|Q|

∫
Q
χr1F1,q,k

) 1
ṙ1

( 1

|Q|

∫
Q
f r11

)τ
.
( 1

|Q|

∫
Q
χr1F1,q,k

) 1
ṙ1 〈f1〉τr1Q0,r1

.

Therefore, as t ≥ s1,

BG1 = 〈f2〉Q0,r2

∞∑
k=1

2−ηk
∑
Q∈D0

|Q|〈χF1,q,k
〉Q,r1〈hQ〉Q,s1
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. 〈f1〉τr1Q0,r1
〈f2〉Q0,r2

∞∑
k=1

2−ηk
∑
Q∈D0

|Q|
( 1

|Q|

∫
Q
χF1,q,k

) 1
ṙ1

( 1

|Q|

∫
Q
hs1Q

) 1
s1

. 〈f1〉τr1Q0,r1
〈f2〉Q0,r2

∞∑
k=1

2−ηk
( ∑
Q∈D0

∫
Q
χF1,q,k

) 1
ṙ1

( ∑
Q∈D0

∫
Q
hs1χBQ

) 1
s1

. 〈f1〉τr1Q0,r1
〈f2〉Q0,r2〈f1〉

r1
ṙ1
Q0,r1
|Q0|

1
ṙ1 〈h〉Q0,s1 |Q0|

1
s1

≤ 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t|Q0|.(24)

Next, the term BG2 may be estimated as follows. Since ṙ1 > r1, we have 〈χE1,q,k
〉Q,r1 ≤

〈χE1,q,k
〉Q,ṙ1 . Consider

BG2 = 〈f1〉Q0,r1〈f2〉Q0,r2

∞∑
k=1

2−ηk
∑
Q∈D0

|Q|〈χE1,q,k
〉Q,r1〈hQ〉Q,s1

≤ 〈f1〉Q0,r1〈f2〉Q0,r2

∞∑
k=1

2−ηk
∑
Q∈D0

|Q|〈χE1,q,k
〉Q,ṙ1〈hQ〉Q,s1

≤ 〈f1〉Q0,r1〈f2〉Q0,r2

∞∑
k=1

2−ηk
( ∑
Q∈D0

∫
Q
χE1,q,k

) 1
ṙ1

( ∑
Q∈D0

∫
Q
hs1χBQ

) 1
s1

. 〈f1〉Q0,r1〈f2〉Q0,r2 |Q0|
1
ṙ1 〈h〉Q0,s1 |Q0|

1
s1

≤ 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t|Q0| as t ≥ s1.(25)

Estimates (24) and (25) yield the desired result for the term BG. The estimate for the third
term GB follows similarly.

Estimate for BB (both functions are bad) part: We have

BB = |
∑
Q∈D0

〈ÃQb1ÃQb2, hQ〉| =
∣∣∣ ∑
Q∈D0

∫
b1(x)(ÃQ)∗(ÃQb2 · hQ)(x)dx

∣∣∣
=
∣∣∣ ∑
Q∈D0

∞∑
k=1

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQb2 · hQ)(x)dx

∣∣∣
≤
∣∣∣ ∑
Q∈D0

3∑
k=1

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQb2 · hQ)(x)dx

∣∣∣
+
∣∣∣ ∑
Q∈D0

∞∑
k=4

∑
P∈B1(q−k)

∫
P
B1,q−k(x)χ 1

2
Q(x)A2q−3(ÃQb2 · hQ)(x)dx

∣∣∣
= Ibb + IIbb.

Now Ibb can be handled similarly as I. On the other hand, we estimate IIbb as follows

IIbb ≤
∞∑
k=4

∑
Q∈D0

∑
P∈B1(q−k)

1

|P |

×
∣∣∣ ∫

P

∫
P
B1,q−kχ 1

2
Q(x)[A2q−3(ÃQb2 · hQ)(x)−A2q−3(ÃQb2 · hQ)(x′)] dx dx′

∣∣∣
.
∞∑
k=4

∑
Q∈D0

∑
P∈B1(q−k)

1

|P |

×
∣∣∣ ∫

P−P

∫
P
B1,q−kχ 1

2
Q(x)[A2q−3 − τyA2q−3 ](ÃQb2 · hQ)(x) dx dy

∣∣∣.
Now, we proceed as for BG, but at the last line apply Hölder’s inequality. Then the term is
dominated by
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∞∑
k=4

