
UNIQUENESS PROPERTIES OF SOLUTIONS TO THE
BENJAMIN-ONO EQUATION AND RELATED

MODELS.

C. E. KENIG, G. PONCE, AND L. VEGA

Abstract. We prove that if u1, u2 are solutions of the Benjamin-
Ono equation defined in (x, t) ∈ R× [0, T ] which agree in an open
set Ω ⊂ R × [0, T ], then u1 ≡ u2. We extend this uniqueness
result to a general class of equations of Benjamin-Ono type in both
the initial value problem and the initial periodic boundary value
problem. This class of 1-dimensional non-local models includes
the intermediate long wave equation. Finally, we present a slightly
stronger version of our uniqueness results for the Benjamin-Ono
equation.

1. Introduction

We consider the initial value problem (IVP) for the Benjamin-Ono
(BO) equation{

∂tu−H∂2xu+ u∂xu = 0, (x, t) ∈ R× R,
u(x, 0) = u0(x),

(1.1) BO

where u = u(x, t) is a real-valued function, and H denotes the Hilbert
transform

Hf(x) :=
1

π
p.v.

(1

x
∗ f
)

(x)

:=
1

π
lim
ε↓0

∫
|y|>ε

f(x− y)

y
dy = (−i sgn(ξ)f̂(ξ))∨(x)

(1.2) H

The BO equation was first deduced by Benjamin [3] and Ono [35]
as a model for long internal gravity waves in deep stratified fluids.
Later, it was shown to be a completely integrable system (see [2], [6]
and references therein). In particular, real solutions of the IVP (1.1)
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satisfy infinitely many conservation laws, which provide an a priori
estimate for the Hn/2-norm, n ∈ Z+.

The problem of finding the minimal regularity measured in the Sobolev
scale Hs(R), s ∈ R, required to guarantee that the IVP (1.1) is locally
or globally well-posed (WP) in Hs(R) has been extensively studied,
see [1], [12], [36], [20], [17], [39], [5] and [11] where global WP was es-
tablished in H0(R) = L2(R), (for further details and results regarding
the well-posedness of the IVP (1.1) we refer to [29] and to [10] for a
different proof of the result in [11]).

We remark that a result established in [33] (see also [21]) implies
that no well-posedness result in Hs(R), s ∈ R, for the IVP (1.1) can be
established by using solely a contraction principle argument.

It was first shown in [12] and [13] that polynomial decay of the
data may not be preserved by the solution flow of the BO equation.
The results in [12] and [13] which present some unique continuation
properties of the BO equation have been extended to fractional order
weighted Sobolev spaces and have shown to be optimal in [7] and [8].
More precisely, using the notation

Zs,r := Hs(R) ∩ L2(|x|2rdx), Żs,r = Zs,r ∩ {f ∈ L1(R) : f̂(0) = 0},

with s, r > 0 one has the results :

(i) [7] The IVP (1.1) is locally WP in Zs,r for s ≥ r ∈ [1, 5/2) and
if u ∈ C([0, T ] : Z5/2,2) is a solution of (1.1) s.t. u(·, tj) ∈ Z5/2,5/2,
j = 1, 2 with t1, t2 ∈ [0, T ], t1 6= t2, then u ∈ C([0, T ] : Ż5/2,2).

(ii) [7] The IVP (1.1) is locally WP in Żs,r s ≥ r ∈ [5/2, 7/2).

(iii) [7] If u ∈ C([0, T ] : Ż7/2,3) is a solution of (1.1) s.t. ∃ t1, t2, t3 ∈
[0, T ], t1 < t2 < t3 with u(·, tj) ∈ Z7/2,7/2, j = 1, 2, 3, then u ≡ 0.

(iv) [8] The IVP (1.1) has solutions u ∈ C([0, T ] : Ż7/2,3), u 6≡ 0, for
which ∃ t1, t2,∈ [0, T ], t1 < t2, with u(·, tj) ∈ Z7/2,7/2, j = 1, 2.

