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Abstract. We present a simple and fully automatable vibration-based Structural 

Health Monitoring (SHM) alert system. The proposed method consists in applying 

an Automated Frequency Domain Decomposition (AFDD) algorithm to obtain the 

eigenfrequencies and mode shapes in real time from acceleration measurements, 

allowing to provide a diagnosis based on a Support Vector Machine algorithm  

trained with a database of the modal properties in undamaged and damaged 

scenarios accounting for temperature variability. The result is an alert system for 

controlling the correct performance of the structure in real time with a simple but 

efficient approach. Once the alert is triggered, the undamaged mode shapes (which 

could be previously stored in a database of modal parameters classified by 

temperature) and the current (damaged) mode shapes, can provide guidance for 

further application of Finite Element Model Updating (FEMU) techniques. The 

method is trained and validated with simulations from a FE model that is 

calibrated employing a genetic algorithm with real data from a short-term 

vibration measurement campaign on a truss railway bridge in Alicante (Spain). 
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1 Introduction 

Structural Health Monitoring (SHM) is a multi-disciplinary procedure for the evaluation 

and control of the state of real structures [1]. With the latest improvements in the areas 

of instrumentation, data acquisition and transmission, a door has been opened in this 

field thanks to the possibility of disposing of large amounts of data without excessive 

costs [2,3]. Hence, research interests in this area are now posed on the development of 

powerful algorithms that can receive and interpret these data and transform them into 

useful information to help managers in decision making [1].  
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In this sense, one of the most broadly developed methodologies in the field of civil 

engineering is known as vibration based SHM [3]. This discipline builds on the existing 

relation between the modal response of a structure and its physical properties such as 

mass or stiffness [3,4]. Since the presence of structural damage directly affects the 

physical properties, it will then induce changes in the modal response of the considered 

structure [4].  

There are two main challenges for modal identification in real practice. First, 

precision in the properties must be enough to track the structural response [5]. Second, 

the selected method should be suitable for automation to display results close to real-

time and provide continuous assessment [5,6]. In bridges, where it is not economic to 

perform Experimental Modal Analysis (EMA) with known loads (shakers, drop 

weights, etc.), Operational Modal Analysis (OMA) techniques are the standard for 

vibration-based SHM [5,7]. One of the most commonly employed OMA methodologies 

is the Frequency Domain Decomposition (FDD), introduced in [8]. This method has the 

advantage of being easily automatable [9,10]. There exist several works in the literature 

attempting to reach this goal, including the standard Automated Frequency Domain 

Decomposition (AFDD) [11] and automatic applications of the Stochastic Subspace 

Identification method (SSI) [10,12].  

In the field of SHM, the implementation of damage detection algorithms using the 

modal response can be addressed from two main perspectives: model-based and data-

driven [3]. Model-based approaches mostly rely on Finite Element Model Updating 

(FEMU), which minimizes the discrepancy between the experimental and the numerical 

responses by modifying certain parameters in physics-based models [13]. Its main 

drawback is that it implies solving several direct problems to achieve convergence, 

which prevents its use from real-time applications [1,3]. Data-driven methods exploit 

the potential in the data acquired during monitoring campaigns to characterize the 

possible states of the structure and solve classification problems by associating labels to 

different scenarios [1]. In addition, once these algorithms have been trained and 

validated, they can provide fast predictions based on the learned information, thus 

addressing real-time applications [14]. An important fact when working with real full-

scale structures is the effect of operational and environmental conditions in the measured 

data, which can mask the presence of certain damages and hinder the performance of 

the algorithms [3]. Hence, dealing with the effect of a changing environment is a key 

issue in the field, and there exist several works employing different techniques, such as 

Principal Component Analysis or regression models [15,16].  

In addition, experimental data under possible damage scenarios is rarely available in 

real practice [1]. This lack of information makes the training of these algorithms an 

Unsupervised Learning task (only information about the undamaged condition is used), 

leading to achieve only the first Level in the Rytter’s scale of damage states [17]. 

