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Abstract We present LatNet Builder, a software tool to find good parameters for
lattice rules, polynomial lattice rules, and digital nets in base 2, for quasi-Monte
Carlo (QMC) and randomized quasi-Monte Carlo (RQMC) sampling over the s-
dimensional unit hypercube. The selection criteria are figures of merit that give
different weights to different subsets of coordinates. They are upper bounds on the
worst-case error (for QMC) or variance (for RQMC) for integrands rescaled to have
a norm of at most one in certain Hilbert spaces of functions. We summarize what are
the various Hilbert spaces, discrepancies, types of weights, figures of merit, types of
constructions, and search methods supported by LatNet Builder. We briefly discuss
its organization and we provide simple illustrations of what it can do.

1 Introduction

QMC methods approximate an integral of the form

µ =
∫ 1

0
· · ·
∫ 1

0
f (u1, . . . ,us)du1 · · ·dus =

∫

(0,1)s
f (u)du = E[ f (U)] (1)

Pierre L’Ecuyer
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where f : (0,1)s→ R and U is a uniform random vector over [0,1)s, by the average

µ̄n =
1
n

n−1

∑
i=0

f (ui) (2)

where Pn = {u0, . . . ,un−1} ⊂ [0,1)s is a set of n deterministic points that cover the
unit hypercube more evenly than typical independent random points. That is, the
discrepancy between their empirical distribution and the uniform distribution over
[0,1)s is smaller than for independent random points and converges to 0 faster than
O(n−1/2) when n→ ∞. This discrepancy can be defined in many ways. It usually
represents the worst-case integration error for a given class of integrands f . Typically,
this class is a reproducing-kernel Hilbert space (RKHS) H of functions, such that

|En| := |µ̄n−µ| ≤D(Pn)V ( f ) (3)

for all f ∈H , where V ( f ) is the norm of f −µ in H (we call it the variation of f )
and D(·) is the discrepancy measure associated with this Hilbert space [8, 19, 40].
For a fixed f ∈H with V ( f )> 0, the error bound in (3) converges at the same rate as
D(Pn). A traditional version of (3), whose derivation does not involve Hilbert spaces,
is the classical Koksma-Hlawka inequality, in which V ( f ) is the Hardy-Krause
variation and D(Pn) is the star discrepancy, which converges as O((logn)s−1n−1) for
well-selected point sets [40]. Another important choice for H is a Sobolev space of
functions whose mixed partial derivatives of order up to α are square-integrable. It is
known that for this space, one can construct point sets whose discrepancy converges
as O((logn)(s−1)/2n−α), and that this is the best possible rate [4, 8, 15, 16, 17, 18].
The main classes of QMC point sets are lattice points and digital nets.

For RQMC, the n QMC points are randomized to provide a set of random points
{U0, . . . ,Un−1} ⊂ (0,1)s for which (i) each Ui individually has the uniform distribu-
tion over [0,1)s, and (ii) the points keep their highly-uniform distribution collectively.
Randomizations that provably preserve the low discrepancy generally depend on the
type of QMC construction: some are used for lattice points and others for digital
nets. In some cases, the randomization may even improve the convergence rate of
the mean square discrepancy. The RQMC estimator

µ̂n,rqmc =
1
n

n−1

∑
i=0

f (Ui), (4)

which is now random, is unbiased for µ and one wishes to minimize its variance. For
more details on RQMC, see for example [23, 27, 30, 31, 38, 45, 46, 47].

The aim of this paper is to introduce LatNet Builder, a software tool designed to
construct good lattice and digital point sets for QMC and RQMC, in any number of
dimensions, for an arbitrary number of points, arbitrary weights on the subsets of
coordinates, arbitrary smoothness of the integrands, a variety of construction and
randomization methods, and several choices of discrepancies. The point sets can also
be extensible in the number of points and number of dimensions. By “constructing
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the points” here we mean defining the set Pn by selecting the parameter values
for a general structure, by trying to miminize a figure of merit (FOM) that may
represent a discrepancy D(Pn) or be an upper bound on it. Once this is done, other
software can be used to randomize and generate the points for their utilization in
applications; see [28, 43] for example. LatNet Builder is available in open source
at https://github.com/umontreal-simul/latnetbuilder. It is a descendant of Lattice
Builder [34], whose scope was limited to ordinary lattice rules. Another related tool
is Nuyens’ fast CBC constructions [41].