Our first main result in this work is the following theorem:

TH1 Theorem 1.1. Let u1, u2 be solutions to the IVP (1.1) for (x, t) ∈
R× [0, T ] such that

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2. (1.3) m1
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If there exists an open set Ω ⊂ R× [0, T ] such that

u1(x, t) = u2(x, t), (x, t) ∈ Ω, (1.4) H1a

then,

u1(x, t) = u2(x, t), (x, t) ∈ R× [0, T ]. (1.5) result1

In particular, if u1 vanishes in Ω, then u1 ≡ 0.

rr1 Remark 1.2. (i) Under the same hypotheses, Theorem 1.1 applies to
solutions of the generalized BO equation

∂tu−H∂2xu+ ∂xf(u) = 0, (x, t) ∈ R× R, (1.6) gBO

with f : R→ R smooth enough and f(0) = 0. In particular, it applies
for f(u) = uk, k = 2, 3, 4, ... for which the well posedness of the as-
sociated IVP was considered in [1], [18], [17], [19], [40], [41], see also
[25].

(ii) The hypothesis (1.3) guarantees that the solutions satisfy the
equation (1.1) point-wise, which will be required in our proof.

(iii) A similar result to that described in Theorem 1.1 for the IVP
associated to the generalized Korteweg-de Vries equation

∂tu+ ∂3xu+ ∂xu
k = 0, (x, t) ∈ R× R, k = 2, 3, ...., (1.7) gKdV

was established in [38], and for some evolution equations of Schrödinger
type in [16]. In both cases, their proofs are based on appropriate forms
of the so called Carleman estimates. Our proof of Theorem 1.1 is el-
ementary and relies on simple properties of the Hilbert transform as a
boundary value of analytic functions.

(iv) We observe that the unique continuation in (iii) before the state-
ment of Theorem 1.1 applies to a single solution of the BO equation
but not to any two solutions as in Theorem 1.1. This is due to the fact
that the argument in the proof there depends upon the whole symmetry
structure of the BO equation.

(v) Theorem 1.1 can be seen as a corollary of the following linear
result whose proof is exactly the one given below for Theorem 1.1 :

Assume that k, j ∈ Z+ ∪ {0} and that

am : R× [0, T ]→ R, m = 0, 1, ..., k, and b : R× [0, T ]→ R
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are continuous functions with b(·) never vanishing on (x, t) ∈ R×[0, T ],
and consider the IVP

∂tw − b(x, t)H∂jxw +
k∑

m=0

am(x, t)∂mx w = 0,

w(x, 0) = w0(x).

(1.8) general

TH3 Theorem 1.3. Let

w ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > max{k; j}+ 1/2,

be a solution to the IVP (1.8). If there exists an open set Ω ⊂ R×[0, T ]
such that

w(x, t) = 0, (x, t) ∈ Ω, (1.9) HA1

then,
w(x, t) = 0 (x, t) ∈ R× [0, T ]. (1.10) result22

ole Remark 1.4. (i) In particular, applying Theorem 1.3 to the difference
of two solutions u1, u2 of the Burgers-Hilbert (BH) equation (see [4])

∂tu−Hu+ u∂xu = 0, (x, t) ∈ R× R, (1.11) BH

one sees that the result in Theorem 1.1, with s > 3/2, holds for the
IVP associated to the BH equation (1.11).

