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ABSTRACT2

The present paper examines the viability of a radically novel idea for brain-computer interface3
(BCI), which could lead to novel technological, experimental and clinical applications. BCIs are4
computer-based systems that enable either one-way or two-way communication between a5
living brain and an external machine. BCIs read-out brain signals and transduce them into task6
commands, which are performed by a machine. In closed-loop the machine can stimulate the7
brain with appropriate signals. In recent years, it has been shown that there is some ultraweak8
light emission from neurons within or close to the visible and near-infrared parts of the optical9
spectrum. Such ultraweak photon emission (UPE) reflects the cellular (and body) oxidative10
status, and compelling pieces of evidence are beginning to emerge that UPE may well play an11
informational role in neuronal functions. In fact, several experiments point to a direct correlation12
between UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood13
flow, cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel14
skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on the15
interior surface of the skull may enable a new form of extraction of the relevant features from16
the UPE signals. In the current technology landsacepe, photonic technologies are advancing17
rapidly and poised to overtake many electrical technologies, due to their unique advantages, such18
as miniaturization, high speed, low thermal effects, and large integration capacity that allow for19
high yield, volume manufacturing, and lower cost. For our proposed BCI, we are making some20
very major conjectures, which need to be experimentally verified, and therefore we discuss the21
controversial parts, feasibility of technology and limitations, and potential impact of this envisaged22
technology if successfully implemented in the future.23
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1 INTRODUCTION

Brain-computer interface (BCI), or generally brain-machine interface (BMI), are computer (machine)-26
based systems that map brain signals into computer (machine) commands or actions. This mapping may27
involve intermediate analysis and processing. Moreover, a closed-loop BCI is also possible, whereby28
the brain is stimulated via relevant neuro-bio-signals. The most common brain signals used in BCI’s29
are electromagnetic, that is, of classical/non-quantum origin. Herein, we turn attention to an exciting30
and emergent literature that reveals the brain also emits ”photons”, which are quanta of electromagnetic31
waves. The intensity of these emissions varies from a few photons to several hundred photons per second32
per square centimeter, mainly with spectral range of 200–800 nanometers (1). A caveat is that most33
single-photon sensitive detectors used in the experiments were only sensitive up to about 900 nanometers.34
Hence, observations with detector platrforms that are sensitive in the 900-1600 nanometer range, such as35
superconducting nano-wire single-photon detectors (SNSPDs) (93), which also can be shaped as arrays36
(94), may reveal hidden obscured about the UPE light.37

The body of evidence for ultraweak photon emission (UPE) is fast growing and is being independently38
observed by different scientific communities/labs. Due to infancy of the research field, many different39
terms are used to describe this phenomenon, including biophotons, ultraweak photon emission, ultraweak40
bioluminescence, self-bioluminescent emission, photoluminescence, delayed luminescence, ultraweak41
luminescence, spontaneous chemiluminescence, ultraweak glow, biochemiluminescence, metabolic42
chemiluminescence, dark photobiochemistry, etc. In this report we will henceforth adopt the term UPE.43
It has been evidenced that neurons and other living cells (e.g. in plants, animals, and humans) have44
spontaneous UPE (2) mediated via their metabolic reactions associated with physiological conditions. In45
1967, it was first reported that electric pulses in neurons can induce weak photon emission (in the visible46
region of the EM spectrum) due to chemical reactions accompanying pulses, while a dead-neuron does not47
exhibit any photon emission (8). In 1984 (6) and 1985 (10) it was demonstrated experimentally that after48
the induction of hypoxia states in a rat brain, UPE increases. Isojima et. al (4) in 1995 showed that there is49
a correlation between the intensity of UPE and neural metabolic activity in the rat hippocampal slice. In50
1997, Zhang et al. (7) revealed that the intensity of UPE from intact brains isolated from chick embryos51
was higher than the medium in which the brain was immersed. In 1999, Kobayashi et al.(13) detected52
spontaneous UPE in the rat’s cortex in vivo without adding any chemical agent or employing external53
excitation and found that the UPE correlates with the Electroencephalography (EEG) activity, cerebral54
blood flow and hyperoxia, and the addition of glutamate increases UPE, which is mainly originated from the55
energy metabolism of the inner mitochondrial respiratory chain through the production of reactive oxygen56
species (ROS). Kataoka et al.(5) detected spontaneous UPE from cultured rat cerebellar granule neurons in57
the visible range and demonstrated that the UPE depends on the neuronal activity and cellular metabolism.58
Then, a fascinating experimental discovery by Sun et al. revealed that photons can be conducted along59
neuronal fibers. In 2011, Wang et al.(43) show-cased in-vitro experimental evidences of spontaneous UPE60
and visible light induced UPE (delayed luminescence) from freshly isolated rat’s whole eye, lens, vitreous61
humor, and retina. Subsequently, in 2014 (45) Tang and Dai provided experimental evidence that the62
glutamate-induced UPE can be transmitted along the axons and in neuronal circuits in mouse.63

These observations raise the following intriguing question: what are the underlying physiological64
processes that underpin UPE? Specifically, in the brain what are the associated neurophysiological65
processes? Although, a complete picture has not been provided, has been shown that the origin of UPE is in66
direct connection with the ROS. Moreover, its intensity has a direct correlation with thermal, chemical and67
mechanical stress, the mitochondrial respiratory chain, cell cycle, neural activity, EEG activity, cerebral68

