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UNIQUENESS PROPERTIES OF SOLUTIONS TO THE
BENJAMIN-ONO EQUATION AND RELATED
MODELS.

C. E. KENIG, G. PONCE, AND L. VEGA

ABSTRACT. We prove that if u;, us are solutions of the Benjamin-
Ono equation defined in (z,t) € R x [0, T] which agree in an open
set  C R x [0,7], then u1 = uy. We extend this uniqueness
result to a general class of equations of Benjamin-Ono type in both
the initial value problem and the initial periodic boundary value
problem. This class of 1-dimensional non-local models includes
the intermediate long wave equation. Finally, we present a slightly
stronger version of our uniqueness results for the Benjamin-Ono
equation.

1. INTRODUCTION

We consider the initial value problem (IVP) for the Benjamin-Ono
(BO) equation

{ O — HO*u + ud,u = 0, (x,t) € R xR, (L.1)

u(z,0) = ug(x),

where u = u(x,t) is a real-valued function, and H denotes the Hilbert
transform

Hf(z) = %p.v.(i ) (x)
(1.2)
=2 [T i i) @
T Jy>e Y

The BO equation was first deduced by Benjamin [3] and Ono [35]
as a model for long internal gravity waves in deep stratified fluids.
Later, it was shown to be a completely integrable system (see [2], [6]
and references therein). In particular, real solutions of the IVP (|1.1))
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satisfy infinitely many conservation laws, which provide an a priori
estimate for the H™?-norm, n € Z+.

The problem of finding the minimal regularity measured in the Sobolev
scale H*(R), s € R, required to guarantee that the IVP (L.1)) is locally
or globally well-posed (WP) in H*(R) has been extensively studied,
see [11, [12], [36], [20], [17], [39], [5] and [11] where global WP was es-
tablished in H°(R) = L*(R), (for further details and results regarding
the well-posedness of the IVP (1.1)) we refer to [29] and to [10] for a
different proof of the result in [I1]).

We remark that a result established in [33] (see also [21]) implies
that no well-posedness result in H*(R), s € R, for the IVP (1.1]) can be
established by using solely a contraction principle argument.

It was first shown in [12] and [I3] that polynomial decay of the
data may not be preserved by the solution flow of the BO equation.
The results in [12] and [I3] which present some unique continuation
properties of the BO equation have been extended to fractional order
weighted Sobolev spaces and have shown to be optimal in [7] and [§].
More precisely, using the notation

Zyy = HR) N L*(|z>dx), Zy, = Ze, O {f € L"(R) : £(0) =0},

with s, > 0 one has the results :

(i) [7] The IVP (1.1)) is locally WP in Z,, for s > r € [1,5/2) and
if we C(0,T] : Zsa2) is a solution of (L.I)) s.t. u(-,t;) € Zsas,
j = 1,2 with tl, t2 < [O,T], tl 7£ tQ, then u € C([O,T] : Z5/272).

(i) [7] The IVP (L)) is locally WP in Z,, s > r € [5/2,7/2).

(iii) |71 If w € C([0,T) : Zr/23) is a solution of (L1) s.t. Iy, to, t3 €
[O,T], t] < ty <tz with U(',t]‘) S Z7/277/2, 7 =1,2,3, then u=0.

(iv) [8] The IVP (T.1) has solutions u € C([0,T] : Z7/a3), u # 0, for
which E'tl, tQ, € [O,T], tl < t2, with U(',tj) S Z7/2’7/2, j = 1, 2.

Our first main result in this work is the following theorem:

Theorem 1.1. Let uy, uy be solutions to the IVP (1.1) for (x,t) €
R x [0,T] such that

uy, ug € C([0,7): H*(R)) N C*((0,T) : H**(R)), s>5/2. (1.3)
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If there exists an open set Q@ C R x [0,T] such that
uy(z,t) = us(z,t), (z,t) € Q, (1.4)
then,
uy(z,t) = ug(w,t), (z,t) € R x[0,T]. (1.5)
In particular, if u; vanishes in 2, then u; = 0.

