
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Error Control and Loss Functions for the Deep Learning
Inversion of Borehole Resistivity Measurements
M. Shahriari1,2 | D. Pardo3,4,5 | J. A. Rivera*3,4 | C. Torres-Verdín6 | A. Picon7,3 | J. Del Ser7,3,4 | S.
Ossandón8 | V. M. Calo9

1Software Competence Center Hagenberg
GmbH (SCCH), Hagenberg, Austria

2Euskampus Fundazioa, Bilbao, Spain
3University of the Basque Country
(UPV/EHU), Leioa, Spain

4 Basque Center for Applied Mathematics
(BCAM), Bilbao, Spain

5Ikerbasque (Basque Foundation for
Sciences), Bilbao, Spain

6The University of Texas at Austin, USA
7Tecnalia, Basque Research & Technology
Alliance, Derio, Spain

8Pontificia Universidad Católica de
Valparaíso, Valparaíso, Chile

9Curtin University, Perth, Australia, Perth,
Australia
Correspondence
*J. A. Rivera. Email:
riverajonander@gmail.com

Summary
Deep learning (DL) is a numerical method that approximates functions. Recently, its
use has become attractive for the simulation and inversion of multiple problems in
computational mechanics, including the inversion of borehole loggingmeasurements
for oil and gas applications. In this context, DL methods exhibit two key attractive
features: a) once trained, they enable to solve an inverse problem in a fraction of a
second, which is convenient for borehole geosteering operations as well as in other
real-time inversion applications. b) DL methods exhibit a superior capability for
approximating highly-complex functions across different areas of knowledge. Nev-
ertheless, as it occurs with most numerical methods, DL also relies on expert design
decisions that are problem specific to achieve reliable and robust results. Herein, we
investigate two key aspects of deep neural networks (DNNs) when applied to the
inversion of borehole resistivity measurements: error control and adequate selection
of the loss function. As we illustrate via theoretical considerations and extensive
numerical experiments, these interrelated aspects are critical to recover accurate
inversion results.
KEYWORDS:
error estimation, geophysical applications, real-time inversion, deep learning, deep neural networks

1 INTRODUCTION

The number of research articles and industrial applications of Deep Learning algorithms have rapidly grown in the last decade
due to their high performance in different applications such as computer vision1, speech recognition2, and biometrics3, to
mention a few. In recent years, there have been significant advances in the field of DL, with the appearance of residual neural net-
works (RNNs)4, which prevent gradient degeneration during the training stage, and Encoder-Decoder (sequence-to-sequence)
deep neural networks (DNNs), which have improved the DL work capability in computer vision applications5. Due to the high
demand for DNNs from industry, dedicated libraries and packages such as Tensorflow1, Keras6, and Pytorch7 have been devel-
oped. These libraries facilitate the use of DNNs across different industrial applications8,9,10,11,12. All these advances combined
make DNNs one of the most powerful and fast-growing artificial intelligence (AI) tools presently.
In this work, we focus on the application of DNNs to geosteering operations13,14,15. In this oil & gas application, a logging-

while-drilling (LWD) instrument records electromagnetic measurements, which are inverted in real time to produce a map of
the Earth’s subsurface. Based on the reconstructed Earth model, the operator adjusts the well-trajectory in real time to further

2 M. Shahriari ET AL

explore exploitation targets, including oil & gas reservoirs, and to maximize the posterior productivity of the available reserves.
Due to the tremendous productivity increase achieved with this technique, nowadays geosteering plays an essential role in the
oil & gas industry16.
The main difficulty one faces when dealing with geosteering problems is the real-time adjustment of the well trajectory.

For that, we require a rapid inversion technique. Unfortunately, traditional inversion methods have severe limitations, which
force geophysicists to continuously look for new solutions to this problem (see, e.g.,17,18,14,19,20,21,13,15). Gradient-based methods
require simulating the forward problem dozens of times for each set of measurements. Moreover, these methods also estimate
the derivatives of the measurements with respect to the inversion variables, which is challenging and time consuming22. To
alleviate the high computational costs associated with this inversion method, simplified 1.5-dimensional (1.5D) methods are
common (see, e.g.,23,14,15). For the inversion of borehole resistivity measurements, an alternative is to apply statistics-based
methods24,25,26. The statistical methods perform forward simulations hundreds of times, which also require large computation
times27. Both gradient and statistics-based methods only evaluate the inverse operator. Thus, the entire inversion process is
repeated at each new logging position.
Below, we employ DNNs to approximate the inverse operator. Although the training stage of a DNNmay be time consuming,

after the network is properly trained, it can forecast in a fraction of a second13. This rapid inversion facilitates geosteering
operations.
DNNs also face important challenges when applied to the inversion of borehole resistivity problems. In particular, to properly

train a DNN, we require a large dataset (also known as ground truth) with the solution of the forward problem for different
Earth models28,13,29. Building a dataset may be time consuming, especially for two and three-dimensional problems. In those
cases, we need to solve the forward problem using numerical simulation methods such as the finite element (FEM)23,30,31 or
finite difference (FDM)32,33. Moreover, we need to optimally sample the parameter space describing relevant Earth models.
Additionally, the training stage can be time consuming. However, this is an offline cost. One additional challenge arises due to the
nature of inverse problems: they are not well-defined, that is, there may exist multiple outputs for a given input22,27. As we shall
illustrate in this work, when using a DNN equipped with a traditional loss function based on the data misfit, the corresponding
DNN approximations may be far away from any of the existing solutions to the inverse operator. This can seriously compromise
the reliability of the method and, consequently, the corresponding decision-making during geosteering operations.
In this work, we investigate the selection of the loss function to train a DNN when dealing with an inverse problem. We also

introduce some error control during training. We focus on the inversion of borehole resistivity measurements. Nonetheless, most
of the design decisions of such loss function are applicable to other inverse problems. To explain the main results stemming
from this work, we first illustrate them with a simple mathematical example. Then, we apply the resulting DNN approximations
to synthetic examples, which help us elucidate their main advantages and limitations. This work does not discuss optimal data
sampling techniques nor the decision-making for the optimal selection of DNN architectures34,35. Those subjects are possible
future work. However, for this article to be self-contained, we briefly describe in the appendix the architecture of the DNN we
use.
The remainder of this article is organized as follows. Section 2 states the problem formulation and introduces two examples.

In the first one, the exact solution of the inverse problem is the square root of the input data. This example serves to illustrate
some of the main features and limitations of DL algorithms. The second example reproduces a realistic inversion scenario of
borehole resistivity measurements. We also describe the selected parameterization of the Earth models and the borehole mea-
surement acquisition system, including the employed logging instruments and recorded measurements. Section 3 describes the
finite-dimensional input and output vector representations of the inverse operator that we approximate via DL. This section
also discusses how we generate the ground truth dataset. Section 4 proposes a preprocessing of the input and output data vari-
ables to ensure that contributions to the loss (cost) function corresponding to different measurements and Earth parameters are
comparable in magnitude. Section 5 describes the vector and matrix norms employed in this work, along with the correspond-
ing absolute and relative errors. Section 6 analyzes various loss functions and illustrates their most prominent advantages and
limitations. Section 7 describes the main implementation aspects of our DL inversion algorithm. We present several numerical
inversion results of borehole logging measurements in Section 8. In addition to some conclusions and future work we describe
in Section 9, the manuscript also contains two appendices. Appendix A details the selected DNN architectures.

M. Shahriari ET AL 3

2 PROBLEM FORMULATION

2.1 Forward problem
We fix the measurement acquisition system s̃. Then, for a well trajectory t̃, and an Earth model p̃, the forward problem consists
of finding the corresponding borehole resistivity measurements m̃. We denote by ̃ the associated forward function. That is:

̃ (t̃, p̃) = m̃, where t̃ ∈ T̃ , p̃ ∈ ℙ̃, m̃ ∈ M̃. (1)
In the above, we omit for convenience the explicit dependence of the function ̃ upon the fixed input variable s̃. ℙ̃ =
{p̃ = p̃(x, y, z) ∈ ℝ3x3 ∶ ∀(x, y, z) ∈
 ⊂ ℝ3} – the set of all possible resistivity tensors – and M̃ = {m̃ ∈
ℝm, being m the number of measurements} – the set of all possible measurements – are normed vector spaces equipped with
norms || ⋅ ||ℙ̃ and || ⋅ ||M̃ , respectively. T̃ = {t = t(s) ∶ t(s) ∈
 ∀s ∈ (a, b) ⊂ ℝ} – the set of all possible logging trajectories
– is also a vector space. Function ̃ consists of a boundary value problem governed by Maxwell’s equations (see23 for details).

2.2 Inverse problem
In the inversion of borehole resistivity measurements, the objective is to determine the subsurface properties p̃ corresponding
to a set of measurements m̃ recorded over a given trajectory t̃. Again, the measurement acquisition system s̃ is fixed. We denote
that inverse operator as ̃ (inverse of ̃). Mathematically, we have:

̃(t̃, m̃) = p̃, where t̃ ∈ T̃ , m̃ ∈ M̃, p̃ ∈ ℙ̃. (2)
Again, we omit for convenience the explicit dependence of function ̃ upon input variable s̃. The governing physical equation of
operator ̃ is unknown. However, we know that a given input may have multiple associated outputs. Thus, such inverse operator
is not well-defined.