This is a provisional file, not the final typeset article 2



Salari et al. BCI via Integrated Photonic Chips

blood flow, cerebral energy metabolism, and release of glutamate. Experiments also show that cells can69
absorb photons by photochemical processes and slowly release these photons as delayed luminescence (15).70
Interestingly, it has been shown that delayed luminescence emitted from the biological samples provide71
valid and predictive information about the functional status of biological systems (71; 72; 73). All this opens72
novel exciting mathematical and physical questions at the interface of quantum biology. For example, if we73
consider UPE in the context of metabolism, then there has been efforts to propose quantum-metabolism74
(87). As known, biological systems are essentially isothermal and as such energy flow in living organisms75
is mediated by differences in the turnover time of various metabolic processes in the cell, which occur76
cyclically. The mean cycle time (τ ) of these metabolic processes (turnover of essentially redox reactions)77
are related to the metabolic rate (g), that is, the rate at which the organism transforms the free energy of78
nutrients into metabolic work. This is related to two coupled chains (electron-proton transport) of the ATP79
system in the mitochondria. In quantum-metabolism the main variables are metabolic rate, the entropy80
production rate and the mean cycle time. Then the fundamental unit of energy is given byE(τ) = gτ , where81
g is related to the electron-proton transport. Noteworthy, this is in contrast, but has some correspondence to82
quantum thermodynamics, where we the thermal energy per molecule is given by E = KbT , which relates83
specific heat, Gibbs–Boltzmann entropy and absolute temperature T . The difference is that biological84
systems work far from thermodynamic equilibrium hence in quantum-metabolism the variables depend85
on fluxes (rates of change of energetic values). On top of this, Albrecht-Buehler (88) hypothesized that86
the electron-proton transport releases photons (E = hν, where E is the photon energy, h is plank constant87
and ν photons frequency). Other researchers have contemplated at why UPE displays wide variety of88
frequencies, with Popp suggesting that these are coherent and mediated by DNA, thus it may regulate life89
processes of an organism. However, the coherence idea of UPE is still under debate and it is yet unclear if90
UPE is just a byproduct in biological metabolism or it has some informational or functional role.91

92

So far, UPE signals have only been studied in the context of basic science and has not been considered for93
experimental and clinical applications or novel technologies such as BCIs. The present article takes that first94
step forward and propose an implant BCI chip based on UPE. Since UPE is correlated to several sub-cellular,95
cellular and neural tissue processes, there is also the potential that it can be used as a novel technological96
probe/bio-marker for both normal brain function and pathological conditions. In the subsequent sections,97
we will first briefly review the traditional classical methods in BCI and then we will focus our discussion98
towards UPE detection and pattern recognition for the development of a novel UPE-based skull implant99
BCI.100

2 CLASSICAL BRAIN-COMPUTER INTERFACE TECHNOLOGY

In traditional BCI techniques, different types of signal acquisition may be used, depending on the101
application. In the following, we briefly review four types of brain signals, their properties and the102
suitable machine interfaces.103

• Electroencephalography (EEG) Signals104
EEG is the most employed method to detect electrical activity of the brain by use of small electrodes105
attached to the scalp (74). These signals are recorded by a machine for tracing both normal brain106
function and diagnosing pathological conditions (e.g. epilepsy). In stimulus (e.g. visual cue) induced107
EEG, there is positive deflection of voltage with a latency (delay between stimulus and response) of108
roughly 250 to 500 ms, which is called event-related potentials (ERP). Examples of such ERP is the so109
called P300 formed at time 300ms, which is related to decision making. Indeed, cognitive impairment110

Frontiers 3



Salari et al. BCI via Integrated Photonic Chips

is often correlated with modifications in the P300 (75). It is considered an endogenous potential,111
as its occurrence links not to a stimulus’s physical attributes, but a person’s reaction to it. More112
specifically, the P300 is thought to reflect processes involved in stimulus evaluation or categorization.113
The presence, magnitude, topography, and timing of this signal are often used as metrics of cognitive114
function in decision-making processes and hence used in BCIs. The P300 has several desirable qualities115
for pattern recognition. First, the waveform is consistently detectable and is elicited in response to116
precise stimuli. The P300 waveform can also be evoked in nearly all subjects with little variation in117
measurement techniques, which help simplify interface designs and permit greater usability. The speed118
at which an interface can operate depends on how detectable the signal is despite ”noise.” One negative119
characteristic of the P300 is that the waveform’s amplitude requires averaging multiple recordings to120
isolate the signal. This and other post-recording processing steps determine the overall speed of a BCI121
interface (76).122

• Magnetoencephalography (MEG) signals123
MEG is a functional neuroimaging technique monitoring brain activity via magnetic fields of electrical124
currents in the brain, using SQUIDs (superconducting quantum interference devices), which are very125
sensitive magnetometers operated in a cryogenic environment. Another type of magnetometer is spin126
exchange relaxation-free (SERF) magnetomere (54), which can increase portability of MEG scanners,127
while it features sensitivity equivalent to that of SQUIDs. A typical SERF magnetometer is relatively128
small, and does not require bulky cooling system to operate. It has been demonstrated that MEG could129
work with a type of SERF, i.e. chip-scale atomic magnetometer (CSAM) (55), where its development130
can be used efficiently for BCI. Basically, MEG may provide signals with higher spatiotemporal131
resolution than EEG, and therefore useful for an increased BCI communication speed.132

• Electrocorticography (ECoG) Signals133
ECoG uses electrodes placed directly on the surface of the brain to record electrical activity from the134
cerebral cortex, i.e. an invasive technology that involves removing a part of the skull to expose the brain135
surface to enable the implant of an electrode grid on the surface of the brain, i.e. called craniotomy,136
which is a surgical procedure performed either under general anesthesia or under local anesthesia if137
patient interaction is required for functional cortical mapping. The spatial and temporal resolution of138
the resulting signal is higher and the signal to noise ratio (SNR) superior to those of EEG due to the139
closer proximity to neural activity. Thus, ECoG is a promising recording technique for use in BCI,140
especially for decoding imagined speech or music, in which users simply imagine words, sentences, or141
music that the BCI can directly interpret (57).142

• Functional near-infrared spectroscopy (fNIRS) Signals143
fNIRS is a noninvasive optical imaging technique that measures changes in hemoglobin (Hb)144
concentrations in the brain by means of the characteristic absorption spectra of Hb in the near-145
infrared (NIR) range (56). fNIRS Tomography makes use of the fact that light penetrates up to several146
centimeters into biological tissue, i.e. a safe technique that is minimally minimally invasive and which147
relies on small, relatively inexpensive easy-to handle technology, and provides relatively low spatial148
resolution. The penetration range of light in tissue limits the size of the target tissue volume. fNIRS can149
be used in BCI for the restoration of movement capability for people with motor disabilities. fNIRS150
cannot afford high error rates for safety purposes, and must be fast enough to provide real-time control.151
Several fNIRS-BCI studies have tried to improve classification accuracies and information transfer152
rates (58).153
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3 POTENTIAL APPLICATION OF UPE IN BCI

