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INSA, Université Toulouse 3, CNRS

Toulouse, France
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Abstract

Applications based on Machine Learning models have now become an indispens-
able part of the everyday life and the professional world. A critical question then
recently arises among the population: Do algorithmic decisions convey any type of
discrimination against specific groups of population or minorities? In this paper, we
show the importance of understanding how a bias can be introduced into automatic
decisions. We first present a mathematical framework for the fair learning problem,
specifically in the binary classification setting. We then propose to quantify the pres-
ence of bias by using the standard Disparate Impact index on the real and well-known
Adult income data set. Finally, we check the performance of different approaches aim-
ing to reduce the bias in binary classification outcomes. Importantly, we show that
some intuitive methods are ineffective with respect to the Statistical Parity criterion.
This sheds light on the fact that trying to make fair machine learning models may be
a particularly challenging task, in particular when the training observations contain
some bias.
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1 Introduction

Fairness has become one of the most popular topics in machine learning over the last years

and the research community is investing a large amount of effort in this area. The main

motivation is the increasing impact that the lives of Human beings are experiencing due

to the generalization of machine learning systems in a wide variety of fields. From the first

artificial neural network in the late 50’s, machine learning algorithms are now becoming an

inseparable part of our daily lives since more and more companies are integrating Artificial

Intelligence (AI) into their existing practice or products. While some of these uses may

involve leisure, with trivial consequences (Amazon or Netflix use recommender systems to

present a customized page that offers their products according to the order of preference

of each user), other ones entail particularly sensitive decisions such as in Medicine, where

patient suitability for treatment is considered; in Human Resources, where candidates are

sorted out on an algorithmic decision basis; in the Automotive industry, with the release

of self-driving cars; in the Banking and Insurance industry, which characterize customers

according to a risk index; in Criminal justice, where the COMPAS algorithm is used in the

United States for recidivism prediction... For a more detailed background on these facts

see for instance Romei and Ruggieri (2014), Berk et al. (2018) Pedreschi et al. (2012) or

Friedler et al. (2018), and references therein.

The technologies that AI offers certainly make life easier. It is however a common mis-

conception that they are absolutely objective. In particular, machine learning algorithms

which are meant to automatically take accurate and efficient decisions that mimic and

even sometimes outmatch human expertise, rely heavily on potentially biased data. It is

interesting to remark that this bias is often due to an inherent social bias existing in the

population that is used to generate the training dataset of the machine learning models. A

list of potential causes for the discriminatory behaviours that machine learning algorithms

may exhibit, in the sense that groups of population are treated differently, is given in Baro-

cas and Selbst (2016). Various real and striking cases that can be found in the literature are

the following. In Angwin et al. (2016), it was found that the algorithm COMPAS used for

recidivism prediction produces much higher rate of false positive predictions for black peo-

ple than for white people. Later in Lahoti et al. (2019), a job platform similar to Linkedin

called XING was found to predict less highly ranked qualified male candidates than female

candidates. Publicly available commercial face recognition online services provided by Mi-

2



crosoft, Face++, and IBM respectively were also recently found to suffer from achieving

much lower accuracy on females with darker skin color in Buolamwini and Gebru (2018).

Although a discrimination may appear naturally and could be thought as acceptable, as in

Kamiran et al. (2010) for instance, quantifying the effect of a machine learning predictor

with respect to a given situation is of high importance. Therefore, the notion of fairness in

machine learning algorithms has received a growing interest over the last years. We believe

this is crucial in order to guarantee a fair treatment for every subgroup of population, which

will contribute to reduce the growing distrust of machine learning systems in the society.

Yet providing a definition of fairness or equity in machine learning is a complicated task

and several propositions have been formulated. First described in terms of law (Winrow and

Schieber, 2009), fairness is now quantified in order to detect biased decisions from automatic

algorithms. We will focus on the issue of biased training data, which is one of the several

possible causes of such discriminatory outcomes in machine learning mentioned above. In

the fair learning literature, fairness is often defined with respect to selected variables, which

are commonly denoted protected or sensitive attributes. We note that throughout the paper

we will use both terms indistinctly. This variables encode a potential risk of discriminatory

information in the population that should not be used by the algorithm. In this framework,

two main streams of understanding fairness in machine learning have been considered. The

probabilistic notion underlying this division is the independence between distributions.

The first one gives rise to the concept of Statistical Parity, which means the independence

between the protected attribute and the outcome of the decision rule. This concept is

quantified using the Disparate Impact index, which is described for instance in Feldman

et al. (2015). This notion was firstly considered as a tool for quantifying discrimination as

the so-called 4/5th-rule by the State of California Fair Employment Practice Commission

(FEPC) in 1971. For more details on the origin and first applications of this index we

refer to Biddle (2006). The second one proposes the Equality of Odds, which considers the

independence between the protected attribute and the output prediction, conditionally to

the true output value. In other words, it quantifies the independence between the error of

the algorithm and the protected variable. Hence, in practice, it compares the error rates of

the algorithmic decisions between the different groups of the population. This second point

of view has been originally proposed for recidivism of defendants in Flores et al. (2016).

Many other criteria (see for instance in Berk et al. (2018) for a review) have been proposed

leading sometimes to incompatible formulations as stated in Chouldechova (2017). Note
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finally that the notion of fairness is closely related to the notion of privacy as pointed out

in Dwork et al. (2012).

In this paper, our goal is to present some comprehensive statistical results on fairness

in machine learning studying the statistical parity criterion through the analysis of the

example given in the Adult Income dataset. This public dataset is available on the UCI

Machine Learning Repository1. Here, the goal consists in forecasting a binary variable (low

or high income) which corresponds to an income lower or higher than 50k$ a year. This

decision could be potentially used to evaluate the credit risk of loan applicants, making

this dataset particularly popular in the machine learning community. It is considered here

as potentially sensitive to a discrimination with respect to the Gender and Ethnic origin

variables. The co-variables used in the prediction as well as the true outcome are available

in the dataset, hence supervised machine learning algorithms will be used.