This work addresses the development of a data-driven damage detection algorithm 

for the evaluation of the state of a steel truss bridge in Alicante (Spain) accounting for 

the effect of varying environmental conditions. We use the acceleration measurements 

acquired after train passage recorded during a short-term monitoring experience to 

extract the modal properties of the structure (representing the baseline condition) and 

use them to calibrate a FE model of the bridge with a genetic algorithm. Finally, we use 
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this model to simulate ambient vibration records at different temperatures and damage 

scenarios to train a Support Vector Machine (SVM) algorithm for damage detection. 

We validate the methodology with a testing database that contains new scenarios.  

2 Methodology 

2.1 Description of the structure 

The structure under study is a steel bridge with a Pratt truss scheme, which serves as a 

passage over the gulch known as Barranco de Aguas for Line 1 of the FGV TRAM 

Network in Alicante (Spain). The bridge has a total length of approximately 106 meters, 

consisting of two sections: one hyperstatic with two spans of 42.00 meters each and 

another isostatic span of 21.12 meters length, being this last one the chosen to be 

monitored. This span was chosen because of a fatigue study performed to the previous 

old bridge, which was then replaced for the current bridge in 2018 with same overall 

structural scheme (see images in Fig. 1 for the old and new structure). 

 

Fig. 1 Old and new bridges over Barranco de Aguas, with trusses of identical scheme and 

dimensions, but different structural elements 

According to the real geometry and material properties of the bridge, a parametric 

finite element model was built in ANSYS APDL with beam type elements (BEAM188) 

for the truss steel profiles and shell type elements (SHELL181) for the composite slab 

and concrete low walls. Despite the span is assumed to be isostatic, it is observed that 

the analytical response fits better with the measured modes by adding some extra 

longitudinal restraint given by adjustable elastic springs (LINK180), which are finally 

added for calibration. Fig. 2 shows the FE model built in ANSYS APDL. 

 

Fig. 2 Detail of the 3D model built in ANSYS APDL for the analyzed span 
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2.2 Modal identification 

In this work, a short-term monitoring period was carried out to record acceleration 

measurements after train passage on the bridge. The instrumentation system included 

triaxial accelerometers with different specifications. We employed mainly 

accelerometers with ±2g of full scale for the registration of free vibration measurements 

occurring once the train has passed the viaduct. Ten accelerometers are placed on the 

bottom chord (five on each side of the bridge: every two panels), as shown in Fig. 3. In 

this experience, the duration of the measurements was limited by the sensitivity of the 

accelerometers. Thus, a high sampling rate (600Hz) was employed to compensate the 

shorten in duration. 

 

Fig. 3 Scheme and photos showing sensor placement 

Since the objective of this work was to provide a close to real-time assessment tool, we 

use a MATLAB implementation of the already introduced standard Automated 

Frequency Decomposition (AFDD) to obtain the eigenfrequencies and mode shapes. 

The methodology is fully explained in [8,10]. We use the obtained eigenfrequencies and 

mode shapes as the input to an updating step to calibrate an initial FE model based on 

design specifications that will be used for the training and validation of the damage 

detection algorithm. However, an intermediate step is required before entering the 

calibration process, since the mode shape vectors are hardy manageable [18]. The Modal 

Assurance Criterion (MAC) is used as damage sensitive feature to update the FE model 

[19]. It measures the discrepancy between the corresponding numerical and 

experimental mode shapes, and can be written as:  

𝑀𝐴𝐶 =  
|ɸ𝑒𝑥𝑝

𝑇 · ɸ𝑛𝑢𝑚|
2

‖ɸ𝑒𝑥𝑝‖
2

‖ɸ𝑛𝑢𝑚‖2
 (1) 

where ɸ𝑒𝑥𝑝 and ɸ𝑛𝑢𝑚 stand for the experimental and numerical mode shapes, 

respectively.  