(ii) The result of Theorem 1.1 extends to solutions of the initial pe-
riodic boundary value problem (IPBVP) associated to the generalized
BO equation{

∂tu−H∂2xu+ ∂xf(u) = 0, (x, t) ∈ S1 × R,
u(x, 0) = u0(x),

(1.12) gBO-PBVP

with f(·) as in part (i) of this remark. More precisely :

TH2 Theorem 1.5. Let u1, u2 be solutions of the IPBVP (1.12) in (x, t) ∈
S1 × [0, T ] such that

u1, u2 ∈ C([0, T ] : Hs(S1)) ∩ C1((0, T ) : Hs−2(S1)), s > 5/2. (1.13) m2

If there exists an open set Ω ⊂ S1 × [0, T ] such that

u1(x, t) = u2(x, t), (x, t) ∈ Ω, (1.14) HB1

then,
u1(x, t) = u2(x, t), (x, t) ∈ S1 × [0, T ]. (1.15) result

In particular, if u1 vanishes in Ω, then u1 ≡ 0.
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Remark 1.6. The well-posedness of the initial IPBVP (1.12) has been
studied in [26], [27] and [32].

Next, we consider the Intermediate Long Wave (ILW) equation

∂tu− Lδ∂
2
xu+

1

δ
∂xu+ u∂xu = 0, (x, t) ∈ R× R, (1.16) ILW

where u = u(x, t) is a real-valued function, δ > 0 and

Lδf(x) := − 1

2δ
p.v.

∫
coth

(
π(x − y)

2 δ

)
f (y)dy . (1.17) T

Note that Lδ is a multiplier operator with ∂xLδ having symbol

σ(∂xLδ) = ∂̂xLδ = 2πξ coth (2πδξ). (1.18) symbol

The ILW equation (1.16) describes long internal gravity waves in a
stratified fluid with finite depth represented by the parameter δ, see
[24], [14], [15].

Also, the ILW equation has been proven to be complete integrable,
see [22] and [23].

In [1] it was proven that solutions of the ILW as δ →∞ (deep-water
limit) converge to solutions of the BO equation with the same initial
data.

Also, in [1] it was shown that if uδ(x, t) denotes the solution of the
ILW equation (1.16), then

vδ(x, t) =
3

δ
uδ
(
x,

3

δ
t
)

(1.19) scaleKdV

converges as δ → 0 (shallow-water limit) to the solution of the KdV
equation, i.e. (1.7) with k = 2, with the same initial data.

For further comments on general properties of the ILW equation we
refer to the recent survey [37] and references therein.

The well-posedness of the IVP associated to the ILW equation (1.16)
was studied in [1] and more recently in [34].

Our next theorem extends the result in Theorem 1.1 to solution of
the IVP associated to the ILW(1.16):

TH5 Theorem 1.7. Let u1, u2 be solutions to (1.16) in (x, t) ∈ R × [0, T ]
such that

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2. (1.20) m1a

If there exists an open set Ω ⊂ R× [0, T ] such that

u1(x, t) = u2(x, t), (x, t) ∈ Ω, (1.21) H1
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then,
u1(x, t) = u2(x, t), (x, t) ∈ R× [0, T ]. (1.22) result2

In particular, if u1 vanishes in Ω, then u1 ≡ 0.

Remark 1.8. The observations in (i) and (v) in Remark 1.2 and (ii) in
Remark 1.4 apply, after some simple modifications, to the ILW equation
(1.16).

Next, we present the following slight improvement of Theorem 1.1
and Theorem 1.5 :

TH10 Theorem 1.9. Let u1, u2 be solutions to (1.1) in (x, t) ∈ R × [0, T ]
such that

u1, u2 ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−2(R)), s > 5/2. (1.23) m10

If there exists an open set I ⊂ R, 0 ∈ I such that

u1(x, 0) = u2(x, 0), x ∈ I, (1.24) H10

and for each N ∈ Z+∫
|x|≤R

|∂tu1(x, 0)− ∂tu2(x, 0)|2dx ≤ cN R
N as R ↓ 0, (1.25) H15

then,
u1(x, t) = u2(x, t), (x, t) ∈ R× [0, T ]. (1.26) result11

TH11 Theorem 1.10. Let u1, u2 be solutions of the IPBVP (1.12) in (x, t) ∈
S1 × [0, T ] ' R/Z× [0, T ] such that