∑
Q∈D0

1

|P0|

∫
P0

‖[A2q−3 −A2q−3τ−y]B1,q−kχPk‖Ls′1‖ÃQb2‖Ls′2‖hQ‖Lt

.
∞∑
k=4

∑
Q∈D0

1

|P0|

∫
P0

( |y|
lQ

)η
|Q|1−

1
s1 〈B1,q−k〉Q,r1‖ÃQb2‖Ls′2‖hQ‖Lt .

where, in the last inequality, we have used [20, Theorem 2.1] for
(

1
r1
, 1
s′1

)
in the interior of

L′n =
{(

1
r ,

1
s

)
:
(
1
r , 1− 1

s

)
∈ Ln

}
and Hölder’s inequality with exponents 1

t′ = 1
s′1

+ 1
s′2

. This yields

BB ≤
∞∑
k=1

2−ηk
∑
Q∈D0

|Q|1−
1
s1 〈B1,q−k〉Q,r1‖ÃQb2‖Ls′2‖hQ‖Lt .

Next, we make use of [20, Lemma 2.3] to estimate the quantity

‖ÃQb2‖Ls′2 = sup
‖ψ‖Ls2=1

|〈ÃQb2, ψ〉|.

Indeed, with a similar computation as the one for BG, we can conclude

|〈ÃQb2, ψ〉| =
∣∣∣ ∫ ÃQb2(x)ψ(x)dx

∣∣∣ =
∣∣∣ ∞∑
j=1

∑
P∈B2(q−j)

∫
P
B2,q−j(x)(ÃQ)∗ψ(x) dx

∣∣∣
=
∣∣∣ ∞∑
j=1

∑
P∈B2(q−j)

∫
P
B2,q−j(x)χ 1

2
Q(x)A2q−3ψ(x) dx

∣∣∣
.

3∑
j=1

|Q|1−
1
s2 〈B2,q−j〉Q,r2‖ψ‖Ls2 +

∞∑
j=4

1

|P0|

∫
P0

|Q|1−
1
s2

( |y|
lQ

)η
〈B2,q−j〉Q,r2‖ψ‖Ls2dy.

Thus we obtain the following estimate.

BB .
∞∑

k,j=1

2−η(k+j)
∑
Q∈D0

|Q|2

|Q|
1
s1

+ 1
s2

〈B1,q−k〉Q,r1〈B2,q−j〉Q,r2
(∫

Q
htQ

) 1
t
,

where we know that

(26) 〈B1,q−k〉Q,r1 . 〈χF1,q,k
〉Q,r1 + 〈f1〉Q0,r1〈χE1,q,k

〉Q,r1
and

(27) 〈B2,q−j〉Q,r2 . 〈χF2,q,j 〉Q,r2 + 〈f2〉Q0,r2〈χE2,q,j 〉Q,r2 .
Here, E1,q,k, E2,q,j are disjoint subsets of Q0 and F1,q,k, F2,q,j are disjoint subsets of F1, F2,
respectively.

Substituting (26) and (27) into (6.3), we get the following four terms, which will be estimated
separately.

BB .
∞∑

k,j=1

2−η(k+j)
∑
Q∈D0

|Q|2

|Q|
1
s1

+ 1
s2

〈χF1,q,k
〉Q,r1〈χF2,q,j 〉Q,r2

(∫
Q
htQ

) 1
t

+

∞∑
k,j=1

2−η(k+j)
∑
Q∈D0

|Q|2

|Q|
1
s1

+ 1
s2

〈χF1,q,k
〉Q,r1〈f2〉Q0,r2〈χE2,q,j 〉Q,r2

(∫
Q
htQ

) 1
t

+
∞∑

k,j=1

2−η(k+j)
∑
Q∈D0

|Q|2

|Q|
1
s1

+ 1
s2

〈f1〉Q0,r1〈χE1,q,k
〉Q,r1〈χF2,q,j 〉Q,r2

(∫
Q
htQ

) 1
t

+
∞∑

k,j=1

2−η(k+j)
∑
Q∈D0

|Q|2

|Q|
1
s1

+ 1
s2

〈f1〉Q0,r1〈χE1,q,k
〉Q,r1〈f2〉Q0,r2〈χE2,q,j 〉Q,r2

(∫
Q
htQ

) 1
t

=: BB1 +BB2 +BB3 +BB4.
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Estimate for the first term BB1. At this point, one has to deal with the cases 1
r1

+ 1
r2
> 1

and 1
r1

+ 1
r2
≤ 1 separately. Let us start with the case 1

r1
+ 1

r2
> 1. Choose positive numbers τ1

and τ2 such that 1
r1

+ 1
r2

= 1 + τ1 + τ2 and denote 1
ri
− τi = 1

ṙi
, i = 1, 2. Note that 1

ṙ1
+ 1

ṙ2
= 1.