In a preliminary analysis, it was found that the second mode (torsion) was close to 

the first mode (first bending mode), generating convergence problems in the model 

updating algorithm due to permutation of modes. Therefore, only bending modes are 

considered in this work, computing the first and third mode shapes only (see the chosen 

modes in Fig. 4 and Fig. 5). Given the existence of symmetry, only the data of one side 

of the bridge (five sensors) is processed. The FE model is correspondingly restrained to 

avoid the appearance of undesirable modes. The calibration algorithm uses four features 

for updating (the first two bending natural frequencies and the corresponding MAC 

values).  
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Fig. 4 Detail of the first and third experimental 3D mode shapes (bending modes) obtained with 

MACEC 

 
Fig. 5 Detail of the corresponding experimental 2D mode shapes obtained with AFDD 

2.3 Machine Learning algorithm for novelty detection (SVM) 

In this work we propose the implementation of a damage detection tool to identify the 

presence of abnormal behavior under different environmental conditions based on the 

dynamic response of the structure. The proposed algorithm is known as Support Vector 

Machine (SVM), commonly used to solve both classification and regression problems 

[20,21]. 

The methodology consists in five main steps: (a) modeling of the effect of 

temperature, (b) generation of the synthetic damage scenarios and (c) configuration of 

the SVM algorithm.  

a) Modelling the effect of temperature 

Given the structural characteristics of the bridge under study together with its location, 

the main source of variability during normal service is temperature. Hence, we will 

account for this phenomenon using the model presented in  [22]. This model relates the 

elastic modulus of steel with temperature and is shown in Fig. 6. The curve can be 

approximated by the following polynomial of second order:  

𝐸𝑠𝑡𝑒𝑒𝑙(𝑇) = 3.51 · 10−5 × 𝑇2 − 3.89 · 10−3 × 𝑇 + 2.03 (2) 
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Fig. 6 Steel elastic modulus evolution with temperature [22] 

We employ this function to generate a set of models whose response is representative 

of the undamaged state of the bridge under different ambient temperatures. 

b) Generation of the synthetic damage scenarios 

Similar to the temperature effect, we must somehow modify the parameters in the 

calibrated FE to account for the presence of damage. These synthetic damage regions 

are found to be enough to give robustness to the algorithm so that it can classify new 

data and assess the presence of damage. We generate damage distinguishing three 

different regions along the bridge length, each of them represented by the value of the 

elastic modulus of the elements belonging to that region. Damage at a certain zone is 

simulated through a reduction of the undamaged elastic modulus values. Hence, the 

damage levels are represented by the admissible range of variation with respect to the 

reference value. In this work, we considered four reference values according to seasonal 

average temperatures, to apply the reduction factors due to damage. Table 1 shows the 

corresponding ranges. 

Table 1 Damage labels for classification 

Damage level Range of values (%) Class Label 

 (Undamaged) Temperature variability only 1 

Slight (70 − 80] 2 

Intermediate (55 − 70] 3 

Hard (25 − 50] 4 

 

With these assumptions, we generate several scenarios corresponding to damage of 

different severity at different locations and extract the synthetic response of the model 

in the form of acceleration signals that can then be processed through AFDD to provide 

the modal properties (natural frequencies and mode shapes). The undamaged condition 

is swept with the temperature model. Each damage scenario starts from an undamaged 
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model corresponding to certain temperature from which elastic modulus of the elements 

associated to the damaged region are reduced. 

Once these models are created, synthetic acceleration signals are generated by 

applying a white noise excitation and obtaining the responses at the same places where 

the sensors were located in the real structure. The AFDD algorithm is used to process 

these time series to extract natural frequencies and mode shapes as if it were real 

experimental input. The final damage sensitive features to feed the SVM algorithm are 

the first two first bending eigenfrequencies and MAC values.  

c) Configuration of the SVM algorithm  

SVM is a data-driven algorithm to solve classification and regression problems [20]. It 

learns relationships in the data and finds the optimal space to separate the data among 

the different classes [21]. This approach results to be very versatile since it can fit many 

different types of discriminant functions from which the hypothetic classification space 

is formed, including linear, neural network or radial basis models [23]. Particularly, this 

algorithm can be understood as an optimization problem in the sample space with the 

following formulation [23]: 

𝒎𝒊𝒏
𝜷𝟎, 𝜷

‖𝜷‖𝟐
𝟐 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝒚𝒊(𝒙𝒊
𝑻𝜷 + 𝜷𝟎) ≥ 𝟏   ∀𝒊 = 𝟏, … , 𝒏, 

(3) 

where 𝒙𝑖 is a feature vector in the sample space, 𝛽 is the slope of a normal to the optimal 

separating hyperplane, 𝛽0 is an intercept, and 𝑦𝑖  is a class variable. 

