
COUNTEREXAMPLES FOR THE FRACTAL SCHRÖDINGER

CONVERGENCE PROBLEM WITH AN INTERMEDIATE SPACE TRICK

DANIEL ECEIZABARRENA AND FELIPE PONCE-VANEGAS

Abstract. We construct counterexamples for the fractal Schrödinger convergence problem by
combining a fractal extension of Bourgain’s counterexample and the intermediate space trick of
Du–Kim–Wang–Zhang. We confirm that the same regularity as Du’s counterexamples for weighted
L2 restriction estimates is achieved for the convergence problem. To do so, we need to construct
the set of divergence explicitly and compute its Hausdorff dimension, for which we use the Mass
Transference Principle, a technique originated from Diophantine approximation.

1. Introduction

We study the convergence problem of the solutions of the Schrödinger equation to the initial
datum in its fractal version. That is, if u = eit∆f is the solution to{

ut = − i
2π ∆u,

u(x, 0) = f(x),

with f ∈ Hs(Rn), we look for the minimal Sobolev regularity s so that

lim
t→0

eit∆f(x) = f(x) for Hα-almost all x ∈ Rn, ∀f ∈ Hs(Rn),

where 0 ≤ α ≤ n and Hα is the α-Hausdorff measure. In other words, we look for the exponent

sc(α) = inf
{
s ≥ 0 | lim

t→0
eit∆f = f Hα-a.e., ∀f ∈ Hs(Rn)

}
.

The case α = n for the Lebesgue measure is the original problem, proposed by Carleson in [6]. The
fractal refinement we here consider was studied later by Sjögren and Sjölin [27], and by Barceló et
al. [2].

This problem, as well as variations of it, has received much attention over the past decades
[29, 30, 28, 25, 19, 8, 4, 7, 33, 23, 26, 15, 1, 20, 9, 21]. We discuss here with more detail the
contributions to the fractal problem.

Concerning the Lebesgue case α = n, Carleson himself proved that sc(n) ≤ 1/4 when n = 1.
This was confirmed to be optimal by Dahlberg and Kenig [10], who provided a counterexample
that implies sc(n) ≥ 1/4 in every dimension. After the contribution of many authors, Bourgain’s
counterexample [5] and the positive results of Du, Guth and Li in n = 2 [12], and Du and Zhang
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in n ≥ 3 [14] determined that the correct exponent is

sc(n) =
n

2(n+ 1)
.

A preliminary result for the fractal case α < n is that of Žubrinić [31], who showed that a
function f ∈ Hs(Rn) with s < (n− α)/2 need not be well-defined in a set of Hausdorff dimension
α. In that case, since the initial datum itself is not well-defined, we directly get

sc(α) ≥ (n− α)/2, for all α ∈ [0, n]. (1)

In the range α ≤ n/2 the problem was solved by Barceló et al. [2, Proposition 3.1], who proved
that sc(α) ≤ (n− α)/2 and thus showed that Žubrinić’s bound (1) is best possible.

Thus, we only need to focus on the case α > n/2. In [14, Theorem 2.3], Du and Zhang proved
that

sc(α) ≤ n

2(n+ 1)
+

n

2(n+ 1)
(n− α), for (n+ 1)/2 ≤ α ≤ n.

The proof goes through the standard argument of using the maximal function, and then this is
reduced to the bound

‖eit∆f‖L2(w) ≤ CεR
α

2(n+1)
+ε‖f‖L2(Rn), for all ε > 0 and R ≥ 1, (2)

where supp f̂ ⊂ {ξ ∈ Rn : |ξ| ' 1}, and w ≥ 0 is a weight function that satisfies the following
properties:

(i) w is a sum of functions 1Q, where {Q} is a collection of unit cubes in a tiling of Rn+1;
(ii) suppw ⊂ B(0, R) = {x ∈ Rn+1 | |x| ≤ R};
(iii)

∫
Rn w = Rα;

(iv)
∫
Br(x)w ≤ Cwr

α for all x ∈ Rn+1 and r > 0.

On the side of counterexamples, the best result we have so far is

sc(α) ≥ n

2(n+ 1)
+

n− 1

2(n+ 1)
(n− α), for n/2 ≤ α ≤ n. (3)

Lucà and Rogers [24] proved this for (3n + 1)/4 ≤ α ≤ n, for which they constructed counterex-
amples based on ergodic arguments, different from Bourgain’s one in [5] that is based on number
theoretic arguments. Lucà and the second author adapted Bourgain’s example to the fractal setting
in [22] to prove (3) in the whole range.

In this paper we construct further counterexamples that improve (3). Defining

s3,m(α) =
n

2(n−m+ 1)
+

n−m− 1

2(n−m+ 1)
(n− α),

s4,m(α) =
n−m

2(n−m+ 1)
+

n−m
2(n−m+ 1)

(n− α),

s5,m(α) =
1

2
+

n−m− 2

2(n−m− 1)
(n− α),

and

βm = n− (m− 1)
n−m− 1

n−m− 3
,

we prove the following theorem.

Theorem 1.1. Let m0 = b(n− 1)/3c and m1 = bn/2− 1c and 0 ≤ m ≤ m1. Then,

• When n = 2, 3, then

sc(α) ≥ s3,0(α), n/2 ≤ α ≤ n.
2



Figure 1. Representation of Theorem 1.1 for n = 15, where we show the improve-
ment with respect to the former lower bound (3). The positive result refers to
Theorem 2.3 in [14].

• When n = 4, 5, 6, 7, then

sc(α) ≥
{
s3,m0(α), n/2 ≤ α ≤ n−m0,
max{s3,m−1(α), s4,m(α)}, n−m ≤ α ≤ n−m+ 1 and m = 1, . . . ,m0.

• When n = 8, 9, 10, 11, 13, then

sc(α) ≥

 s3,m0+1(α), n/2 ≤ α ≤ βm0+1,
max{s3,m0(α), s5,m0+1(α)}, βm0+1 ≤ α ≤ n−m0,
max{s3,m−1(α), s4,m(α)}, n−m ≤ α ≤ n−m+ 1 and m = 1, . . . ,m0.

• When n ≥ 12 and n ∈ 2N, then

sc(α) ≥

 max{s3,m−1(α), s5,m(α)}, βm ≤ α ≤ βm−1 and m = m0 + 2, . . . ,m1,
max{s3,m0(α), s5,m0+1(α)}, βm0+1 ≤ α ≤ n−m0,
max{s3,m−1(α), s4,m(α)}, n−m ≤ α ≤ n−m+ 1 and m = 1, . . . ,m0.

• When n ≥ 15 and n ∈ 2N + 1, then

sc(α) ≥


s3,m1(α), n/2 ≤ α ≤ βm1 ,
max{s3,m−1(α), s5,m(α)}, βm ≤ α ≤ βm−1 and m = m0 + 2, . . . ,m1,
max{s3,m0(α), s5,m0+1(α)}, βm0+1 ≤ α ≤ n−m0,
max{s3,m−1(α), s4,m(α)}, n−m ≤ α ≤ n−m+ 1 and m = 1, . . . ,m0.

In the notation of Theorem 1.1, the best previous result in [22] is

sc(α) ≥ s3,0(α) for n/2 ≤ α ≤ n.
See Figure 1 for a graphical comparison between the old and the new results.

The counterexamples combine the fractal extension of Bourgain’s counterexample as presented
in [22], and the intermediate space trick of Du–Kim–Wang–Zhang [13]. In [11], Du exploited this
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trick to construct counterexamples for (2), which are morally equivalent to counterexamples for
convergence, except for one essential thing: for convergence the weight w must intersect every line
t 7→ (x, t) in at most one interval of length 1. This additional restriction is evident in the fact that
Bourgain’s counterexample needs Gauss sums, while Du’s examples do not. The contribution of
this paper thus is to confirm that the numerology in Theorem 1.2 of [11] also holds for convergence.

Unlike Du, we want to construct a fractal divergence set, which demands further precautions. As
we did in [16], we compute the dimension of this set using the Mass Transference Principle proved
in [32] (see also [3]).

To compare Theorem 1.1 with Du’s Theorem 1.2 in [11], the reader can use the relationship

si,m(α) =
n− α+ 1

2
− κi(m+ 1;α, n+ 1),

where κi are functions defined by Du. Notice that we chose our notation trying to make it easier
to compare our results with those of Du. The following dictionary might help:

Du’s Theorem 1.2 Theorem 1.1

d n+ 1

j m+ 1

κ3(j;α, d) =
d− j/2− α
d− j + 1

s3,m(α)

κ4(j;α, d) =
d− α

2(d− j + 1)
s4,m(α)

κ5(j;α, d) =
d− α− 1

2(d− j − 1)
s5,m(α)

Outline of the paper.

Section 2: For each integer 0 ≤ m ≤ n − 1 we construct a family of counterexamples, where m is
the dimension associated with the “intermediate space trick”. We determine the set of
divergence and the regularity of the initial data.

Section 3: We use the Mass Transference Principle to compute the Hausdorff dimension of the set of
divergence.

Section 4: For each intermediate space dimension m and the corresponding family of initial data, we
fix a dimension α and identify the data with maximum regularity.

Section 5: For a fixed dimension α, we determine the maximum regularity among data with different
m.

Notation.

• We denote e(z) = e2πiz, and the Fourier transform of f and the solution eit∆f are

f̂(ξ) =

∫
Rn
f(x) e

(
− xξ

)
dx and eit∆f(x) =

∫
Rn
f̂(ξ) e

(
xξ + t|ξ|2

)
dξ

• B(a, r) = {x : |x− a| ≤ r}.
• A . B means that A ≤ CB for some constant C > 0. By A & B we denote the analog

inequality. We write A ' B if A . B and B . A. When we want to stress some dependence
of C on a parameter N , we write A .N B.
• We write c� 1 as a shorthand of “a sufficiently small constant”.
• Size of sets: If E ⊂ Rn is a Lebesgue measurable set, then either |E| or Hn(E) denote its

Lebesgue measure. If E is a finite set, then |E| is the number of elements.
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• Given 0 ≤ α ≤ n and δ > 0, the (α, δ)-Hausdorff content of E ⊂ Rn is

Hαδ (E) = inf

{ ∞∑
j=1

(diamUj)
α | E ⊂

∞⋃
j=1

Uj such that diamUj < δ

}
,

and the α-Hausdorff measure of E is Hα(E) = limδ→0Hαδ (E). The Hausdorff dimension of
E is dimHE = inf{α ≥ 0 | Hα(F ) = 0}.
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2. Counterexample

Let 1 ≤ m ≤ n− 1, and split the variable ξ ∈ Rn as

ξ = (ξ1, ξ
′, ξ′′), where (ξ1, ξ

′, ξ′′) ∈ R× Rn−m−1 × Rm.