UPE is largely mediated by cellular metabolism and it is presently believed that it is merely a byproduct154
(i.e. epiphenomenon). A tempting question is whether it is possible (or not) to retrieve information from155
stochastic emission of UPE? In previous sections we already saw that there are different experimental156
reports on significant correlations between UPE emission and neuronal activity and associated metabolic157
processes (4; 13; 44; 5). Therefore, even if UPE is an epiphenomenon, its intensity can be a proxy for158
tracking the underlying neural information that dynamically changes under various conditions. Indeed,159
UPE seem to include information for monitoring physiological variations in a neuronal tissue. Note that for160
EEG signals we have a similar scenario. Indeed, EEG signals do not provide specific information about161
single neurons. Rather, it reflects a non-trivial summation of the synchronous activity of thousands of162
neurons and not that of a single neuron or dendrite. Thus, retrieving patterns as information from EEG is a163
data-science activity typically involving statistical comparisons between different brain states (e.g. normal164
and abnormal brain states).165

Scholkmann (47; 48) hypothesized that UPE may be is used by neurosystems as an additional signal166
enabling cell-to-cell communication and coupling. Indeed, Sun et al.(46) found that UPE can conduct along167
the neural fibers. It has been hypothesized based on numerical simulations that neurons (or myelinated168
axons) may act as optical fibers and, hence, may conduct light associated with UPE (50), and through169
these waveguides UPE may even mediate long-range quantum entanglement in the brain (50; 49). These170
myelinated axons are tightly wrapped by the myelin sheath, which has a higher refractive index (52)171
than the inside of the axon and the interstitial fluid outside. Myelin is an insulating layer (sheath) around172
nerves, which is formed by two types of specialized glial cells, oligodendrocytes in the central nervous173
system (CNS) and Schwann cells in the peripheral nervous system (53). Muller glia cells have also been174
suggested to guide photons within mammalian eyes (59; 60; 61). These observations suggest that UPE175
and bioelectronic activities are not independent biological phenomena in the nervous system, and their176
synergistic action may take on considerable function in neural (quantum) signal and information processes.177

3.1 UPE intensity from the surface of the human brain178

The UPE observed to date has been extremely weak. However, the true UPE intensity within neurons179
can be significantly higher than the one expected from the UPE measured a short distance away from180
the brain, as was done in all previous observations. Since photons are strongly scattered and absorbed in181
cellular or neural systems, the corresponding intensity of UPE within the organism or brain can even be182
two orders of magnitude higher (63; 64). Based on the data from experiments with rat brain – employing183
a 2D photon-counting tube with a photocathode featuring a minimum detectable radiant flux density of184
9.9× 10−17W/cm2 under 1-s observation time – the intensity of UPE has approximately 100 counts

sec.cm2 from185
the cortex surface (12; 13; 20; 9). Moreover, the limited quantum efficiency of the detector may impede186
the detection of UPE due to the limited SNR. Regarding the human brain, the neuronal density in V1 in187
visual cortex is 60× 106 Neurons

cm3 in postmortem human brains (21). The V1 thickness is about 0.2 cm, and188

V1 surface area of one hemisphere is about 26 cm2 in adult humans. At least, 106 neurons in object-related189
areas and 30×106 neurons in the entire visual cortex are activated by a single-object image (22). Based on a190
rough estimation, about 106 free radicals can be produced by each brain cell per second (23), which yields191
106 × 106 = 1012 free radicals produced by human visual neurons per second in V1 of one hemisphere192
during perception of a single-object image. Since UPE mainly originates from free radicals, the actual193
UPE intensity inside neuronal cells is expected to be considerably higher than the intensity measured by a194
detector outside (e.g. 100 counts/(s.cm2)). If the quantum efficiency of an ideal photodetector is close to195
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Figure 1. A detector chip can be installed on the interior surface of the skull without touching the brain
tissue, i.e. non-invasive. The environment of the closed skull in the head is sufficiently dark and therefore it
is a suitable environment for the detection of UPE with the installed chip. The intensity of UPE is stronger
close to the surface of the brain, which can be captured by chip on the skull.

100% we conjecture that it may measure the UPE intensity at the cortex surface at least on the order of196
1000 counts/(sec.cm2) for an object visualization.197

4 SKULL-IMPLANT SETUP FOR THE UPE-BASED BCI

We now provide the complete design specification of a radically novel skull-implant that can facilitate a198
UPE-based BCI (see Fig. 1). The envisaged BCI is not aimed for deep brain implants (although possible)199
but rather for intracranial brain surface implant (i.e. minimally invasive). The environment of a closed skull200
(after surgical implantation) is sufficiently dark and, therefore, a suitable environment for the detection201
of UPE signals. Once the UPE signals are detected, they are wirelessly relayed to a machine, computer,202
or smartphone. We also envisage alternative designs with closed-loop signals (photons) for modulating203
the metabolic processes of a neural tissue. However, herein we will only consider the read-out of UPE204
signals. The center-piece of the envisaged technology is the UPE-based integrated chip, which we will205
discuss at length in the subsequent subsections. The integrated photonic chip is assembled from different206
component parts; specifically, a receiver optical plane, optical fibers, a photonic interferometery circuit, a207
complementary metal-oxide-semiconductor (CMOS) detector array, a battery, and a wireless system (see208
Fig. 2). The use of the implantable CMOS image sensor has been described in recent years especially for209
optogenetic imaging (24).210