SVM technique is usually applied to solve two-class classification problems (the 

class variable is then binary and can take values of either +1 or -1), although it can also 

be extended to multi-class problems [23]. In our case, we aim at classifying between 

four possible severities of damage, being undamaged, slight damage, intermediate 

damage and hard damage.  

The configuration of the algorithm implies two main stages: training and validation. 

Therefore, we generate a synthetic training dataset to feed the algorithm during training 

and correspondingly a testing dataset to validate the algorithm and check its 

performance.  

The training set contains labelled information (damage sensitive features and 

corresponding class variable value) for the SVM algorithm to learn from that 

information and find its parameter values. Specifically, this dataset contains several 

scenarios associated to each of the classes to be identified in order to adequately 

characterize each group.  

It is important to mention that, although damage at differentiated regions of the bridge 

is generated, the class assignation only depends on the severity of the induced damaged, 

that is, damage at two different regions with the same severity correspond to the same 

class. Hence, the class variable is an integer value in the range [0,3], where 0 

corresponds to undamaged, and 3 corresponds to hard damage.  
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The next step is validation. We feed the algorithm with new scenarios (unseen by the 

algorithm during training) whose class variable is known. The trained SVM will receive 

these new cases and predict the class to which they correspond, based on the training. 

We calculate the performance of the algorithm comparing the predictions on the SVM 

and the real structural condition associated to each element in the validation dataset: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (%)  =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 ×  100 (4) 

3 Results 

In this section, we present the results obtained from the application of the SVM 

algorithm following the steps presented in the previous section. In order to show the 

results graphically, we applied Principal Component Analysis (PCA) to reduce the 

dimensions of the feature space to 2D and thus make it representable. Fig. 7 shows the 

results including both training and validation datasets, where the colored regions 

correspond to each class to be classified (from left to right, increasing severity of 

damage, indicated by the class variable number). The performance of the algorithm is 

calculated for the validation dataset, providing an 87% according to equation (9) that is 

indeed a good result.  

In addition, we observe that mainly for the hard damage scenario, the different 

regions where damage exist are easily distinguished. Hence, for strong damages, the 

algorithm also informs on the possible location of this damage, suggesting further 

inspections in that region. The effect of temperature variations was considered as 

undamaged scenarios. It also induces certain variability in the different damage 

scenarios, but it does not generate conflict in the assignation of the damage severity. 

 

Fig. 7 2D representation of the SVM results with four damage classes 
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4 Conclusions and future work  

This work addresses the implementation of a damage detection tool based on a machine 

learning algorithm known as Support Vector Machine, using the modal response of a 

truss bridge. The work starts from the calibration of a FE model of the bridge by 

submitting it to an updating procedure that minimizes the discrepancy between the 

experimental and the numerical responses. These responses are obtained by applying 

the AFDD algorithm to acceleration measurements. Next, the calibrated FE model is 

employed to generate multiple scenarios to train and validate the data-driven algorithm. 

We account for the environmental variability by relating the elastic modulus of the 

steel elements of the bridge with ambient temperature, thus allowing to sweep a wide 

range of undamaged service conditions. The presence of damage is represented by 

localized reductions of the elastic modulus depending on the degree of severity of 

damage. 4 levels of damage are considered for the SVM algorithm to solve the 

classification problem, being undamaged, slight damage, intermediate damage and hard 

damage. Based on these assumptions, the training and validation datasets are 

synthetically generated and fed to the SVM algorithm to model the classifier. Results 

show that the algorithm generates predictions with a performance close to 90%, thus 

suggesting its implementation for evaluating new data in future monitoring processes.  

Since SVM rapidly detects abnormal behavior, it can be used as a preliminary alert 

system to activate a more complex damage identification technique, such as FE model 

updating. In this strategy, once the alert is triggered by the SVM, the undamaged and 

current mode shapes can be used to perform an updating procedure based on the GA 

algorithm of the calibration step. That is, the alert system controls the correct 

performance of the structure in real time and, if novelty is detected, an exhaustive 

damage identification (not real-time) is conducted through model-based techniques. 
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