The rest of this paper is organized as follows. In Section 2, we recall the types of
QMC point sets covered by our software, namely ordinary lattice points, polynomial
lattice points, digital nets, and their higher-order and interlaced versions, as well as
the main randomization methods to turn these point sets into RQMC points. The
discrepancies that we consider often provide upper bounds on the mean square
integration error when using these randomizations, for certain classes of functions.
In Section 3, we give the general form of weighted RKHS used in this paper and the
corresponding generalized Koksma-Hlawka inequality. We also recall the common
types of weights, all supported by the software. In Section 4, we review and justify
the various discrepancies that are supported by LatNet Builder and can be used as
FOMs to select the parameters of point set constructions. In Section 5, we summarize
the search methods implemented in our software. In Section 7, we compare FOM
values obtained by various point set constructions and search methods. We also
compare RQMC variance for simple integrands f . Section 8 gives a conclusion.

2 Point Set Constructions and Randomizations

LatNet Builder handles ordinary rank-1 lattice points as well as digital nets, which
include polynomial lattice rules and high-order and interlaced constructions.

For a rank-1 lattice rule, the point set is

Pn = {ui = iv1 mod 1, i = 0, . . . ,n−1}

where nv1 = a = (a1, . . . ,as) ∈ Zs
n ≡ {0, · · · ,n− 1}s. It is a Korobov rule if a =

(1,a,a2 mod n, . . . ,as−1 mod n) for some integer a ∈ Zn. The parameter to select
here is the vector a, for any given n. The usual way to turn a lattice rule into an
RQMC point set is by a random shift: generate a single random point U uniformly
in (0,1)s, and add it to each point of Pn, modulo 1, coordinate-wise. This satisfies
the RQMC conditions. For more details on lattice rules and their randomly-shifted
versions, see [20, 21, 27, 30, 33, 50].

The Digital nets in base 2 handled by LatNet Builder are defined as follows. The
number of points is n = 2k for some integer k. We select an integer w ≥ k and s
generating matrices C1, . . . ,Cs of dimensions w× k and of rank k, with elements
in Z2 ≡ {0,1}. The points ui, i = 0, . . . ,2k − 1, are defined as follows: for i =
ai,0 +ai,12+ · · ·+ai,k−12k−1, we take

https://github.com/umontreal-simul/latnetbuilder
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ui, j,1
...

ui, j,w


 = C j




ai,0
...

ai,k−1


 mod 2, ui, j =

w

∑
`=1

ui, j,`2−`,

and ui = (ui,1, . . . ,ui,s). There are more general definitions in [8, 40]. The parameters
to optimize are the elements of the matrices C j. Since each C j has rank k, each one-
dimensional projection truncated to its first k digits is Zn/n = {0,1/n, . . . ,(n−1)/n}.
The ordinary digital nets constructed by LatNet Builder often have w = k, so the
points have only k digits, but this is not always true.

The most popular digital net constructions are still the Sobol’ points [52], in base
b = 2, with k× k generating matrices that are upper triangular and invertible. These
matrices are constructed by a specific method, but the bits of the first few columns
above the diagonal can be selected arbitrarily, and their choice has an impact on
the quality of the net. General-purpose choices have been proposed in [25, 35], e.g.,
based on the uniformity of two-dimensional projections. LatNet Builder allows one
to construct the matrices based on a much more flexible class of criteria.

A polynomial lattice rule (PLR) in base 2 with n = 2k points is defined as follows.
We denote by Z2[z] the ring of polynomials with coefficients in Z2, by L2 the set
of formal series of the form ∑

∞
`=`0

x`z−` with each x` ∈ Z2 and `0 ∈ Z, and for any
given integer w≥ k, we define ϕw : L2→ R by

ϕw

(
∞

∑
`=`0

x`z−`
)

=
w

∑
`=max(`0,1)

x`2−`. (5)

We select a polynomial modulus Q = Q(z) ∈ Z2[z] of degree k, and a generating vec-
tor a(z) = (a1(z), . . . ,as(z)) ∈ Z2[z]s, whose coordinates are polynomials of degrees
less than k having no common factor with Q(z). The point set of cardinality n = 2k is

Pn =

{(
ϕw

(
h(z)a1(z)

Q(z)

)
, . . . ,ϕw

(
h(z)as(z)

Q(z)

))
: h(z) ∈ Z2[z], deg(h(z))< k

}
.

(6)
Here, we want to optimize the vector a(z). This point set turns out to be a digital net in
base 2 whose generating matrices C j contain the first w digits of the binary expansion
of the a j(z)/Q(z). These are Hankel matrices: each row is the previous one shifted
to the left by one position, with the last entry determined by the recurrence with
characteristic polynomial Q(z), applied to the entries of the previous row. In theory,
they have an infinite number of rows, but in practice we truncate them to w≥ k rows.
This finite w should be as large as possible to obtain a good approximation of the
true PLR points. Typically, w = 31, but it could be w = 63 if we use 64-bit integers.
See [8, 26, 36, 40, 39] for further details on PLRs.