Section 2 describes this dataset. It specifically highlights the existing unbalance between

the income prediction and the Gender and Ethnic origin sensitive variables. We note that

a preprocessing step is needed in order to prepare the data for further analyses and the per-

formed modifications are detailed in the Appendix A.1.1. In Section 3, we then explain the

statistical framework for the fairness problem, by particularly focusing on the binary classifi-

cation setting. Among the wide array of definitions for fairness existing in the literature, we

follow the approach of the Statistical Parity to quantify the fairness and we thus present the

Disparate Impact as our preferred index for measuring the bias. Note that the bias is present

in this dataset, so the machine learning decision rules learned in this paper will be trained

by using a biased dataset. Although, many criteria have been described in the fair learning

literature, they are often used as a score without statistical control. In the cases where test

procedures or confidence bounds are provided, they are obtained using a resampling scheme

to get standardized Gaussian confidence intervals under a Gaussian assumption which does

not correspond to the distribution of the observations. In this work, we promote the use of

confidence intervals to control the risk of false discriminatory assessment. We then show in

the Appendix A.2 the exact asymptotic distribution of the estimates of different fairness

criteria obtained through the classical approach of the Delta method described in Van der

Vaart (1998). Then, Section 4 is devoted to present some naive approaches that try to

correct the discriminatory behaviour of machine learning algorithms or to test possible

1https://archive.ics.uci.edu/ml/datasets/adult
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discriminations. Finally, Section 5 is devoted to studying the efficiency of two easy ways

to incorporate fairness in machine learning algorithms: building a different algorithm for

each class of the population or adapting the decision of a single algorithm in a different way

for each subpopulation. We then in Section 6 present some conclusions for this work and

thus provide a concrete pedagogical example for a better understanding of bias issues and

fairness treatment in machine learning. It is convenient to note at this point the frequent

use throughout the paper of term “bias” referring to “social bias”, in stead of “statistical

bias”, and the term “discrimination” referring to any harmful or illegal practice, in stead of

the usual sense in classification. In both cases, we ask the reader to infer the intended use

from context. Proofs and more technical details are included in the Appendix. Relevant

code in Python to preprocess the Adult Income dataset and reproduce all the analysis and

figures presented in this paper are available at the link https://github.com/XAI-ANITI/

StoryOfBias/blob/master/StoryOfBias.ipynb. We also provide the French version of

this Python notebook at https://github.com/wikistat/Fair-ML-4-Ethical-AI/blob/

master/AdultCensus/AdultCensus-R-biasDetection.ipynb.

2 Machine learning algorithms for the attribution of

bank loans

One of the applications for which machine learning algorithms have already become firmly

established is credit scoring. In order to minimize its risks, the banking industry uses

machine learning models to detect the clients who are likely to deal with a credit loan.

The FICO score in the US or the SCHUFA score in Germany are examples of these algo-

rithmically determined credit rating scores, as well as those used by a number of Fintech

startups, who are also basing their loan decisions entirely on algorithmic models (Hurley

and Adebayo, 2016)2. Yet, credit rating systems have been criticized as opaque and biased

in Pasquale (2015), Rothmann et al. (2014) or Hurley and Adebayo (2016).

In this paper, we use the Adult Income dataset as a realistic material to reproduce

this kind of analyses for credit risk assessment. This dataset was built by using a database

containing the results of a census made in the United States in 1994. It has been largely used

among the fair learning community as a suitable benchmark to compare the performance

2See, e.g., https://www.kreditech.com/.
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of different machine learning methods. It contains information from about 48 thousands

of individuals, each of them being described by 14 variables as detailed in Table 2. This

dataset is often used to predict the binary variable Anual Income higher or not than 50k$.

Such a forecast does not convey any discrimination itself, but it illustrates what can be

done in the banking or insurance industry since the machine learning procedures are similar

to those made by banks to evaluate the credit risk of their clients. The fact that the

true value of the target variable is known, in contrast to the majority of the datasets

available in the literature (e.g. the German Credit Data), as well as the value of potential

protected attributes such as the ethnic origin or the gender, makes this dataset one of

the most widely used to compare the properties of the fair learning algorithms. In this

paper, we will then compare supervised machine learning methods on this dataset. A

graphic representation of the distribution of each feature can be found in https://www.

valentinmihov.com/2015/04/17/adult-income-data-set/. This representation gives a

good overview of what this dataset contains. It also makes clear that it has to be pre-

processed before its analysis using black-box machine learning algorithms. In this work,

we have deleted missing data, errors or inconsistencies. In some cases, this type of pre-

processing practices could have fairness implications. This is a very interesting issue, yet

beyond the scope of our study. We also have merged highly dispersed categories and

eliminated strong redundancies between certain variables (see details in Supplementary

material A.1.1). In Figure 1, we represent the data set after our pre-treatments, and show

the number of occurrences for each categorical variable as well as the histograms for each

continuous variable.

2.1 Unbalanced Learning Sample

After pre-processing the dataset, standard preliminary exploratory analyses first show that

the dataset obviously suffers from an unbalanced repartition of low and high incomes with

respect to two variables: Gender (male or female) and Ethnic origin (caucasian or non-

caucasian). These variables therefore seem to be potentially sensitive variables in our data.

Figure 2 shows this unbalanced repartition of incomes with respect to these variables. It is

of high importance to be aware of such unbalanced repartitions in reference datasets since a

bank willing to use an automatic algorithm to predict which clients should have successful

loan applications could be tempted to train the decision rules on such unbalanced data.
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Figure 1: Adult Income dataset after pre-processing phase

This fact is at the heart of our work and we question its effect on further predictions on

other data. What information will be learnt from such unbalanced data: a fair relationship

between the variables and the true income that will enable socially reasonable forecasts;

or biased relations in the repartition of the income with respect to the sensitive variables?

We explore this question in the following section.

2.2 Machine Learning Algorithms to forecast income

We study now the performance of four categories of supervised learning models: Logistic

Regression (LR) (Cramer, 2002), Decision Trees (DT) (Mitchell et al., 1997), Gradient

Boosting (GB) (Sutton, 2005), and Neural Network (NN). We used the Scikit-learn imple-

mentations of the LR and DT, and the lightGBM implementation of the GB) algorithm.
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Figure 2: Enbalancement of the reference decisions in the Adult Income dataset with respect

to the Gender and Ethnic origin variables.

The NN was finally coded using PyTorch and contains four fully connected layers with

Rectified Linear Units (ReLU) activation functions.

In order to analyze categorical features using these models, the binary categorical vari-

ables were encoded using zeros and ones. The categorical variables with more than two

classes were also transformed into one-hot vectors, i.e. into vectors where only one element

is non-zero (or hot). We specifically encoded the target variable by the values Y = 0 for

an income below 50K$, and Y = 1 for an income above 50K$. We used a 10-fold cross-

validation approach in order to assess the robustness of our results. The average accuracy

as well as its true positive (TP) and true negative (TN) rates were finally measured for

each trained model. Figure 3 summarizes these results.