Remark 1.2. (i) Under the same hypotheses, Theorem applies to
solutions of the generalized BO equation

O — HO?u + 0, f (u) = 0, (z,t) € R xR, (1.6)

with f : R — R smooth enough and f(0) = 0. In particular, it applies
for f(u) = vk, k = 2,3,4,... for which the well posedness of the as-
sociated IVP was considered in [T, [18], [I7], [19], [40], [41], see also
25).

(i) The hypothesis (1.3|) guarantees that the solutions satisfy the
equation (1.1) point-wise, which will be required in our proof.

(iii) A similar result to that described in Theorem for the IVP

associated to the generalized Korteweg-de Vries equation
opu + OPu 4 dpu® = 0, (r,t) e RxR, k=2,3,...., (1.7)

was established in |38, and for some evolution equations of Schrodinger
type in [16]. In both cases, their proofs are based on appropriate forms
of the so called Carleman estimates. Our proof of Theorem is el-
ementary and relies on simple properties of the Hilbert transform as a
boundary value of analytic functions.

(iv) We observe that the unique continuation in (iii) before the state-
ment of Theorem applies to a single solution of the BO equation
but not to any two solutions as in Theorem[1.1 This is due to the fact
that the argument in the proof there depends upon the whole symmetry
structure of the BO equation.

(v) Theorem can be seen as a corollary of the following linear
result whose proof is exactly the one given below for Theorem[1.1] :
Assume that k, j € ZT U{0} and that

U R X[0,T] > R, m=0,1,....k, and b:Rx[0,T] >R

Hila
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are continuous functions with b(-) never vanishing on (z,t) € Rx[0,T],
and consider the [VP

k
Opw — b(w, t) H w + Z A (2, 1) 07w = 0,
m=0 (1.8)

w(x,0) = wy(x).
Theorem 1.3. Let
we O[0,T] : H¥(R))NCH((0,T) : H**(R)), s> max{k;j}+1/2,

be a solution to the IVP (1.8)). If there exists an open set Q@ C Rx[0, T
such that
w(x,t) =0, (z,t)€Q, (1.9)
then,
w(z,t) =0 (x,t) € R x[0,T]. (1.10)

Remark 1.4. (i) In particular, applying Theorem to the difference
of two solutions uy, ug of the Burgers-Hilbert (BH) equation (see [4])

Ou — Hu + udyu = 0, (z,t) € R xR, (1.11)

one sees that the result in Theorem with s > 3/2, holds for the
IVP associated to the BH equation (|1.11)

(it) The result of Theorem[I.1] extends to solutions of the initial pe-
riodic boundary value problem (IPBVP) associated to the generalized
BO equation

Ou — HO*u+ 0, f (u) = 0, (x,t) € S' x R,

(1.12)
u(x,0) = uo(),

with f(-) as in part (i) of this remark. More precisely :

Theorem 1.5. Let uy, uy be solutions of the IPBVP (1.12)) in (z,t) €
S! x [0, T] such that

uy, ug € C([0,7] : H*(SH)NCH((0,T) : H2(SY)), s >5/2. (1.13)
If there exists an open set Q) C S x [0,T] such that
uy(z,t) = ug(z,t), (z,t) € Q, (1.14)

then,
ui(z,t) = ug(,t), (x,t) €S' x [0,7). (1.15)

In particular, if u; vanishes in 2, then u; = 0.

HA1
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Remark 1.6. The well-posedness of the initial IPBVP (1.12)) has been
studied in [26], [27] and [32].

Next, we consider the Intermediate Long Wave (ILW) equation

1
Oy — L50%u + gaxu + ud,u =0, (x,t) e RxR, (1.16)

where u = u(x,t) is a real-valued function, 6 > 0 and

Lsf(x) = L p.v./coth (W) f(y)dy. (1.17)

20
Note that L4 is a multiplier operator with 0,£s having symbol
7(0,L5) = 0,05 = 27€ coth (270€). (1.18)

The ILW equation describes long internal gravity waves in a
stratified fluid with finite depth represented by the parameter ¢, see
[24], [14], [15].

Also, the ILW equation has been proven to be complete integrable,
see [22] and [23].

In [T] it was proven that solutions of the ILW as 6 — oo (deep-water
limit) converge to solutions of the BO equation with the same initial
data.