2.3 Parameterization
We select a finite dimensional subspace of T̃ parameterized with nt real-valued numbers. The corresponding vector represen-
tation of an element from that subspace is t ∈ ℝnt . We similarly parameterize a finite dimensional subspace of ℙ̃ and M̃ with
np and nm real-valued numbers, respectively. The corresponding vector representations of an element from those subspaces are
p ∈ ℝnp and m ∈ ℝnm , respectively.
The span of vector representations p andm constitute two subspaces ofℝnp andℝnm with norms ||⋅||ℙ and ||⋅||M, respectively.

Ideally, these norms should be inherited from those associated with the original infinite dimensional spaces. However, this is
often a challenging task and an open area of research. We directly employ some existing (typically l1 or l2) finite dimensional
norms.
The function  associates a pair (t, p) (vector representations of (t̃,p̃)) withm (vector representation of m̃) such that  (t,p) =

m. We employ a similar notation for its inverse  acting on vector representations.
To provide context and guidance for future developments, we introduce simple examples that illustrate some of the short-

comings of the standard techniques when applied to these problems, and we explain how we seek to overcome the associated
challenges. The first problem seeks to predict the inverse of squaring a number. The second example focuses on geosteering
applications.

2.4 Example A: Model problem with known analytical solution
We select nt = 0, np = nm = 1. The forward function is given by  (p) = p2, while the inverse has two solutions (branches):
(m) = +

√
m, and (m) = −

√
m, as described in Figure 1.

This simple example contains a key feature exhibited by most inverse problems: it has multiple solutions. Thus, it illustrates
the behaviour of DNNs when considering different loss functions. Results are enlightening and, as we show below, they provide
clear guidelines to construct proper loss functions for approximating inverse problems.

4 M. Shahriari ET AL

−33 0 33

0

500

1,000

m = p2

p

(p
)

(a) Forward function

0 500 1,000
−33

0

33

p = +
√
m

p = −
√
m

m

(m
)

(b) Inverse operator with two
branches

FIGURE 1Model problem with known analytical solution.

2.5 Example B: Inversion of borehole resistivity measurements
In geosteering applications, multiple oil and service companies perform inversion assuming a piecewise 1D layered model of
the Earth. In this case, there exist semi-analytic methods that can simulate the forward problem in a fraction of a second. Herein,
we use the same approach. Thus, the evaluation of  is performed with a 1.5D semi-analytic code (see23,36). As a result, at each
logging position, our inversion operator recovers the formation properties of a 1D layered medium14,15.
In this work, as measurement acquistion system, we first consider a co-axial LWD instrument equipped with two transmitters

and two receivers (see Figure 2). H1
zz and H2

zz are the zz-couplings of the magnetic field measured at the first and the second
receivers, respectively (the first and second subscripts denote the orientation of the transmitter and receiver, respectively). Then,
we define the attenuation and phase difference as follows:

500 kHz
Tx1 Tx2Rx1 Rx2

0.40 m

1.8 m

FIGURE 2 Conventional LWD logging instrument. Txi and Rxi are the transmitters and the receivers, respectively.

ln
H1
zz

H2
zz

= ln
∣ H1

zz ∣
∣ H2

zz ∣
⏟⏞⏞⏟⏞⏞⏟

×20 log(e)=∶attenuation (dB)

+i
(
pℎ(H1

zz) − pℎ(H
2
zz)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

×
180
�

=∶phase difference (degree)

,
(3)

where pℎ denotes the phase of a complex number.We then record the average of the attenuations and phase differences associated
with the two transmitters, and we denote these values as LWD coaxial.
Then, we consider a short-spacing configuration corresponding to a deep azimuthal instrument equipped with one transmitter

and one receiver, as shown in Figure 3. In this logging instrument, the distance between transmitter and receiver is significantly
larger than that of the previously considered LWD instrument. It also employs tilted receivers that are sensitive to the presence
of bed boundaries. We record several measurements with this logging instrument: (a) the attenuation and phase differences,
denotes as deep coaxial, computed using Equation (3) withH2

zz = 1, and (b) the attenuation and phase differences of a directional

M. Shahriari ET AL 5

10 kHz
Tx Rx

12 m

FIGURE 3 Short-spacing of a deep azimuthal logging instrument. Tx and Rx are the transmitter and the receiver, respectively.

measurement expressed as:
Geosignal = ln

Hzz −Hzx

Hzz +Hzx
= ln

∣ Hzz −Hzx ∣
∣ Hzz +Hzx ∣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
×20 log(e)=∶attenuation (dB)

+i
(
pℎ(Hzz −Hzx) − pℎ(Hzz +Hzx)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

×
180
�

=∶phase difference (degree)

.
(4)

We denote it as geosignal. These measurements exhibit a discontinuity as a function of the dip angle at 90 degrees. Indeed, such
discontinuity is essential in the measurements if one wants to discern between top and bottom of the logging instrument (see
Figure 4).

Tx

RxTx

Rx

Tx

RxTx

Rx

100
 ⋅ m

1
 ⋅ m

100
 ⋅ m

D
C

B
A

FIGURE 4 Illustration with four logging trajectories. By symmetry, measurements recorded with trajectories A and D are
identical. The same occurs with trajectories B and C. If these measurements are continuous with respect to the dip angle, then
at 90 degrees they all become identical, which disables the possibility of identifying if a nearby bed boundary is located on top
or on the bottom of the logging instrument.

For our borehole resistivity applications, we consider a zero-thickness borehole embedded in a three-layer medium (see Figure
5). A common practice in the field is to characterize this medium with seven parameters, as described in Figure 5. In this work,
to simplify the problem, we consider only five of them by restricting the search to isotropic formations (�v = �ℎ) with zero dip
angle (� = 0), as illustrated in Figure 6. Thus, np = 5.
In this example, we consider two cases (see Figure 6) according with different numbers of logging positions per data sample.

2.5.1 Example B.1: one logging position
In this case, each trajectory consists of a single logging position. Therefore, for each sample, we record six real numbers (three
attenuations and three phases), i.e., nm = 6. At each logging position, the trajectory is described by one number: the trajectory
dip angle. Thus, nt = 1.

6 M. Shahriari ET AL

Borehole
du

dl

�
�l

�ℎ

�v

�u

FIGURE 5Well trajectory in a 1D medium. The black circle indicates the last trajectory position. �ℎ and �v are the horizontal
and vertical resistivities of the host layer where the final logging position is located, respectively. �u and �l are the resistivity
values of the upper and lower layers to the host layer, respectively. du and dl show the distance from the final logging position
to the upper and lower bed boundaries, respectively.

t
du

dl

�u

�l

�ℎ

(a) Example B.1: trajectory
with 1 logging positions

t
du

dl

�u

�l

�ℎ

(b) Example B.2: trajectory
with 65 logging positions

FIGURE 6Model problems corresponding to examples B.1 and B.2, respectively.

2.5.2 Example B.2: sixty-five logging positions
In this case, the logging trajectory of each sample is formed by 65 logging positions with a logging step size of 0.3048m (see13,29
for further details). Thus, for each Earth model p, we parametrize m with 6 × 65 = 390 real numbers (nm = 390). For this
example, we assume that the variation of the dip angle at a given logging position with respect to the previous one is constant. We
denote that constant dip angle variation as �v. Then, at the i-th logging position, the trajectory dip angle is �i = �ini + (i− 1)�v,
where �ini is the initial dip angle. Hence, we have nt = 2.

3 DATA SPACE AND GROUND TRUTH

In this work, we employ a deep neural network (DNN) to approximate the discrete inverse operator . Given a supervised
database of n-pairs (mi,(ti,mi)), i = 1, ..., n, the DNN builds an approximation of the unknown function . This section
describes the construction of the supervised database.
We first select the number of samples, n, and two subspaces of ℝnp and ℝnt , respectively. Then, we select the n samples

in those subspaces, namely, ((t1,p1), ..., (tn,pn)). To each of these samples, we apply the operator  . That is, we compute
( (t1,p1), ..., (tn,pn)). Finally, the n-pairs (mi,(ti,mi)) ∶= ( (ti,pi),pi), i = 1, ..., n form our supervised database.
We denote by T ∈ ℝnt×n to the set of all trajectory samples (t1, ..., tn). In other words, T is a matrix with ti being its i-th

column. Similarly, we defineM = (m1, ...,mn) ∈ ℝnm×n and P = (p1, ...,pn) ∈ ℝnp×n.
Example A: Simple model problem with known analytical solution
We select n = 103 uniformly spaced samples within the subspace [−33, 33] ⊂ ℝ.

M. Shahriari ET AL 7

Example B: Inversion of borehole resistivity measurements
We select n = 106. Then, for the five parameters described in Section 2.5, we select random samples of the following rescaled
variables over the corresponding intervals forming a subspace of ℝ5:

log(�l), log(�u), log(�ℎ) ∈ [0, 3]
log(dl), log(du) ∈ [−2, 1].