We can observe in Fig. 3 that the best average results are obtained by using Gradient

Boosting. More interestingly, we can also remark that the prediction obtained using all

models for Y = 0 (represented by the true negative rates) are clearly more accurate than

those obtained for Y = 1 (represented by the true positive rates), which contains about

24% of the observations. All tested models then make more mistakes in average for the

observations which should have a successful prediction than a negative one. Note that the

tested neural network is outperformed by other methods in these tests in term of prediction

accuracy. Although we used default parametrizations for the Logistic Regression model as

well as the Gradient Boosting model, and we simply tuned the decision tree to have a max-

imum depth of 5 nodes, we tested different parametrizations of the Neural Network model

(number of epochs, mini-batch sizes, optimization strategies) and kept the best performing

one. It therefore appears that the neural network model we tested was clearly not adapted
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Figure 3: Prediction accuracies, true positive rates and true negative rates obtained by us-

ing no specific treatment. Logistic Regression (LR), Decision Tree (DT), Gradient Boosting

(GB) and Neural Network (NN) models were tested with 10-folds cross validation on the

Adult Income dataset.

to the Adult Income dataset.

Hence we have built and compared several algorithms ranging from completely inter-

pretable models to black box models involving optimization of several parameters. Note

that we could have used the popular Random Forest algorithm that could lead to equivalent

but we privileged boosting models whose implementation is easier using Python.

3 Measuring the Bias with Disparate Impact

3.1 Notations

Among the criteria proposed in the literature to reveal the presence of a bias in a dataset

or in automatic decisions (see e.g. Hardt et al. (2016) for a recent review), we focus in

this paper on the so-called Statistical Parity. This criterion deals with the differences in

reference decisions or the outcome of decision rules with respect to a sensitive attribute.

Note that we only consider the binary classification problem with a single sensitive attribute

for the sake of simplicity, although we could consider other tasks (e.g. regression) or

multiple sensitive attributes (see Hébert-Johnson et al. (2018) or Kearns et al. (2018)).

Here is a summary of the notations we use:

• Y is the variable to be predicted. We consider here binary variables where Y = 1 is
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a positive decision (here a high income) while Y = 0 is a negative decision (here a

low income);

• g(X) = Ŷ is the prediction given by the algorithm. As for Y , this is a binary variable

interpreted such that Ŷ = 0 or Ŷ = 1 means a negative or a positive decision,

respectively. Note that most machine learning algorithms output continuous scores

or probabilities. We consider in this case that this output is already thresholded.

• S is the variable which splits the observations into groups for which the decision

rules may lead to discriminative outputs. From a legal or a moral point of view,

S is a sensitive variable that should not influence the decisions, but could lead to

discriminative decisions. We consider hereafter that S = 0 represents the minority

that could be discriminated, while S = 1 represents the majority. We specifically

focus here on estimating the disproportionate effect with respect to two sensitive

variables: gender (male vs. female) and ethnic origin (caucasian vs. non-caucasian).

Statistical Parity is often quantified in the fair learning literature using the so-called

Disparate Impact (DI). The notion of DI has been introduced in the us legislation in 19713.

It measures the existing bias in a dataset as

DI(Y, S) =
P(Y = 1|S = 0)

P(Y = 1|S = 1)
, (3.1)

and can be empirically estimated as

n10

(n00 + n10)
/

n11

(n01 + n11)
, (3.2)

where nij is number of observations such that Y = i and S = j. The smaller this index, the

stronger the discrimination over the minority group. Note first that this index supposes

that P(Y = 1|S = 0) < P(Y = 1|S = 1) since S is defined as the group which can

be discriminated with respect to the output Y . It is also important to remark that this

estimation may be unstable due to the unbalanced amount of observations in the groups

S = 0 and S = 1 and the inherent noise existing in all data. We then propose to estimate a

confidence interval around the Disparate Impact in order to provide statistical guarantees

of this score, as detailed in the Supplementary material A.2. These confidence intervals will

3https://www.govinfo.gov/content/pkg/CFR-2017-title29-vol4/xml/CFR-2017-title29-vol4-

part1607.xml
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be used later in this section to quantify how reliable are two disparate impacts computed

on our dataset. This fairness criterion can be extended to the outcome of an algorithm by

replacing in Eq. (3.1) the true variable Y by g(X) = Ŷ , that is

DI(g,X, S) =
P(g(X) = 1|S = 0)

P(g(X) = 1|S = 1)
. (3.3)

This measures the risk of discrimination when using the decision rules encoded in g on

data following the same distribution as in the test set. Hence, in Gordaliza et al. (2019) a

classifier g is said not to have a Disparate Impact at level τ ∈ (0, 1] when DI(g,X, S) > τ .

Note that the notion of DI defined Eq. (3.1) was first introduced as the 4/5th-rule by the

State of California Fair Employment Practice Commission (FEPC) in 1971. Since then,

the threshold τ0 = 0.8 was chosen in different trials as a legal score to judge whether the

discriminations committed by an algorithm are acceptable or not (see e.g. Feldman et al.

(2015) Zafar et al. (2017), or Mercat-Bruns (2016)).

3.2 Measures of disparate impacts

The disparate impact DI(g,X, S) should be close to 1 to claim that g makes fair decisions.

A more subtle, though critical, remark is that it should at least not be smaller than the

general disparate impact DI(Y, S). This would indeed mean that the decision rules g

reinforce the discriminations compared with the reference data on which it was trained.

We will then measure hereafter the disparate impacts DI(Y, S) and DI(g,X, S) obtained

on our dataset.

In Table 1, we have quantified confidence intervals for the bias already present in the

original dataset using Eq. (3.1) with the sensitive attributes Gender and Ethnic origin.

They were computed using the method of Appendix A.2 and represent the range of values

the computed disparate impacts can have with a 95% confidence (subject to standard and

reasonable hypotheses on the data). Here the DI computed on the Gender variable then

appears as very robust and the one computed on the Ethnic origin variable is relatively

robust. It is clear from this table that both considered sensitive attributes generate dis-

criminations. These discriminations are also more severe for the Gender variable than for

the Ethnic origin variable.