The UPE photons first enter a receiver optical plane (ROP) on the chip, which is essentially a photo-211
receiver array made up of optical fibers, of size of N ×N , N is the number of pixels (or fibers) in each212
row or column and each pixel is indeed an optical fiber that couples into a waveguide on the chip, using213
grating couplers (25). Alternatively, the UPE light can be directly coupled to waveguides created by214
femto-second laser-writing and since these can be patterned at different depths in the chip (92), they can215
directly facilitate serialization step. Subsequently, the N ×N pixels are serialised into a 1D vector (where216
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N ′ = N × N is the number of optical fibers connected to the waveguides in the optical interferometer217
with N ′ input ports in a series and linear 1D form, and therefore N ′ CMOS pixels in a single row as the218
output port on the PIC). In fact, the received photons on ROP are guided to the optical interferometer via219
optical fibers. The advantage of an optical interferometer is that it may discriminate the emission patterns220
of photons. We estimate that UPE intensity ranges 1-100 counts per second per each cm2 of the whole221
array, depending on how active a neuron or neural tissue is at a given time instant. In fact, we expect that222
similar and non-similar UPE emission (in wavelength) generate different detection distributions, where223
interference will occur between photons with similar wavelength (i.e. emanating from the same-type neural224
processes). Thus, the detection distributions for similar-wavelength photons will be closer to an optical225
interference pattern, which is uniquely determined by the wavelength of these interfering photons. In this226
regard, one of the concerns may arise from the fact that UPE emission over a broad range of wavelengths227
can lead to the observation of different patterns at the same time, rendering an ambiguous combination228
of several independent patterns. Such complexity may bring disadvantages over the direct detection (i.e.,229
no interferometer), or even could cause wrong interpretations. This potential problem can be alleviated230
by classifying those different wavelength patterns, again with pattern recognition techniques in machine231
learning, such as principal component analysis (PCA)(26), which allows distinguishing the differences232
in an ensemble of patterns, and identifying each pattern according to the respective wavelength, after233
many sets of training data. The optical interferometer photons are then converted into electrical signal via234
the CMOS array (see Fig. 6 for details). Finally, these signals are wirelessly linked to a smartphone or235
computer for pattern recognition/extraction. Noteworthy, since the number of detected photons is relatively236
low and because the data acquisition is in real time, the recognition of patterns should be done via machine237
learning protocols, e.g. convolutional neural networks (CCN), which is a powerful tool for 2D pattern238
recognition. We subsequently discuss in more detail each component part of the UPE-based electronic chip.239

4.1 On-Chip Photonic Integrated Circuits240

We base our proposed technology on photonic integrated circuits (PICs) (77). These are chip that contains241
photonic components that operate with light (photons), where photons pass through optical components242
such as waveguides (equivalent to a resistor or electrical wire in an electronic chip). With electronic243
integrated circuits arriving at the end of their integration capacity, PICs have the potential to be the244
preferred technology. Nowadays, photonic platforms present several advantages for quantum information245
protocols enabling long coherence times, full connectivity, scalability, and operation in room temperature.246
Different photonic degrees of freedom, including polarization, spectral, spatial, and temporal modes can247
be used to encode information, providing different experimental resources for a wide variety of quantum248
information tasks.249

For our application we consider a PIC containing an optical interferometer. A linear interferometer can be250
fabricated through silica-on-silicon or laser-written integrated interferometers, or electrically and optically251
interfaced optical chips (78; 79; 80), which makes a simple processor reducing the amount of physical252
resources needed for implementation.253

4.2 Photons Statistics and Distributions254

In the context of optics, coherence is a property of light. In a simplified picture, coherence is the ability255
of light to make interference, e.g. in the double-slit interference experiment light can create interference256
patterns (bright and dark bands) for both a wave (classical) and photon (quantum) picture. Thus, coherence257
of light can be both of a classical and quantum character. For example, thermal states of light can be258
described in the classical and the quantum framework, while other states, such as squeezed states, can only259
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Figure 2. In a BCI proposal, an optical chip is implanted on the interior surface of the skull. A few number
of UPE photons interfere in an a photonic chip and the results are detected as different single photon
distributions at detectors versus time. This results are communicated via wireless signals from the detector
part of the chip to a receiver (e.g. smartphone or a computer).

be described in the quantum framework. One of the essential conditions to show the coherence property of260
light is for its intensity/photon-number distribution to be a Poisson distribution. However, this condition is261
not sufficient to conclude that the light is certainly coherent. Other types of sources may yield a Poisson262
distribution, too, e.g. shot noise and dark noise. In the following paragraphs we will introduce a couple of263
photon-number distributions in order to demonstrate, how this measure provides insight into the nature of264
the UPE light being emitted.265

The photocount statistics of coherent light is a Poisson distribution (67)266

Pn(t, T ) =
〈n〉n

n!
e−〈n〉 (1)
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Figure 3. a) Poisson distribution for four different average values of photon counts 〈n〉. b) Demonstration
of thermal field photocount distribution for different number of thermal modes for the average number of
10 photons. c) Thermal field photocount distribution (with similar 〈n〉) approaches Poisson distribution for
a large number of modes M .

where 〈n〉 is the average number of photons measured between time t and time t + T . The variance of267
Poisson distribution is equal to its mean 〈(∆n)2〉 = 〈n〉. The deviation of the photon-number distribution268
from the Poisson distribution is measured by the Fano factor F such that 〈(∆n)2〉 = 〈n〉F , or by the269
Mandel parameter Q = F − 1. A photocount statistics is said to be super-Poissonian if F > 1 and Q > 0,270
and sub-Poissonian (and therefore non-classical) if F < 1 and Q < 0. Hence, the shift from a Poisson271
distribution is a sign of non-classical (quantum) characteristics of the light (67) while a Poisson distribution272
is a sign of classicality.273
The photocount statistics of a thermal source with M modes is approximated by the expression274

Pn(t, T,M) =
(n+M − 1)!

n!(M − 1)!
)(1 +

M

〈n〉
)−n(1 +

〈n〉
M

)−M (2)

where 〈n〉 is the average number of photons and M is the number of field modes (67). An important275

characteristic of these states is the relation between the variance and the mean 〈(∆n)2〉 = 〈n〉+ 〈n〉2
M . The276

coefficient M is generally very large for chaotic sources. So that the relation between the variance and the277
mean is close to that of a coherent state, i.e., for large M , Pn(t, T,M) approaches a Poisson distribution278
(see Fig. 3). In relation to UPE, it is important to know whether the photocount statistics can distinguish279
between the coherent and thermal emissions, because photocount statistics of thermal light becomes equal280
to that of a coherent state when the number of modes M is large. Since the photocount statistics are not281
able to discriminate between a coherent and a thermal state with many modes.282

Another type of emission is super-radiance, which is the coherent emission of light by several sources,283
and its main characteristic is the fact that the intensity of the emitted light can vary with the square of the284
number of sources because they can emit in phase. The photocount statistics of super-radiant emission is285
sub-Poissonian (67), and the photon state of a super-radiant system is generally not a coherent state.286