Everywhere in this article, we use this notation for any variable in Rn or Zn. Let φ ∈ S(R),
ϕ1 ∈ S(Rn−m−1) and ϕ2 ∈ S(Rm), all of which have positive Fourier transform with support in
a ball B(0, c), for c � 1. Let also ψ ∈ S(Rn−m−1) be a cutoff function supported in B(0, c), for
c � 1. Let R � 1 be the scale of the counterexample, which we should think of as tending to
infinity, and D1, D2 � 1 be parameters, which eventually will be appropriately chosen powers of
R.

First, in Subsection 2.1 we construct a preliminary datum fR linked to a scale R. Then, in Sub-
section 2.2 we sum fR for dyadic R to construct the counterexample for the convergence problem.

2.1. A preliminary initial datum. Let us first define the initial datum

f(x) = fR(x) = g(x1)h1(x′)h2(x′′)

such that

ĝ(ξ1) = φ̂

(
ξ1 −R
R1/2

)
and

ĥ1(ξ′) =
∑

`′∈Zn−m−1

ψ

(
`′

R/D1

)
ϕ̂1(ξ′ −D1 `

′), ĥ2(ξ′′) =
∑
`′′∈Zm

|`′′|≤cR1/2/D2

ϕ̂2(ξ′′ −D2 `
′′).

Direct computation shows that

‖g‖2 ' R
1/4, ‖h1‖2 '

(
R

D1

)(n−m−1)/2

, ‖h2‖2 '
(
R1/2

D2

)m/2
,

so

‖fR‖2 ' R
1/4

(
R

D1

)(n−m−1)/2 (R1/2

D2

)m/2
. (4)
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Let us now study the evolution of this datum. We first do formal computations, which will be
justified later.

• In the variable x1,∣∣eit∆g(x1)
∣∣ = R1/2

∣∣∣∣∫
R
φ̂(ξ1) e

(
ξ1R

1/2(x1 + 2tR) + tR|ξ1|2
)
dξ1

∣∣∣∣ . (5)

If |t| < 1/R and R1/2|x1 + 2Rt| < 1, we get∣∣eit∆g(x1)
∣∣ ' R1/2 φ(R1/2(x1 + 2Rt)) ' R1/2. (6)

• For x′′, we have

eit∆h2(x′′) =
∑
`′′∈Zm

|`′′|≤cR1/2/D2

e2πi(D2x′′·`′′+tD2
2 |`′′|2)

∫
Rm

ϕ̂2(ξ′′) e
(
ξ′′(x′′ + 2tD2`

′′) + t|ξ′′|2
)
dξ′′. (7)

The idea here is that if |t| < 1/R and if we restrict the variable to |x′′| < 1, all elements in
the phase except D2x

′′ · `′′ are small. Thus,∣∣eit∆h2(x′′)
∣∣ ' ∣∣∣ ∑

`′′∈Zm
|`′′|≤cR1/2/D2

e2πiD2x′′·`′′
∣∣∣

If we choose x′′ = p′′/D2 + ε′′ for any p′′ ∈ Zm and |ε′′| < R−1/2, then

∣∣eit∆h2(x′′)
∣∣ ' (R1/2

D2

)m
. (8)

• For x′, h1 has a similar structure as h2, so we obtain

eit∆h1(x′) =
∑

`′∈Zn−m−1

ψ

(
`′

R/D1

)
e2πi(D1x′·`′+tD2

1 |`′|2)
∫
Rn−m−1

ϕ̂1(ξ′) e
(
ξ′(x′ + 2tD1`

′) + t|ξ′|2
)
dξ′.

Again, restricting to |x′| < 1, the phase inside the integral is small, so we expect to have∣∣eit∆h1(x′)
∣∣ ' ∣∣∣ ∑

`′∈Zn−m−1

|`′|≤cR/D1

e2πi(D1x′·`′+tD2
1 |`′|2)

∣∣∣.
In this case we have a quadratic phase, so we take x′ = p′/(D1 q) + ε′ and t = p1/(D

2
1q)

such that q ∈ 2N + 1, p1 ∈ Z coprime with q, p′ ∈ Zn−m−1 and |ε′| < R−1. That way, the
exponential sum turns into the well-known Gauss sum, so we would obtain

∣∣eit∆h1(x′)
∣∣ ' ∣∣∣ ∑

`′∈Zn−m−1

|`′|≤cR/D1

e
(p′ · `′ + p1 |`′|2

q

)∣∣∣ =

n−m∏
i=2

∣∣∣ cR/D1∑
n=−cR/D1

e
(pin+ p1 n

2

q

)∣∣∣
'

n−m∏
i=2

R

qD1

√
q =

(
R

D1 q1/2

)n−m−1

.

(9)

Thus, combining (6), (8) and (9) we expect to obtain∣∣eit∆fR(x)
∣∣ ' R1/2

(
R

D1 q1/2

)n−m−1 (R1/2

D2

)m
,
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subject to the restrictions

t =
p1

D2
1 q
, x1 ∈ B1

(
R

D2
1

p1

q
,

1

R1/2

)
, x′ ∈ Bn−m−1

(
p′

D1 q
,

1

R

)
, x′′ ∈ Bm

(
p′′

D2
,

1

R1/2

)
,

where q ∈ 2N + 1 and p ∈ Zn such that gcd(p1, q) = 1. In view of this, let us define the slabs

ER(p, q) = B1

(
R

D2
1

p1

q
,

1

R1/2

)
×Bn−m−1

(
p′

D1 q
,

1

R

)
×Bm

(
p′′

D2
,

1

R1/2

)
. (10)

All these formal computations, together with (4), motivate the following proposition:

Proposition 2.1. Let 1 ≤ m ≤ n − 1, R � 1 and D1, D2, Q � 1. Let q ∈ 2N + 1 be such that
Q/2 ≤ q < Q and p ∈ Zn such that gcd(p1, q) = 1. Then, letting t = p1/(D

2
1q), we have∣∣eit∆fR(x)

∣∣
‖fR‖2

' R1/4

(
R

D1Q

)(n−m−1)/2
(
R1/2

D2

)m/2
, ∀x ∈ ER(p, q). (11)

Moreover, if 1/10 ≤ |x1| ≤ 1, then the time satisfies t ' 1/R.

Proof. Let us first check that t ' 1/R. Indeed, from the definition of ER(p, q), we have x1 ∈
B(Rt,R−1/2), which implies

1/20 ≤ x1 −R−1/2 ≤ Rt ≤ x1 +R−1/2 ≤ 2,

if R is large enough.
The main estimate (11) follows by combining (6), (8) and (9) with (4). Thus, it suffices to justify

(6), (8) and (9).
Estimate (6) follows from direct computation. Indeed, from (5) we write∣∣eit∆g(x1)

∣∣ = R1/2

∣∣∣∣∫
R
φ̂(ξ1) e

(
ξ1R

1/2(x1 + 2tR) + tR|ξ1|2
)
dξ1

∣∣∣∣
≥ R1/2

∣∣∣∣∫
R
φ̂(ξ1) cos

(
2π
(
ξ1R

1/2(x1 + 2tR) + tR|ξ1|2
))
dξ1

∣∣∣∣.
Asking |R1/2(x1 + 2tR)| < 1 and |tR| < 1, since supp φ̂ ⊂ [−c, c] for c small enough, we get∣∣∣ξ1R

1/2(x1 + 2tR) + tR|ξ1|2
∣∣∣ < 1/10,

and therefore |eit∆g(x1)| & R1/2.
We prove (8) similarly. From (7) we have

eit∆h2(x′′) =

∫
Rm

ϕ̂2(ξ′′)
∑
`′′∈Zm

|`′′|≤cR1/2/D2

e
(
D2x

′′ · `′′ + tD2
2 |`′′|2 + ξ′′(x′′ + 2tD2`

′′) + t|ξ′′|2
)
dξ′′.

Let x′′ = p′′/D2 + ε′′ with |ε′′| ≤ R−1/2. Since supp ϕ̂2 ⊂ [−c, c], choosing c small enough we get∣∣∣D2ε
′′ · `′′ + tD2

2 |`′′|2 + ξ′′(x′′ + 2tD2`
′′) + t|ξ′′|2

∣∣∣ < 1/10,

and thus |eit∆h2(x′′)| & (R1/2/D2)m.
Estimate (9) is more technical. Let x′ = p′/(D1q) + ε′ with |ε′| < R−1, and write∣∣eit∆h1(x′)

∣∣ =
∣∣∣ ∑
`′∈Zn−m−1

ζ(`′) e
(p′ · `′ + p1|`′|2

q

)∣∣∣, (12)
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where

ζ(`′) = ψ

(
`′

R/D1

)
e2πiD1ε′·`′

∫
ϕ̂1(ξ′) e

(
ξ′(x′ + 2tD1`

′) + t|ξ′|2
)
dξ′. (13)

To bound (12), we use a simplified version of [16, Lemma 3.4].

Lemma 2.2 (Lemma 3.4 of [16]). Let d ∈ N and f(m) = a |m|2 + b ·m such that a ∈ Z and b ∈ Zd.
Let also ζ ∈ C∞0 (Rd) and define the discrete Laplacian ∆̃ by

∆̃ζ(y) =

d∑
j=1

(
ζ(y + ej) + ζ(y − ej)− 2ζ(y)

)
, y ∈ Rd,

where (ej)
d
j=1 is the canonical basis of Rd. Assume that ζ is supported in B(0, L) for some L > 0,

and moreover that ‖∆̃Nζ‖∞ .N L−2N for every N ∈ N. Then,∑
m∈Zd

ζ(m) e
(f(m)

q

)
=

(
1

qd

∑
m∈Zd

ζ(m)

)∑
l∈Zdq

e
(f(l)

q

)
+ON

(
qd/2

(
L

q

)d−2N )
for any integer N > d/2.

We use the lemma with d = n−m− 1 and L = R/D1. Rewrite ζ in (13) as

ζ(`′) = ψ

(
`′

L

)
e2πiδ ·`′/L

∫
ϕ̂1(ξ′) e

(
ξ′(x′ + 2τ`′/L) + t|ξ′|2

)
dξ′, (14)

where δ = Rε′ and τ = Rt satisfy |δ|, |τ | < 1. Notice that ζ is supported in B(0, L). On the other

hand, we have ‖∆̃Nζ‖∞ . sup|α|=2N‖∂αζ‖∞, where α = (α2, . . . , αn−m) denotes a multi-index.