(5)
We consider arbitrary high-angle trajectories. For each model problem, we randomly select the trajectory parameters within

the following intervals:
�ini ∈ [83◦, 97◦]
�v ∈ [−0.045◦, 0.045◦] (only for Example B.2). (6)

4 DATA PREPROCESSING

Notation
For each output parameter of  and , we denote by x = (x1, ..., xn) the n-samples associated with that parameter. These xi
are real scalar values for i = 1, ..., n. For example, in the borehole resistivity example, each variable x contains n samples of
each particular geophysical quantity such as resistivities, distances, or given measurements (attenuations, phases, etc.). Each
dimension corresponds to a particular value (sample) of that variable, for example, the geosignal attenuation recorded at a
specific logging position. From the algebraic point of view, the variable x denotes a row of either matrix M or P.
Data preprocessing algorithm
This algorithm consists of three steps.

1. Logarithmic change of coordinates. We introduce the following change of variables:
ln(x) ∶= (ln x1, ..., ln xn). (7)

For some geophysical variables (e.g., resistivity), this change of variables ensures that equal-size relative errors correspond
to similar-size absolute errors. Thus, this change of variables allows us to perform local (within a variable) comparisons.

2. Remove outlier samples. In practice, often outlier measurements are present in the sample database. These outliers
appear due to measurement error or the physics of the problem. For example, in borehole resistivity measurements, some
apparent resistivity measurements approach infinity, producing “horns" in the logs. When outlier measurements exists in
any particular variable of the i-th sample xi, then the entire sample should be removed. Otherwise, outlier measurements
affect the entire minimization problem, leading to poor numerical results. The removal process may be automated using
statistical indicators, or decided by the user based on a priori physical knowledge about the problem.We follow this second
approach in this work.

3. Linear change of coordinates. We now introduce a linear rescaling mapping into the interval [0.5, 1.5]. We select this
interval since it has unit length and the mean of a normal (or a uniform) distribution variable x is equal to one. Let
xmin ∶= mini xi, xmax ∶= maxi xi. We define

lin(x) ∶=
(
x1 − xmin
xmax − xmin

+ 0.5, ...,
xn − xmin
xmax − xmin

+ 0.5
)
, (8)

where the limits xmin and xmax are fixed for all possible approximations xapp. This change of variables allows us to perform
a global comparison between errors corresponding to different variables since they all take values over the same interval.
Remark: xmin and xmax could also be selected based on the physically valid interval of each particular variable rather than
on the training samples.

Variables classification
We categorize each input and output geophysical variable x into two types: either linear (A) or log-linear (B). When necessary,
we shall indicate that a particular variable belongs to a specific category by adding the corresponding symbol as subindex of the
variable, e.g., xA. Table 1 describes the domain of those variables as well as the rescaling employed for each of them. Variables
of type A only require a global rescaling while those of type B require both a local and a global change of variables.

8 M. Shahriari ET AL

Geophysical Variables Category Domain Rescaling
Angles, attenuations, A ℝn lin(x)
phases, and geosignals
Apparent resistivities, B (a,∞)n lin(ln(x))
resistivities, and distances a > 0

TABLE 1 Categories for geophysical variables: types A or B. We apply a different rescaling to each of them.

For simplicity, we denote by  the result of the above rescalings, i.e., (xA) ∶= lin(xA), and (xB) ∶= lin(ln(xB)). In
general, given a variable x (of category A or B), we represent x ∶= (x). Given a matrix X ∈ ℝnx×n, we abuse notation and
denote by X ∶= (X) ∈ ℝnx×n to the matrix that results from applying operator row-wise.
Remark: Substituting in Equation 7 the natural logarithm by the base ten logarithm does not affect the definition of. Results

are identical.

5 NORMS AND ERRORS

We first introduce both the vector and the matrix norms that we use during the training process.
Norms
We introduce a norm || ⋅ ||X associated with the variable x. In general, we employ the l1 or l2 vector norms and, for matrices,
the l1 and Frobenius norms.
Absolute and relative errors
Let xapp = (xapp1 , ..., xappn) be an approximation of x. We define the absolute error Ae between xapp and x in the || ⋅ ||X norm as

AX
e (x

app, x) ∶= ||xapp − x||X. (9)
This error measure has limited use since it is challenging to select an absolute error threshold that distinguishes between a

good and a bad quality approximation. To overcome this issue, practitioners often employ relative errors. We define the relative
error Re in percent between xapp and x in the || ⋅ ||X norm as:

RX
e (x

app, x) ∶= 100
||xapp − x||X

||x||X . (10)

Error control
For a variable x and its approximation xapp, we want to control the relative error of the rescaled variable, that is:

RX
e (x

app , x). (11)
The value B = ||x||X is expected to be similar for all variables x. Thus:

∑
x
AX
e (x

app , x) =
∑
x

||xapp − x||X ≈ B
∑
x

||xapp − x||X
||x||X = B

100
∑
x
RX
e (x

app , x). (12)
Therefore, the minimum of the first and last terms of the above equation coincide.

6 LOSS FUNCTION

In this section, we consider a set of weights � ∈ � and a function ,� that depends upon the selected DNN architecture (see
Appendix A). Then, we introduce a loss function L(,�). We define the minimizer of the loss function over all possible weight
sets � as:

,�∗ ∶= argmin
�∈�

L(,�). (13)

M. Shahriari ET AL 9

Function �∗ ∶= −1◦,�∗◦ is the final DNN approximation of . In the following, we analyze the advantages and limitations
associated with the use of different loss functions.

6.1 Data misfit
A simple loss function based on the data misfit is given by:

L(,�) ∶= ||,�(T,M) − P||P . (14)
In the above equation, symbol || ⋅ ||P indicates l1 or Frobenius norms introduced in Section 5.

6.1.1 Example A: Model problem with known analytical solution
In this example, np = 1. Thus, matrix norms reduce to vector norms. Figure 7 illustrates the results we obtain using the l1 and
l2 norms, respectively. These disappointing results are expected. Indeed, for the l2-norm, it is easy to show that for a sufficiently
flexible DNN architecture, the exact solution is �∗ ≈ 0. To prove this, we assume that for every sample of the form (m,

√
m),

there exist another one (m,−√m), which is satisfied in our dataset by construction (see Section 3). Then, for each pair of samples
of this form, the exact point that minimizes the distance between both solutions (√m and −

√
m) is 0. This argument can be

extended to all pairs of samples. A similar reasoning shows that for the l1-norm, any solution in between the two square root
branches is an exact solution of the inverse problem. Our numerical solutions in Figure 7 confirm these simple mathematical
observations. Thus, the data misfit loss function is unsuitable for inversion purposes.

0 500 1,000

−33

0

33

Predicted

Real

m

 �∗(
m
)

(a) ‖⋅‖1-norm

0 500 1,000

−33

0

33

Predicted
Real

m

 �∗(
m
)

(b) ‖⋅‖2-norm
FIGURE 7 Analytical solution vs DNN predicted solution evaluated over the test dataset using the loss function based on the
data misfit.

6.2 Misfit of the measurements
To overcome the aforementioned limitation, we consider the following loss function that measures themisfit of themeasurements
(see37):

L(,�) ∶= ‖(◦,�)(T,M) −M‖M , (15)
where  ∶= ◦◦−1, and || ⋅ ||M indicates a matrix norm of the type introduced in Section 5.
Example A: Model problem with known analytical solution
Figure 8 shows the inversion results when using the misfit of the measurements. We recover one of the possible solutions of the
inverse operator. A regularization term could be introduced to select one solution branch over the other.

10 M. Shahriari ET AL

0 500 1,000

−33

0

33

Predicted

Real

m

 �∗(
m
)

(a) ‖⋅‖1-norm

0 500 1,000

−33

0

33

Predicted

Real

m

 �∗(
m
)

(b) ‖⋅‖2-norm
FIGURE 8 Analytical solution vs DNN predicted solution evaluated over the test dataset using the loss function based on the
measurements misfit.

Despite the accurate results exhibited for the above example, the proposed loss function has some critical limitations that
affect its performance. Namely, during training, it is necessary to evaluate the forward problem multiple times. Depending upon
the size of the training dataset and number of iterations required to converge, this may lead to millions of forward function
evaluations. Solving the forward problem for such large number of times is time-consuming even with a 1.5D semi-analytic
simulator. Moreover, most forward solvers are implemented for CPU architectures, while the training of the DNN normally
occurs on GPUs. This requires a permanent communication between GPU and CPU, which further slows down the training
process. Additionally, porting the forward solver  to a GPU may be complex to implement and bring additional numerical
difficulties.

6.3 Encoder-Decoder
To overcome the aforementioned implementation challenges, we propose to approximate the forward function using another
DNN �∗ , where �∗ ∈ � are the parameters associated to the trained DNN. With this approach, we simultaneously train the
forward and inverse operators solving the following optimization problem:

(,�∗ ,,�∗) ∶= arg min
�∈�,�∈�

{‖(,�◦,�)(T,M) −M‖M
+ ‖,�(T,P) −M‖M},

(16)

Function �∗ ∶= −1◦,�∗◦ is the final DNN approximation to  . The first term in the above loss function constitutes
an Encoder-Decoder DNN architecture5 and ensures that function ,�∗ shall be a inverse of ,�∗ . The second term imposes
that the forward DNN approximates the ground truth data. In particular, it prevents situations in which both ,�∗ and ,�∗

approximate the identity operator.
Example A: Model problem with known analytical solution
Figure 9 shows the results obtained with the Encoder-Decoder loss function. We recover accurate inversion results.