287

4.2.1 Photon Detection with Interference288

The photons collected onto our chip will then be propagated through a PIC featuring several interference289
paths and other components. The model of the effect of the PIC on the incident photons aims to predict290
the probability distribution of photons at the detector following their propagation and interference in a291
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linear interferometer. The experimental setup only requires photodetectors and linear optical elements, i.e.292
beam splitters and phase shifters. Suppose the chip is injected with an input state of single photons of UPE,293
|S〉 = |s1, s2, ..., s′N 〉 where sk are the number of UPE emitted photons in the k-th mode and injected into294
the chip. The output state of the chip can be written as |O〉 = |x1, x2, ..., x′N 〉. For the sake of simplicity,295
suppose that there are four outputs on the chip. Therefore, probabilities of output detection for N = 1 input296
photons in case there is no dissipation in the circuit are P|1000〉, P|0100〉, P|0010〉, P|0001〉, and for N = 2297
input photons the probabilities at the output are P|1001〉, P|1010〉, P|1100〉, P|0110〉, P|0011〉, P|0101〉, P|2000〉,298
P|0200〉, P|0020〉, P|0002〉. Now, we consider a general case for N ′ outputs. The signal processing and the299
interpretation of the signals require machine learning techniques. As the signal aqcuisition is performed300
through an interferometer, different interference patterns may form. We suggest a pattern recognition301
approach via convolutional neural networks (CNN) (27) for an efficient interpretation of output signals on302
the photonic interferometer chip. Here, the conjecture is that a synchronous activity in a specific region303
of cortex makes synchronous similar metabolism with similar chemical reactions producing similar ROS304
byproducts simultaneously, and therefore the probability of detection of similar photons (even with a305
low probability of interference in the interferometer) during a specific brain activity is higher than the306
normal state with stochastic photon emissions. Discrimination between the interference pattern of active307
and normal states will be non-trivial but tractable via machine learning. This conjecture is expected to be308
reasonable based on highly synchronized brain activities for different specific cognitive tasks. In fact, the309
photonic chip continuously produces data under normal and active states of the brain. The patterns can310
be recognized by studying the data and classifications via discrimination between the signals of normal311
and active states. In such a state, both supervised and unsupervised learning can be performed on software.312
This can be an advantage of the method.313

The idea of using UPE signals for BCI applications still remains at the level of conjecture, relying on a314
mere fact that UPE shows correlations with some brain activities. Therefore, from a BCI point of view, such315
correlations are very important because for almost all types of brain signals for BCI applications, it is hardly316
possible to extract specific information from the signals directly. With an analysis of signals over thousands317
of training trials it will be possible to obtain an average pattern with specific features (for feature extraction)318
that finally make it easy for a specific algorithm to recognize the pattern in the next acquisition signals319
directly. Here, we suggest using a machine-learning algorithm to discriminate variations and extraction of320
features by enhancement of training data. A deep-learning algorithm becomes stronger in learning with321
increasing the training data to a specific level. This is a benefit for an implanted chip since it is always322
creating thousands of patterns easily to be processed by software on a computer or a smartphone. There is323
no need to perform separate experiments each time for training. Therefore, a deep-learning algorithm can324
learn how to understand features from UPE signals and interpret them according to the relevant cognitive325
task. Thus, data analysis of the output UPE signals of the chip can be performed via machine learning326
in general and deep learning specifically. For instance, a possibility is via deep learning method called327
CNN technique, which enables high-resolution pattern recognition. Since CNN are ideal for 2D imaging328
processing, then the UPE signals detected at the receiver optical plane pixel-array can be readily adapted329
for CNN (see Fig. 5). The pattern analysis can be enhanced depending on the details our architecture.330
CNN error minimization methods are used to optimize convolutional networks in order to implement quite331
powerful pattern transformations. This is very useful when the input is spatially or temporally distributed.332
The first layer of a CNN generally implements nonlinear template-matching at a relatively fine spatial333
resolution, extracting basic features of the data. Subsequent layers learn to recognize particular spatial334
combinations of previous features, generating ’patterns of patterns’ in a hierarchical manner. If down-335
sampling is implemented, subsequent layers perform pattern recognition at progressively larger spatial336
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Figure 4. On-chip optical interferometer with N’ inputs and N’ outputs. The output patterns can be
processed for feature extraction via machine learning techniques. It is expected that for each cognitive
task or decision making, a similar pattern (in average) forms after many runs under training for specific
tasks. The features of the average pattern can be recognized by deep learning methods, or specifically by
convolutional neural networks (CNN) on a software.

scales, with lower resolution. A CNN with several down-sampling layers enables processing of large spatial337
arrays, with relatively few free weights. As we discussed before, an ensemble of wavelengths may make338
different patterns at the same time and obscure the interference patterns, where a PCA algorithm (26) can339
find the differences between different patterns in the overlapped patterns, and classify each pattern for the340
relevant wavelength after many sets of training data.341

4.3 Implementation Feasibility342

We now discuss the feasibility of fabricating all elements of our envisaged skull-implant UPE-based BCI343
(to be followed with Fig. 6).344

4.3.1 Chip Ingredients345

The design and fabrication of PICs is a mature technology, which is realized on a variety of material346
platforms, which are tailored to the needs and requirements of the the application at hand. Available,347
platforms for lithography-based fabrication include Silicon photonics (Silicon on Insulator (220nm and 3348
µm SOI), Si based Silica on Silicon (SiO2, also known as PLC) and Silicon Nitride (SiN and TriPleX),349
III-V photonics such as Indium Phosphide (InP), Gallium Arsenide (GaAs) and derivatives, and finally350
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Figure 5. Feature extraction and pattern recognition of detected UPE by a chip composed of CMOS array
via convolutional neural network (CNN) on a software installed on a computer, machine, or smartphone,
top) direct UPE detection without optical interferometer, and bottom) UPE detection after the interferometer.
The existence of optical interferometer is to discriminate UPE wavelengths, since interference of similar
photons (in wavelength) make a different pattern with non-similar photons. One of the advantages of such
an interferometer is to have a simple ”spectrometry” over similar wavelengths. However, an ensemble of
wavelengths may make different patterns at the same time and obscure the interference patterns which
may not make advantage over a direct detection, but one can classify those ensemble patterns with pattern
recognition techniques such as principal component analysis (PCA), which can find the differences between
different patterns in the overlapped patterns, and classify each pattern for the relevant wavelength after
many sets of training data. The direct detection of UPE by CMOS array and indirect detection after an
optical interferometer both can be used for UPE data acquisition.