A high-order polynomial lattice rule (HOPLR) of order α with n = 2k points is
obtained by constructing an ordinary PLR with polynomial modulus Q̃(z) of degree
αk having 2αk points in s dimensions, and using only the first n = 2k points. See
[1, 2, 7]. This type of construction can achieve a higher order of convergence for the
error (almost O(n−α)) than an ordinary PLR for integrands f in a Sobolev space



A Tool for Custom Construction of QMC and RQMC Point Sets 5

of smoothness order α (i.e., when all mixed partial derivatives of up to order α are
square integrable). One drawback is that because of the high degree of Q̃, the cost of a
full CBC construction (see Section 5) is much higher since there are 2αk possibilities
to examine each time we select a new coordinate of the generating vector.

Dick [3, 4] also proposed an interlacing construction, for digital nets in gen-
eral (which includes PLRs), that can provide the higher-order convergence rate of
almost O(n−α) for the integration error, for integrands with smoothness order α .
For an interlacing factor d ∈ N, the method first constructs a digital net in sd di-
mensions, with generating matrices C1, . . . ,Csd . Then the generating matrices of the
s-dimensional interlaced net are C(d)

1 , . . . ,C(d)
s , where the rows of C(d)

j are the first
rows of C( j−1)d+1, . . . ,C jd in this order, then the second rows of these matrices in the
same order, and so on.

The simplest way to define a RQMC point set from a digital net in base 2 is
to add a digital random shift modulo 2 to all the points. To do this, we generate a
single point U = (U1, . . . ,Us) uniformly in (0,1)s, and perform a bitwise exclusive-or
(XOR) between the binary digits of U and the corresponding digits of each point ui.

A more involved randomization method for digital nets is the nested uniform
scramble (NUS) of Owen [45, 46]. In base 2, for each coordinate, we do the following.
With probability 1/2, flip the first bit of all the points. Then, for the points whose first
bit is 1, with probability 1/2, flip all the second bits. Do the same for the points whose
first bit is 0, independently. Then do this recursively for all the bits. After all flipping
is done for the first ` bits, partition the points in 2` batches according to the values of
their first ` bits, and for each batch, flip bit `+1 of all the points with probability
1/2, independently across the batches. This requires (2`−1)s random bits to flip the
first ` bits of all coordinates. One can equivalently do this only for the first k bits, and
generate the other bits randomly and independently across points [38].

A less expensive scramble, which gives less independence than NUS but more than
a digital random shift, is a (left) linear matrix scramble (LMS) followed by a digital
random shift (LMS+shift) [23, 24, 38, 48]. The LMS replaces C j by C̃ j = L jC j
mod 2, where L j is a random non-singular lower-triangular w×w binary matrix.

Owen [46] proved that under sufficient smoothness conditions on f , the RQMC
variance with NUS on digital nets with fixed s and bounded t converges as
O(n−3(logn)s−1). A variance bound of the same order was shown for LMS+shift in
[23, 54]. Note that these results were proved under the assumption that w = ∞.

3 Hilbert Spaces and Projection-Dependent Weights

The FOMs used by LatNet Builder are based on generalized (weighted) Koksma-
Hlawka inequalities of the form (3) where

V p( f ) = ∑
/0 6=u⊆{1,2,...,s}

γ
−p
u V p( fu) (7)
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and
Dq(Pn) = ∑

/0 6=u⊆{1,2,...,s}
γ

q
uD

q
u(Pn), (8)

where 1/p+ 1/q = 1, γu ∈ R is a weight assigned to the subset u, V ( fu) is the
variation of fu, Du(Pn) is the discrepancy of the projection of Pn over the subset u
of coordinates, and f = ∑u⊆{1,2,...,s} fu is the functional ANOVA decomposition of
f [10, 47]. LatNet Builder allows any q ∈ [1,∞]. Taking q = ∞ with p = 1 means
removing the q and taking the max instead of the sum in (8), while p = ∞ with
q = 1 means removing the p and taking the max instead of the sum in (7). The most
common choice is p = q = 2.

LatNet Builder implements a variety of choices for Du(Pn), depending on the
point set constructions. Some of these measures correspond to the worst-case error
in some function space, assuming that the points of Pn are not randomized. Others
correspond to the mean-square error (or variance), assuming that the points are
randomized in some particular way. This is typically done by defining a RKHS
with a kernel that is invariant with respect to the given randomization (i.e., digital
shift-invariant, scramble-invariant, etc.), and taking the worst-case error in that space.

The role of the weights is to better recognize the importance of the subsets u for
which fu contributes the most to the error or variance. That is, if V ( fu) is unusually
large, we want to divide it by a larger weight γu to control its contribution to V ( f ),
but then we have to multiply Du(Pn) in (8) by the same weight. The final effect is
that the FOM will penalize more the discrepancy for that particular projection.