We have then measured the disparate impacts Eq. (3.3) obtained using the predictions

made by the four models in the 10-folds cross-validation of Section 2.2. These disparate

11



Table 1: Bias measured in the original dataset

Protected attribute DI CI

Gender 0.3597 [0.3428, 0.3765]

Ethnic origin 0.6006 [0.5662, 0.6350]

impacts are presented in Fig. 4. We can see that, except for the decision tree with the

Ethnic origin variable, the algorithms have smaller disparate impact than for the true

variable. The impact is additionally clearly worsened with the Gender variable using all

trained predictors. These predictors therefore reinforced the discriminations in all cases by

enhancing the bias present in the training sample. Observing the true positive and true

negative rates of Fig. 4, which distinguish the groups S = 0 and S = 1 is particularly

interesting here to understand this effect more deeply. As already mentioned Section 2.2,

the true negative (TN) rates are generally higher than the true positive (TP) rates. It

can be seen Fig. 4 that this phenomenon is clearly stronger in the subplot representing

the TP and TN for S = 0 than the one representing them for S = 1, so false predictions

are more favorable to the group S = 1 than the group S = 0. This explains why the

disparate impacts of the predictions are higher than those of the original data (boxplots

Ref in Fig. 4). Note that these measures are directly related to the notions of equality of

odds and opportunity as discussed in Hardt et al. (2016). The machine learning models

we used in our experiments were then shown as unfair on this dataset, in the sense that

discrimination is reinforced.

As pointed out in Friedler et al. (2018), there may be a strong variability when com-

puting the disparate impact of different subsamples of the data. Hence, we additionally

propose in this paper an exact Central Limit Theorem to overcome this effect. The con-

fidence intervals we obtain prove their stability when confronted to bootstrap replications

and for this reason, therefore, we cross-validated our results using 10 replications of different

learning and test samples on the three algorithms. The construction of these confidence

intervals are postponed to Section A.2 while comparison with bootstrap procedures are

detailed in Section A.3 of the Appendix. In order to conveniently compare the bias in the

predictions with the one in the original data, we show on the left the bias measured in the

data. We can see that these boxplots are coherent with the results of Table 1 and Figure 4,

and again show that the discrimination was reinforced by the machine learning models in
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Figure 4: Bias measured in the outputs of the tested machine learning models (LR, DT, GB,

NN) using the 10-folds cross validation. The disparate impacts of the reference decisions

are represented by the boxplot Ref to make clear that the unfairness is almost always

re-inforced in our tests by automatic decisions. (Top) Gender is the sensitive variable.

(Bottom) Ethnic origin is the sensitive variable.

this test.

In all generality, we conclude here that one has to be careful when training decision

rules. They can indeed worsen existing discriminations in the original database. We also

remark that the majority of works using the Disparate Impact as a measure of fairness

rely only on this score as a numerical value with no estimation of how reliable it is. This

motivated the definition of our confidence intervals strategy in Appendix A.2, which was

shown to be realistic in our experiments when comparing the Ref boxplots of Figure 4 with

the confidence intervales of Tables 1. Note that we will only focus in the rest of the paper

on the protected variable Gender since it was shown in Section 3 to be clearly the variable

leading to discrimination for all tested machine learning models. We will also only test

the Logistic Regression (LR) and Decision Tree (DT) as they are highly interpretable, plus

the Gradient Boosting (GB) model which was shown to be the best performing one on the
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Adult Census dataset.

4 A quantitative evaluation of GDPR recommenda-

tions against algorithm discrimination

Once the presence of bias is detected, the goal of machine learning becomes to reduce its

impact without hampering the efficiency of the algorithm. Actually, the predictions made

by the algorithm should remain sufficiently accurate to make the machine learning model

relevant in Artificial Intelligence applications. For instance, the decisions Ŷ made by a

well balanced coin when playing head or tail are absolutely fair, as they are independent

of any possible sensitive variable S. However, they also do not take into account any other

input information X, making them pointless in practice. Reducing the bias of a machine

learning model g therefore ideally consists in getting rid of the influence of S in all input

data (X,S) while preserving the relevant information to predict the true outputs Y . We

will see below that this is not that obvious, even in our simple example.

It is first interesting to remark that the problem cannot be solved by simply having

a balanced amount of observations with S = 0 and S = 1. We indeed reproduced the

experimental protocol of Section 3.2 with 16,192 randomly chosen observations representing

males (instead of 32,650), so that the decision rules were trained in average with as many

males as females. As shown in Fig. 5, the trends of the results turned out to be very similar

to those obtained in Fig. 4-(Gender).
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Figure 5: Bias measured in the outputs of the LR, DT and GB machine learning models

using the same experimental protocol as in Section 3.2 (see specifically Fig. 4-(Gender)),

except that we used the same amount of males (S = 1) and females (S = 0) in the dataset.

We specifically study in section the effect of complying to the European regulations.
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From a legal point of view, the GDPR’s recommendation indeed consists in not using the

sensitive variable in machine learning algorithms. Hence, we simply remove here S from the

database in subsection 4.1, and we consider in subsection 4.2 one of the most common legal

proof for discrimination called the legal testing method (in the following testing method, or

simply testing). It consists in considering the response for the same individual but with

a different sensitive variable. We will study whether this procedure enables to detect the

group discrimination coming from the decisions of an algorithm.

4.1 What if the sensitive variable is removed?

The most obvious idea to remove the influence of a sensitive variable S is to remove it from

the data, so we cannot use it when training the decision rules and then obviously when

making new decisions. Note that this solution is recommended by GPDR regulations. To

test the pertinence of this solution, we considered the algorithms analyzed in Sections 2

and 3 and then used them without using the Gender variable. As in Section 3, a 10-fold

cross-validation approach was used to assess the robustness of our results.

As shown Figure 6-(top), the disparate impacts as well as the model accuracies remained

almost unchanged when removing the Gender variable from the input data. Anonymizing

database by removing a variable therefore had very little effect on the discrimination that is

induced by the use of an automated decision algorithm. This is very likely to be explained

by the fact that a machine learning algorithm uses all possible information conveyed by

the variables. In particular, if the sensitive variable (here the Gender variable) is strongly

correlated to other variables, then the algorithm learns and reconstruct automatically the

sensitive variable from the other variables. Hence we can deduce that social determinism

is stronger than the presence of the sensitive variable here, so the classification algorithms

were not impacted by the removal of this variable.

Obtaining fairness is a far more complicated task than this simple trick. It is at the

heart of modern research on fair learning. More complex fairness mathematical methods

to reduce disparate treatment are discussed for instance in Kleinberg et al. (2016) or in

Gordaliza et al. (2019).
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Figure 6: Performance of the machine learning models LR, DT and GB when (top) re-

moving the Gender variable, and (bottom) when using a testing procedure.

4.2 From Testing for bias detection to unfair prediction

Testing procedures are often used as a legal proof for discrimination. For a chosen individual

(x, s) that suspects a disparate treatment and discrimination, such procedures consist in

first creating an artificial individual (x, s′) which shares the same characteristics but has a

different protected variable. Then it amounts to testing whether this artificial individual

has the same prediction ŷ′ = f(x, s′) as the original one ŷ = f(x, s). If the predictions

differ, that is if ŷ′ 6= ŷ, then this conclusion can serve as a legal proof for discrimination.