Lithium Niobate (LiNbO3) and other more exotic materials (28; 29; 30; 31; 33; 32; 37; 38). It should be351
noted that the SIO platform is not a suitable candidate for the UPE in the visible spectrum as the relatiely352
small band-gap of silicon renders it completely opaque below a wavelength of about 1000 nm. SiN, which,353
on the other hand, is transparent in the visible wavelength-range and features compatibility with CMOS354
technology (34), appears to be a strong candidate as a PIC platform for our proposed BCI. As an alternative355
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Figure 6. A typical on-chip UPE detector can be built from an array of optical fibers connected to an
integrated photonic circuit which has an output gate composed of CMOS photosensor array.

to the lithography-based PIC, femto-second laser-written waveguides (FLWs) in SiO2 (glass) have in recent356
years been used to successfully implement advanced PICs (35; 36). The unique advantage of FLWs is that357
the ability to define waveguides in three dimensions, i.e., including at different depths in the chip. This358
allows more complex routing, such as the crossing of waveguides (36).359

Choosing the right technology will be the starting point for having a successful integrated chip. By360
integrating all devices into a single chip, complex assembly, alignment and stabilization processes are361
avoided, and packaging and testing are greatly simplified. Moreover, it is the only way to scale up362
complexity when moving over 20-30 components into a single package. The selection of the integration363
material will then determine the capabilities and limitations for the technology platform, making some of364
them more appropriate for certain applications than others. This is thus a critical choice and needs to be365
carefully evaluated.366

4.4 Noise and Loss in the PIC367

Design of an PIC, testing and packaging from the beginning should be done carefully. The steps are device368
level (optical, thermal, and material simulations), circuit level (virtual lab to test performance), system level369
(PIC connected to a CMOS array), layout level (generate the design intent), verification, simulation of each370
process step, fabrication, and finally packaging. Moreover, a software should be designed to process the371
detected signals. Here, we would like to estimate the noise magnitude in the optical section of the PIC. The372
optical section is composed of receiver optical plane (ROP), optical fibers (OF), and optical interferometer373
(OI).374
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4.4.1 Noise and Loss in the receiver optical plane375

First, we note that blackbody radiation is not a significant source of photons in the visible wavelength376
range at body temperature. On our BCI, photons are directly coupled to the ROP’s fibers that are very close377
(approximately in contact) with the cortex, thereby leading to a minimal coupling loss. In terms of noise,378
shot noise (also known as ”quantum noise”(40) or ”photon noise”) is the most important contribution in the379
ROP. It describes the fluctuations of the number of photons received due to their occurrence independent of380
each other. Optical detection is said to be ”photon noise limited” as only the shot noise remains. Just as381
with other forms of shot noise, the fluctuations in a photo-current due to shot noise scale as the square-root382
of the average intensity:383

384

SN :=|
√

(n− 〈n〉)2 |

4.4.2 Loss in optical fibers385

The intensity of photons will become lower when travelling through the core of fiber optic. Thus, the386
signal strength becomes weaker. This loss of light power is generally called fiber optic loss or attenuation.387
This decrease in power level is described in dB. There are two types of loss in optical fibers known as388
intrinsic fiber core attenuation (mainly due to light absorption and scattering) and extrinsic fiber attenuation389
due to bending loss as well as splicing (or coupling) loss between the fibers and chip. Given that the390
length of the fibers are to be in centimeter scale, the former will be negligible. However, bending and391
splicing/coupling loss can be significant depending on the process of binding the fibers to the photonic chip.392
For example, based on subwavelength gratings, it has been shown that it is possible to couple broadband393
light with very low coupling losses. Guiding of visible light in the wavelength range of 550–650 nm394
with losses down to 6 dB/cm is feasible using silicon gratings (having absorption of 13,000 dB/cm at this395
wavelength), which are fabricated with standard silicon photonics technology. This approach allows one to396
overcome traditional limits of the various established photonics technology platforms with respect to their397
suitable spectral range (62).398

Loss vs wavelength for various chip platforms

Loss (dB/cm) 300-400 nm 400-500 nm 500-600 nm 600-700 nm

Aluminum nitride (AlN) 40-50 40-50 30-40 20-30
Alumina (Al2O3) ∼ 3 2 1 < 1

Tantalum pentoxide (Ta2O3) N/A ∼ 4 ∼ 2 < 1

Silicon-nitride (Si3N4) N/A 5-20 < 1 < 1

Lithium niobate (LiNbO3) N/A N/A N/A ∼ 0.06

Femto-second laser-written
waveguides in glass (SiO2)

N/A N/A N/A ∼ 0.2

Table 1. Data adapted from APL Photonics 5, 020903 (2020); Optica 6(3), 380-384 (2019); and Optics
Express 14(11), 4826-4834 (2006)
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Figure 7. Schematic of various of MZI modulator cells in an optical interferometer. The undesirable
attenuation of light in the waveguides and modulators depends on material of the chip platform as well as
the dimension and structure of modulators(39), which determine bending and scattering loss.

4.4.3 Noise and Loss in optical interferometer399

The main elements of an optical interferometer on a photonic chip are couplers and optical modulators.400
There are different types of optical modulators such as MEMS, liquid crystal on silicon (LCOS), electro-401
optic LiNbO3 waveguide, III-IV semiconductor optical amplifier (SOA), Mach-Zehnder interferometer402
(MZI), and micro-ring resonator (MRR) (39). Compared with the above technologies, the silicon photonic403
modulators based on silicon-on-insulator (SOI) platform attract more attention because of high device404
density, whose volume is 1/1000 of silicon dioxide devices, functional integration with active photonic405
devices and complementary metal oxide semiconductor (CMOS) circuit, and fabrication process compatible406
with a mature CMOS manufacturing technology. One of the state of art of the silicon photonic modulator407
engine that is very useful for quantum interference is MZI. A typical 2 × 2 MZI modulator cell consists408
of two 3 dB coupler and a dual-waveguide arm between them. One of the arms has a phase shifter based409
on the change of refractive index. Since the silicon has both strong thermo-optic (T-O) effect (1.86×104410
K1)(39) the phase shifter can be categorized as T-O switch with a heater and electro-optic (E-O) switch411
with a p-i-n junction diode. The T-O switch has a response time of microsecond-scale to millisecond-scale,412
while the E-O switches have a response time of nanosecond-scale.413