In principle, the weights γu can be arbitrary. But for large s, defining arbitrary
individual weights for the 2s− 1 projections is impractical, so special forms of
weights that are parameterized by much fewer than 2s− 1 parameters have been
proposed. The most common ones are product weights, for which a weight γ j is
assigned to coordinate j for j = 1, . . . ,s, and γu = ∏ j∈u γ j; order-dependent weights,
for which γu =Γ|u| where Γ1, . . . ,Γs are selected constants and |u| is the cardinality of
of u; and the product-and-order-dependent (POD) weights, which are a combination
of the two, with γu =Γ|u|∏ j∈u γ j. These are all available in LatNet Builder. For more
discussion on how to select the weights, see [8, 12, 32, 33, 34], for example.

LatNet Builder can construct point sets that are extensible in the number of
dimensions and also in the number of points, which means that we can construct
point sets that perform well in the first s dimensions for s = smin, . . . ,smax, and/or
if we take the first n points for n = n1,n2, . . . ,nm, simultaneously. Typically, one
would take n j = 2kmin+ j−1 for j = 1, . . . ,m, so nm = 2kmax = 2kmin+m−1 [22]. The
global FOM in this case will be a weighted sum or maximum of the FOMs over the
considered dimensions s and/or cardinalities n j. The CBC construction approach
described in Section 5 already gives a way to implement the extension in s. For
the extension in n (or k), LatNet Builder implements criteria and heuristic search
methods that account for a global FOM.
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4 Figures of Merit

In this section, we review the FOMs implemented in LatNet Builder. Most of them
have the general form (8) where typically, when the points have the appropriate
special structure of a lattice, polynomial lattice, or digital net, and with an adapted
FOM, we have

Dq
u(Pn) =

1
n

n−1

∑
i=0

∏
j∈u

φ(ui, j) (9)

for some function φ : [0,1)→ R. With product weights γu = ∏ j∈u γ j, this becomes

Dq(Pn) =−1+
1
n

n−1

∑
i=0

s

∏
j=1

(1+ γ
q
j φ(ui, j)),

which can be computed with O(ns) evaluations of φ .
As an illustration, for a randomly-shifted lattice rule, the variance is:

Var[µ̂n,rqmc] = ∑
0 6=h∈L∗s

| f̂ (h)|2, (10)

where L∗s ⊂ Zs is the dual lattice [30]. It is also known that for periodic continuous
functions having square-integrable mixed partial derivatives up to order α/2 for
an even integer α ≥ 2, one has | f̂ (h)|2 = O((max(1,h1) · · ·max(1,hs))

−α). This
motivates the well-known FOM [33, 40, 50]:

Pα := ∑
06=h∈L∗s

(max(1,h1) · · ·max(1,hs))
−α

=
1
n

n−1

∑
i=0

∑
/0 6=u⊆{1,...,s}

(
−(−4π2)α/2

α!

)|u|
∏
j∈u

Bα(ui, j) (11)

where Bα/2 is the Bernoulli polynomial of degree α/2 (B1(u) = u−1/2, B2(u) =
u2− u+ 1/6, etc.), and the equality in (11) holds only when α is an even inte-
ger. Moreover, there are rank-1 lattices point sets Pn for which Pα converges as
O(n−α+ε) for any ε > 0 [9, 49, 50]. Adding projection-dependent weights γu leads
to the weighted Pγ,α , defined by (8) and (9) with q = 2,

φ(ui, j) =−(−4π
2)α/2Bα(ui, j)/α!,

and D2
u(Pn) = Pα,u(Pn) is the Pα for the projection of Pn on the coordinates in u.

There is a similar variance expression for digital nets in base 2 with a random
digital shift, with the Fourier coefficients f̂ (h) replaced the the Walsh coefficients,
and the dual lattice replaced by the dual net [8, Definition 4.76] or the dual lattice
in the case of PLRs [26, 36]. Thus, FOMs that correspond to variance bounds
can be obtained by finding easily computable bounds on the Walsh coefficients.
By assuming a rate of decrease of O(2−α|h|) of the Walsh coefficients f̃ (h) with
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h = (h1, . . . ,hs) ∈ Ns and |h|= |h1|+ · · ·+ |hs|, and using a RKHS with shift- and
scramble-invariant kernel, [54] and [6] obtain a FOM of the form (8) and (9) with

φ(x) = φα(x) = µ(α)− I[x > 0] ·2(1+blog2(x)c)(α−1)(µ(α)+1),

where I is the indicator function, −blog2 xc is the index of the first nonzero digit in
the expansion of x, and µ(α) =

(
1−21−α

)−1 for any real number α > 1. This gives
µ(2) = 2, µ(3) = 4/3, . . . , For α = 2, this gives

φ2(x) = 2(1− I[x > 0] ·3 ·2blog2(x)c),

which corresponds to the FOM suggested in [36, Section 6.3] for PLRs. In [23, 54],
φ(x) is written in terms of η = α − 1 instead, but it is exactly equivalent. These
papers also show the existence of digital nets for which the FOM converges as
O(n−α(logn)s−1) for any α > 1. This FOM can be seen as a counterpart of Pα and
we call it P̃α . Its value P̃α,u(Pn) on the projection of Pn on the coordinates in u can
be used for D2

u(Pn), with q = 2. Note that under our assumption that the first k rows
of each generating matrix are linearly independent, −blog2(ui, j)c never exceeds k
when ui, j 6= 0, and therefore this FOM depends only on the first k bits of output.