We have

BB1 . 〈h〉Q0,t

∞∑
k,j=1

2−η(k+j)
∑
Q∈D0

|Q|1−
1
r1
− 1
r2

(∫
Q
χF1,q,k

) 1
r1

(∫
Q
χF2,q,j

) 1
r2

. 〈h〉Q0,t〈f1〉τ1r1Q0,r1
〈f2〉τ2r2Q0,r2

〈f1〉
r1
ṙ1
Q0,r1
〈f2〉

r2
ṙ2
Q0,r2
|Q0| = 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t|Q0|.

The case 1
r1

+ 1
r2

= 1 follows similarly with τ1 = τ2 = 0.

Let us turn to the case when 1
r1

+ 1
r2
< 1. Observe that 1

r1
+ 1
r2

+ 1
t > 1. Now, choose τ1, τ2 > 0

such that 1
r1

+ 1
r2

+ 1
t = 1 + τ1 + τ2. This implies 1

ṙ1
+ 1

ṙ2
+ 1

t = 1, where 1
ṙi

= 1
ri
− τi, for i = 1, 2.

BB1 =
∞∑

k,j=1

2−η(k+j)
∑
Q∈D0

|Q|1− 1
t 〈χF1,q,k

〉Q,r1〈χF2,q,j 〉Q,r2
(∫

Q
htQ

) 1
t

. 〈f1〉τ1r1Q0,r1
〈f2〉τ2r2Q0,r2

∞∑
k,j=1

2−η(k+j)
∑
Q∈D0

(∫
Q
χF1,q,k

) 1
ṙ1

(∫
Q
χF2,q,j

) 1
ṙ2

(∫
Q
htQ

) 1
t

. 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t|Q0|.
In the last inequality we have used the Hölder’s inequality with respect to ṙ1, ṙ2 and t.

The latter case is analogous for the remaining three terms BB2, BB3 and BB4, hence we will
focus on the estimates only for the case when 1

r1
+ 1

r2
> 1.

Estimate for the second and third terms BB2 and BB3. The estimates for BB2 and
BB3 may be obtained in a similar fashion. We provide here the argument for the term BB3.

Since 1
r1

+ 1
r2
> 1, we can choose a positive number τ such that 1

r1
− τ + 1

r2
= 1. Denote

1
r1
− τ = 1

ṙ1
and note that 1

ṙ1
+ 1

r2
= 1 and r1 < ṙ1. Then we have,

BB3 . 〈f1〉Q0,r1〈h〉Q0,t

∞∑
k,j=1

2−η(k+j)
∑
Q∈D0

|Q|1−
1
r1
− 1
r2

+τ
(∫

Q
χE1,q,k

) 1
ṙ1

(∫
Q
χF2,q,j

) 1
r2

≤ 〈f1〉Q0,r1〈h〉Q0,t

∞∑
k,j=1

2−η(k+j)
( ∑
Q∈D0

∫
Q
χE1,q,k

) 1
ṙ1

( ∑
Q∈D0

∫
Q
χF2,q,j

) 1
r2

. 〈f1〉Q0,r1〈h〉Q0,t|Q0|
1
ṙ1 〈f2〉Q0,r2 |Q0|

1
r2 = 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t|Q0|.

Estimate for the fourth term BB4. Choose τ1 and τ2 as in the case BB1. Consider

BB4 . 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t

∞∑
k,j=1

2−η(k+j)
∑
Q∈D0

|Q|1−
1
r1
− 1
r2

(∫
Q
χE1,q,k

) 1
r1

(∫
Q
χE2,q,j

) 1
r2

≤ 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t

∞∑
k,j=1

2−η(k+j)
( ∑
Q∈D0

∫
Q
χE1,q,k

) 1
ṙ1

( ∑
Q∈D0

∫
Q
χE2,q,j

) 1
ṙ2

. 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0,t|Q0|.
This completes the proof of Lemma 6.2 for the lacunary bilinear spherical maximal operator.