u1, u2 ∈ C([0, T ] : Hs(S1)) ∩ C1((0, T ) : Hs−2(S1)), s > 5/2. (1.27) m22

If there exists an open set I ⊂ [−1/2, 1/2] with 0 ∈ I such that

u1(x, 0) = u2(x, 0), x ∈ I, (1.28) HB12

and for each N ∈ Z+∫
|x|≤R

|∂tu1(x, 0)− ∂tu2(x, 0)|2dθ ≤ cN R
N as R ↓ 0, (1.29) H20

then,
u1(x, t) = u2(x, t), (x, t) ∈ S1 × [0, T ]. (1.30) result23

Remark 1.11. It will be clear form our proof of Theorem 1.9 that
a similar argument provides the proof of Theorem 1.10 which will be
omitted.
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The rest of this paper is organized as follows : section 2 contains some
preliminary estimates required for Theorem 1.1 as well as its proof. It
also includes the modification needed to extend the argument in the
proof of Theorem 1.1 from the IVP to the IPBVP to prove Theorem
1.5. Section 3 contains the proof of Theorem 1.7, and section 4 consists
of the proof of Theorem 1.9.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need the following result from complex
analysis whose proof follows directly from Schwarz reflection principle:

pro1 Proposition 2.1. Let I ⊆ R be an open interval, b ∈ (0,∞] and

Db = {z = x+ iy ∈ C : 0 < y < b}, L = {x+ i0 ∈ C : x ∈ I}. (2.1) sets

Let F : Db∪L→ C be a continuous function such that F
∣∣
Db

is analytic.
If F

∣∣
L
≡ 0, then F ≡ 0.

As a consequence we have

col1 Corollary 2.2. Let f ∈ Hs(R), s > 1/2 be a real valued function. If
there exists an open set I ⊂ R such that

f(x) = Hf(x) = 0, ∀x ∈ I,
then f ≡ 0.

Proof. Denoting U = U(x, y) the harmonic extension of f to the upper
half-plane D, one sees that its harmonic conjugate V = V (x, y) has
boundary value V (x, 0) = Hf(x) with

( ̂f + iHf)(ξ) = 2χ[0,∞)(ξ) f̂(ξ), f̂ ∈ L1(R). (2.2) HT

Thus, F := U + iV is continuous on D∞ and analytic on D∞ with
F
∣∣
L
≡ 0. Hence, Proposition 2.1 yields the desired result

�

Proof of Theorem 1.1 . Defining w(x, t) = (u1 − u2)(x, t) one has that

∂tw −H∂2xw + ∂xu2w + u1 ∂xw = 0, (x, t) ∈ R× [0, T ]. (2.3) eq1

By hypotheses (1.3) and (1.21) there exist open intervals I, J ⊂ R
such that
w(x, t) = ∂xw(x, t)

= ∂tw(x, t) = ∂2xw(x, t) = 0, (x, t) ∈ I × J ⊂ Ω.
(2.4) zeros1

Thus, the equation (2.3) tells us

H∂2xw(x, t) = 0, (x, t) ∈ I × J ⊂ Ω. (2.5) zeros2
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Combining (2.4) and (2.5) and fixing t∗ ∈ J it follows that

∂2xw(x, t∗) = H∂2xw(x, t∗) = 0, x ∈ I, (2.6) zeros3

with ∂2xw(·, t∗), H∂2xw(·, t∗) ∈ Hs(R), s > 1/2.

Therefore, using Corollary 2.2 one has that ∂2xw(·, t∗) ≡ 0 which
implies that w(·, t∗) ≡ 0 and completes the proof.

�

To extend the previous argument to prove Theorem 1.5 we need the
following result from complex analysis :

pro2 Proposition 2.3. Let J ⊂ [−π, π] be an open non-empty interval and

B1(0) = {z = x+ iy ∈ C : |z| < 1}, A = {z ∈ C : |z| = 1, arg(z) ∈ J}.
Let F : B1(0) ∪ A → C be a continuous function such that F

∣∣
B1(0)

is analytic.
If F

∣∣
A
≡ 0, then F ≡ 0.