Dick and Pillichshammer [8, Chapter 12] consider a RKHS with shift-invariant
kernel, which is a weighted Sobolev space of functions whose mixed partial deriva-
tives of order 1 are square-integrable. This gives a FOM of the form (8) and (9) with
q = 2 and

φ(x) = 1/6− I[x > 0] ·2blog2(x)c−1.

They show that there are digital nets for which this FOM (and therefore the square
error) converges almost as O(n−2). In their Chapter 13, they find that the scramble-
invariant version gives the same φ . Note that this φ(x) is equal to φ2(x) above, divided
by 12. Therefore, we can get the corresponding FOM just from P̃2 by multiplying
the weights by order-dependent factors of 1/12 j for order j.

Goda [13] examines interlaced polynomial lattice rules (IPLR), also for a Sobolev
space of order α , with an interlacing factor d > 1. He provides two upper bounds on
the worst-case error in a deterministic setting. These bounds can be used as FOMs.
The first is valid for all positive integer values of α and d > 1, whereas the second
holds only for 1 < d ≤ α , but is tighter when it applies. These two bounds have the
form (8) and (9) with q = 1, γu replaced by γ̃u, and

φ(xi, j) =−1+
d

∏
`=1

(1+φα,d,`(xi,( j−1)d+`)),

where for the first bound, γ̃u = γu2α(2d−1)|u|/2,

φα,d,`(x) =
1−2(min(α,d)−1)blog2 xc(2min(α,d)−1)

2(α+2)/2(2min(α,d)−1−1)

for all x ∈ [0,1), where 2blog2 0c = 0, while for the second bound, γ̃u = γu and
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φα,d,`(x) =
2d−1(1−2(d−1)blog2 xc(2d−1))

2`(2d−1−1)
.

One can achieve a convergence rate of almost O(n−min(α,d)) for these FOMs (and
therefore for the worst-case error). We denote these two FOMs by I

(a)
α,d and I

(b)
α,d .

Goda and Dick [14] proposed another FOM, also for a Sobolev space of order
α , for interlaced randomly-scrambled PLRs of high order. They showed that this
scheme can achieve the best possible convergence rate of O(n−(2min(α,d)+1)+δ ) for
the variance. The FOM, denoted I

(c)
α,d , has the same form, but with q = 2,

φ(x) = φα,d(x) =
1−22min(α,d)blog2 xc(22min(α,d)+1−1)

2α(22min(α,d)−1)
,

and γu replaced by γ̃u = γu D|u|
α,d where Dα,d = 22max(d−α,0)+(2d−1)α .

Another set of FOMs are obtained from upper bounds on the star discrepancy of
D∗(Pn) or its projections on subsets of coordinates, when Pn is a digital (t,k,s)-net.
One such bound is D∗(Pn)≤ 1− (1−1/n)s +R2 where

R2 =−1+
1
n

n−1

∑
i=0

s

∏
j=1

[
n−1

∑
k=0

2−blog2 kc−1walk(ui, j)

]
(12)

walk is the kth Walsh function in one dimension, and we assume that the generating
matrices C j are k×k. See [8, Theorems 5.34 and 5.36], where a more general version
with projection-dependent weights is also given. For PLRs in base b= 2, this criterion
is equal to R ′2,γ given in [8, Chapter 10]:

R ′2,γ =− ∑
/0 6=u⊆{1,2,...,s}

γu+
1
n

n−1

∑
i=0

∑
/06=u⊆{1,2,...,s}

γu ∏
j∈u

φk(ui, j) (13)

where φk(u) =−blog2(u)c/2 if u≥ 2−k and φk(u) = 1+ k/2 otherwise.
A classical upper bound on the star discrepancy is also given by the t-value of the

digital net:

D∗(Pn)≤
2t

n

s−1

∑
j=0

(
k− t

j

)
.

If we use this upper bound for each projection on the subset u of coordinates, we get
the FOM (8) with q = 1 and

Du(Pn) =
2tu

n

|u|−1

∑
j=0

(
k− tu

j

)

where tu = tu(Pn) is the t-value of the projection of Pn on the coordinates in u. LatNet
Builder implements this with arbitrary weights, using algorithms described in [37].
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Dick [4] obtains worst-case error bounds that converge at rate almost O(n−α) for
interlaced digital nets, based on the t-values of the projections.