For the case of the full bilinear spherical maximal operator, we proceed analogously as in the
proof of the lacunary maximal operator. In this case, we have to deal with˜̃MQ(f1, f2)(x) := sup

2q−4≤t≤2q−3

At(f1χ 1
2
Q)(x)At(f2χ 1

2
Q)(x)

and we call

Ãtfi(x) = At(fiχ 1
2
Q)(x)
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We use the Calderón-Zygmund decomposition to write fi = gi + bi, i = 1, 2 to get the
following

|
∑
Q∈D0

〈˜̃MQ(f1, f2), hQ〉| ≤ |
∑
Q∈D0

〈˜̃MQ(g1, g2), hQ〉|+ |
∑
Q∈D0

〈˜̃MQ(g1, b2), hQ〉|

+ |
∑
Q∈D0

〈˜̃MQ(b1, g2), hQ〉|+ |
∑
Q∈D0

〈˜̃MQ(b1, b2), hQ〉|

=: GG+GB +BG+BB.

Estimate for GG (both functions good). In this case we have∑
Q∈D0

|〈˜̃MQ(g1, g2), hQ〉| ≤
∑
Q∈D0

‖˜̃MQg1‖L∞‖˜̃MQg2‖L∞‖hQ‖L1

. 〈f1〉Q0,r1〈f2〉Q0,r2

∑
Q∈D0

∫
|h(x)|χBQ(x)dx

. 〈f1〉Q0,r1〈f2〉Q0,r2〈h〉Q0 |Q0|.
Estimate for BG (one function good and one function bad). We have, proceeding as
in the case of BG for the lacunary spherical maximal function. Let tQ : Q → [2q−4, 2q−3] be a
measurable function, then

|
∑
Q∈D0

〈˜̃MQ(b1, g2), hQ〉| ≤
∑
Q∈D0

∣∣∣ ∫ b1(x)(ÃtQ)∗(ÃtQg2 · hQ)(x) dx
∣∣∣

.
3∑

k=1

∑
Q∈D0

|Q|〈B1,q−k〉Q,r1〈ÃtQg2 · hQ〉Q,s1

+
∑
k≥4

∑
Q∈D0

1

|P0|

∫
P0

( |y|
lQ

)η
|Q|〈B1,q−k〉Q,r1〈ÃtQg2 · hQ〉Q,s1 dy

.
∑
k≥1

2−kη
∑
Q∈D0

|Q|〈B1,q−k〉Q,r1〈ÃtQg2 · hQ〉Q,s1 ,

where we have used [20, Theorem 3.2] in the second to last inequality. Next, observe that

〈ÃtQg2 · hQ〉Q,s1 . 〈f2〉Q0,r2〈hQ〉Q,s1 .
This point onward, we can follow the proof in the case of bilinear lacunary spherical maximal

function and get the desired estimates. We skip the details.
This completes the proof of Lemma 6.2.

7. Necessary conditions for the sparse domination

In this section we prove the necessity part of Theorem 2.3. Indeed, we discuss the relations
involving the exponents r1, r2, s1, s2 and t and show that they are necessary conditions for the
validity of the sparse domination of the bilinear (both lacunary and full) spherical maximal
functions. We make use of examples in the spirit of Knapp and Stein [32]. The approach in the
(linear) sparse domination setting is developed in [20].

7.1. Sparse form for Mlac. Let f1 = f2 = χ||x|−1|<δ and h = χ|x|≤cδ for some 0 < δ < 1/4

and c ∈ (0, 12). Then we get that A1fi(x) ≥ c h(x), i = 1, 2. Therefore, the sparse domination
for the operator Mlac implies that

δn .
∫
Rn
A1f1(x)A1f2(x)h(x) dx ≤ C0

∑
Q∈S
|Q|〈f1〉Q,r1〈f2〉Q,r2〈h〉Q,t,

where S is a sparse collection. Observe that in the estimate above, in order to make non-trivial
contribution to the term on the right hand side, the cube Q ∈ S must necessarily intersect with
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the supports of f1, f2 and h. Moreover, it is crucial that

dist(supp(fi), supp(h)) ≥ 1/2,

which implies that all the cubes contributing to the sum have side length at least 1/2. Further,
since the contribution of a cube decreases as its size increases, it suffices to assume that S
consists of one such cube Q. We have the estimate

δn . ‖f1‖Lr1‖f2‖Lr2‖h‖Lt . |Q|1−
1
r1
− 1
r2
− 1
t δ

1
r1

+ 1
r2

+n
t .

Since δ > 0 can be chosen arbitrarily small, we get that

1

r1
+

1

r2
+
n

t
≤ n.

Note that the estimate above forces the condition t > 1. Substituting the value of t in terms of
s1 and s2, we get the following necessary condition

(28)
1

r1
+
n

s1
+

1

r2
+
n

s2
≤ 2n.