Thus, it suffices to bound ‖∂αζ‖∞ uniformly in x′ and t. Write

∂αζ(y) =

∫
ϕ̂1(ξ′) e2πi(ξ′·x′+t|ξ′|2) ∂α

[
ψ
( y
L

)
e2πi(δ+2τξ′)·y/L

]
dξ′, y ∈ Rn−m−1, |y| ≤ L.

Calling A(z) = ψ(z) e2πi(δ+2τξ′)·z, we have

∂α
[
ψ
( y
L

)
e2πi (δ+2τξ′)·y/L

]
=

1

L2N
∂αA(y/L),

and since ∂αA(z) is uniformly bounded in |δ|, |τ |, |z| < 1, we get ‖∂αζ‖∞ .N L−2N . Thus, by
Lemma 2.2, we estimate (12) as∣∣∣eit∆h1(x′)

∣∣∣ =
1

qn−m−1

∣∣∣ ∑
`′∈Zn−m−1

ζ(`′)
∣∣∣ ∣∣∣ ∑
`′∈Zn−m−1

q

e
(p′ · `′ + p1|`′|2

q

) ∣∣∣
+ON

(
q(n−m−1)/2

(
L

q

)n−m−1−2N )
.

(15)

Since the phase of ζ in (14) is small, by the same procedure we used for (8) we get∣∣∣ ∑
`′∈Zn−m−1

ζ(`′)
∣∣∣ ' Ln−m−1.

Also, since gcd(p1, q) = 1, q is odd and q ' Q, the Gauss sums in (15) satisfy∣∣∣ ∑
`′∈Zn−m−1

q

e

(
p′ · `′ + p1|`′|2

q

) ∣∣∣ ' Q(n−m−1)/2.
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Thus, taking N > (n−m− 1)/2 and replacing L = R/D1, from (15) we get∣∣∣eit∆h1(x′)
∣∣∣ ' Q(n−m−1)/2

(
L

Q

)n−m−1

+ON
(
Q(n−m−1)/2

(L
Q

)n−m−1−2N
)

& Q(n−m−1)/2

(
L

Q

)n−m−1

=

(
R

D1Q1/2

)n−m−1

,

which proves (9). �

Roughly speaking, Proposition 2.1 would suffice in the case of the Lebesgue measure α = n.
Indeed, given that Q, D1 and D2 will be certain powers of R, we will be able to find an exponent
sm = sm(Q,D1, D2) such that∣∣eit∆fR(x)

∣∣
‖fR‖2

' R1/4

(
R

D1Q

)(n−m−1)/2 (R1/2

D2

)m/2
= Rsm , ∀x ∈ ER(p, q). (16)

Since the estimate does not depend on the particular choice of p, q but rather on the size q ' Q, then
(17) holds for FR =

⋃
q'Q

⋃
pER(p, q). Consequently, up to checking that Hn(FR ∩ B(0, 1)) ' 1

for all R, we would be able to write∥∥supt
∣∣eit∆fR∣∣∥∥L2(B(0,1))

‖fR‖Hsm−ε
& Rε, ∀R� 1, (17)

which would disprove the standard maximal estimate, which is equivalent to the almost everywhere
convergence property, in Hs(Rn) for all s < sm.

However, in the fractal case α < n, where we ask for almost everywhere convergence with
respect to the Hα measure, the maximal characterization does not work. This means that we need
to construct a divergent counterexample explicitly.

2.2. Construction of the counterexample. Let α < n. To find a counterexample for the Hα
almost everywhere convergence property, we need to construct a function f ∈ Hs(Rn) whose set of
divergence F satisfies dimH F = α. Moreover, we look for the biggest possible Sobolev regularity
s.

The standard way to do this is to sum dyadically the data fR we constructed in the previous
section. For every j ∈ N, let Rj = 2j . As before, assume that Q, D1 and D2 are powers of R so
that sm = sm(Q,D1, D2) is well-defined in (16). Define

f(x) =
∑
j≥K0

j
fRj (x)

Rsmj ‖fRj‖2
(18)

for some K0 large enough. Observe that f ∈ Hs(Rn) for every s < sm because

‖f‖Hs ≤
∑
j≥K0

j
‖fRj‖Hs

Rsmj ‖fRj‖2
'
∑
j≥K0

j

Rsm−sj

<∞.

As suggested at the end of the previous subsection, since the estimate in Proposition 2.1 does not
depend on p, q but only on Q, we work with

Fk =
⋃

Qk/2≤q<Qk
q∈2N+1

⋃
p∈G(q)

Ek(p, q), (19)

9



where we denote Ek(p, q) = ERk(p, q) and G(q) = {p ∈ Zn : gcd(p1, q) = 1}. This way, by Propo-
sition 2.1 we have ∣∣eit∆fRk(x)

∣∣
Rsmk ‖fRk‖2

' 1, ∀x ∈ Fk, ∀k ∈ N

However, this only accounts for the behavior of the piece fRk . We show next that the contribution
of the remaining fRj with j 6= k is much smaller.

Proposition 2.3. Let K0 ∈ N be large enough and k ≥ K0. Let x ∈ Fk ∩ B(0, 1) be such that

1/10 < |x1| ≤ 1. Then, there exists a time t = t(x) ' R−1
k such that

∣∣eit(x)∆f(x)
∣∣ & k.

With this proposition, the construction of the counterexample will be concluded if we can take
the limit k →∞. For that, we need points that lie in infinitely many sets Fk. The set of divergence
is thus

F = lim sup
k→∞

Fk =
⋂
K∈N

⋃
k≥K

Fk. (20)

Corollary 2.4. Let F = lim supk→∞ Fk. Then,

lim sup
t→0

∣∣eit∆f(x)
∣∣ =∞, ∀x ∈ F ∩A(1/10, 1).

Proof of Corollary 2.4. If x ∈ F , then there exists a sequence kn such that x ∈ Fkn for all n ∈
N. By Proposition 2.3, there exists a sequence of times tn = tn(x) such that tn ' 1/Rkn and
|eitn∆f(x)| & kn for all n ∈ N. Thus, since limn→∞ tn(x) = 0, we get

lim sup
t→0

∣∣eit∆f(x)
∣∣ ≥ lim

n→∞

∣∣eitn(x)∆f(x)
∣∣ =∞.

�

In view of Corollary 2.4, the main goal turns to computing the Hausdorff dimension of F . We
do that in Section 3. To conclude this section, we prove Proposition 2.3.

Proof of Proposition 2.3. Fix k ≥ K0 and take x ∈ Fk. According to (18), the solution looks like∑
j≥K0

j
eit∆fRj (x)

Rsmj ‖fRj‖2
.

We first focus on the contribution of the piece eit∆fRj with j = k. Since x ∈ Fk, there are p1 and
q ' Q such that x ∈ ERk(p, q), and thus, by Proposition 2.1, there is a time t(x) = p1/(D1q) such
that t(x) ' 1/Rk and ∣∣eit(x)∆fRk(x)

∣∣
Rsmk ‖fRk‖2

' 1. (21)

Now we want to measure the contribution of eit(x)∆fj(x) for j 6= k. We are going to prove∣∣eit(x)∆fRj (x)
∣∣

Rsmj ‖fRj‖2
.

1

j Rj
, ∀j 6= k. (22)

If this holds, then joining (21) and (22) we get∣∣eit(x)∆f(x)
∣∣ & k − C∑

j 6=k

1

Rj
≥ k − C

∞∑
j=1

1

2j
≥ k/2, for K0 � 1,

which would conclude the proof.
To prove (22), the idea is that the term eit∆gRj (x1) in (6) localizes the solution to the n-plane

Tj = {x : |x1 + 2Rjt| < R
1/2
j }. Thus, if j 6= k, the planes Tj and Tk are disjoint except in a

10



neighborhood of the origin. Consequently, if |x1| > 1/10, the contribution of eit∆gRj (x1) in the
plane Tk is very small.

Let us formalize the previous paragraph. First, we directly bound the contribution in the vari-
ables x′ and x′′. From (7) and (9), we get

∣∣eit∆h1,Rj (x
′)
∣∣ . (Rj

D1

)n−m−1

and
∣∣eit∆h2,Rj (x

′′)
∣∣ . (R1/2

j

D2

)m
,

and thus ∣∣eit∆fRj (x)
∣∣ . R

n−m/2−1
j

Dn−m−1
1 Dm

2

∣∣eit∆gRj (x1)
∣∣. (23)

Now, from (5), write ∣∣eit∆gRj (x1)
∣∣ = R

1/2
j

∣∣∣∣∫
R
φ̂(η) e2πi λjθj(η) dη

∣∣∣∣ (24)

where

λj = R
1/2
j |x1 + 2tRj |, θj(η) = η +

t

λj
Rj η

2, θ′j(η) = 1 + 2
tRj
λj

η.

Now we exploit the decay of this oscillatory integral. Observe that

λj = R
1/2
j

(
2t|Rj −Rk|+O (|x1 + 2tRk|)

)
' R1/2

j

(
2
|Rj −Rk|

Rk
+O

(
R
−1/2
k

) )
.

We separate in two cases:

• If j < k, then Rj/Rk ≤ 1/2 and

λj ' R1/2
j

(
1− Rj

Rk
+O

(
R
−1/2
k

) )
' R1/2

j .

In this case,∣∣∣ tRj
λj

η
∣∣∣ ≤ Rj

Rk R
1/2
j

≤ 1

R
1/2
j

<
1

4
=⇒

∣∣θ′j(η)
∣∣ > 1/2 > 0.

• If j > k, then Rj/Rk ≥ 2 and

λj ' R1/2
j

(Rj
Rk
− 1 +O

(
R
−1/2
k

) )
' R1/2

j

Rj
Rk

.

In particular λj > R
1/2
j , so in this case∣∣∣ tRj

λj
η
∣∣∣ ≤ Rj

Rk λj
' 1

R
1/2
j

<
1

4
=⇒

∣∣θ′j(η)
∣∣ > 1/2 > 0.

Thus, in both cases we can integrate by parts in (24) to obtain

∣∣eit∆gRj (x1)
∣∣ . R

1/2
j

λNj
.

1

R
(N−1)/2
j

, ∀N ∈ N.

Coming back to (23), using (4) and recalling that D1 and D2 will be powers of R, we get∣∣eit(x)∆fRj (x)
∣∣

Rsmj ‖fRj‖2
.

1

RNj
, ∀N ∈ N.