5 Search Methods

For given construction type, FOM, and weights, finding the best choice of parameters
may require to try all possibilities, but their number is usually much too large. LatNet
Builder implements the following search methods.

In an exhaustive search, all choices of parameters are tried, so we are guaranteed
to find the best one. This is possible only when there are not too many possibilities.

A random search samples uniformly and independently a fixed number r of
parameter choices, and the best one is retained.

In a full component-by-component (CBC) construction, the parameters are selected
for one coordinate at a time, by taking into account the choices for the previous
coordinates only [5, 8, 51]. The parameters for coordinate j (e.g., the jth coordinate
of the generating vector in the case of lattices), are selected by minimizing the
FOM for the first j coordinates, in j dimensions, by examining all possibilities
of parameters for this coordinate, without changing the parameter choices for the
previous coordinates. This is done for the s coordinates in succession. This greedy
approach can reduce by a huge factor (exponential in the dimension) the total number
of cases that are examined in comparison with the exhaustive search. What is very
interesting is that for most types of QMC constructions and FOMs implemented in
LatNet Builder, the convergence rate for the worst-case error or variance obtained
with this restricted approach is provably the same as for the exhaustive search [8, 15].

For lattice-type point sets, with certain FOMs and choices of weights (e.g., P2
and P̃2 with product and/or order-dependent weights), a fast CBC construction can
be implemented by using a fast Fourier transform (FFT), so the full CBC construction
can be performed much faster [8, 44, 42]. LatNet Builder supports this.

When the number of choices for each coordinate is too large or fast-CBC does not
apply, one can examine only a fixed number of random choices for each coordinate
j; we call this the random CBC construction.

For lattice-type constructions, one can also further restrict the search to Korobov-
type generating vectors. The first coordinate is set to 1 and only the second coordinate
needs to be selected. This can be done either by an exhaustive search or by just taking
a random sample for the second coordinate (random Korobov).

For digital nets, a mixed CBC method is also available: it uses full CBC for the
first d−1 coordinates and random CBC for the other ones, for given 1≤ d ≤ s.
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6 Usage of the Software Tool

At the first level, LatNet Builder is a library written in C++ which implements classes
and methods to compute FOMs and search for good point sets for all the construc-
tion methods and FOMs discussed in this paper. The source code and a detailed
reference manual for the library are provided at https://github.com/umontreal-simul/
latnetbuilder. The library can be used directly from C++ programs and can be ex-
tended if desired. This is the most flexible option, but it requires knowledge of C++
and the library.

At the second level, there is an executable latnetbuilder program that can
be called directly from the command line in Linux, Mac OS, or Windows. This
program has a large number of options to specify the type and number of points,
number of dimensions, search method, FOM, weights, output file format, etc. We
think this is the most convenient way of using LatNet Builder in practice. In addition
to giving the search results on the terminal, the program creates a directory with
two output files: one summarizes the search parameters and the other one puts the
parameters of the selected point set in a standard format designed for reading by
other software that can generate and use the RQMC points in applications. There are
selected file formats for ordinary lattice rules, polynomial lattice rules, Sobol points,
and general digital nets in base 2. A tutorial on the command line and a summary of
the options can be found in the reference manual.

At a third level, there is a Java interface in SSJ, a Python interface included in the
distribution, and a Graphical User Interface (GUI) based on the Jupyter ecosystem,
written in Python. These interfaces use the command line internally. With the GUI,
the user can select the desired options in menus, write numerical values in input
cells, write the name of the desired output directory, and launch a search. The LatNet
Builder program with the Python interface and the GUI can be installed as a Docker
container on one’s machine. An even simpler access to the GUI is available without
installing anything: just click on the “Launch Binder” black and pink link on the
GitHub site and it will run the GUI with a version of the program hosted by Binder.
This service provides limited computation resources but is convenient for small
experiments and to get a sense of what the software does.

We now give examples to illustrate how the command line works, how the results
look like, and give some idea of the required CPU times for the search. The timings
were made in a VirtualBox for Ubuntu Linux running atop Windows 10 on an old
desktop computer with an Intel i7-2600 processor at 3.4GHz and 32 Gb of memory.

The following command makes a search for a polynomial lattice rule with n = 216

points in 256 dimensions, with the default irreducible polynomial modulus, using
the fast-CBC search method, the P̃2 criterion, q = 2, and order-dependent weights
Γ2 = 10, Γ3 = 0.1, Γ4 = 0.001, and the other weights equal to 0 (recall that Γ1 has no
impact on the selection). These weights decrease quickly with the order because the
number of projections of any given order increases very quickly with the order. If
they decrease too slowly, the total weight of the projections of order 2 in the FOM
will be negligible compared to those of order 4, for instance. For a smaller s, the
weights may decrease more slowly.

https://github.com/umontreal-simul/latnetbuilder
https://github.com/umontreal-simul/latnetbuilder
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latnetbuilder -t lattice -c polynomial -s 2ˆ16 -d 256 -e fast-CBC
-f CU:P2 -q 2 -w order-dependent:0,0,10.,0.1,0.001 -O lattice

This search takes about 840 seconds to complete and the retained rule had an
FOM of 60.235. About 70% of this FOM is contributed by the projections of order 4
and less than 1% by the projections of order 2. The output file looks like:

# Parameters for a polynomial lattice rule in base 2
256 # s = 256 dimensions
16 # n = 2ˆ16 = 65536 points
96129 # polynomial modulus
1 # coordinates of generating vector, starting at j=1
47856
60210
44979

...