The loss in on-chip optical interferometers arise from non-unity coupling from fiber to the input ports of414
the chips as well as attenuation through the waveguides patterned on the chip. As discussed above, the415
coupling loss can be significantly less than 1 dB through the advanced coupling methods. However, the416
waveguide propagation loss is given by the chip platform. Depending on the wavelength, this loss can vary417
substantially, in particular in the wavelength range of 300-700 nm, as shown in Table 1.418

4.5 Noise and Loss in the CMOS sensor array419

Noise can be produced by fluctuations in signal that makes uncertainty in detection. Essentially, the420
signal-to-noise ratio (SNR) is the ratio of pattern signal to the total noise. For larger SNR it is easier to421
distinguish pattern from noise, which makes a higher confidence in measurements.422
CMOS (Complementary metal–oxide–semiconductor) primary noise sources are shot (photon) noise (i.e.423
SN), dark noise (i.e. DN), and read noise (i.e. RN). Shot noise is due to physical property of light, regardless424
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of sensor, and it is SN =
√

Signal. Dark noise is temperature dependent and higher for global shutter and425
its magnitude is obtained as DN =

√
Dark Current. Read noise includes Random Telegraph Noise (RTN),426

which is non-Gaussian, and depends on multiply column and pixel amplifiers, RN = Read Noise. RTN is427
the most significant component of CMOS noise. The SNR for CMOS is obtained as follows428

SNR =
S√

SN2 + DN2 + RN2
(3)

where S is Signal=Photon flux × time × quantum efficiency (QE) (41).429

Scientific CMOS (sCMOS) sensor is a novel technology with room to grow, which allows for higher speed430
operation with larger pixel arrays than EMCCD and CCDs with similar noise performance to conventional431
CCDs.432

4.5.1 Quantum Efficiency433

Quantum efficiency (QE) is defined as434

QE =
Converted photons to electrons

Total incident photons

which is a measurement of sensitivity to light. As a ratio, QE is dimensionless, but it is closely related to435
the responsivity, which is expressed in amps (A) per watt (W ). Since the energy of a photon is inversely436
proportional to its wavelength, QE is often measured over a range of different wavelengths to characterize437
a detector efficiency at each photon energy level.438

The photodetector matrix consist of CMOS-compatible photodiodes (formed between drain diffusion and439
p-well) with associated readout and sensor selection circuits. The spectral measurements of the photodiode440
have exhibited a quantum efficiency better than 60% at 650 nm, and better than 40% between 500 and441
850nm (41).442
A chip design for UPE detection can be inspired by retina implants, but with bigger array size and443
significantly higher quantum efficiency. The irradiance on the retina even under a bright daytime444
illumination does not exceed 1 µW mm−2. At such illumination a 20 µm diameter photodiode (having even445
100% quantum efficiency) can provide only 40 pA of current (42). Basically, each photoreceptor cell can446
produce 1 pA with a single photon absorption (65). To provide stimulating current on the order of 1-2 µA,447
which would be minimal for physiological stimulation, current amplification by a factor of about 1000 is448
required. Suitable current levels would require photodiodes more than 600 µm in diameter, so that ambient449
light cannot be used to power more than a token number of electrodes on a retinal chip. An additional450
source of power will be needed for any practical chip (42). The stimulation current for an electrode of451
10 µm in diameter is on the order of 1 µA. The photodiode converts photons into electric current with452
efficiency of up to 0.6 AW−1, thus 1.7 µW of light power will be required for activation of one pixel. If light453
pulses are applied for 1 ms at 50 Hz, the average power will be reduced to 83 nW/pixel. With 18000 pixels454
on the chip, the total light power irradiating an implant will be 1.5 mW (42). In the case of skull-implant455
PIC chip, the main difference with the retina implant is that the retina implant should activate neurons with456
the currents produced by external light, which needs a relatively high intensity of light, while for the PIC457
chip there is no need to activate neurons, and a low light intensity even with a few numbers of photons is458
sufficient for the CMOS pixels activation to be reported to the software. In silicon, a single-photon with a459
wavelength between 300 and 1100 nm can generate only one electron–hole pair. Therefore, for visible and460
near-infrared light, the task of single-photon detection becomes a task of single-electron (or hole) detection.461
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This is not easy due to the unavoidable readout noise of the sensor, which is usually too high for the reliable462
detection of a single electron. Another difficulty for room temperature applications are the thermal dark463
currents, because they are indistinguishable from photogenerated signals.464

4.5.2 Chip battery and Wireless sectors465

In order to have a dynamic chip for monitoring signals of the brain continuously, the chip requires a466
long lifetime battery. The size and lifetime of the battery is one of the major challenges in design of an467
implant chip for biomedical applications. As an alternative, replacing the battery with a miniaturized and468
integrated wireless power harvester aid the design of sustainable biomedical implants in smaller volumes469
(81). Currently, implanted batteries provide the energy for implantable biomedical devices. However,470
batteries have fixed energy density, limited lifetime, chemical side effects, and large size. Thus, researchers471
have developed several methods to harvest energy for implantable devices. Devices powered by harvested472
energy have longer lifetime and provide more comfort and safety than conventional devices. A solution to473
energy problems in wireless sensors is to scavenge energy from the ambient environment. Energies that may474
be scavenged include infrared radiant energy, wireless transfer energy, and RF radiation energy (inductive475
and capacitive coupling) (82). Recently, a chip has been developed that is powered wirelessly and can be476
surgically implanted to read neural signals and stimulate the brain with both light and electrical current.477
The technology has been demonstrated successfully in rats and is designed for use as a research tool. The478
chip is capable of 16-ch neural recording, 8-ch electrical stimulation, and 16-ch optical stimulation, all479
integrated on a 5 × 3 mm2 chip fabricated in 0.35-µm standard CMOS process. The trimodal SoC is480
designed to be inductively powered and communicated (83).481