In particular, we get (22) and the proof is complete. �
11



3. Dimension of the set of divergence

In this section we compute the Hausdorff dimension of the divergence set F defined in (19) and
(20). Recall that the slabs in (10) are

ER(p, q) = B1

(
R

D2
1

p1

q
,

1

R1/2

)
×Bn−m−1

(
1

D1

p′

q
,

1

R

)
×Bm

(
p′′

D2
,

1

R1/2

)
, (25)

and that we build the divergence set with Ek(p, q) = ERk(p, q). Rather than with the parameters
D1, D2 and Q, we find it more convenient to work with (u1, u2, u3) defined by

Ru1 =
QD2

1

R
, Ru2 = QD1, and Ru3 = D2, (26)

or equivalently,

Q = R2u2−u1−1, D1 = R1+u1−u2 , and D2 = Ru3 .

In view of (25), (u1, u2, u3) determine the separation of successive slabs for each fixed q in the
coordinates x1, x

′ and x′′ respectively.
We have a few preliminary restrictions for the parameters. For each fixed q, we want that

successive slabs do not intersect with each others. For that, for instance in x1, we need

1

R1/2
<

R

D1q
' R

D1Q
=

1

Ru1
=⇒ u1 ≤ 1/2.

Also, we require that we have more than a single slab in each of the directions, so we require
R−u1 = R/(D1Q)� 1, which implies u1 > 0. Similar reasons suggest that we require

0 < u1 ≤ 1/2, 0 < u2 ≤ 1 and 0 < u3 ≤ 1/2. (27)

Since Q is the size of the denominators q ∈ N, we always have Q ≥ 1, which implies

2u2 − u1 ≥ 1. (28)

3.1. Upper bound. With these restrictions, we can compute an upper bound for dimH F .

Proposition 3.1. Let F ⊂ Rn be the divergence set defined in (19) and (20), with parameters
(u1, u2, u3) as in (26), subject to the restrictions (27) and (28). Then,

dimH F ≤ min{α1, α2},
where

α1 =
m− 1

2
+ (n−m+ 1)u2 +mu3

and

α2 =

{
n−m− 3 + 4u2 + 2mu3, for u2 ≤ 3/4

n−m+ 2mu3, for u2 ≥ 3/4

Proof. Since F = lim supk→∞ Fk ⊂
⋃
k≥N Fk for all N > 0, it suffices to cover Fk for every k ∈ N.

From the definition in (19), Fk is formed by

Q ·Ru1 ·R(n−m−1)u2 ·Rmu3 = R(n−m+1)u2+mu3−1

slabs Ek(p, q). Each of those slabs is covered by R
1/2
k

(
R

1/2
k

)m
balls of radius R−1

k . In all, each Fk
is covered by

R(n−m+1)u2+mu3−1R
m+1

2 = R(n−m+1)u2+mu3+m−1
2 ,

so taking δ = R−1
N , we get

Hα
R−1
N

(F ) ≤
∞∑
k=N

R−αR(n−m+1)u2+mu3+m−1
2 .

12



Figure 2. Arrangement of the slabs of Fk.

Thus, if α ≥ (n − m + 1)u2 + mu3 + m−1
2 = α1, we get Hα(F ) = limN→∞H

α
R−1
N

(F ) = 0, so

dimH F ≤ α1.
To prove dimH F ≤ α2, we need to arrange the slabs of F differently (see Figure 2 for visual

support). First, observe that in the direction x′′ the slabs are disjoint. Thus, it is useful to arrange
Fk as

Fk =
⋃

p′′∈Zm

[ ⋃
q'Q

⋃
(p1,p′)∈G(q)

Ek(p, q)

]
=

⋃
p′′∈Zm

F ∗k,p′′ . (29)

Let us look at the separation between two slabs Ek(p, q) and Ek(p̃, q̃) in the direction x1, which
is

R

D2
1

|p1q̃ − p̃1q|
qq̃

&
R

D2
1Q

2
= R1−2u2 .

Thus, if we ask R1−2u2 > R−1/2, which amounts to u2 ≤ 3/4, the slabs in direction x1 are disjoint.
Consequently, we can further arrange

F ∗k,p′′ =
⋃
q'Q

⋃
p1

[ ⋃
p′:p∈G(q)

E(p, q)

]
=
⋃
q'Q

⋃
p1

F ∗∗k,q,p1,p′′ ,

and the number of sets F ∗∗k,q,p1,p′′ in Fk is at most R2u2−1Rmu3 . Since each set F ∗∗k,q,p1,p′′ can be

covered by an R
−1/2
k neighborhood of a (n−m−1)-plane, in particular we can cover it by R

(n−m−1)/2
k

balls of radius R
−1/2
k . Thus,

Hα
R
−1/2
N

(F ) ≤
∞∑
k=N

R
−α/2
k R

2u2−1+mu3+(n−m−1)/2
k ,

so Hα(F ) = limN→∞Hα
R
−1/2
N

(F ) = 0 if α ≥ n−m− 3 + 4u2 + 2mu3 = α2. Thus, dimH F ≤ α2.

When u2 > 3/4, the slabs in direction x1 need not be disjoint anymore. Still, from the arrange-

ment (29), every F ∗k,p′′ can be covered by a R
−1/2
k neighborhood of a (n−m)-plane, which in turn

13



is covered by R
(n−m)/2
k balls of radius R

−1/2
k . Since there are Rmu3k different F ∗k,p′′ in Fk,

Hα
R
−1/2
N

(F ) ≤
∞∑
k=N

R
−α/2
k R

mu3+(n−m)/2
k .

Thus, if α > n − m + 2mu3 = α2, we get Hα(F ) = limN→∞Hα
R
−1/2
N

(F ) = 0, which implies

dimH F ≤ α2. �

3.2. Lower bound. As we announced in the introduction, to prove the lower bound for dimH F
we use the Mass Transference Principle from rectangles to rectangles proved by Wang and Wu [32].
For that, in the following lines we identify our setting with the notation and definitions introduced
in [32, Section 3.1].

Let us index each slab Ek(p, q) with α = (k, p, q) and gather the indices in

J =
⋃
k�1

Jk, (30)

Jk = {(k, p, q) | Qk/2 ≤ q odd ≤ Qk and (p1, p
′, p′′) ∈ G(q)× Zm}.

The resonant set {Rα | α ∈ J} from [32, Definition 3.1] corresponds to the set of centers of the
slabs, so we work with κ = 0. Define the function β : J → R+ by β((k, p, q)) = Rk, and we set
uk = lk = Rk so that Jk = {α | lk ≤ β(α) ≤ uk} = {α | β(α) = Rk}. Also, we set ρ(u) = u−1, so
our slabs can be rewritten as

Ek(p, q) = B(Rα, ρ(Rk))
b =

n∏
i=1

B
(
Rα,i, ρ(Rk)

bi
)
, (31)

where the exponent b = (b1, . . . , bn) is

b = (1/2, 1, . . . , 1︸ ︷︷ ︸
n−m−1

, 1/2, . . . , 1/2︸ ︷︷ ︸
m

).

Let us also define the dilation exponent

a = (a1, a2, . . . , a2︸ ︷︷ ︸
n−m−1

, a3, . . . , a3︸ ︷︷ ︸
m

), such that ai ≤ bi, ∀i = 1, . . . , n.

For brevity, most of the time we will just write b = (b1, b2, b3) and a = (a1, a2, a3).
We can now adapt the Mass Transference Principle from rectangles to rectangles in [32, Theo-

rem 3.1] to our setting.

Theorem 3.2 (Mass Transference Principle from rectangles to rectangles - Theorem 3.1 of [32]).
Let {Rα | α ∈ J} ⊂ Rn be a set of points. Assume that for (ρ,a) there exists c > 0 such that for
any ball B,

Hn
(
B ∩

⋃
α∈Jk

B (Rα, ρ(Rk))
a

)
≥ cHn(B), for all k ≥ k0(B), (32)

where k0(B) is some constant that depends on the ball B. Then, for the set

W (b) =
{
x ∈ Rn | x ∈ B(Rα, ρ(Rk))

b for infinitely many α ∈ J
}

with exponent b = (b1, . . . , bn) such that with ai ≤ bi for all i = 1, . . . , n we get

dimHW (b) ≥ min
B∈B

{ ∑
j∈K1(B)

1 +
∑

j∈K2(B)

(
1− bj − aj

B

)
+

∑
j∈K3(B)

aj
B

}
.

14



Here, B = {b1, . . . , bn}, and for every B ∈ B we have the partition of {1, . . . , n} given by

K1(B) = {j | aj ≥ B}, K2(B) = {j | bj ≤ B} \K1(B),

K3(B) = {1, . . . , n} \ (K1(B) ∩K2(B)).

Remark 3.3. As proposed in [32, Definition 3.3], a system {Rα | α ∈ J} that satisfies (32) is
called uniformly locally ubiquitous with respect to (ρ,a). As observed in [32, Remark 3.2], uniform
local ubiquity implies that the lim sup of the dilated slabs has actually full measure.

According to (30) and (31), we have⋃
α∈Jk

B (Rα, ρ(Rk))
b =

⋃
(k,p,q)∈Jk

Ek(p, q) = Fk

and W (b) = lim supk→∞ Fk = F . Thus, to apply Theorem 3.2 and obtain a lower bound for
dimH F , we need to find a dilation exponent a such that the dilated sets

Fa
k =

⋃
(k,p,q)∈Jk

Ea
k (p, q)

satisfy the uniform local ubiquity condition (32) for every k � 1. To simplify notation, we check
this for FR with general R instead of Rk.

First, write Fa
R as a product Fa

R = Xa1,a2
R × Y a3

R with

Xa1,a2
R =

⋃
Q/2≤q≤Q
q odd

⋃
(p1,p′)∈G(q)

B1

(
R

D2
1

p1

q
,

1

Ra1

)
×Bn−m−1

(
1

D1

p′

q
,

1

Ra2

)
,

Y a3
R =

⋃
p′′∈Zm

Bm

(
p′′

D2
,

1

Ra3

)
.