Proof. The proof follows from Proposition 2.1 by considering FoT (z)
where T is a fractional linear transformation mapping the upper half-
plane to the unit disk B1(0).

�

3. Proof of Theorem 1.7

First, we shall prove the following result :

col11 Corollary 3.1. Let f ∈ Hs(R), s > 3/2 be a real valued function. If
there exists an open set I ⊂ R such that

f(x) = Lδ∂xf(x) = 0, ∀x ∈ I,
with Lδ as in (1.17), (1.18), then f ≡ 0.

Proof. We define

F (x) = ∂xf(x) + iLδ∂xf(x), x ∈ R, (3.1) a1

and consider its Fourier transform

F̂ (ξ) = ̂(∂xf + iLδ∂xf)(ξ)

= 2πiξ(1 + coth(2πδξ)) f̂(ξ)

= 2πiξ
(

1 +
e2πδξ + e−2πδξ

e2πδξ − e−2πδξ
)
f̂(ξ)

= −4πiξ
e4πδξ

1− e4πδξ
f̂(ξ)

(3.2) a2
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We observe that by considering ∂xf with f ∈ Hs(R), s > 3/2, one
cancels the singularity of F at ξ = 0 introduced by coth(ξ).

By hypothesis and (3.2) one concludes that F̂ ∈ L1(R) and has
exponential decay for ξ < 0. Hence,

F (x) =

∫ ∞
−∞

e2πiξx F̂ (ξ) dξ (3.3) a3

has an analytic extension

F (x+ iy) =

∫ ∞
−∞

e2πiξ(x+iy) F̂ (ξ) dξ (3.4) a4

to the strip
D2δ = {z = x+ iy ∈ C : 0 < y < 2δ}

with F continuous on

{z = x+ iy : 0 ≤ y < 2δ}

from the hypothesis on f . Now, Proposition 2.1 leads the desired
result.

�

Proof of Theorem 1.7. Once Corollary 3.1 is available the proof of The-
orem 1.7 is similar to that given for Theorem 1.1, therefore it will be
omitted.

�

4. Proof of Theorem 1.9

To prove Theorem 1.9 we need an auxiliary lemma:

lemma1 Lemma 4.1. Let f ∈ L2(R) be a real valued function. If there exists
an open set I ⊂ R, 0 ∈ I, such that

f(x, 0) = 0, x ∈ I, (4.1) H12

and for each N ∈ Z+∫
|x|≤R

|Hf(x)|2dx ≤ cN R
N as R ↓ 0, (4.2) H11

then,
f(x) = 0, x ∈ R. (4.3) result10

Proof. Consider the analytic function F = F (x + iy) defined in R ×
(0,∞) with boundary values

F (x+ i0) = −Hf(x) + if(x).
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Since F
∣∣
I
is real we can use Schwarz reflexion principle to find F̃

analytic in I × (−∞,∞) with F̃ = F on I × [0,∞).

We observe : < F̃ (x + i0) = Hf(x), x ∈ I with Hf
∣∣
I
∈ C∞, by

the support property of f , and by assumption (4.2) ∂jxHf(0) = 0,
j ∈ Z+ ∪ {0}. Hence

∂j

∂zj
F̃ (0, 0) = 0 j = 0, 1, 2, ....

which completes the proof. �

Proof of Theorem 1.9. Defining w(x, t) = (u1−u2)(x, t) it follows that
∂tw −H∂2xw + ∂xu1w + u2 ∂xw = 0, (x, t) ∈ R× [0, T ]. (4.4) eq11

Since w(x, 0) = 0, x ∈ I, one has that ∂jxw(x, 0) = 0, x ∈ I,
j ∈ Z+ ∪ {0}, and using (4.4)

H∂2xw(x, 0) = ∂tw(x, 0)

We now apply the hypothesis (4.2) and Lemma 4.1 to conclude that
∂2xw(x, 0) = 0, x ∈ R.

�
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