6.4 Two-steps approach
It is possible to decompose the above Encoder-Decoder based loss function into two steps: the first optimization problem intends
to approximate the forward function, and the second one determines the inverse operator:

,�∗ ∶= argmin
�∈�

‖,�(T,P) −M‖M ,
,�∗ ∶= argmin

�∈�
‖(,�∗◦,�)(T,M) −M‖M .

(17a)
(17b)

M. Shahriari ET AL 11

0 500 1,000

−33

0

33

Predicted

Real

m

 �∗(
m
)

(a) ‖⋅‖1-norm

0 500 1,000

−33

0

33

Predicted

Real

m

 �∗(
m
)

(b) ‖⋅‖2-norm
FIGURE 9 Analytical solution vs DNN predicted solution evaluated over the test dataset using the Encoder-Decoder loss
function.

Example A: Model problem with known analytical solution
Figure 10 shows the results of the inversion using the two-steps approach. We recover a faithful approximation of the inverse
operator.

0 500 1,000

−33

0

33

Predicted

Real

m

 �∗(
m
)

(a) ‖⋅‖1-norm

0 500 1,000

−33

0

33

Predicted

Real

m

 �∗(
m
)

(b) ‖⋅‖2-norm
FIGURE 10 Analytical solution vs DNN predicted solution evaluated over the test dataset using the two-step loss function.

Remark A: Based on the above discussion, it may seem that optimization problems given by either Equations 16 or 17 are
ideal to solve inverse problems. However, there is a critical issue that needs to be addressed. In Equation 17a, the forward DNN,� is trained only for the given dataset samples. However, the output of the DNN approximation of the inverse operator ,�
will often deliver data far away from the data space used to produce the training samples. This may lead to catastrophic results.
To illustrate this, we consider our model problem with known analytical solution. If we consider a dataset with only positive
values of p, then the following approximations will lead to a zero loss function:

�∗(p) =
{
p2 if p > 0
ap2 if p < 0 �∗(m) = −

√
m∕a, (18)

for any a > 0. However, if a ≠ 1, this approximation is far away from both our original forward and inverse solutions. To
prevent these undesired situations, one should ensure that the output space of ,�∗ is sufficiently close to the space from which
we obtain the training samples. However, this is often difficult to control.

12 M. Shahriari ET AL

6.5 Regularization term
Inverse problems often exhibit non-unique solutions. Thus, in numerical methods, one introduces a regularization term to select
a particular solution we prefer out of all the existing ones.
In DL applications, standard regularization techniques seek to optimize the model architecture (e.g., by penalizing high-

valued weights). Herein, we regularize the system by adding the loss function of Equation 14 measured in the l1-norm to either
the optimization problem given by Equation 16 or 17b. This extra term guides the solution towards the ones considered in the
training dataset, which may be convenient. Nevertheless, such a regularization term often hides the fact that other different
solutions of the inverse problem may coexist. We study the advantages and limitations of including this regularization term in
detail in Section 8.

7 IMPLEMENTATION

To solve the forward problem, we employ a semi-analytic method36 implemented in Fortran 90. It employs a Hankel transform
to reduce the original 3DMaxwell system to a sequence of uncoupled 1D problems, whose solutions are analytical in the Hankel
domain38. Then, we perform a numerical inverse Hankel transform with an adaptive Andersson quadrature rule39. With it, we
produce a dataset containing one million samples (ground truth). Each sample consists of a randomly selected 1D layered model
(see Section 3 for details). We use 80% of the samples for training the DNNs, 10% for validating them, and the remaining 10%
for testing.
We consider two DNN architectures to approximate  and , respectively. The forward function  is well-posed and con-

tinuous, while the inverse operator  is not even well-defined. Thus, we employ a simpler DNN architecture to approximate 
than to approximate . See Appendix A for details. We use the l1 norm for the loss function.
We implement our DNNs using Tensorflow 2.040 and Keras6 libraries. To train the DNNs, we use a NVIDIA Quadro GV100

GPU. Using this hardware device, we require almost 70 hours to simultaneously train,�∗ and ,�∗ . While the training process
is time-consuming, it is performed offline. Then, the online part of the process consists of simply evaluating the DNN, which
can deliver an inverse model for thousands of logging positions in a few seconds. This low online computational cost makes the
DNN approach an excellent candidate to perform inversion during geosteering operations in the field.

8 NUMERICAL RESULTS

We perform a three step evaluation process of the results:
1. We first study the evolution of each term in the loss function during the training process. This analysis assesses the overall

performance of the training process and, in particular, shows if any particular term of the loss function is driving the
optimization procedure in detriment of other terms.

2. Second, we produce multiple cross-plots, which provide essential information about the adequacy of the selected loss
function and dataset. These cross-plots indicate the possible non-uniqueness of the inverse problem at hand.

3. Finally, we apply the trained networks to invert three realistic synthetic models and analyze the overall success of the
proposed DNN algorithm as well as its limitations.

The above evaluation process provides a step-by-step assessment of the adequacy of the proposed strategy for solving inverse
problems.
In most cases, we observe similar results when we consider the Encoder-Decoder loss function given by Equation 16 and the

two-step loss function given by Equation 17. For brevity, we mostly focus on the Encoder-Decoder results. Additionally, we
include one set of results using the two-step loss function, for which the observed behavior is essentially different from that of
the Encoder-Decoder process.

8.1 Evolution of the loss function
Figure 11 displays the evolution of the terms composing the Encoder-Decoder loss function described in Equation 16 for Example
B.1. Figure 12 displays the corresponding results when we add the regularization term based on Equation 14. In both figures,

M. Shahriari ET AL 13

we observe: (a) a proper reduction of the total loss function, indicating that the overall minimization process is successful; (b)
an adequate balance between the loss contribution of the different terms composing each loss function, suggesting that all terms
of the loss functions are simultaneously minimized; and (c) a satisfactory match between the loss functions corresponding to
the training and the validation data samples, which indicates we avoid overfitting. We observe a similar behavior with Example
B.2, which we skip for brevity. We do not detail the results per variable since the applied rescaling of Section 4 guarantees a
good balance between different variables.

0 400 800

10−2

Epoch nr.

L
os
s

training

validation

(a) ‖,�(T,P) −M‖M

0 400 800

10−2

Epoch nr.
L
os
s

training

validation

(b) ‖(,�◦,�)(T,M) −M‖M

0 400 800

10−2

Epoch nr.

L
os
s

training

validation

(c) Total Loss
FIGURE 11 Example B.1. Evolution of the different terms of the Encoder-Decoder loss function given by Equation 16 without
regularization.

8.2 Cross-plots
We consider the following types of cross-plots:

Cross-plot 1: ◦ vs �∗◦
Cross-plot 2: ◦ vs �∗◦�∗
Cross-plot 3: ◦ vs ◦�∗
Cross-plot 4:  vs �∗

(19)

In the above,  and  are the exact functions and they define the ground truth, while the others are the predictions our DNNs
deliver. In particular, in the first three types of cross-plots the ground truth is simply the identity mapping. We could display
each type of cross-plot for the training, validation, and test data samples and for each variable. In our Example B, this makes a

14 M. Shahriari ET AL

0 400 800

10−2

Epoch nr.

L
os
s

training

validation

(a) ‖,�(T,P) −M‖M

0 400 800

10−2

Epoch nr.

L
os
s

training

validation

(b) ‖(,�◦,�)(T,M) −M‖M

0 400 800

10−1

Epoch nr.

L
os
s

training

validation

(c) ||,�(T,M) − P||P

0 400 800

10−1

Epoch nr.

L
os
s

training

validation

(d) Total Loss
FIGURE 12 Example B.1. Evolution of the different terms of the Encoder-Decoder loss function given by Equation 16 with
the regularization term prescribed by Equation 14.

total of 69 cross-plots. In addition, we need to repeat them for each considered loss function. To compress this information, we
quantify each cross-plot with a single number: the statistical measure R-squared (R2), which represents how much variation of
the ground truth is explained by the predicted value. When this value is close to 1, indicating a perfect matching between the
predicted value and the ground truth, we can safely omit these cross-plots. Otherwise, cross-plots display interesting information
beyond what R2 provides.
The proper interpretation of the cross-plots (or alternatively, R2 factors) is of utmost importance. Cross-plots of type 1

(Equation 191) indicate how well the forward function is approximated over the given dataset. The cross-plots of type 2
(Equation 192) display how well the composition of the predicted forward and inverse mappings approximate the identity.
These two types of cross-plots often deliver high R2 factors, since the corresponding approximations are directly built into the
Encoder-Decoder loss function given by Equation 16. Table 2 confirms those theoretical predictions for the most part.
An in-depth inspection of Table 2 reveals that for the the geosignal measurements (both attenuation and phase) corresponding

to the Example B.1 without regularization, the cross-plots 2 exhibit significantly better R2 factors than those corresponding to
the cross-plots 1. Figure 13 shows the corresponding cross-plots. The anti-diagonal grey line shown in cross-plots of type 1
corresponds to dip angles of the logging instrument that are close to 90 degrees. At that angle, the geosignal is discontinuous.
Thus, it is not properly approximated via DL algorithms, which approximate continuous functions. Cross-plots of type 2 seem
to fix that issue by delivering higher R2 factors and apparently nicer figures. However, they amplify the problem. In reality, the
DL approximation of the inverse operator is inverting an incorrect forward approximation. Numerical results below illustrate
this problem.