Let B ⊂ Rn be a ball. Since we always can find a cube inside B with a comparable measure, we
may assume that B = Bn−m×Bm, where Bn−m and Bm are balls in Rn−m and in Rm, respectively.
Then,

Hn(B ∩ (Xa1,a2
R × Y a3

R )) = Hn((Bn−m ∩Xa1,a2
R )× (Bm ∩ Y a3

R ))

' Hn−m(Bn−m ∩Xa1,a2
R )Hm(Bm ∩ Y a3

R ).
(33)

Let us first estimate Hm(Bm∩Y a3
R ). Since D2 = Ru3 →∞ when R→∞, for large enough R there

are approximately Dm
2 Hm(Bm) slabs of Y a3

R in the ball Bm. Thus,

Hm(Bm ∩ Y a3
R ) ' Dm

2 Hm(Bm)R−ma3 = Rm(u3−a3).

Thus,

a3 = u3 =⇒ Hm(Bm ∩ Y a3
R ) ' Hm(Bm). (34)

Regarding Hn(B∩Xa1,a2
R ), the set Xa1,a2

k has periodic a structure, as shown in Figure 3. Indeed,
under the shrinking condition

R

D2
1

� 1 ⇐⇒ u2 − u1 <
1

2
, (35)

the set Xa1,a2
k is a union of copies of the unit cell

X̃a1,a2
R =

⋃
Q/2≤q≤Q
q odd

⋃
(p1,p′)∈G(q)∩[0,q)n−m

B1

(
R

D2
1

p1

q
,

1

Ra1

)
×Bn−m−1

(
1

D1

p′

q
,

1

Ra2

)
,
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Figure 3. In blue, the unit cell X̃a1,a2
R . On the right, Ωa1,a2

R = T (X̃a1,a2
R ). In black

on the right, the image by T of the original slabs, and in yellow, the image of the
slabs dilated by a1, a2. To apply the Mass Transference Principle, we must prove
that Ωa

k covers a positive portion of the unit cell.

which we mark in blue in Figure 3. In this situation, the number of unit cells in a ball Bn−m is
approximately Hn(B)Dn−m−1

1 D2
1/R, so

Hn−m(Bn−m ∩Xa1,a2
R ) ' Hn−m(Bn−m)

Dn−m+1
1

R
Hn−m(X̃a1,a2

R ) (36)

To compute Hn−m(X̃a1,a2
R ), we use the transformation T : (x1, x

′) 7→ (D2
1x1/R,D1x

′), which sends

X̃a1,a2
R to the set

Ωa1,a2
R = TX̃a1,a2

R =
⋃

Q/2≤q≤Q
q odd

⋃
(p1,p′)∈G(q)∩[0,q)n−m

B1

(
p1

q
,
D2

1

R1+a1

)
×Bn−m−1

(
p′

q
,
D1

Ra2

)
. (37)

Since Hn−m(X̃a1,a2
R ) = Hn−m(Ωa1,a2

R )R/Dn−m+1
1 , then from (33), (34) and (36) we see that

Hn(B ∩ Fa
R) ' Hm(Bm)Hn−m(Bn−m)Hn−m(Ωa1,a2

R )

' Hn(B)Hn−m(Ωa1,a2
R ).

Thus, having chosen a3 = u3, to verify (32) it suffices to find a1, a2 such that

Hn−m(Ωa1,a2
R ) ≥ c > 0, for R� 1. (38)

To do so, we use a lemma from [1].

Lemma 3.4 (Lemma 4.1 of [1]). Let J be a finite set of indices and {Ij}j∈J be a collection of
measurable sets in Rn. Suppose that these sets have comparable size, that is, B0 ≤ |Ij | ≤ B1 for all
j ∈ J , and that they are regularly distributed in the sense that

|{(j, j′) ∈ J × J | Ij ∩ Ij′ 6= ∅}| ≤ C|J |.
Then, ∣∣∣ ⋃

j∈J
Ij

∣∣∣ ≥ B0

B1C

∑
j∈J
|Ij |.
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With the aid of Lemma 3.4, we adapt [1, Lemma 4.2] to estimate the measure of Ωa1,a2
R .

Lemma 3.5. Let Q� 1, t1, t2 ≥ 1 and Ω ⊂ RN defined as

Ω =
⋃

Q/2≤q≤Q
q odd

⋃
(p1,p′)∈[0,q)N

gcd(p1,q)=1

B1

(
p1

q
,

1

Qt1

)
×BN−1

(
p′

q
,

1

Qt2

)
.

If

t1 + (N − 1)t2 = N + 1, (39)

there exists c > 0 such that HN (Ω) ≥ c > 0.

Proof. We apply Lemma 3.4 with

J = {(p1, p
′, q) | Q/2 ≤ q ≤ Q, q odd, p ∈ [0, q)N and gcd(p1, q) = 1 }

and

Ip1,p′,q = B1

(
p1

q
,

1

Qt1

)
×BN−1

(
p′

q
,

1

Qt2

)
.

By the hypothesis (39), |Ip1,p′,q| = Q−t1−(N−1)t2 = Q−(N+1). Thus, the first hypothesis of Lemma 3.4
is satisfied with B0 = B1. On the other hand, the size of the index set is

|J | =
∑

Q/2≤q≤Q
q odd

ϕ(q) qN−1.

We use the formula ϕ(q) = q
∑

d|q µ(d)/d, where µ is the Möbius function [18, Sec. 16.3], to write

|J | =
∑

Q/2≤q≤Q
q odd

qN
∑
d | q

µ(d)

d
' QN

∑
d∈N

µ(d)

d

∑
Q/2≤q≤Q
q odd

1{d | q} (40)

= QN
∑

d∈N, d odd

µ(d)

d

∑
Q/(2d)≤k≤Q/d

k odd

1

If Q is large enough, then

|J | ' QN
∑

d∈N, d odd

µ(d)

d

Q

d
= QN+1

∑
d∈N, d odd

µ(d)

d2
' QN+1,

where the last sum is finite because µ(d) ∈ {−1, 0, 1} for all d ∈ N. Hence, to apply Lemma 3.4 we
have to prove

|{(j, j′) ∈ J × J | Ij ∩ Ij′ 6= ∅}| . QN+1.

First, the diagonal contribution of equal indices j = j′ is |J |, so it is enough to prove

|{(j, j′) ∈ J × J | j 6= j′ and Ij ∩ Ij′ 6= ∅}| . QN+1. (41)

To prove (41), let us first fix q and q̃ and count all j = (p1, p
′, q) and j′ = (p̃1, p̃

′, q̃) such that
Ij ∩ Ij′ 6= ∅. In this case,∣∣∣p1

q
− p̃1

q̃

∣∣∣ < 2

Qt1
and

∣∣∣pl
q
− p̃l
q̃

∣∣∣ < 2

Qt2
, l = 2, . . . , N (42)

There are two cases:
17



• Case q = q̃. From (42) and t1, t2 ≥ 1 we have that 0 < |pl − p̃l| < 2 for all l. Thus, for
each q, we can pick . QN pairs (j, j′). Summing over all odd q, the total contribution is
of the order of QN+1.
• Case q 6= q̃. From (42) we have that

|q̃p1 − qp̃1| ≤ 2Q2−t1 and |q̃pl − qp̃l| ≤ 2Q2−t2 , l = 2, . . . , N. (43)

Let us fix l = 1, . . . , N and count the number of 0 ≤ pl < q and 0 ≤ p̃l < q̃ that satisfy
(43). Let d = gcd(q, q̃) and write q = sd, q̃ = s̃d such that gcd(s, s̃) = 1.

Call m = q̃pl− qp̃l. We want to count the number of ways we can write m like that, that
is, how many 0 ≤ rl < q and 0 ≤ r̃l < q̃ satisfy q̃pl−qp̃l? We would have s̃pl−sp̃l = s̃rl−sr̃l,
which implies s | pl − rl, or equivalently 0 ≤ rl = pl + ks < q for some k ∈ N. The last
inequality can hold at most for d different values of k. Thus, we can write m in at most d
different ways.

On the other hand, necessarily d | m. Since |m| ≤ 2Q2−ti , we can work with at most
2Q2−ti/d values of m. Since each of them can be written in d different ways, we conclude
that the number of pairs pl and p̃l satisfying (43) is at most Q2−ti .

Since l = 1 goes with t1 and l = 2, . . . , N go with t2, for each fixed q and q̃ the number
of p and p̃ is at most Q2−t1 Q(2−t2)(N−1) = QN−1. Finally, summing over all different q and
q̃ gives a total contribution of the order of QN+1.

The two cases together prove (41). Thus, we can use Lemma 3.4 and write

Hn(Ω) &
∑

Q/2≤q≤Q
q odd

∑
(p1,p′)∈[0,q)N

gcd(p1,q)=1

|Ip1,p′,q| '
∑

Q/2≤q≤Q
q odd

ϕ(q) qN−1

Qt1+(N−1)t2

' 1

Q2

∑
Q/2≤q≤Q
q odd

ϕ(q) ' 1,

where the last equality follows proceeding like in (40). �

With Lemma 3.5 we get the conditions that we need for a1 and a2 in order to have (38).

Lemma 3.6. For the parameters u1, u2 satisfying the restrictions (27), (28) and (35), let a1 and
a2 be such that

u1 ≤ a1 and u2 ≤ a2,

and
a1 + (n−m− 1)a2 = (n−m+ 1)u2 − 1 (44)

Then, there exists c > 0 such that

Hn−m(Ωa1,a2
R ) ≥ c > 0, ∀R� 1.

Proof. For Ωa1,a2
R , which we defined in (37), we want to apply Lemma 3.5 with N = n−m and

1

Qt1
=

D2
1

R1+a1
=

1

Ra1−1−2(u1−u2)
and

1

Qt2
=

D1

Ra2
=

1

Ra2−1−(u1−u2)
.

For that, we need Q = R2u2−u1−1 � 1, which means 2u2 − u1 − 1 > 0. In that case, we get

t1 =
a1 − 1− 2(u1 − u2)

2u2 − u1 − 1
, t2 =

a2 − 1− (u1 − u2)

2u2 − u1 − 1
. (45)

The condition t1 ≥ 1 implies a1 ≥ u1, while t2 ≥ 1 implies a2 ≥ u2. On the other hand, replacing
(45) in (39) we get the condition

a1 + (n−m− 1)a2 = (n−m+ 1)u2 − 1,
18



(iii) Disjointness:

(ii) Shrinking unit cell:

(i)         :

Figure 4. Restrictions on u = (u1, u2, u3).

under which there exists c > 0 such that Hn−m(Ω
a1,a2)
R ≥ c.