Instead of making the search directly in the polynomial lattice space, we can make
the same search by viewing the PLR as a digital net, using the option “-t net.”
With that option, fast-CBC search is not available, but we can do a random CBC
search, say with 100 samples for each coordinate. With either search method, instead
of reporting the modulus and generating vector of the PLR in the output file, we
can have all the columns of the generating matrices, by using the option “-O net”
instead of “-O lattice.” The command is:
latnetbuilder -t net -c polynomial -s 2ˆ16 -d 256

-e random-CBC:100 -f CU:P2 -q 2
-w order-dependent:0,0,10.,0.1,0.001 -O net

With this, the search takes about 160 seconds and gives an FOM of 63.25. The output
file looks like this, with 16 integers per dimension, one integer for each column:

# Parameters for a digital net in base 2
256 # s = 256 dimensions
16 # n = 2ˆ16 = 65536 points
31 # r = 31 binary output digits
# Columns of gen. matrices C_1,...,C_s, one matrix per line:
33260 66520 133040 266081 532162 1064325 2128651 4257303 ...
1561357389 975231131 1950462262 1753440876 1359398105 ...
1642040599 1136597551 125711455 251422911 502845823 ...

...

For a search in 32 dimensions instead of 256, it takes about 40 seconds for the
first case and 8 seconds for the second case.

As another example, the following command launches a search for good direction
numbers for Sobol’ points for up to 216 points in 256 dimensions. It uses a mixed
CBC search which does a full CBC evaluation for the first 10 coordinates and then a
random-CBC search with 100 random samples for each of the remaining coordinates.
The criterion is the maximum t-value with order-dependent weights of Γ2 = 1.0,
Γ1 = 0.5, and 0 for everything else. Here, since we take the sup over the projections,
the weights can decrease much more slowly.
latnetbuilder -t net -c sobol -s 2ˆ16 -d 256 -e mixed-CBC:100:10

-f projdep:t-value -q inf -w order-dependent:0:0,1.0,0.5

The search took about 3340 seconds and returned a FOM of 8.0. The output file
provides the retained direction numbers and it looks like this:



A Tool for Custom Construction of QMC and RQMC Point Sets 13

# Initial direction numbers m_{j,c} for Sobol points
# s = 256 dimensions
1 # This is m_{j,k} for the second coordinate
1 1
1 1 1
1 1 1
1 1 5 1
1 3 5 1
1 1 1 9 9
1 1 1 9 17

...

If we change s to 32, the search takes 12 seconds and the FOM is 5.0 instead.

7 Simple Numerical Illustrations

Here we give a few simple examples of what LatNet Builder can do. The simulation
experiments, including the generation and randomization of the points, were done
using SSJ [29].

7.1 FOM quantiles for different constructions

One might be interested in estimating the probability distribution of FOM values
obtained when selecting parameters at random for a given type of construction,
perhaps under some constraints, and as a function of n. Here we estimate this
distribution by its empirical counterpart with an independent sample of size 1000
(with replacement), and we report the 0.1, 0.5 and 0.9 quantiles of this empirical
distribution, for n going from 26 to 218. We do this for PLRs, Sobol’ points, and digital
nets with arbitrary invertible and projection-regular generating matrices (random
nets), with P̃2 taken as the FOM, in s = 6 dimensions, with γu = 0.7|u| for all u. We
also report the value obtained by a (full) fast CBC search for a PLR. The results are
displayed in the first panel of Figure 1. We see that the FOM distribution has a smaller
mean and much less variance for the Sobol’ points than for the other contructions.
Even the median obtained for Sobol’ beats (slightly) the FOM obtained by a full
CBC construction with PLRs. The quantiles for random PLRs and random nets are
approximately the same.