In a similar fashion, one can show that if f1 = f2 = χ|x|<δ and h = χ||x|−1|<cδ for some

0 < δ < 1/4 and 0 < c < 1
2 , then we get that A1f1(x) ≥ cδn−1h(x). This gives us another

necessary condition, namely n
r1

+ n
r2

+ 1
t ≤ 2n− 1. This would mean that

(29)
n

r1
+

1

s1
+
n

r2
+

1

s2
≤ 2n.

The conditions (28) and (29) imply that both of ( 1
ri
, 1
si

), i = 1, 2, cannot lie outside of the
triangle Ln.

Next, take f1 = χ|x|<δ, f2 = χ|x|<2 (also interchanging f1 and f2) and h = χ||x|−1|<cδ for some

0 < δ < 1 and 0 < c < 1
2 and observe that

δn−1δ . δ
n
r1 δ

1
t .

This yields that n
ri

+ 1
t ≤ n, i = 1, 2. Similarly, by taking f1 = χ||x|−1|<δ, f2 = χ|x|<2, h = χ|x|<cδ

for some 0 < δ < 1/4 and 0 < c < 1
2 and interchanging the roles of f1 and f2 we get that

1
ri

+ n
t ≤ n, i = 1, 2.

Putting the above two conditions together we get the following condition.

(30) max
{ n
ri

+
1

t
,

1

ri
+
n

t

}
≤ n, i = 1, 2.

The conditions (28), (29) and (30) must necessarily be satisfied for the sparse domination of the
operator Mlac to hold.

7.2. Sparse form for Mfull. Consider f1 = |x|1−n(log 1
|x|)
−1χ|x|< 3

4
and f2 = χ|x|<1 and note

that f1 ∈ Lr1(Rn) for 1 < r1 ≤ n
n−1 . It is easy to verify that Mfull(f1, f2) is infinite on a set

of positive measure. This gives us the condition that 1
r1
< n−1

n . Using the symmetry between

f1 and f2, we also have that 1
r2
< n−1

n . Next, we observe that both of ( 1
ri
, 1
si

), i = 1, 2 cannot
lie above the line segment P1P4 in Fn, see Figure 1. This can be proved by considering the
functions f1 = f2 = χ||x|−1|<δ and h = χ|x|≤cδ for some 0 < δ < 1/4 and c ∈ (0, 12). This is
same as in the case of lacunary maximal function. Note that the support-separation property
also holds. We omit the details.

Consider f1 = f2 = χR1 and h = χR2 , where R1 = [−C
√
δ, C
√
δ]n−1 × [−Cδ,Cδ] and

R2 = [−
√
δ,
√
δ]n−1 × [43 ,

5
3 ]. This yields

〈M̃(f1, f2), h〉 & δ
3(n−1)

2 .

The sparse domination of 〈M̃(f1, f2), h〉 yields

δ
3(n−1)

2 ≤ δ
n+1
2r1 δ

n+1
2r2 δ

n−1
2t .
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This gives us the condition

(31)
n+ 1

r1
+
n− 1

s1
+
n+ 1

r2
+
n− 1

s2
≤ 4(n− 1).

Therefore, both of ( 1
ri
, 1
si

), i = 1, 2, cannot lie above the line segment P3P4 in Figure 1.

Also, the conditions 1
ri

+ n
t ≤ n, i = 1, 2, must be satisfied for the sparse domination of the

full maximal function as they hold for the lacunary maximal function. Further, by considering
f1 = χR1 , f2 = χB((0,0,...., 4

3
),2) and h = χR2 , we obtain that

δn−1 . 〈Mfull(f1, f2), h〉 . δ
n+1
2r1 δ

n−1
2t .

Therefore, we get that
n+ 1

r1
+
n− 1

t
≤ 2(n− 1).

Interchanging the roles of f1 and f2, we also have that

n+ 1

r2
+
n− 1

t
≤ 2(n− 1).

These are necessary conditions on various parameters in order the sparse domination to hold for
the full bilinear spherical maximal function.
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[3] J. A. Barrionuevo; L. Grafakos; D. He; P. Honźık; L. Oliveira, Bilinear spherical maximal function, Math.
Res. Lett. 25 (2018), no. 5, 1369–1388.

[4] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1986),
69–85.

[5] A. P. Calderón; A. Zygmund, A note on the interpolation of linear operations, Studia Math. 12 (1951),
194–204.

[6] C. P. Calderón, Lacunary spherical means, Illinois J. Math. 23 (1979), no. 3, 476–484.
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