According to restriction (28), we are only left with the case 2u2− u1− 1 = 0, which corresponds
to Q = 1. In this case, the set turns into

Ωa1,a2
R = B1

(
0,

D2
1

R1+a1

)
×Bn−m−1

(
0,
D1

Ra2

)
,

so we get Hn−m(Ω
a1,a2)
R ≥ c > 0 if we ask D2

1 = R1+a1 and D1 = Ra2 . This amounts to a1 = u1

and a2 = u2. Observe that (44) is also satisfied in this case. �

Remark 3.7. The restrictions we found for the parameters (u1, u2, u3) and the dilation exponents
(a1, a2, a3) are the following:

For the parameters, from (27), (28) and (35) we have

0 < u1, u3 ≤ 1/2, 0 < u2 ≤ 1, 2u2 − u1 ≥ 1, u2 − u1 < 1/2. (46)

In particular, u2 > 1/2. Regarding (a1, a2, a3), we got

u1 ≤ a1 ≤ 1/2, u2 ≤ a2 ≤ 1, a3 = u3, a1 + (n−m− 1)a2 = (n−m+ 1)u2 − 1. (47)

From the last restriction in (47) together with a1 ≤ 1/2 and a2 ≤ 1 we get the additional restriction

(n−m+ 1)u2 ≤ n−m+ 1/2. (48)

Thus, for (u1, u2, u3) that satisfy (46) and (48), we can always find (a1, a2, a3) that satisfy (47), so
(38) holds and we can use the Mass Transference Principle.

The restrictions for (u1, u2, u3) are shown in Figure 4.

According to Remark 3.7 we can apply the Mass Transference Principle in Theorem 3.2. With
it, we show that the upper bound given in Proposition 3.1 is sharp.

Proposition 3.8. Let F ⊂ Rn be the divergence set defined in (19) and (20), with parameters
(u1, u2, u3) as in Remark 3.7. Then,

dimH F = min{α1, α2},
where

α1 = α1(u2, u3) =
m− 1

2
+ (n−m+ 1)u2 +mu3

19



and

α2 = α2(u2, u3) =

{
n−m− 3 + 4u2 + 2mu3, for u2 ≤ 3/4

n−m+ 2mu3, for u2 ≥ 3/4.

Proof. By Lemma 3.1, we only have to prove the lower bound.
For any (u1, u2, u3) as in Remark 3.7, we can find (a1, a2, a3) that satisfy (47). Then, Lemma 3.6

proves (38), which allows us to use the Mass Transference Principle in Theorem 3.2. Since b =
(1/2, 1, 1/2), then

dimH F ≥ min
B∈{1,1/2}

{ ∑
j∈K1(B)

1 +
∑

j∈K2(B)

(
1− bj − aj

B

)
+

∑
j∈K3(B)

aj
B

}
, (49)

where
K1(B) = {j | aj ≥ B}, K2(B) = {j | bj ≤ B} \K1(B),

K3(B) = {1, . . . , n} \ (K1(B) ∩K2(B)).

We compute each term in the minimum (49) separately:

• B = 1: If a2 < 1, we get K1(1) = ∅, K2(1) = {1, . . . , n} and K3(1) = ∅, so the term in
braces is

n−
n∑
j=1

bj +

n∑
j=1

aj =
m+ 1

2
+ a1 + (n−m− 1)a2 +ma3. (50)

Replacing (47) above, we get

α1 = α1(u2, u3) =
m− 1

2
+ (n−m+ 1)u2 +mu3. (51)

If a2 = 1, then K1(1) = {2, . . . , n − m}, K2(1) = {1, n − m + 1, . . . , n} and K3(1) = ∅.
Thus, we get

(n−m− 1) + (m+ 1)− (1/2− a1)−m(1/2− a3) = n− m+ 1

2
+ a1 +ma3,

This is equal to (50), so we get the same α1.
• B = 1/2: Let us first assume that a1, a3 < 1/2 so that K1(1/2) = {2, . . . , n−m}, K2(1/2) =
{1, n−m+ 1, . . . , n} and K3(1/2) = ∅. The term in braces is thus

α2(u3, a1) = (n−m− 1) + (m+ 1)− (1− 2a1)−m(1− 2a3)

= n−m− 1 + 2a1 + 2mu3. (52)

In the case that a1 < 1/2 and that a3 = 1/2, we have K1(1/2) = {2, . . . , n}, K2(1/2) = {1}
and K3(1/2) = ∅, and we get

α2(a1) = (n− 1) + 1− (1− 2a1) = n− 1 + 2a1,

which is the same as (52) because u3 = a3 = 1/2. Similarly, the cases a1 = 1/2, a3 < 1/2
and a1 = a3 = 1/2 yield the same result.

Joining the two expressions for the minimum, we get

dimH F ≥ min{α1(u2, u3), α2(u3, a1)}, ∀a1 like in (47). (53)

Thus, we want to choose the value of a1 that gives the largest α2(u3, a1).
According to (52), we need to take the largest possible a1. Since a1 ≤ 1/2, in principle we may

take a1 = 1/2. In view of (47), that implies

(n−m+ 1)u2 = 3/2 + (n−m− 1)a2. (54)
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However, we need a2 ≥ u2, which under the restriction (54) is equivalent to u2 ≥ 3/4. Thus, we
separate two cases:

• If u2 ≤ 3/4, then a1 = 1/2 is admissible, so the maximum for α(u3, a1) is

α2(u3) = n−m+ 2mu3, if u2 ≥ 3/4. (55)

• If u2 < 3/4, then a1 = 1/2 is not admissible, because a2 < u2. Then, the largest admissible
value for a1 corresponds to a2 = u2, which in view of (47) gives a1 = 2u2 − 1. Thus, the
maximum α2 is

α2(u2, u3) = n−m− 3 + 4u2 + 2mu3, if u2 < 3/4. (56)

Consequently, from (53), we obtain

dimH F ≥ min{α1(u2, u3), α2(u2, u3)},

where α1 is defined in (51) and α2 is defined in (55) and (56). The proof is complete. �

3.3. The case m = n− 1. The counterexample is not as interesting in this case because the
Talbot effect is absent. We discuss it briefly. The set of divergence is actually much simpler, given
by

F = lim sup
k→∞

Fk = lim sup
k→∞

⋃
p∈Zm

Ek(p)

Ek(p) = [−1, 0]×Bn−1

(
p

D2,k
, R
−1/2
k

)
,

so only the parameter D2 = Ru3 survives. We use the Mass Transference Principle Theorem 3.2 in
Rn−1 with a = (a, . . . , a), which corresponds to the original version in [3]. The dilation a needed for

the local ubiquity condition (32) must satisfy D2 = R
a

2(n−1) , that is, a = 2(n− 1)u3, which implies
dimH F = 1 + 2(n− 1)u3. The dimension can also be computed using the methods in Section 8.2
of [17].

4. Sobolev Regularity

We begin by recalling that the Sobolev regularity sm = sm(Q,D1, D2) of the counterexample
was given in (16) by

Rsm = R1/4

(
R

D1Q

)(n−m−1)/2
(
R1/2

D2

)m/2
.

Using (26), we rewrite it in terms of the geometric parameters (u1, u2, u3) as

sm(u2, u3) =
2n−m− 1

4
− n−m− 1

2
u2 −

mu3

2
. (57)

Given a fixed dimension α, we want to maximize sm. As we showed in Proposition 3.8, the
dimension of the divergence set is a function α(u2, u3), so we are imposing the restriction α =
α(u2, u3). This still leaves one degree of freedom v in sm(α, v), which we might set either as u2 or
as u3. Let us denote the maximum regularity by sm(α) = maxv sm(α, v).

The case m = 0 corresponds to the counterexample studied in [22], which gives the regularity

sm(α) =
n

2(n+ 1)
+

n− 1

2(n+ 1)
(n− α),

so we focus on m ≥ 1. Fix dimH F = α. By Proposition 3.8,

α = min{α1(u2, u3), α2(u2, u3)}, (58)
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where

α1 =
m− 1

2
+ (n−m+ 1)u2 +mu3 and α2 =

{
n−m− 3 + 4u2 + 2mu3, for u2 ≤ 3/4

n−m+ 2mu3, for u2 ≥ 3/4.

This is a restriction on (u2, u3), which takes the form of a broken line in the (u2, u3) plane. We
want to pick a point (u2, u3) that gives the maximum sm(u2, u3). In the arguments that follow, we
suggest the reader to use Figures 5, 6 and 7 as visual support.

According to the restrictions in Remark 3.7, we have

(u2, u3) ∈ D =

[
1

2
, 1− 1

2(n−m+ 1)

]
× [0, 1/2] .

Let us first determine in D the boundary between the two lines in (58). If u2 ≥ 3/4,

α1 ≤ α2 ⇐⇒ (n−m+ 1)u2 −mu3 ≤ n−
3m

2
+

1

2
,

so the boundary is

(n−m+ 1)u2 −mu3 = n− 3m

2
+

1

2
, when u2 ≥ 3/4. (59)

This line crosses the points

(u2, u3) =

(
1− 1

2(n−m+ 1)
,

1

2

)
and (u2, u3) =

(
1− m+ 1

2(n−m+ 1)
, 0

)
,

so it is completely in D ∩ {u2 ≥ 3/4} if

1− 1

2(n−m+ 1)
≥ 3

4
⇐⇒ m ≤ n− 1

3
. (60)

This shows that we need to separate cases for m, and it will become evident that we also need to
study the cases n− 3 ≤ m ≤ n− 1 separately.

4.1. When m < n− 3 and m ≤ (n− 1)/3. This case is displayed in Figure 5. According to
(60), the boundary line (59) is completely included in u2 ≥ 3/4. This suggests that in u2 ≤ 3/4 we
always have α1 ≤ α2. Indeed,

α1 ≤ α2 ⇐⇒
m− 1

2
+ (n−m+ 1)u2 +mu3 ≤ n−m− 3 + 4u2 + 2mu3

⇐⇒ (n−m− 3)u2 −mu3 ≤ n−
3m

2
− 5

2
,

and together with u2 ≤ 3/4 and u3 ≥ 0, the condition m ≤ (n− 1)/3 allows us to write

(n−m− 3)u2 −mu3 ≤
3

4
(n−m− 3) ≤ n− 3m

2
− 5

2
.

Thus, when u2 ≤ 3/4 we have min{α1, α2} = α1.
Let us compute the Sobolev regularity:

• In the region where min{α1, α2} = α2, since u2 ≥ 3/4, we may write

α = n−m+ 2mu3 =⇒ mu3 =
m− (n− α)

2
.

Consequently, u3 is fixed. Replacing in (57), we get

sm(α, u2) =
n− α+ 1

4
+
n−m− 1

2
(1− u2). (61)

Thus, to maximize sm(α, u2) we need to minimize u2. This is attained on the boundary
(59).

22



• In the region where min{α1, α2} = α1 we have

α =
m− 1

2
+ (n−m+ 1)u2 +mu3, (62)

so replacing in (57) we get

sm(α, u2) =
n− 1− α

2
+ u2. (63)

In this case, to maximize sm(α, u2) we need to maximize u2. The maximum u2 in this
region may be either on the boundary (59) or in u3 = 0.

Figure 5. For fixed α, the maximum regularity is attained on the blurred, green
line.