The second panel of the figure shows the results of a similar sampling for PLRs
with I

(c)
2,2 as a FOM, also in 6 dimensions. Here, the FOM values are more dispersed

and the fast CBC gives a significantly better value than the best FOM obtained by
random sampling. Also the search for the point set parameters is much quicker with
the fast CBC construction than with random sampling of size 1000.
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Fig. 1: The 0.1, 0.5, and 0.9 quantiles of the FOM distribution as functions of n for
various constructions, in log-log scale.
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7.2 Comparison with tabulated parameter selections

We now give small examples showing how searching for custom parameter values
with LatNet Builder can make a difference in the RQMC variance compared with
pre-tabulated parameter values available in software or over the Internet. We do
this for Sobol’ nets, and our comparison is with the precomputed direction numbers
obtained by Joe and Kuo [25], which are arguably the best proposed values so far.
These parameters were obtained by optimizing a FOM based on the t-values over
two-dimensional projections, using a CBC construction. With LatNet Builder, we
can account for any selected projections in our FOM. For instance, if we think all
the projections in two and three dimensions are important, we can select a FOM that
accounts for all these projections. To illustrate this, we made a CBC construction
of n = 212 Sobol’ points in s = 15 dimensions, using the sum or the maximum of t-
values in the two- and three-dimensional projections. Figure 2 shows the distribution
of t-values obtained with the sum, the max, and the points from [25]. Compared with
the latter, we are able to reduce the worse t-value over 3-dim projections from 8 to 5
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when using the max, and to reduce the average t-value when using the sum. However,
when using the max, we get a few poor two-dim projections, because we compare
the t-values on the same scale for two and three dimensions. We should probably
multiply the t-value by a scaling factor that decreases with the dimension.

Fig. 2: Distributions of t-values for 2-dim and 3-dim projections, for three Sobol’
point sets: (1) Joe-Kuo taken from [25], (2) Max and (3) Sum are found by LatNet
Builder as explained in the text. For each case, we report the number of projections
having any given t-value, as well as the average t-value (dashed vertical lines).
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In our next illustration, we compare the RQMC variances for Sobol’ points with
direction numbers taken from [25] and direction numbers found by LatNet Builder
using a custom FOM for our function. We want to integrate

f (u) =
5

∏
j=1

(ψ(u j)−µ)+
10

∏
j=6

(ψ(u j)−µ),

where ψ(u) =
(
(u−0.5)2 +0.05

)−1 and µ = E[ψ(U)] ≈ 10.3 when U ∼U(0,1).
This function is the sum of two five-dimensional ANOVA terms for a more general
function taken from [11]. A good FOM for this function should focus mainly on
these two five-dim projections, namely u= {1,2,3,4,5} and u= {6,7,8,9,10}, and
not on the two-dim projections as in [25]. So we made a search with the P̃2 criterion
with weights γu = 1 for these two projections and 0 elsewhere, to obtain new direction
numbers for n = 220 Sobol’ points in 10 dimensions. Then we estimated the variance
of the sample RQMC average over these n points with the two choices of direction
numbers (those of [25] and ours), using m = 200 independent replications of an
RQMC scheme that used only a random digital shift. The empirical variance with
our custom points was smaller by a factor of more than 18.

7.3 Variance for another toy function

Here we consider a family of test functions similar to those in [53]:
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fs,c(u) =
s

∏
j=1

(1+ c j · (u j−1/2))

for u ∈ (0,1)s, where c = (c1, . . . ,cs) ∈ (0,1)s. The ANOVA components are, for all
u⊂ {1, . . . ,s},

( fs,c)u(u) = ∏
j∈u

c j · (u j−1/2)).

For an experiment, we take arbitrarly s = 3 and c = (0.7,0.2,0.5). We use LatNet
Builder to search for good PLRs with a fast CBC construction, with product weights
γ j = c j, with the FOMs P2, I

(c)
2,2 , and I

(c)
3,3 (whose interlacing factors d are 1, 2,

and 3, respectively). For each n = 2k, k = 5, . . . ,18, we estimate the RQMC variance
with m independent replications of the randomization scheme, with m = 1000 for
LMS+shift, and m = 100 for NUS. For the interlaced points, the randomization is
performed before the interlacing, as in [14]. Figure 3 shows the variance as a function
of n, in log-log scale. We see that the two randomization schemes give approximately
the same variance. However, the time to generate and randomize the points is much
larger for NUS than for LMS+shift: around 10 times longer for 211 points and 50
times longer for 218 points. As expected, the variance reduction and the convergence
rate are larger when the interlacing factor increases, although the curves are more
noisy.

Fig. 3: Variance as a function of n in log-log scale, for PLRs with two randomization
schemes and three interlacing factors d, found with LatNet Builder. We also report
the average time to generate and randomize the points with LMS+shift.
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8 Conclusion

LatNet Builder is both a tool for researchers to study the properties of highly uniform
point sets and associated figures of merit, and for practitioners who want to find good
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parameters for a specific task. It is relatively easy to incorporate new FOMs into the
software, especially if they are in the kernel form (9).

Many questions remain open regarding the roles of the construction, the search
method, the randomization, and (perhaps more importantly) the choice of the weights.
It is our hope that the software presented here will spur interest into these issues.
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