These methods have existed for a long time (first introducted in 19394) and the French

justice has taken them as a proof of biased treatment since 2006, although the testing

process itself has been qualified as unfair5. Furthermore, this technique has been generalized

by sociologists and economists (see Riach and Rich (2002) for a description of such method)

to statistically measure group discrimination in housing and labour market by conducting

carefully controlled field experiments.

This testing procedure considered as a discrimination test is nowadays a commonly

used method in France to assess fairness for sociological studies of Observatoire des dis-

4https://fr.wikipedia.org/wiki/Test_de_discrimination
5https://www.juritravail.com/discrimination-physique/embauche/ph-alternative-A-1.html
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criminations6 and laboratoire TEPP as pointed out in L’Horty, Bunel, Mbaye, Petit, and

du Parquet (L’Horty et al.), or governemental studies DARES7 of French Ministry of Work

ISM Corum 8. Some industries are labeled using such test. An audit quality of recruiting

methods is proposed while Novethic9 proposes ethic formations.

Testing is efficient to detect human discrimination specially in labour market but hiring

tech is producing more and more softwares or web platforms performing predictive recruit-

ment as in Raghavan et al. (2020). Does testing remains valid in front of machine learning

algorithms? This last strategy is evaluated using the same experimental protocol as in

the previous sections. The results of these experiments are shown in Figure 6-(bottom).

Testing does not detect any discrimination when the sensitive variable is captured by the

other variables.

An algorithmic solution to bypass this testing procedure is given by the following trick.

Train a classifier as usual using all available information X,S and then build a testing

compliant version of it as follows : for an individual, the predicted outcome is assigned as

the best decision obtained on the actual individual f(x, s) and a virtual individual with

exactly the same characteristics as the original one, except for the protected variable s

which has the opposite label s′ (e.g. the Gender variable is Male instead of Female),

namely f(x, s′). Note that in case of multi-class labels, the outcome should be the most

favourable decision for all possible labels. This classifier is fair by design in the sense that

no matter their gender, the testing procedure can not detect a change in the individual

prediction.

Nevertheless, this trick against testing cannot cheat usual evaluation of discrimination

by using a disparate impact measure which is usual in the USA by measuring the impact

on real and not fictitious recruitment. This is the reason why hiring tech companies add

some facilities (Raghavan et al. (2020)) to mitigate ethnic bias of algorithmic hiring for

avoiding an enterprise juridical complications. The evaluation of this strategy is evaluated

using the same experimental protocol as in the previous sections and these are shown in

Figure 6-(bottom).

As expected for previous results, this method has little impact on the classification

6https://www.observatoiredesdiscriminations.fr/testing
7https://dares.travail-emploi.gouv.fr/dares-etudes-et-statistiques/

etudes-et-syntheses/dares-analyses-dares-indicateurs-dares-resultats/testing
8http://www.ismcorum.org/
9https://www.novethic.fr/lexique/detail/testing.html
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errors and the disparate impacts. This emphasises the conclusion of Section 4.1 claiming

that the Gender variable is captured by other variables. Removing the effect of a sensitive

variable can therefore require more advanced treatments than those described above.

5 Differential treatment for fair decision rules

5.1 Strategies

As we have seen previously, bias may induce discrimination of an automatic decision rule.

Although many complex methods have been developed to tackle this problem, we inves-

tigate in this section the effects of two easy and maybe naive modifications of machine

learning algorithms. We present in this section the effect of two alternative strategies to

build fair classifiers. They have in common the idea of considering different treatments

according to each group S = {0, 1}. These strategies are the following :

1. Building a different classifier for each class of the sensitive variable: This

strategy consists in training the same prediction model with different parameters for

each class of the sensitive variable. We denote separate treatment this strategy.

2. Using a specific threshold for each class of the sensitive variable: Here, a

single classifier is trained for all data to produce a score. The binary prediction is

however get using a specific threshold for each sub-group S = 0 or S = 1. Note

that when the score is obtained by estimating the conditional distribution η(x) =

P (Y = 1|X = x) then the threshold used is often 0.5. Here this threshold is made

S-dependent and is adapted to avoid any possible discrimination. In practice, we

keep a threshold of 0.5 for the observations in the group S = 1 but we adapt the

corresponding threshold for the observations in the group S = 0. In our tests, we

automatically set this threshold on the training set so that the disparate impact

is close to 0.8 in the cases where it was originally lower to this socially accepted

threshold. The classifier and the potentially adapted threshold are then used for

further predictions. This corresponds in a certain way to favor the minority class by

changing equality to equity. We denote this strategy as positive discrimination since

this procedure corresponds to this purpose.
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5.2 Results obtained using the Separate Treatment strategy
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Figure 7: Performance of the machine learning models LR, DT and GB when (top) using a

Separate Treatment for the groups S = 0 and S = 1, and (bottom) when using a Positive

Discrimination strategy for the groups S = 0.

Splitting the model parameters into parameters adapted to each group reduces the bias

of the predictions when compared to the initial model, but it does not remove it. As we

can see in Figure 7-(top), where the notations are analogous to those in the above figures,

it improved the disparate impact in all cases for relatively stable prediction accuracies.

Note that the improvements are more spectacular for the basic Logistic Regression and

Decision Tree models than for the Gradient Boosting model. This last model is indeed

particularly efficient to capture fine high order relations between the variables, which gives

less influence to the strong non-linearity generated when splitting the machine learning

model into two class-specific models. Hence building different models reduces but does not

solve the problem, the level of discrimination in the decisions being only slightly closer to

the level of bias in the initial dataset.
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5.3 Results obtained using the Positive Discrimination strategy

Results obtained using the positive discrimination strategy are shown in Figure 7-(bottom).

They clearly emphasize the spectacular effect of this strategy on the disparate impacts,

which can be controlled by the data scientist. By adjusting the threshold, it is possible to

adjust the levels of discriminations in the dataset, as in this example where the socially

acceptable level of 0.8 can be reached. In this case we see a decrease in the performance of

the classifier, but yet being reasonable.

These results should however be tempered for a main reason. Although the average

error receives little changes, the number of false positive cases of women is clearly increased

when introducing positive discrimination. In our tests more than half of the predictions

that should have been false in the group S = 0 are even true. These false positive decisions

have a limited impact on the average prediction accuracy as they where obtained in the

group S = 0 which has less observations than S = 1 and that there are clearly less true

predictions with Y = 1 than Y = 0. Yet, many definitions of fairness such as equality of

odds or equality of opportunity (see e.g. Hardt et al. (2016)) are based on false and true

positive errors, and thus this increase may be very harmful for a decision maker considering

such a criteria. Moreover, from a legal point of view, the fact that this strategy favors the

minority class by looking for equity rather than equality may be judged as unfair or rises

political issues that are far beyond the scope of this paper.