Thus, in all cases, given a dimension α, the maximum sm(α) = maxu2 sm(α, u2) is attained
either on the boundary (59) or on u3 = 0. Let βm,0 be the dimension where this transition
happens, that is, the value βm,0 such that the line βm,0 = min{α1, α2} crosses the intersection of
the boundary (59) and u3 = 0. When βm,0 = α2, we are always in u2 ≥ 3/4, so we may write
βm,0 = α2 = n−m+ 2mu3. Since the point of intersection has u3 = 0, we deduce that

βm,0 = n−m.
This generates two different cases for α:

• If α ≤ βm,0, then α = min{α1, α2} = α1(u2, u3) and the maximum sm(α) is attained at
u3 = 0. Thus, from (62) and (63),

sm(α) =
n

2(n−m+ 1)
+

n−m− 1

2(n−m+ 1)
(n− α), if n/2 ≤ α ≤ n−m. (64)

Observe that the smallest possible α corresponds to α = α1(u2, u3) crossing the point
(u2, u3) = (1/2, 0), which gives αmin = n/2.
• If βm,0 ≤ α ≤ n, the maximum of sm(α, u2) is attained on the boundary (59). The

intersection between the broken line α = min{α1, α2} and the boundary (59) is determined
by

(n−m+ 1)u2 = n−m− n− α− 1

2
and 2mu3 = m− (n− α).

Replacing this point either in (61) or in (63), we get

sm(α) =
n−m

2(n−m+ 1)
+

n−m
2(n−m+ 1)

(n− α), if n−m ≤ α ≤ n. (65)

23



4.2. When m < n− 3 and (n− 1)/3 < m ≤ n/2− 1. We display this case at the left of
Figure 6. Now the boundary (59) crosses u2 ≥ 3/4 while in D, and the crossing point is

(u2, u3) =
(3

4
,

1

2
− n−m− 1

4m

)
. (66)

In this case, min{α1, α2} also changes in u2 ≤ 3/4 and the boundary is given by

α1 = α2 ⇐⇒ (n−m− 3)u2 −mu3 = n− 3m

2
− 5

2
. (67)

This line has positive slope as long as m < n− 3, and it passes through the points (66) and

(u2, u3) =
(

1− m− 1

2 (n−m− 3)
, 0
)
. (68)

It makes a difference whether the point (68) is in D or not. One immediately sees that

(68) ∈ D ⇐⇒ 1− m− 1

2 (n−m− 3)
≥ 1

2
⇐⇒ m ≤ n

2
− 1, (69)

which is the case we are considering now.

Remark 4.1. We saw in Subsection 4.1 that:

• When min{α1, α2} = α1 we need to maximize u2.
• When min{α1, α2} = α2 and u2 ≥ 3/4 we need to minimize u2.

Now we have an additional case:

• When min{α1, α2} = α2 and u2 ≤ 3/4 we have α = n−m− 3 + 4u2 + 2mu3, so replacing
in (57) we get

sm(α, u2) =
n−m− 2

2
+
n− α

4
− n−m− 3

2
u2. (70)

Since m < n− 3, to maximize sm(α, u2) we need to minimize u2.

Consequently, depending on the value of α, the maximum of sm(α, u2) is attained in the boundary
(59), in the boundary (67) or in u3 = 0. Let us determine which α corresponds to each case.

• The interval corresponding to the boundary line (59) is α ∈ [βm,2, n], where βm,2 is such
that the broken line βm,2 = min{α1, α2} crosses the point (66). Thus,

βm,2 = n−m+ 2m

(
1

2
− n−m− 1

4m

)
=
n+m+ 1

2
(71)

The analysis in this case is identical to that in (65), so

sm(α) =
n−m

2(n−m+ 1)
+

n−m
2(n−m+ 1)

(n− α), βm,2 ≤ α ≤ n.

• The interval corresponding to the boundary (67), which is in u2 ≤ 3/4, is α ∈ [βm,1, βm,2],
where the broken line βm,1 = min{α1, α2} crosses the point (68). This means that

βm,1 = n−m− 3 + 4

(
1− m− 1

2(n−m− 3)

)
= n− (m− 1)

n−m− 1

n−m− 3
. (72)

For α ∈ [βm,1, βm,2], the point (u2, u3) of the broken line α = min{α1, α2} that is in the
boundary line (67) has

u2 =
n+ α− 2(m+ 1)

2(n−m− 1)
.

Thus, the Sobolev regularity we get from (70) is

sm(α) =
1

2
+

n−m− 2

2(n−m− 1)
(n− α), βm,1 ≤ α ≤ βm,2. (73)
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• For the last interval α ∈ [αmin, βm,1] we have α = α1(u2, u3), and the maximum u2 is
attained at u3 = 0. The procedure is the same as in (64), so we get

sm(α) =
n

2(n−m+ 1)
+

n−m− 1

2(n−m+ 1)
(n− α), n/2 ≤ α ≤ βm,1.

Figure 6. For fixed α, the maximum regularity is attained on the blurred, green
line.

4.3. When n/2− 1 < m < n− 3. This case is shown at the right of Figure 6. By (69), we have
that (68) /∈ D. The useful point in this case is the intersection of the boundary (67) with u2 = 1/2,
that is,

u2 =
1

2
and u3 =

m+ 1− n/2
m

> 0. (74)

In this case, depending on α and again following Remark 4.1, the maximum sm(u2, u3) is found in
the boundary (59), in the boundary (67) or on the line u2 = 1/2. Let us determine the ranges for
α in each case:

• For the interval corresponding to the boundary (59), the analysis is exactly the same as in
the previous case, so we get

sm(α) =
n−m

2(n−m+ 1)
+

n−m
2(n−m+ 1)

(n− α), βm,2 ≤ α ≤ n.

• The interval corresponding to the boundary (67) is α ∈ [β̃m,1, βm,2], where β̃m,1 = min{α1, α2}
crosses the point (74). Evaluating in α1, we get

β̃m,1 =
m− 1

2
+
n−m+ 1

2
+m+ 1− n

2
= m+ 1.

For α ∈ [β̃m,1, βm,2], the analysis is the same as in (73), so we get

sm(α) =
1

2
+

n−m− 2

2(n−m− 1)
(n− α), β̃m,1 ≤ α ≤ βm,2.
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• The last interval is α ∈ [αmin, β̃m,1], where the maximum is attained in u2 = 1/2. In this
case, αmin is such that αmin = min{α1, α2} crosses the point (u2, u3) = (1/2, 0), that is,

αmin = n−m− 1.

Thus, for α ∈ [αmin, β̃m,1] we have α = α2(u2, u3), so replacing u2 = 1/2 in (70) we get

sm(α) =
n−m− 1

4
+
n− α

4
, n−m− 1 ≤ α ≤ β̃m,1.

4.4. When m = n− 3. As shown in Figure 7, the boundary (67) is now the horizontal line

mu3 = −n+
3m

2
+

5

2
. (75)

• The first interval α ∈ [βm,2, n] does not change with respect to the previous cases:

sm(α) =
n−m

2(n−m+ 1)
+

n−m
2(n−m+ 1)

(n− α), βm,2 ≤ α ≤ n.

• The rest α < βm,2 are unified in this case. This is because when u2 ≤ 3/4 we have
α2(u2, u3) = n − m − 3 + 4u2 + 2mu3 = 4u2 + 2mu3. Thus, for (u2, u3) such that α =
α2(u2, u3), the regularity is

sm(u2, u3) =
2n−m− 1

4
− mu3

2
− n−m− 1

2
u2 =

2n−m− 1− α
4

,

which is independent of u2 and u3. That means that when α = α2(u2, u3) and u2 ≤ 3/4,
all u2 give the same sm. In particular, sm(u2, u3) is the same both in the boundary (75)
and in u2 = 1/2, so

sm(α) =
1

2
+
n− α

4
, 2 ≤ α ≤ βm−2 = n− 1.

As in the previous case, αmin = n−m− 1 = 2.

Observe that this case matches the result of the case n/2− 1 ≤ m < m− 3.

Figure 7. For fixed α, the maximum regularity is attained on the blurred, green
zone.
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4.5. When m = n− 2. This case corresponds to the right of Figure 7. Now the boundary (67)
in u2 ≤ 3/4 takes the form

u2 + (n− 2)u3 =
n− 1

2
.

It crosses the point (u2, u3) = (1/2, 1/2), and its slope is −1/(n − 2). Observe that the slope of
α = α1(u2, u3) is −3/(n− 2), while that of α = α2(u2, u3) in u2 ≤ 3/4 is −2/(n− 2).

When α = α1(u2, u3) we still have (63), so we want to maximize u2. However, when α =
α2(u2, u3) and u2 ≤ 3/4, the regularity we computed in (70) takes the form

sm(α) =
n− α

4
+
u2

2
, (76)

so we want to maximize u2. When α = α2(u2, u3) and u2 ≥ 3/4 the regularity is (61), so we
still want to minimize u2. Thus, depending on α, the maximum of sm(u2, u3) is attained on the
boundary (59) in u2 ≥ 3/4, on the line u2 = 3/4 or on the line u3 = 0. We classify α accordingly:

• As in all previous cases, in the interval α ∈ [βm,2, n] the result is

sn−2(α) =
1

3
+
n− α

3
, n− 1

2
≤ α ≤ n.

• The second interval is now α ∈ [β∗m,1, βm,2], where β∗m,1 corresponds to the point (u2, u3) =

(3/4, 0), that is,

β∗m,1 = n−m+ 2mu3 = 2.

In this case, the maximum is on u2 = 3/4, so from (76) we get

sn−2(α) =
3

8
+
n− α

4
, 2 ≤ α ≤ βm,2 = n− 1/2.

• The last interval is α ∈ [αmin, β
∗
m,1], and as in the previous cases αmin = n −m − 1 = 1.

Now, the maximum is attained at u3 = 0, and thus, α = α2(u2, u3) = 4u2 − 1. Replacing
this in (76) we get

sn−2(α) =
n+ 1

8
+
n− α

8
, 1 ≤ α ≤ 2.

4.6. When m = n− 1. From (57), we have

sn−1(u3) =
n

4
− n− 1

2
u3.

From the dimension in Subsection 3.3, we have α = 1 + 2(n − 1)u3, where we can pick any
0 < u3 ≤ 1/2. Thus, the regularity is

sn−1(α) =
1 + n− α

4
, 1 ≤ α ≤ n.