M. Shahriari ET AL 15

Cross-plots 1
Atten. Atten. Atten. Phase Phase Phase

R2 factors LWD Deep Deep LWD Deep Deep
Coaxial Coaxial Geosignal Coaxial Coaxial Geosignal

Example B.1
Training 0.9997 0.9992 0.9509 0.9996 0.9994 0.9468
Test 0.9995 0.9984 0.9531 0.9990 0.9991 0.9487
Without Reg.
Example B.1
Training 0.9998 0.9998 0.9897 0.9998 0.9998 0.9893
Test 0.9998 0.9998 0.9893 0.9998 0.9998 0.9890
With Reg.
Example B.2
Training 0.9959 0.9975 0.9872 0.9954 0.9980 0.9853
Test 0.9924 0.9960 0.9775 0.9920 0.9974 0.9765
Without Reg.

Cross-plots 2
Atten. Atten. Atten. Phase Phase Phase

R2 factors LWD Deep Deep LWD Deep Deep
Coaxial Coaxial Geosignal Coaxial Coaxial Geosignal

Example B.1
Training 0.9997 0.9995 0.9998 0.9999 0.9996 0.9999
Test 0.9997 0.9994 0.9999 0.9999 0.9996 0.9999
Without Reg.
Example B.1
Training 0.9971 0.9980 0.9779 0.9970 0.9979 0.9798
Test 0.9970 0.9979 0.9785 0.9970 0.9978 0.9803
With Reg.
Example B.2
Training 0.9931 0.9958 0.9800 0.9933 0.9967 0.9821
Test 0.9890 0.9930 0.9701 0.9881 0.9944 0.9720
Without Reg.

TABLE 2 R2 factors for cross-plots 1 and 2 and Examples B.1 and B.2, with and without regularization, for training and test
datasets. Numbers below 0.96 are marked in boldface.

Obtaining high R2 factors associated to cross-plots of type 3 (Equation 193) is a challenging task as we discuss in Remark
A of Section 6. Equation 18 shows a simple example in which cross-plots of type 1 and 2 deliver perfect R2 marks and results,
while cross-plots of type 3 are disastrous. This is also the situation that occurs in Example B.2. (see Table 3). While the original
training dataset is based on 1D Earth models, the one obtained after the predicted DNN inversion is a piecewise 1D Earth model,
for which �∗ is untrained for. When this occurs, the training database should be upgraded, either by increasing the space of
the data samples or by selecting a different parameterization (e.g., measurements) for each sample. In our case, we choose to
parametrize each sample independently (the later stategy) and we move to Example B.1.
Table 3 shows mixed results for the Example B.1. Results without regularization are unremarkable with the geosignal fore-

casts showing poor results. The DNN inverse approximation accurately inverts for the outcome predicted by the DNN forward
approximation. Nevertheless, since the DNN predicts solutions far from the true forward function, the predictions are poor.
Again, this poor forecasting occurs because the DNN inverse approximation encounters subsurface models for which the for-
ward DNN approximation is untrained. As a result, both the forward and inverse DDN approximations depart strongly from the

16 M. Shahriari ET AL

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Ground Truth

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
ed

r2 = 0.9531

Atten-Geosignal

−1 0 1
−1

0

1

Ground truth

P
re
d
ic
te
d
va
lu
e

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Ground Truth

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Pr
ed

ict
ed

r2 = 0.9487

Phase-Geosignal

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Ground truth

P
re
d
ic
te
d
va
lu
e

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Ground Truth

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
ed

r2 = 0.9999

Atten-Geosignal_FI

−1 0 1
−1

0

1

Ground truth

P
re
d
ic
te
d
va
lu
e

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Ground Truth

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Pr
ed

ict
ed

r2 = 0.9999

Phase-Geosignal_FI

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Ground truth

P
re
d
ic
te
d
va
lu
e

FIGURE 13 Geosignal cross plots for the Example B.1 without regularization for the test dataset. First row: Cross-plots 1.
Second row: Cross-plots 2. First column: Attenuation. Second column: Phase.

true solutions. In other words, the inverse can only comply with their composition to be close to the identity, which is not robust
to deliver accurate and physically relevant approximations.

Cross-plots 3
Atten. Atten. Atten. Phase Phase Phase

R2 factors LWD Deep Deep LWD Deep Deep
Coaxial Coaxial Geosignal Coaxial Coaxial Geosignal

Example B.1
Without Reg. 0.9468 0.7406 0.0013 0.9383 0.9116 0.0167
With Reg. 0.9971 0.9979 0.9807 0.9969 0.9979 0.9856
Example B.2
Without Reg. 0.5721 0.8383 0.0253 0.4546 0.8611 0.0284
With Reg. 0.9010 0.9701 0.5901 0.8621 0.9618 0.5877

TABLE 3 R2 factors for Cross-plots 3 and Examples B.1 and B.2, with and without regularization, for the test dataset.

To partially alleviate the above problem, we envision three possible solutions. First, we can increase the training dataset.
This option is time-consuming and often impossible to achieve in practice. For example, herein, we already employ 1,000,000
samples. Second, we can include regularization. Results with regularization are of high quality (see Table 3). However, the
regularization term may hide alternative physical solutions of the inverse problem. Thus, the regularization diminishes the
ability to perform uncertainty quantification. Similarly, it may induce on the user excessive confidence in the results. A third
option is to consider the two-step loss function given by Equation 17. Following this approach, we first adjust the forward DNN
approximation before training the DNN inverse approximation. Fixing the forward DNN often provides a proper forecast even
in areas with a lower rate of training samples before producing a DNN approximation that approximates the inverse of the DNN

M. Shahriari ET AL 17

forward approximation. Following this two-step approach without regularization, we obtain high R2 factors for cross-plots of
type 3: above 0.95 for the geosignal attenuation and phase, and above 0.99 for the remaining measurements.
Finally, theR2 factors for the cross-plots of type 4 do not reflect on the accuracy of the DNN algorithm, but rather on the nature

of the inverse problem at hand. Low R2 factors indicate there exist multiple solutions. A regularization term (e.g., Equation 14)
increases the R2 indicator. Figure 14 clearly illustrates this fact. However, it is misleading to conclude that results without
regularization are always worse. They may simply exhibit a different (but still valid) solution of the inverse problem.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Ground Truth

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

r2 = 0.0227

d_u

−2 −1 0 1

−2

−1

0

1

Ground truth

P
re
d
ic
te
d
va
lu
e

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Ground Truth

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

r2 = 0.7488

d_u

−2 −1 0 1

−2

−1

0

1

Ground truth
P
re
d
ic
te
d
va
lu
e

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Ground Truth

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

r2 = 0.7488

d_u

−2 −1 0 1

−2

−1

0

1

Ground truth

P
re
d
ic
te
d
va
lu
e

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Ground Truth

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

r2 = 0.0000

d_l

−2 −1 0 1

−2

−1

0

1

Ground truth

P
re
d
ic
te
d
va
lu
e

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Ground Truth

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Pr

ed
ict

ed
r2 = 0.7466

d_l

−2 −1 0 1

−2

−1

0

1

Ground truth

P
re
d
ic
te
d
va
lu
e

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Ground Truth

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

r2 = 0.7466

d_l

−2 −1 0 1

−2

−1

0

1

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.1876

rho_u

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.9732

rho_u

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.9706

rho_u

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.0643

rho_l

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.9742

rho_l

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.9717

rho_l

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.1508

rho_h

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.8950

rho_h

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ground Truth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
ed

r2 = 0.8910

rho_h

0 1 2 3

0

1

2

3

Ground truth

P
re
d
ic
te
d
va
lu
e

FIGURE 14 Cross-plots of type 4 for Example B.1 without regularization for the training dataset (first column), and with
regularization for the training dataset (second column) and the test dataset (third column). First row: distance to the upper layer.
Second row: distance to the lower layer. Third row: resistivity of upper layer. Fourth row: resistivity of lower layer. Fifth row:
resistivity of central layer.

18 M. Shahriari ET AL

8.3 Inversion of realistic synthetic models
We now consider three realistic synthetic examples to assess the performance of the inversion process. In terms of log accuracy,
we observe qualitatively similar results for the attenuation and phase logs. Thus, in the following we only display the attenuation
logs and omit the phase logs.

8.3.1 Model Problem I
Figure 15 describes a well trajectory in a synthetic model problem. The model has a resistive layer with a water-bearing layer
underneath, and exhibits two geological faults.

0 50 100 150 200 250 300 350 400 450 500

45

50

55

60

HD (m)

TV
D(
m

)

FIGURE 15 Formation of model problem I.