Also, in [I] it was shown that if us(x,t) denotes the solution of the

ILW equation (1.16]), then
3

vs(z,t) = 5 Us (z, gt) (1.19)

converges as § — 0 (shallow-water limit) to the solution of the KdV
equation, i.e. with k£ = 2, with the same initial data.

For further comments on general properties of the ILW equation we
refer to the recent survey [37] and references therein.

The well-posedness of the IVP associated to the ILW equation
was studied in [I] and more recently in [34].

Our next theorem extends the result in Theorem [I.1] to solution of

the IVP associated to the ILW(1.16)):

Theorem 1.7. Let uy, uy be solutions to (1.16) in (z,t) € R x [0,T]
such that

uy, ug € C([0,7]): H*(R)) N C*((0,T) : H**(R)), s>5/2. (1.20)
If there exists an open set Q@ C R x [0,T] such that
uy(z,t) = us(x,t), (x,t) € 9, (1.21)

ILW
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then,
uy(z,t) = ug(z,t), (z,t) € R x[0,T]. (1.22)

In particular, if uy vanishes in ), then uy = 0.

Remark 1.8. The observations in (i) and (v) in Remark[1.4 and (ii) in
Remark[1.4) apply, after some simple modifications, to the ILW equation
(1.16]).

Next, we present the following slight improvement of Theorem
and Theorem :

Theorem 1.9. Let uy, uy be solutions to (1.1)) in (z,t) € R x [0,T]
such that

ur, upy € C([0,T] : H¥(R))NCH((0,T) : H*%(R)), s>5/2. (1.23)
If there exists an open set I C R, 0 € I such that
uy(z,0) = ug(x,0), xel, (1.24)
and for each N € Z*

/ 10u1(2,0) — uua(2,0)Pdz < ey RN as R, 0, (1.25)
lo|<R

then,
uy(z,t) = ug(w,t), (z,t) € R x[0,T]. (1.26)

Theorem 1.10. Let uy, uy be solutions of the IPBVP (1.12)) in (z,t) €
St x [0,T] ~R/Z x [0,T] such that

uy, ug € C([0,7] : H*(SH) N C((0,T) : H2(SY)), s >5/2. (1.27)
If there exists an open set I C [—1/2,1/2] with 0 € I such that
u(z,0) = us(x,0), ze€l, (1.28)
and for each N € Z*

/ 10u1(,0) — Oyua(z,0)2d0 < ey RN as RJ 0, (1.29)
le|<R

then,
ui(z,t) = ug(x,t), (x,t) € St x [0,7). (1.30)

Remark 1.11. It will be clear form our proof of Theorem that
a similar argument provides the proof of Theorem which will be
omitted.
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The rest of this paper is organized as follows : section 2 contains some
preliminary estimates required for Theorem as well as its proof. It
also includes the modification needed to extend the argument in the
proof of Theorem [I.1] from the IVP to the IPBVP to prove Theorem
[I.5] Section 3 contains the proof of Theorem [I.7], and section 4 consists
of the proof of Theorem [I.9

2. PROOF OF THEOREM [L.1]

To prove Theorem we need the following result from complex
analysis whose proof follows directly from Schwarz reflection principle:

Proposition 2.1. Let I C R be an open interval, b € (0,00] and
Dy={z=2+iyeC:0<y<d}, L={x+i0ecC:2xel} (21)
Let F' : DyUL — C be a continuous function such that F|D,, 15 analytic.
If F|, =0, then F =0.
As a consequence we have

Corollary 2.2. Let f € H*(R), s > 1/2 be a real valued function. If
there exists an open set I C R such that

flx)=Hf(x) =0, Vo el,
then f = 0.

Proof. Denoting U = U(x,y) the harmonic extension of f to the upper
half-plane D, one sees that its harmonic conjugate V' = V(z,y) has
boundary value V (z,0) = H f(z) with

(FHIHNE) =2X000(E) [, FeL'®).  (22)

Thus, F := U + iV is continuous on D, and analytic on D, with
F| ; = 0. Hence, Proposition yields the desired result
O

Proof of Theorem . Defining w(x,t) = (u3 — ug)(x,t) one has that
Ow — HPPw + Opug w + uy Suw =0, (2,) € R x [0,7T]. (2.3) |eql

By hypotheses (|1.3)) and (1.21]) there exist open intervals I, J C R
such that

w(z,t) = dw(x,t)
= Juw(x,t) = O*w(x,t) = 0, (r,t) el xJCAQ.
Thus, the equation tells us
HPw(z,t) =0, (z,t)elxJCQ. (2.5)

(24)
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Combining (2.4)) and (2.5 and fixing ¢* € J it follows that
Ow(z,t*) = HO*w(z,t*) =0, x €1, (2.6)
with *w(-, t*), HO*w(-,t*) € H*(R), s > 1/2.