6 Conclusions

In this paper, we provided a case-study of the use of machine learning technics for the

prediction of the well-known Adult Income dataset. We focused on a specific fairness

criterion, the statistical parity, which is measured through the Disparate Impact. This

metric quantifies the difference of the behaviour of a classification rule applied for two

subgroups of the population, the minority and the majority. Fairness is achieved when the

algorithm behaves in the same way for both groups, hence when the sensitive variable does

not play a significant role in the prediction. Main results are summarized in Figure 8.

In particular, we convey the following take-home messages: (1) Bias in the training

data may lead to machine learning algorithms taking unfair decisions, but not always.

While, in this widely studied data set, there was a clear increase of bias using the tested
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machine learning algorithms with respect to the Gender variable, the Ethnic Origin did

not lead in this case to a severe bias. For this reason, as mentioned above in section 3.2,

we have focused in the rest of the paper on the protected variable Gender.” (2) As always

in Statistics, computing a mere measure is not enough but confidence intervals are needed

to determine the variability of such indexes. Hence, we proposed an ad-hoc construction

of confidence intervals for the Disparate Impact. (3) Standard regulations that promote

either the removal of the sensitive variable or the use of testing techniques appeared as

irrelevant when dealing with fairness as Statistical Parity of machine learning algorithms.

Note also that different notions of fairness (local and global) are at stake here. We first

point out that testing methods focus on individual fairness while statistical methods such

as the Disparate Impact Analysis tackle the issue of group fairness. These two notions if

related to the similar notion of discrimination with respect to an algorithmic decision are

yet different. In this work, we showed that an algorithm can be designed to be individually

fair while still presenting a strong discrimination with respect to the minority group. This

is mainly due to the fact that testing methods are unable to detect the discrimination

hidden in the algorithmic decisions that are due to the training on an unbalanced sample.

Testing methods detect discrimination if individuals with the same characteristics but

different sensitive variables are treated in a different way. This corresponds to trying to

find counterfactual explanation to an individual with a different sensitive variable. This

notion of counterfactual explanations to detect unfairness has been developed in Kusner

et al. (2017). Yet the testing method fails in finding a counterfactual individual since it is

not enough to change only the sensitive variable but a good candidate should be the closest

individual with a different sensitive variable but with the variables that evolve depending

on S. For this, following some recent work on fairness with optimal transport theory as

in Gordaliza et al. (2019) developing an idea from Feldman et al. (2015), some authors

propose a new way of testing discrimination by computing such new counterfactual models

in Black et al. (2020). Finally, we tested two a priori naive solutions consisting either in

building different models for each group or in choosing different rules for each group. Only

the latter that can be considered as positive discrimination proves helpful in obtaining a

fair classification. Note that if some errors are increased (false positive rate), this method

has a good generalization error. Yet in other cases, the loss of efficiency could be greater

and this method may lead to unfair treatment.

This data set has been extensively studied in the literature on fairness in machine
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learning and we are well aware of the numerous solutions that have been proposed to solve

this issue. Even with standard methods, it is possible for a data scientist, when confronted

to fairness in machine learning, to design algorithms that have very different behaviors and

yet achieving a good classification error rate. Some algorithms hamper discrimination in

the society while others just maintain its level, and some others correct this discrimination

and provide gender equity. It is worth noting that the most explainable algorithms, such

as the logistic regression, do not protect from discrimination. On the contrary, the capture

of gender bias is inmediate due to its simplicity, while more complex algorithms might be

more protected from this spurious correlation or, since the variable is discrete, better said

spurious dependency.

The choice of a model should not be driven only by its performance with respect to a

generalization error but should also be explainable in terms of bias propagation. For this,

measures of fairness should be included in the evaluation of the model. In this work, we only

considered statistical parity type fairness but many other definitions are available, without

any consensus on the better choice for such a definition neither from a mathematical or a

legal point of view. A strong research effort in data science is hence the key for a better

use of Artificial Intelligence type algorithms. This will allow data scientists to describe

precisely the algorithmic designing process, as well as their behaviour, in terms of precision

and propagation of bias.

In closing, note that helpfulness of complex algorithms is due to their ability to find

unintended bias and hidden correlations in large data sets. Hence algorithmic bias removal

should be handled carefully because there is a part of such information crucial for the

performance of the machine learning model, while the other part is potentially dangerous

and may lead to prejudicial outcomes. Therefore, explainability should not be understood

in terms of explainability of the whole algorithm, but maybe one line of future research

in machine learning should focus on explainability of the inner bias of an algorithm, or its

explainability with respect to some legal regulations.
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A Appendix

A.1 The Adult Income dataset

A.1.1 Data preparation

As discussed in the introduction of Section 2, the study has started with a detailed pre-

processing of the raw data to give a more clear interpretation to further analyses. First,

we noticed that the variable fnlwgt (Final sampling weight) has not a very clear mean-

ing so it has been removed. For a complete description of such variable access the link

http://web.cs.wpi.edu/~cs4341/C00/Projects/fnlwgt. We have also performed a ba-

sic and multidimensional exploration (MFCA) in order to represent the possible sources

of bias in the data in https://github.com/wikistat/Fair-ML-4-Ethical-AI/blob/

master/AdultCensus/AdultCensus-R-biasDetection.ipynb.

This exploration led to a deep cleaning of the data set and highlighted difficulties

present on certain variables, raising the need to transform some of them before fitting any

statistical model. In particular, we have deleted missing data, errors or inconsistencies;

grouped together certain highly dispersed categories and eliminated strong redundancies

between certain variables. This phase is notoriously different from the strategy followed by

Friedler et al. (2018) who analyze raw data directly. Some of these main changes are listed

below:

• Variable 3 fnlwgt is removed since it has little significance for this analysis.

• The binary variable child is created to indicate the presence or absence of children.