For the DNNs produced with the Example B.2 (with input measurements corresponding to 65 logging positions per sample),
Figure 16 shows the corresponding inverted models using the Encoder-Decoder DNN with and without regularization. Results
show inaccurate inversion results, specially for the case without regularization. Moreover, the predicted logs are far from the true
logs, as Figure 17, and as expected from cross-plots 3 (see Table 3). The DNN inversion results are piecewise 1D models. How-
ever, the DNN approximation only trains with 1Dmodels, not for piecewise 1Dmodels, which explains the poor approximations
they deliver (see Remark A on Section 6).
In the remainder of this section, we restrict to DNNs produced with Example B.1. That is, we parametrize all observations

at one location using information from that location alone. Figure 18 shows the corresponding inverted models. For the case
of the Encoder-Decoder loss function without regularization, we observe in Figure 18a an inverted model that is completely
different from the original one. The corresponding logs (see Figure 19) are also inaccurate, as anticipated by the cross-plots
results of type 3 shown in the previous subsection. When considering the two-step loss function without regularization, the
recovered model (see Figure 18b) is still quite different from the original one. Nonetheless, we observe a superb matching in the
logs (see Figure 20), which indicates the presence of a different solution for the inverse problem. This confirms that the given
measurements are insufficient to provide a unique solution for the inverse problem. For the case with regularization, inversion
results (see Figure 18b) match the original model, and the corresponding logs properly approximate the synthetic ones, see
Figure 21. Figures 22 and 23 confirm that our methodology delivers a proper training of the forward function approximation
and the composition �∗◦�∗ , respectively.

M. Shahriari ET AL 19

0 50 100 150 200 250 300 350 400 450 500

45

50

55

60

HD (m)

TV
D(
m

)

(a) Without regularization

0 50 100 150 200 250 300 350 400 450 500

45

50

55

60

HD (m)

TV
D(
m

)

(b)With regularization

FIGURE 16 Inverted formation of model problem I using the inversion strategy of Example B.2, i.e., with input measurements
corresponding to 65 logging positions per sample.

20 M. Shahriari ET AL

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement. Without regularization

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(b) LWD coaxial measurement. With regularization

FIGURE 17 Model problem I. Comparison between ◦ and ◦�∗ using the inversion strategy of Example B.2, i.e., with
input measurements corresponding to 65 logging positions per sample.

M. Shahriari ET AL 21

0 50 100 150 200 250 300 350 400 450 500

45

50

55

60

HD (m)

TV
D(
m

)

(a) Predicted formation using the Encoder-Decoder loss function without regularization

0 50 100 150 200 250 300 350 400 450 500

45

50

55

60

HD (m)

TV
D(
m

)

(b) Predicted formation using the two-step loss function without regularization

0 50 100 150 200 250 300 350 400 450 500

45

50

55

60

HD (m)

TV
D(
m

)

(c) Predicted formation using the Encoder-Decoder loss function with regularization

FIGURE 18 Inverted formation of model problem I using the inversion strategy of Example B.1, i.e., with input measurements
corresponding to one logging positions per sample.

22 M. Shahriari ET AL

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement

0 50 100 150 200 250 300 350 400 450 500
−51

−50

−49

−48

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(b) Deep coaxial measurement

0 50 100 150 200 250 300 350 400 450 500

10

15

20

25

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(c) Geosignal measurement

FIGURE 19 Model problem I. Comparison between ◦ and ◦�∗ without regularization using the Encoder-Decoder loss
function and the inversion strategy of Example B.1, i.e., with input measurements corresponding to one logging positions per
sample.

M. Shahriari ET AL 23

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement

0 50 100 150 200 250 300 350 400 450 500
−49.5

−49

−48.5

−48

−47.5

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(b) Deep coaxial measurement

0 50 100 150 200 250 300 350 400 450 500

10

15

20

25

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(c) Geosignal measurement

FIGURE 20 Model problem I. Comparison between ◦ and ◦�∗ using the two-step loss function without regularization
and the inversion strategy of Example B.1, i.e., with input measurements corresponding to one logging positions per sample.

24 M. Shahriari ET AL

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement

0 50 100 150 200 250 300 350 400 450 500

−49

−48

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(b) Deep coaxial measurement

0 50 100 150 200 250 300 350 400 450 500

10

15

20

25

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(c) Geosignal measurement

FIGURE 21Model problem I. Comparison between◦ and◦�∗ with regularization using the inversion strategy of Example
B.1, i.e., with input measurements corresponding to one logging positions per sample.

M. Shahriari ET AL 25

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs �∗◦

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement

0 50 100 150 200 250 300 350 400 450 500
−49.5

−49

−48.5

−48

◦ vs �∗◦

HD (m)

Att
.(d

B
)

(b) Deep coaxial measurement

0 50 100 150 200 250 300 350 400 450 500

10

15

20

25

◦ vs �∗◦

HD (m)

Att
.(d

B
)

(c) Geosignal measurement

FIGURE22Model problem I. Comparison between◦ and�∗◦ with regularization using the inversion strategy of Example
B.1, i.e., with input measurements corresponding to one logging positions per sample.

26 M. Shahriari ET AL

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs �∗◦�∗

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement

0 50 100 150 200 250 300 350 400 450 500

−49.5

−49

−48.5

−48

◦ vs �∗◦�∗

HD (m)

Att
.(d

B
)

(b) Deep coaxial measurement

0 50 100 150 200 250 300 350 400 450 500

10

15

20

25

◦ vs �∗◦�∗

HD (m)

Att
.(d

B
)

(c) Geosignal measurement

FIGURE 23 Model problem I. Comparison between ◦ and �∗◦�∗ with regularization using the inversion strategy of
Example B.1, i.e., with input measurements corresponding to one logging positions per sample.

M. Shahriari ET AL 27

8.3.2 Model Problem II
In this problem, we consider a 2.5m-thick conductive layer surrounded by two resistive layers. A well trajectory with a dip angle
equal to 87◦ crosses the formation. Figure 24 displays the original and predicted models by DL. This example illustrates some
of the limitations of DNNs. In this case, the Earth models associated with part of the trajectory are outside the model problems
considered in Section 2, which restrict to only one layer above and below the logging trajectory. Thus, the DNN is untrained for
such models, and results cannot be trusted in those zones. Numerical results confirm these observations. Nonetheless, inaccurate
inversion results are simple to identify by inspection of the logs (Figures 25 and 26).

0 20 40 60 80 100 120 140 160 180 200 220 240

40

42

44

46

HD (m)

TV
D(
m

)

(a) Actual formation

0 20 40 60 80 100 120 140 160 180 200 220 240

40

42

44

46

HD (m)

TV
D(
m

)

(b) Predicted formation using one logging position with regularization

FIGURE 24 Model problem 2. Comparison between actual and predicted formations with regularization using the inversion
strategy of Example B.1, i.e., with input measurements corresponding to one logging positions per sample.

28 M. Shahriari ET AL

0 20 40 60 80 100 120 140 160 180 200 220 240

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement

0 20 40 60 80 100 120 140 160 180 200 220 240
−49

−48.8

−48.6

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(b) Deep coaxial measurement

0 20 40 60 80 100 120 140 160 180 200 220 240
12

14

16

18

20

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(c) Geosignal measurement

FIGURE25Model problem 2. Comparison between◦ and◦�∗ with regularization using the inversion strategy of Example
B.1, i.e., with input measurements corresponding to one logging positions per sample.

M. Shahriari ET AL 29

0 20 40 60 80 100 120 140 160 180 200 220 240

26

28
◦ vs �∗◦

HD (m)

Att
.(d

B
)

(a) LWD coaxial measurement

0 20 40 60 80 100 120 140 160 180 200 220 240
−49

−48.5

−48

◦ vs �∗◦

HD (m)

Att
.(d

B
)

(b) Deep coaxial measurement

0 20 40 60 80 100 120 140 160 180 200 220 240

10

15

20

◦ vs �∗◦

HD (m)

Att
.(d

B
)

(c) Geosignal measurement

FIGURE26Model problem 2. Comparison between◦ and�∗◦ with regularization using the inversion strategy of Example
B.1, i.e., with input measurements corresponding to one logging positions per sample.

30 M. Shahriari ET AL

8.3.3 Model Problem III
We now consider a model formation exhibiting geological faults and two different well trajectories. For well trajectory 1,
Figure 27 shows the model problem, logging trajectory, inversion results, and coaxial attenuation logs. Inversion results are
excellent. When considering the second well trajectory shown in Figure 28, we observe good inversion results except at the prox-
imity of points with horizontal distance (HD) equals to 75m and 350m. These inaccurate inversion results are easily identified
by examination of the corresponding logs.

0 50 100 150 200 250 300 350 400 450 500

40

50

60

HD (m)

TV
D(
m

)

(a) Actual formation

0 50 100 150 200 250 300 350 400 450 500

40

50

60

HD (m)

TV
D(
m

)

(b) Predicted formation

0 50 100 150 200 250 300 350 400 450 500

26

28

30

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(c) LWD coaxial measurement

FIGURE 27 Model problem III, trajectory 1. Comparison between actual and predicted formations and the corresponding
coaxial logs with regularization using the inversion strategy of Example B.1, i.e., with input measurements corresponding to
one logging positions per sample.

M. Shahriari ET AL 31

0 50 100 150 200 250 300 350 400 450 500

40

50

60

HD (m)

TV
D(
m

)

(a) Actual formation

0 50 100 150 200 250 300 350 400 450 500

40

50

60

HD (m)

TV
D(
m

)

(b) Predicted formation

0 50 100 150 200 250 300 350 400 450 500
26.5

27

27.5

◦ vs ◦�∗

HD (m)

Att
.(d

B
)

(c) LWD coaxial measurement

FIGURE 28 Model problem III, Trajectory 2. Comparison between actual and predicted formations and the corresponding
coaxial logs with regularization using the inversion strategy of Example B.1, i.e., with input measurements corresponding to
one logging positions per sample.