Therefore, using Corollary one has that 9?w(-,t*) = 0 which
implies that w(-,t*) = 0 and completes the proof.
O

To extend the previous argument to prove Theorem [I.5] we need the
following result from complex analysis :

Proposition 2.3. Let J C [—m,n| be an open non-empty interval and
Bi(0)={z=z+iyecC:|z| <1}, A={z€C:|z| =1, arg(z) € J}.

Let F : B1(0)UA — C be a continuous function such that F‘BI(O)
1 analytic.
If F|, =0, then F =0.

Proof. The proof follows from Proposition by considering F,T'(z)
where T is a fractional linear transformation mapping the upper half-
plane to the unit disk B;(0).
O
3. PROOF OF THEOREM [L.7]

First, we shall prove the following result :

Corollary 3.1. Let f € H*(R), s > 3/2 be a real valued function. If
there exists an open set I C R such that

f(z) = Ls0,.f(x) =0, Veel,
with Ls as in , , then f = 0.
Proof. We define
F(x) = 0. f(2) +iLsO, f(x), z€R, (3.1)
and consider its Fourier transform
() = (0. + iLs0.1)(€)
= 2mi€(1 + coth(2m8¢)) £(€)

‘ 627r(5§ +e—27r5§ Y (32)
= 27rzf<1 + e2m0E _ o—270¢ > (5)
4md€

= —47”'515—64,“;5}\(5)
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We observe that by considering 0, f with f € H*(R), s > 3/2, one
cancels the singularity of F' at £ =0 introduced by coth(§).

By hypothesis and (3.2) one concludes that F € L'(R) and has
exponential decay for £ < 0. Hence,

Pla)= [ me P (33)
has an analytic extension
F(z +iy) = / 2Tt ) F(£) d (3.4)

to the strip
Dy={z=2+4+iyeC:0<y<2}
with F' continuous on
{z=z+iy : 0 <y <20}

from the hypothesis on f. Now, Proposition leads the desired
result.

U

Proof of Theorem[1.7. Once Corollary [3.1]is available the proof of The-
orem [1.7] is similar to that given for Theorem therefore it will be
omitted.

O

4. PROOF OF THEOREM
To prove Theorem we need an auxiliary lemma:

Lemma 4.1. Let f € L*(R) be a real valued function. If there exists
an open set I C R, 0 € I, such that

fz,0)=0, wzel, (4.1)
and for each N € Z*
/ | Hf(z)Pde < ey RN as RO, (4.2)
lz|<R
then,
f(z)y=0, zxzeR. (4.3)

Proof. Consider the analytic function F' = F(x + dy) defined in R x
(0, 00) with boundary values

F(z+i0) = —Hf(x) +if(z).

H12

H11
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Since F ‘ ; Is real we can use Schwarz reflexion principle to find F
analytic in I x (—o00,00) with F=Fon Ix 0, 00).

We observe : R F(x +i0) = Hf(z), © € I with J—Cf‘l € C™, by
the support property of f, and by assumption (4.2) 97Hf(0) = 0,
Jj € ZTU{0}. Hence

P F0,0)=0  j—01,2
@(7)_ J=U 1,4 ...
which completes the proof. O

Proof of Theorem[1.9 Defining w(x,t) = (u; —ug)(x,t) it follows that
Opw — HO*w + Opur w + up Spw = 0, (w,t) € R x [0, T]. (4.4)
Since w(z,0) = 0, = € I, one has that dw(z,0) = 0, =z € I,
j € ZT U {0}, and using
H?w(z,0) = dyw(x,0)
We now apply the hypothesis and Lemma to conclude that

O*w(x,0) =0, x € R.
U
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