• Variable 8 relationship is removed since it is redundant with gender and mariStat.
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Table 2: The Adult Income dataset

No Label Possible values

1 Age Real

2 workClass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov,

State-gov, Withoutpay, Never-worked

3 fnlwgt Real

4 education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm,

Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate,

5th-6th, Preschool

5 educNum integer

6 mariStat Married-civ-spouse, Divorced, Nevermarried, Separated, Widowed,

Marriedspouse- absent, Married-AF-spouse

7 occup Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,

Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical,

Farming-fishing, Transportmoving, Priv-house-serv, Protective-

serv, Armed-Forces

8 relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmar-

ried

9 origEthn White, Asian-Pac-Islander, Amer-Indian- Eskimo, Other, Black

10 gender Female, Male

11 capitalGain Real

12 capitalLoss Real

13 hoursWeek Real

14 nativCountry United-States, Cambodia, England, Puerto-Rico, Canada, Ger-

many, Outlying- US(Guam-USVI-etc), India, Japan, Greece,

South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland,

Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-

Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary,

Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-

Salvador, Trinidad and Tobago, Peru, Hong, Holand- Netherlands

15 income > 50k, ≤ 50k
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• Variable 14 nativCountry is removed since it is redundant with variable origEthn.

• Variable 9 origEthn is transformed into a binary variable: CaucYes vs. CaucNo.

• Varible 4 education is removed as redundant with variable educNum.

• Additionally clean-up the < 50K, ≤ 50K, > 50K and ≥ 50K in variable “Target”

A.2 Testing lack of fairness and confidence intervals

Let
(
Xi, Si, Ŷi = g(Xi)

)
, i = 1, . . . , n, be a random sample of independent and equally

distributed variables. The previous criterion can be consistently estimated by its empirical

version. Yet the value of the criterion may depend on the data sample. Due to the

importance of obtaining an accurate proof of unfairness in a decision rule it is important

to obtain confidence intervals in order to control the error of detecting unfairness. In the

literature it is often achieved by computing the mean over several sampling of the data.

We provide in the following the exact asymptotic behaviors of the estimates in order to

build confidence intervals.

Theorem A.1 (Asymptotic behavior of the Disparate Impact estimator) Set the

empirical estimator of DI(g) as

Tn :=

∑n
i=1 1g(Xi)=11Si=0

∑n
i=1 1Si=1∑n

i=1 1g(Xi)=11Si=1

∑n
i=1 1Si=0

.

Then the asymptotic distribution of this quantity is given by

√
n

σ
(Tn −DI(g,X, S))

d−→ N(0, 1), as n→∞, (A.1)

where σ =
√
∇ϕT (EZ1) Σ4∇ϕ (EZ1) and

∇ϕT (EZ1) =

(
π1
p1π0

,−p0π1
p21π0

,−p0π1
p1π2

0

,
p0
p1π0

)

Σ4 =


p0(1− p0)

−p0p1 p1(1− p1)

π1p0 −π0p1 π0π1

−π1p0 π0p1 −π0π1 π0π1

 ,

where we have denoted πs = P(S1 = s) and ps = P(g(X1) = 1, Si = s), s = 0, 1, .
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Proof:

Consider for i = 1, . . . , n, the random vectors

Zi =


1g(Xi)=11Si=0

1g(Xi)=11Si=1

1Si=0

1Si=1

 ,

where 1g(Xi)=11Si=s ∼ B(P(g(Xi) = 1, Si = s)) and 1Si=s ∼ B(P(Si = s)), s = 0, 1,. Thus,

Zi has expectation

EZi =


P(g(Xi) = 1, Si = 0)

P(g(Xi) = 1, Si = 1)

P(Si = 0)

P(Si = 1)

 .

The elements of the covariance matrix Σ4 of Zi are computed as follows:

Cov
(
1g(Xi)=11Si=0,1g(Xi)=11Si=1

)
= E

(
1
2
g(Xi)=11Si=01Si=1

)
− P(g(Xi) = 1, Si = 0)P(g(Xi) = 1, Si = 1)

Cov
(
1g(Xi)=11Si=0,1Si=0

)
= E

(
1g(Xi)=11

2
Si=0

)
− P(g(Xi) = 1, Si = 0)P(Si = 0)

= P(g(Xi) = 1)P(Si = 0)− P(g(Xi) = 1, Si = 0)P(Si = 0)

= [1− P(Si = 0)]P(g(Xi) = 1, Si = 0)

Cov
(
1g(Xi)=11Si=0,1Si=1

)
= E

(
1g(Xi)=11Si=01Si=1

)
− P(g(Xi) = 1, Si = 0)P(Si = 1)

Cov
(
1g(Xi)=11Si=1,1Si=0

)
= E

(
1g(Xi)=11Si=01Si=1

)
− P(g(Xi) = 1, Si = 1)P(Si = 0)

Cov
(
1g(Xi)=11Si=1,1Si=1

)
= E

(
1g(Xi)=11

2
Si=1

)
− P(Si = 1)P(g(Xi) = 1, Si = 1)

= P(g(Xi) = 1, Si = 1)− P(Si = 1)P(g(Xi) = 1, Si = 1)

= P(g(Xi) = 1, Si = 1) [1− P(Si = 1)]

= P(g(Xi) = 1, Si = 1)P(Si = 0)

and finally,

Cov(1Si=0,1Si=1) = E (1Si=01Si=1)− P(Si = 0)P(Si = 1) = −P(Si = 0)P(Si = 1).
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From the Central Limit Theorem in dimension 4, we have that

√
n
(
Z̄n − EZ1

) d−→ N4 (0,Σ4) , as n→∞.

Now consider the function

ϕ : R4 −→ R

(x1, x2, x3, x4) 7−→
x1x4
x2x3

Applying the Delta-Method (see in Van der Vaart (1998)) for the function ϕ, we conclude

that
√
n
(
ϕ(Z̄n)− ϕ(EZ1)

) d−→ ∇ϕT (EZ1)N4 (0,Σ4) , as n→∞,

where ϕ(Z̄n) = Tn, ϕ(EZ1) = DI(g,X, S). �

Hence, we can provide a confidence interval when estimating the disparate impact over

a data set. Actually
(
Tn ± σ√

n
Z1−α

2

)
is a confidence interval for the parameter DI(g,X, S)

asymptotically of level 1− α.

Previous theorem can be used to test the presence of disparate impact at a given level.

H0,β : DI(g,X, S) 6 β vs. H1,β : DI(g,X, S) > β (A.2)

aims at checking if g has Disparate Impact at level β. We want to check whetherDI(g,X, S) ≤

β. Under H0, the inequality Tn − β 6 Tn −DI(g,X, S) holds, and so
√
n

σ
(Tn − β) 6

√
n

σ
(Tn −DI(g,X, S)) .