9 DISCUSSION AND CONCLUSIONS

In this work, we focus on the use of deep neural networks (DNN) for the inversion of borehole resistivity measurements for
geosteering applications. We analyze the strong impact that different loss functions have on the prediction results. We illustrate

32 M. Shahriari ET AL

via a simple benchmark example that a traditional data misfit loss function delivers poor results. As a remedy, we use an Encoder-
Decoder or a two-step loss function. These approaches generate two DNN approximations: one for the forward function and
another one for the inverse operator. We propose different neural network architectures for each approximation functions.
To guarantee that the inverse DNN approximation provides meaningful results, we need to ensure that the training dataset

contains sufficient samples. Otherwise, both forward and inverse DNN operators may provide incorrect solutions while still
ensuring the composition of both operators to be close to the identity. Thus, the approach is highly dependent on the existence
of a sufficiently rich training dataset, which facilitates the learning process of the DNNs. In the case of 1D layered formations, it
is often feasible to produce the required dataset. However, for more complicated cases, for example, the inversion of 2D and 3D
geometries, a direct extension may be limited due to the larger number of inversion variables and the extremely time-consuming
process of producing an exhaustive dataset.
As a partial remedy for this limitation, we find it highly beneficial to add a regularization term to the loss function based

on the existing training dataset. This reduces the richness we need to guarantee within the training datasets. Nevertheless, such
regularization terms may hide alternative feasible solutions for the inverse operator, which may provide excessive confidence
on the results and minimize the capacity to perform a fair uncertainty quantification assessment. Another possibility to partially
alleviate the aforementioned problem is to consider a two-step loss functions. Using this approach, we have shown that the
inverse problem considered in this work admits different solutions that are physically feasible, a fact that was obscured when
using the regularization term.
Other critical limitations of DNNs we encounter in this work are: (a) the limited approximation capabilities of DNNs to

reproduce discontinuous functions, (b) the need of a new dataset and trained DNN for each subsurface parametrization, and (c)
the poor results they exhibit when they are evaluated over a sample that is outside the training dataset space. More importantly,
it is often difficult to identify the source of poor results, which may include inadequate selections of: (i) loss function, (ii) DNN
architecture, (iii) regularization term, (iv) training dataset, (v) optimization algorithm, (vi) rescaling operator and norms, (vii)
model parameterization, (viii) approximation capabilities of DNNs, or simply (ix) the nature of the problem due to a lack of
adequate measurements. To deal with the aforementioned limitations, we propose a careful step-by-step error control based
on: (a) selecting adequate norms, (b) proper rescaling of the variables, (c) selecting a well suited loss function possibly with a
regularization term, (d) analyzing the evolution of the different terms of the loss function, (e) studying multiple cross-plots of
different nature, and (f) performing an in-depth assessment of the results over multiple realistic test examples.
Finally, we show it is possible to obtain a good-quality inversion of geosteering measurements with limited online computa-

tional cost, thus, suitable for real-time inversion. Moreover, the quality of the inversion results can be rapidly evaluated to detect
its possible inaccuracies in the field and select alternative inversion methods when needed.
Possible future research lines of this work include: (a) to study different DNN architectures when applied to these problems,

for example, using automatic DNN architecture generators such as Automated Machine Learning techniques, (b) to design
proper measurement acquisition systems and adequate Earth model parametrizations using the cross-plots delivered by the
DNNs, (c) to consider more complex Earth models, possibly containing geological faults or other relevant subsurface features,
(d) to develop optimal sampling techniques for inverse problems, possibly containing a different number of samples to train the
forward and inverse operators, (e) to design and analyse new regularization techniques, (f) to use Bayesian DNNs for uncertainty
quantification, and (g) to use transfer learning techniques for higher spatial dimensions, which can alleviate data requirements to
train the corresponding DNNs. Finally, a natural step toward industrial applications is to evaluate the performance of our DNN
approach when having noisy measurements. As mentioned above, we shall use our approach to design proper measurement
acquisition techniques and adequate earth model parameterizations using the cross-plots delivered by the DNNs.

10 ACKNOWLEDGMENTS

The research reported in this article has been funded by the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS), the European POCTEFA 2014-2020 Project
PIXIL (EFA362/19) by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra
programme, the Austrian Ministry for Transport, Innovation and Technology (BMVIT), the Federal Ministry for Digital and
Economic Affairs (BMDW), the Province of Upper Austria in the frame of the COMET - Competence Centers for Excel-
lent Technologies Program managed by Austrian Research Promotion Agency FFG, the COMET Module S3AI, the Project
of the Spanish Ministry of Economy and Competitiveness with reference MTM2016-76329-R (AEI/FEDER, EU), the BCAM

M. Shahriari ET AL 33

“Severo Ochoa” accreditation of excellence (SEV-2017-0718), and the Basque Government through the BERC 2018-2021 pro-
gram, the two Elkartek projects ArgIA (KK-2019-00068) and MATHEO (KK-2019-00085), the Consolidated Research Group
MATHMODE (IT1294-19) given by the Department of Education, The University of Texas at Austin Research Consortium
on Formation Evaluation, jointly sponsored by Anadarko, Aramco, Baker Hughes, BHP, BP, Chevron, China Oilfield Services
Limited, CNOOC International, ConocoPhillips, DEA, Eni, Equinor ASA, ExxonMobil, Halliburton, INPEX, Lundin Norway,
Occidental, Oil Search, Petrobras, Repsol, Schlumberger, Shell, Southwestern, Total, Wintershall Dea, andWoodside Petroleum
Limited. Carlos Torres-Verdín is grateful for the financial support provided by the Brian James Jennings Memorial Endowed
Chair in Petroleum and Geosystems Engineering. This publication acknowledges the financial support of the CSIRO Professo-
rial Chair in Computational Geoscience at Curtin University and the Deep Earth Imaging Enterprise Future Science Platforms
of the Commonwealth Scientific Industrial Research Organisation, CSIRO, of Australia. Additionally, at Curtin University, The
Institute for Geoscience Research (TIGeR) and by the Curtin Institute for Computation, kindly provide continuing support.

REFERENCES

1. Lu L, Zheng Y, Carneiro G, Yang L. Deep Learning for Computer Vision: Expert techniques to train advanced neural
networks using TensorFlow and Keras. Springer, Switzerland . 2017.

2. Yu D, Deng L. Automatic Speech Recognition: A Deep Learning approach. Springer, London . 2017.
3. Bhanu B, Kumar A. Deep Learning for Biometrics. Springer, Switzerland . 2017.
4. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv:1512.03385 2015.
5. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image

Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2017; 39(12): 2481–2495.
6. Chollet F. Keras. https://github.com/fchollet/keras; 2015.
7. Paszke A, Gross S, Chintala S, et al. Automatic differentiation in PyTorch. In: ; 2017.
8. Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX. Deep learning and its applications to machine health monitoring.

Mechanical Systems and Signal Processing 2019; 115: 213 - 237. doi: https://doi.org/10.1016/j.ymssp.2018.05.050
9. Deng L, Li J, Huang J, et al. Recent advances in deep learning for speech research at Microsoft. In: ; 2013: 8604-8608.
10. Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling.

Pattern Recognition Letters 2014; 42: 11 - 24. doi: https://doi.org/10.1016/j.patrec.2014.01.008
11. Vargas R, Mosavi A, Ruiz R. Deep learning: A review. working paper, ; : 2017.
12. Jan B, Farman H, Khan M, et al. Deep learning in big data Analytics: A comparative study. Computers & Electrical

Engineering 2019; 75: 275 - 287. doi: https://doi.org/10.1016/j.compeleceng.2017.12.009
13. ShahriariM, PardoD, PicónA,GaldranA, Ser JD, Torres-Verdín C. ADeep LearningApproach to the Inversion of Borehole

Resistivity Measurements. Computational Geosciences 2020. doi: 10.1007/s10596-019-09859-y
14. Pardo D, Torres-Verdin C. Fast 1D inversion of logging-while-drilling resistivity measurements for the improved estimation

of formation resistivity in high-angle and horizontal wells. Geophysics 2014; 80 (2): E111–E124.
15. Ijasana O, Torres-Verdín C, Preeg WE. Inversion-based petrophysical interpretation of logging-while-drilling nuclear and

resistivity measurements. Geophysics 2013; 78 (6): D473–D489.
16. Desbrandes R, Clayton R. Chapter 9 measurement while drilling. Developments in Petroleum Science 1994; 38: 251 – 279.
17. Ghasemi M, Yang Y, Gildin E, Efendiev Y, Calo VM. Fast multiscale reservoir simulations using POD-DEIM model

reduction. Society of Petroleum Engineers 2015: 1–18.

https://github.com/fchollet/keras
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2018.05.050
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2014.01.008
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2017.12.009
http://dx.doi.org/10.1007/s10596-019-09859-y

34 M. Shahriari ET AL

18. Chemali R, Bittar M, Hveding F, Wu M, Dautel M. Improved geosteering by integrating in real time images from multiple
depths of investigation and inversion of azimuthal resistivity signals. Society of Petrophysicists andWell-Log Analysts 2010:
1–7.

19. Dupuis C, Denichou JM. Automatic inversion of deep-directional-resistivity measurements for well placement and reservoir
description. The Leading Edge 2015; 34(5): 504–512.

20. Zhang Z, Yuan N, Liu CR. 1-D Inversion of triaxial induction logging in layered anisotropic formation. Progress In
Electromagnetics Research B 2012; 44: 383–403.