4.6 Biocompatibility of the chip482

Brain implants may induce side effects; for instance they may interact acutely and chronically with the483
brain tissue possibly causing blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion484
etc (84). The advantage of our suggested photonic chip is that it is minimally invasive compared to invasive485
implants (e.g. ECoG) since it does not need to penetrate the brain tissue.486
Some of the key fundamental questions associated to brain implants are related to how long an implant can487
record useful neuronal signals and what degree of acquisition and decoding reliably can be achieved if the488
tissue is affected by chip implant. Functional neural tissue survival, distance from the chip contact to target489
and long term stability are essential parameters to be considered (84).490
In the case of photonic chip, it should be installed on the inner surface of the skull and not to be implanted491
directly in the brain tissue. However, there is still the possibility of a close contact with the brain meninges492
(i.e layered membranes that protect the brain and spine) due to the mechanical or volume changes of the493
brain. In this case, it has been shown that Silicone clastomer causes the least amount of inflammation494
relative to other materials tested at all sacrifice points, which makes it the leading standard neurosurgical495
implant material and an appropriate control for studies of brain biocompatibility (85). Thus, we envisage to496
adopt Silicone clastomer but we also expect that research in biocompatibility will provide alternative and497
advanced materials. However, since the photonic chip can be implanted in between the meninges and the498
skull, there can be concerns about the limitation of brain UPE detection due to the existence of meninges.499
The meninges layers of the human brain are composed of three main layers: dura, arachnoid, and falx. The500
key question is whether light can pass through these layers and if it does, then what are the scattering and501
absorption effects of photons? For instance, to have a reasonable data acquisition should the dura be open?502
The optical properties of the human brain and its meninges have been investigated decades ago. It has been503
shown that meninges is approximately transparent for the near-IR range, but almost half of emissions will504
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not pass through it in the visible range, and less than 40% of emissions can pass through the meninges505
in the UV range (200-400nm) (86). As a result, based on the high efficiency of the photonic chip in the506
near-IR range, the existence of meninges reduces the intensity of UPE but it does not lead to a significant507
limitation.508

5 DISCUSSION AND CONCLUSION

We propose a radically novel brain-computer interface (BCI) that is based on ultraweak photon emission509
(UPE) from the brain. We describe its feasibility of fabrication based on integrated photonic circuits that510
be readily implemented in a lab. The envisaged BCI chip can be implanted on the interior surface of the511
skull to monitor in real-time UPE signals emanating from the cortex surface. The proposed chip is not512
only useful for BCI technology but also it can be used as a photonic sensor for imaging, spectroscopy and513
sensitive measurements at low light-levels in several applications from biological UPE to quantum optical514
processing(89). Although our proposed technology is, admittedly, at the level of conjecture, requiring515
comprehensive tests and investigations for verification, we still envision complementary features as well516
as certain advantages over established technologies, including ECoG. The inherent advantage of our517
proposed technology is that it is minimally invasive when compared to ECoG. Furthermore, there are518
certain side effects that may affect the quality of data acquisition over time in ECoG, whereas we expect a519
relatively stable long-term data acquisition in our proposed approach. In addition, if our suggested photonic520
chip-technology reaches a satisfactory detection performance based on our estimations, we anticipate that521
it can feature some other advantages. For example, it may provide additional information about brain522
functioning, such as an approximately real-time imaging (in slightly longer timescales, e.g. each 15, 20,523
30, 60 min, or so) and open the door to studying metabolism variations, variation of ROS production,524
delayed luminescence but also undertake novel and complementary studies on object visualization studies,525
sleep studies and neurodegenerative diseases (90; 91). Indeed, the emphasis of our conjectural paper is to526
develop a novel technology and methods that could provide complementary information to improve our527
understanding of brain activity with potential applications for BCI technologies.528

Now, we would like to discuss the advantages and limitations of our proposed technology versus the529
current BCI methods. On-chip PICs offer advantages such as miniaturization, higher speed, low thermal530
effects, large integration capacity, and compatibility with existing processing flows that allow for high531
yield, volume manufacturing, and lower prices. In the case of UPE detection, there is no need for on-chip532
single-photon sources, which is one of the most difficult challenges in PICs for quantum computation and533
communication. In the suggested chip, single photons are produced naturally by metabolism in neurons534
and therefore a lower power with battery is needed for energy consumption on an implant PIC. Loss is low535
in NIR range (e.g. 2× 10−6 dB/cm). In addition, photons are bosons, which don’t interact and crosstalk is536
minimal. An PIC for optical interferometery is efficient for the wavelengths typically in the near infrared537
range, 800nm-1650nm. This makes a limitation for detection of UPE photons which are in the visible range538
and the overlapped part to NIR, 400nm-800nm. For example, loss is high for the visible range (e.g. 0.6539
dB/cm at 600 nm).540

Moreover, it may look that the single-photon detections on a CMOS array have a low quantum efficiency541
besides the dark current in room temperature, which may lose considerable amounts of UPE. Another542
concern may be that the output of CMOS is electrons, which are charged particles and fermions, and543
therefore electronic crosstalk is inherent. In fact, the CMOS quantum efficiency (QE) is about 75%, which544
is about three times higher than the photo-multiplier tubes (PMTs) with QE about 25%. The SNR of a545
PMT at room temperature to detect UPE photons is about 1 to 2, thus a cooling system is required to cool546
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down the PMT sensor to enhance the SNR to reach 3 and higher. Obviously, there is no cooling system on547
an PIC chip, but in this case, the QE of the CMOS sensor can compensate the lack of a cooling system. For548
a simple estimation, assuming a 1cm×1cm chip and considering the length of each CMOS pixel is 4µm, it549
is possible to have 2500 CMOS pixels as the output port on the chip, including 50×50 pixels on the ROP.550
According the estimations in the main text, the amount of total photon loss from the receiver optical plane551
(ROP) to the output of the optical interferometer (OI) is about 50%, and the QE of CMOS at the output of552
the OI is estimated to be 25% in body temperature under the implant conditions on the skull to have a final553
SNR from 1 to 2. Consequently, it is estimated that only 10% of incident photons can be safely recognized554
in the output and reported wirelessly to the software on a computer or smartphone. Considering 10-1000555
incident photons per second received in the ROP under a cognitive task (e.g. an object visualization),556
there can be 1-100 photons per second efficiently detected in the output port, which are enough to have a557
relatively successful implant PIC chip for an acceptable pattern for UPE processing, where the size of the558
machine learning program is N ×N sparse matrix, which is not a difficult task for a chip size number of559
pixels. To conclude, in this paper, we advance major conjectures regarding the relevance of UPE patterns560
and decision making as well as the feature extractions from UPE signals, which need to be experimentally561
verified. However, despite some probable limitations in chip fabrication and efficiency, it may be used for562
wireless BCI signal acquisition with several advantages versus traditional counterparts such as speed, size,563
minimally invasive, cheap, scalability, etc. This can be a potential step forward for real time brain imaging564
and biological information processing.565
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