Finally, from the inequality above and Eq. (A.1), we have that

PH0

(√
n

σ
(Tn − β) < Z1−α

)
> PH0

(√
n

σ
(Tn −DI(g,X, S)) < Z1−α

)
−→ 1− α,

as n→∞ and, equivalently,

PH0

(√
n

σ
(Tn − β) > Z1−α

)
6 PH0

(√
n

σ
(Tn −DI(g,X, S)) > Z1−α

)
−→ α,

as n→∞, where Z1−α is the (1−α)-quantile of N(0, 1). In conclusion, the test rejects H0

at level α when

PH0

(√
n

σ
(Tn − β) > Z1−α

)
> α.

When dealing with Equality of Odds, we want to study the asymptotic behavior of the

estimators of the True Positive and True Negative rates across both groups. The reasoning

is similar for the two rates, so we will only show the convergence of the True Positive rate

estimator, denoted in the following by TP (g).
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Theorem A.2 Set the following estimate of the True Positive rate of a classifier g:

Rn :=

∑n
i=1 1g(Xi)=11Yi=11Si=0

∑n
i=1 1Yi=11Si=1∑n

i=1 1g(Xi)=11g(Xi)=11Si=1

∑n
i=1 1Yi=11Si=0

.

Then, the asymptotic distribution of this quantity is given by

√
n

σ
(Rn − TP (g))

d−→ N(0, 1), as n→∞, (A.3)

where σ =
√
∇ϕT (EZ1) Σ4∇ϕ (EZ1) and

∇ϕT (EZ1) =

(
r1
p1r0

,−p0r1
p21r0

,−p0r1
p1r20

,
p0
p1r0

)

Σ4 =


p0(1− p0)

−p0r1 p1(1− p1)

p0(1− r0) −p1r0 r0(1− r0)

p0r1 p1(1− r1) −r0r1 r1(1− r1)

 ,

where we have denoted ps = P(g(X1) = 1, Y1 = 1, S1 = s), and rs = P(Y1 = 1, S1 = s), for

s = 0, 1.

Proof of Theorem A.2 The proof follows the same guidelines of previous proof. We set

here

Zi =


1g(Xi)=11Yi=11Si=0

1g(Xi)=11Yi=11Si=1

1Yi=11Si=0

1Yi=11Si=1

 ,

where 1g(Xi)=11Yi=11Si=s ∼ B(P(g(Xi) = 1, Yi = 1, Si = s)) and 1Yi=11Si=s ∼ B(P(Yi =

1, Si = s)), s = 0, 1,. From the Central Limit Theorem, we have that

√
n
(
Z̄n − EZ1

) d−→ N4 (0,Σ4) , as n→∞.

with

Σ4 =


p0(1− p0)

−p0r1 p1(1− p1)

p0(1− r0) −p1r0 r0(1− r0)

p0r1 p1(1− r1) −r0r1 r1(1− r1)

 . (A.4)

Now consider the function
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ϕ : R4 −→ R

(x1, x2, x3, x4) 7−→
x1x4
x2x3

Applying the Delta-Method for the function ϕ, we conclude that

√
n
(
ϕ(Z̄n)− ϕ(EZ1)

) d−→ ∇ϕT (EZ1)N4 (0,Σ4) , as n→∞,

where ϕ(Z̄n) = Rn, and ϕ(EZ1) = TP (g). �

A.3 Bootstraping vs. Direct Calculation of IC interval

The estimation of the Disparate Impact is unstable. In this paper we promote the use of

the theoretical confidence interval based on the well known Delta method to control its

variability. Contrary to Morris and Lobsenz (2000), it does not rely on Gaussian approxi-

mation. We compare the stability of this confidence interval to bootstrap simulations, see

for instance in Efron and Tibshirani (1994) for more details on bootstrap methods.

For this we build 1000 bootstrap replicates and estimate the disparate impact. Figure 9

presents the simulations. We can see that the bootstrap simulations remain in the con-

fidence interval. Moreover, if we build a confidence interval for the bootstrap estimator,

the confidence intervals are the same. We obtain by the theoretical confidence interval

[0.349, 0.384] while the bootstrap’s confidence interval is [0.349, 0.385].

Hence the theoretical confidence is a reliable measure of fairness for the data set and

should be preferred due to its small computation time compared to the 1000 bootstrap

replication.

Note that in this paper, for sake of clarity, we have chosen to focus only on the disparate

impact criterion. Yet all other fairness criteria should be given with the calculation of a

confidence interval. For instance in Del Barrio et al. (2019) we propose confidence intervals

for Wasserstein distance which is used in many methods in fair learning.

A.4 Application to other real datasets

To illustrate these tests we have also considered another two well-known and real data sets.

1. German Credit data. This data set is often claimed to exhibit some origin dis-

crimination in the success of being given a credit by the German bank. Hence we
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compute the disparate impact w.r.t Origin. We obtain

DI = 0.77 ∈ [0.68, 0.87].

Hence here confidence intervals play an important role. Actually the disparate impact

is not statistically significantly lower than 0.8, which entails that the discrimination

of the decision rule of the German bank can not be shown, which promotes the use

of a proper confidence interval.

2. COMPAS Recidivism data . A third data set is composed by the data of the con-

troversial COMPAS score detailed in Dieterich et al. (2016). The data is composed of

7214 offenders with personal variables observed over two years. A score predicts their

level of dangerosity which determines whether they can be released while a variable

points out if there has been recidivism. Hence Recidivism of offenders is predicted

using a score and confronted to possible racial discrimination which corresponds to

the protected attribute. The protected variable separates the population into cau-

casian and non caucasian. To evaluate the level of discrimination we first compute

the disparate impact with respect to the true variable and the COMPAS score seen

as a predictor.

DI = 0.76 ∈ [.72, .81]; DI(COMPAS) = 0.71 ∈ [0.68; 0.74].

In both cases, the data are biased but the level of discrimination is low. Yet as men-

tioned in al the studies on this data set, the level of errors of prediction is significantly

different according to the ethnic origin of the defender. Actually the conditional ac-

curacy scores and their corresponding confidence intervals show clearly the unbalance

treatment received by both populations.

TPR = 0.6 ∈ [0.54, 0.65]

TNR = 3.38 ∈ [2.46, 4.3]

This unbalanced treatment is clearly assessed with the confidence interval.
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Figure 8: Summary of the main results: The best performing algorithms of Sections 3

and 5 are compared here. (top) Boxplots of the disparate impacts from the least accurate

method on the left, to the most accurate method on the right, and (bottom) corresponding

true positive and true negative rates in the groups S = 0 and S = 1. For S = 0, there is a

better balance between the true and the false positive decisions when the results are closer

to the dashed blue line.
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Figure 9: Comparison with bootstrap computations
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