21. Seifert DJ, Dossary SA, Chemali RE, et al. Deep electrical images, geosignal, and real-time inversion help guide steering
decisions. Society of Petroleum Engineers 2009: 1–9.

22. Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied
Mathematics . 2005.

23. Shahriari M, Rojas S, Pardo D, et al. A numerical 1.5D method for the rapid simulation of geophysical resistivity
measurements. Geosciences 2018; 8(6): 1–28.

24. Wang L, Li H, Fan Y. Bayesian Inversion of Logging-While-Drilling Extra-Deep Directional Resistivity Measurements
Using Parallel Tempering Markov Chain Monte Carlo Sampling. IEEE Transactions on Geoscience and Remote Sensing
2019; 57(10): 8026-8036.

25. Malinverno A, Torres-Verdín C. Bayesian inversion of DC electrical measurements with uncertainties for reservoir
monitoring. Inverse Problems 2000; 16(5): 1343–1356. doi: 10.1088/0266-5611/16/5/313

26. Gunning J, Glinsky ME. Detection of reservoir quality using Bayesian seismic inversion. GEOPHYSICS 2007; 72(3): R37-
R49. doi: 10.1190/1.2713043

27. Vogel C. Computational Methods for Inverse Problems. Society for Industrial and Applied Mathematics . 2002.
28. HighamCF, HighamDJ. Deep learning: An introduction for appliedmathematicians.Computing Research Repository 2018;

abs/1801.05894.
29. Shahriari M, Pardo D, Moser B, Sobieczky F. A Deep Neural Network as Surrogate Model for Forward Simulation of

Borehole Resistivity Measurements. Procedia Manufacturing 2020; 42: 235 - 238. International Conference on Industry
4.0 and Smart Manufacturing (ISM 2019).

30. Alvarez-Aramberri J, Pardo D. Dimensionally adaptive hp-finite element simulation and inversion of 2D magnetotelluric
measurements. Journal of Computational Science 2017; 18: 95–105.

31. Bakr SA, Pardo D, Mannseth T. Domain decomposition Fourier FE method for the simulation of 3D marine CSEM
measurements. J. Comput. Phys. 2013; 255: 456–470.

32. Davydycheva S, Wang T. A fast modelling method to solve Maxwell’s equations in 1D layered biaxial anisotropic medium.
Geophysics 2011; 76 (5): F293–F302.

33. Davydycheva S, Homan D, Minerbo G. Triaxial induction tool with electrode sleeve: FD modeling in 3D geometries.
Journal of Applied Geophysics 2004; 67: 98–108.

34. Puzyrev V. Deep learning electromagnetic inversion with convolutional neural networks.Geophysical Journal International
2019; 218(2): 817-832.

35. Moghadas D. One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural
network. Geophysical Journal International 2020; 222(1): 247-259.

36. Loseth LO, Ursin B. Electromagnetic fields in planarly layered anisotropic media.Geophysical Journal International 2007;
170: 44–80.

http://dx.doi.org/10.1088/0266-5611/16/5/313
http://dx.doi.org/10.1190/1.2713043

M. Shahriari ET AL 35

37. Jin Y, Wu X, Chen J, Huang Y, others . Using a Physics-Driven Deep Neural Network to Solve Inverse Problems for LWD
Azimuthal Resistivity Measurements. In: Society of Petrophysicists and Well-Log Analysts. ; 2019.

38. Ursin B, Stovas A. Reflection and transmission responses of a layered isotropic viscoelastic medium. GEOPHYSICS 2002;
67(1): 307-323. doi: 10.1190/1.1451803

39. Anderson WL. A hybrid fast Hankel transform algorithm for electromagnetic modeling. GEOPHYSICS 1989; 54(2): 263-
266. doi: 10.1190/1.1442650

40. Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.; 2015.
Software available from tensorflow.org.

41. Quan TM, Hildebrand DGC, Jeong WK. FusionNet: A deep fully residual convolutional neural network for image
segmentation in connectomics.; 2016.

42. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira F,
Burges CJC, Bottou L, Weinberger KQ., eds. Advances in Neural Information Processing Systems 25Curran Associates,
Inc. 2012 (pp. 1097–1105).

43. Jin KH, McCann MT, Froustey E, Unser M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE
Transactions on Image Processing 2017; 26(9): 4509-4522.

44. Wiatowski T, Bölcskei H. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction. IEEE
Transactions on Information Theory 2018; 64(3): 1845-1866.

45. Thévenaz P, Blu T, Unser M. Chapter 28-Image Interpolation and Resampling. In: Bankman I. , ed. Handbook of
MedicalImage Processing and Analysis, 2nd ed. 4. MA, USA: Academic Press: Cambridge. 2009 (pp. 465–493).

46. Parker JA, Kenyon RV, Troxel DE. Comparison of Interpolating Methods for Image Resampling. IEEE Transactions on
Medical Imaging 1983; 2(1): 31-39.

How to cite this article: M. Shahriari, D. Pardo, J. A. Rivera, C. Torres-Verdín, A. Picon, J. Del Ser, S. Ossandón, and V. M.
Calo (2020), Error Control and Loss Functions for the Deep Learning Inversion of Borehole Resistivity Measurements, ,

APPENDIX

A DDN ARQUITECTURES

To approximate the forward and the inverse problems, we use DNN architectures based on residual-type blocks4,41 with convolu-
tional operators28,42,43,44. In the following, we first define the main operators of our DNN architectures, followed by a description
of the forward and inverse DNN architectures.
We denote by  to our nonlinear activation function. In our case, we employ the rectified linear unit (ReLU), defined

component-wise for each entry x as max(0, x)28. We now introduce a 1D convolutional operator Cc,k
 , where c is the filter size

(output dimensionality), k the kernel size, and the weights28,4. Then, we define the following block:
Bc,k ∶=

(◦Cc,k
 1◦◦Cc,k

 2 + Cc,k
 3

)
, (A1)

where now = (1, 2, 3) are all weights associated to block Bc,k . We now define the following operators:
• A fully-connected layer Dn

 with n being its number of units and its weights28,40.
• A 1D upsampling operator U with upsampling factor equal to two (using the TensorFlow routine upsampling1D40,45,46).
• A bilinear resampling operator L with resampling factor equal to the number of logging positions45,46, i.e., 1 for Example
B.1 and 65 for Example B.2.

• A flattening layer S that receives a 2D matrix and outputs a 1D vector40.

http://dx.doi.org/10.1190/1.1451803
http://dx.doi.org/10.1190/1.1442650

36 M. Shahriari ET AL

A.1 Forward Problem DNN Architecture
Each input sample has dimension np + nt, and contains the variables representing the material properties and the trajectory. We
define our DNN architecture as:

,� ∶= ◦Cc6,1
�6
◦L◦U◦Bc5,3�5

◦U◦Bc4,3�4
◦⋯◦U◦Bc1,3�1

, (A2)
where ci ∶= 40i, for i = 1,⋯ , 5, c6 = n′m = 6, where n′m is the number of evaluated measurements per logging position, and
� = {�i ∶ i = 1,⋯ , 6} is a set of all weights associated to the forward DNN architecture. L expands (in case of 65 logging
positions) or shrinks (in case of one logging position) its input dimension. The output of the mentioned bilinear resampling is
a matrix in which its first dimension is equal to the number of logging positions45,46. All the resampling operators considered
in the Equation A3 raise/shrink the dimension of their input gradually to avoid missing information due to a sudden dimension
change. The output is a matrix of dimension (nl, n′m), where nl is the number of logging positions.

A.2 Inverse Problem DNN Architecture
The input of the DNN is a matrix of dimension (nl, n′m + 2), where nl is the number of logging positions. The first two columns
of the aforementioned matrix are the sine and cosine of the trajectory dip angle at each logging position. Analogously to the
forward problem, we consider the following architecture:

,� ∶= ◦Dnp
�7
◦S◦Bc6,3�6

◦Bc5,3�5
◦Bc4,3�4

◦⋯◦Bc1,3�1
, (A3)

where ci ∶= 40i, for i = 1,⋯ , 5, and � = {�i ∶ i = 1,⋯ , 7} is a set of all the weights associated to each block and layer. Dnp
�7performs the ultimate feature extraction and down-sampling. The output of this DNN is a vector consists of material properties.

	Error Control and Loss Functions for the Deep Learning Inversion of Borehole Resistivity Measurements
	Abstract
	Introduction
	Problem Formulation
	Forward problem
	Inverse problem
	Parameterization
	Example A: Model problem with known analytical solution
	Example B: Inversion of borehole resistivity measurements
	Example B.1: one logging position
	Example B.2: sixty-five logging positions

	Data Space and Ground Truth
	Data Preprocessing
	Norms and Errors
	Loss Function
	Data misfit
	Example A: Model problem with known analytical solution

	Misfit of the measurements
	Encoder-Decoder
	Two-steps approach
	Regularization term

	Implementation
	Numerical Results
	Evolution of the loss function
	Cross-plots
	Inversion of realistic synthetic models
	Model Problem I
	Model Problem II
	Model Problem III

	Discussion and conclusions
	Acknowledgments
	References
	Appendix
	DDN Arquitectures
	Forward Problem DNN Architecture
	Inverse Problem DNN Architecture