4.7. Summary of the results of this subsection. Let us gather the results we got by defining

s3,m(α) =
n

2(n−m+ 1)
+

n−m− 1

2(n−m+ 1)
(n− α),

s4,m(α) =
n−m

2(n−m+ 1)
+

n−m
2(n−m+ 1)

(n− α),

s5,m(α) =
1

2
+

n−m− 2

2(n−m− 1)
(n− α),

and also, from (72) and (71),

βm,1 = n− (m− 1)
n−m− 1

n−m− 3
and βm,2 =

n+m+ 1

2
.
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Proposition 4.2. Let 0 ≤ m ≤ n− 1 and sm(α) as below. Then, for every s < sm(α), there exists
f ∈ Hs(Rn) such that eit∆f diverges in a set of dimension α.

The exponent sm(α) is as follows. For 0 ≤ m ≤ n− 3:

(i) If 0 ≤ m ≤ (n− 1)/3,

sm(α) =

{
s3,m(α), n/2 ≤ α ≤ n−m,
s4,m(α), n−m ≤ α ≤ n.

(77)

(ii) If (n− 1)/3 < m ≤ n/2− 1,

sm(α) =


s3,m(α), n/2 ≤ α ≤ βm,1,
s5,m(α), βm,1 ≤ α ≤ βm,2,
s4,m(α), βm,2 ≤ α ≤ n.

(78)

(iii) If n/2− 1 < m ≤ n− 3,

sm(α) =


s3,m(α), n−m− 1 ≤ α ≤ m+ 1,

s5,m(α), m+ 1 ≤ α ≤ βm,2,
s4,m(α), βm,2 ≤ α ≤ n.

(79)

On the other hand, if m = n− 2, then

sn−2(α) =



n+ 1

8
+
n− α

8
, 1 ≤ α ≤ 2,

3

8
+
n− α

4
, 2 ≤ α ≤ n− 1/2,

1

3
+
n− α

3
, n− 1/2 ≤ α ≤ n,

and if m = n− 1, then

sn−1(α) =
1 + n− α

4
, 1 ≤ α ≤ n.

The reader may want to compare the first two cases in Proposition 4.2 with Lemma 3.2 in [11];
in Du’s paper replace d by n+ 1, m by m+ 1, and κi by si,m.

5. Maximum Regularity

For each 0 ≤ m ≤ n − 1, Proposition 4.2 gives the regularity sm(α) for the counterexample.
Thus, we immediately get the following theorem.

Theorem 5.1. Let n/2 ≤ α ≤ n. For every 0 ≤ m ≤ n− 1, and for sm(α) as in Proposition 4.2,
define

s(α) = max
0≤m≤n−1

sm(α). (80)

Then, for s < s(α) there exists f ∈ Hs(Rn) such that eit∆f diverges in a set of dimension α.

Our aim in this section is to dissect this quantity. First, we show that in the maximum (80) it
suffices to consider small m.

Lemma 5.2. Let m1 = bn/2− 1c. Then,

s(α) = max
0≤m≤m1

sm(α)

In particular,

s(α) = s0(α), when n = 2, 3.
28



Proof. The objective is to discard the contribution of every m > m1 to the maximum. For that,
we are going to prove that sm(α) ≤ s0(α) for n/2 ≤ α ≤ n.

First observe that for α = n, sm(n) ≤ s0(n) holds for all m. Thus, we may work with α < n.
We now study each m separately.

• For m = n− 1, from Proposition 4.2 we have sn−1(α) = (1 +n−α)/4 for every 1 ≤ α ≤ n.
Since sn−1(n/2) ≤ s0(n/2) = n/4 and sn−1(n) ≤ s0(n), we deduce sn−1(α) ≤ s0(α) for all
α, so we may discard sn−1.

In particular, when n = 2 we get s(α) = s0(α). Thus, we continue with n ≥ 3.

• If m = n − 2, it suffices to show that sn−2(α) ≤ s0(α) for α = n/2 and n − 1/2. When
n ≥ 4 we have

sn−2(n/2) =
n+ 3

8
≤ n

4
= s0(n/2) ⇐⇒ 3 ≤ n,

sn−2(n− 1/2) =
1

2
≤ 3n− 1

4(n+ 1)
= s0(n− 1/2) ⇐⇒ 3 ≤ n.

When n = 3 the point α = n/2 changes, but we still have

sn−2(n/2) =
11

16
<

3

4
= s0(n/2).

Hence, we may discard sn−2.

In particular, if n = 3 we get s(α) = s0(α), and if n = 4 we get s(α) = max{s0(α), s1(α)}. Thus,
we continue with n ≥ 5.

• Let m1 < m ≤ n− 3. From (79), it suffices to show that sm(α) ≤ s0(α) for α ∈ {n/2,m+
1, (n+m+ 1)/2}. For α = n/2, we have sm(n/2) = n/4 = s0(n/2). For α = m+ 1,

sm(m+ 1) =
n−m− 1

2
≤ n

2(n+ 1)
+

n− 1

2(n+ 1)
(n−m− 1) = s0(m+ 1)

holds if and only if n/2−1 ≤ m. In particular, it holds for m > m1. For α = (n+m+1)/2,

sm(α) =
n−m

4
≤ n

2(n+ 1)
+

n− 1

4(n+ 1)
(n−m− 1) = s0(α)

holds if and only if m ≥ (n− 1)/2. In particular, it holds when m > m1.

�

Now we determine the maximum regularity among the small m.

Lemma 5.3. Let n ≥ 4 and m0 = b(n− 1)/3c, and define sS(α) = max0≤m≤m0 sm(α). Then,

sS(α) =


s3,m0(α), n/2 ≤ α ≤ n−m0,

s4,m(α), n−m ≤ α ≤ n−m+
n− 2m

n−m
,

s3,m−1(α), n−m+
n− 2m

n−m
≤ α ≤ n−m+ 1,

(81)

where m ranges from 1 to m0. Moreover,

s(α) = sS(α), for n−m0 ≤ α ≤ n. (82)

In particular,

s(α) = sS(α), for n/2 ≤ α ≤ n, when n = 4, 5, 7. (83)
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Proof. Let us prove (81) with the aid of Figure 8. For 0 ≤ m ≤ m0 we have from (77) that
sm(n/2) = s3,m(n/2) = n/4, and also that

slope of s3,m(α) = − n−m− 1

2(n−m+ 1)
,

which is an increasing function of m, that is, the smaller the m, the steeper the slope. Hence,

l ≤ m− 1 =⇒ sm−1(α) = s3,m−1(α) ≥ sl(α), n/2 ≤ α ≤ n−m+ 1. (84)

On the other hand, when l ≥ m and n−m ≤ α ≤ n we have

sm(α) = s4,m(α) ≥ s4,l(α) = sl(α) ⇐⇒ n−m
n−m+ 1

≥ n− l
n− l + 1

⇐⇒ l ≥ m. (85)

Together, (84) and (85) imply

sS(α) = max{s3,m−1(α), s4,m(α)}, n−m ≤ α ≤ n−m+ 1.

The last two cases in (81) follow. The first case follows from (84) with m− 1 = m0.

Figure 8. Comparison between sm and sm−1; see Proposition 4.2(i).

To prove (82), we need to discard the contribution of m0 < m ≤ m1 in the range n−m0 ≤ α ≤ n.
Since sm0(α) = s4,m0(α) ≤ sS(α) in this range of α, then we are done if we can show that
sm(α) ≤ s4,m0(α), where sm is given by (78).

In the range βm,2 ≤ α ≤ n we can repeat the analysis in (85) to see that

m0 + 1 ≤ m ≤ m1 =⇒ sm(α) = s4,m(α) < s4,m0(α), βm,2 ≤ α ≤ n.
If n ∈ 3N and m = m0 + 1, then βm0+1, 2 < n−m0 and we are done; otherwise, we have to consider
the interval n−m0 ≤ α ≤ βm,2 as well.

Assume that n /∈ 3N or that m > m0 + 1. In this case,

βm,2 =
n+m+ 1

2
≥ n−m0. (86)

Since sm(βm,2) < s4,m0(βm,2) and sm(α) = s5,m(α) for n−m0 ≤ α ≤ βm,2, it suffices to show that
the slope of s5,m is greater (or less steep) than that of s4,m0 , which is true because

− n−m− 2

2(n−m− 1)
≥ − n−m0

2(n−m0 + 1)
⇐⇒ m ≥ m0 − 2.

This concludes the proof of (82).
Finally, (83) holds because for n = 4, 5, 7 there is no m such that m0 < m ≤ m1. �
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The next step is to determine the maximum regularity among the intermediate m.

Lemma 5.4. Let n = 6 or n ≥ 8, m0 = b(n − 1)/3c and m1 = bn/2 − 1c. Define sI(α) =
maxm0<m≤m1 sm(α). Then,

sI(α) = sm0+1(α), when n = 6, 8, 9, 10, 11, 13, (87)

and if n = 12 or n ≥ 14,

sI(α) =



s3,m1(α) for n/2 ≤ α ≤ βm1,1 and n odd,

s5,m(α), for βm,1 ≤ α ≤ n−m− 1 + 3
n− 2m− 2

n−m− 4
,

s3,m−1(α), for n−m− 1 + 3
n− 2m− 2

n−m− 4
≤ α ≤ βm−1,1,

sm0+1(α), for βm0+1,1 ≤ α ≤ n−m0,

(88)

where m ranges from m0 + 2 to m1.
Furthermore,

s(α) = sI(α), for n/2 ≤ α ≤ βm0+1,1. (89)

Proof. The identity (87) holds because the interval m0 < m ≤ m1 only has one element for those
dimensions.

To prove (88) for n = 12 or n ≥ 14, the analysis is like in Lemma 5.3. Recall that sm is given by
(78) in this case, so we have to consider the transition point

βm,1 = n−m− 1 + 2
n− 2m− 2

n−m− 3
∈ [n−m− 1, n−m).

Like in (84), we see that

l ≤ m− 1 =⇒ sm−1(α) = s3,m−1(α) ≥ s3,l(α) = sl(α), n/2 ≤ α ≤ βm−1,1. (90)

On the other hand, when l ≥ m and βm,1 ≤ α ≤ βm0+1,1 < βm,2 we have

sm(α) = s5,m(α) ≥ s5,l(α) = sl(α) ⇐⇒ n−m− 2

n−m− 1
≥ n− l − 2

n− l − 1
⇐⇒ l ≥ m. (91)

Consequently,
sI(α) = max{s3,m−1(α), s5,m(α)}, βm,1 ≤ α ≤ βm−1,1,

and the two middle cases in (88) follow.
When n is even we get βm1,1 = n/2, so the computations above cover the whole range n/2 ≤

α ≤ βm0+1,1. When n is odd, though, βm1,1 > n/2 and the first case in (88) follows from (90) by
taking m− 1 = m1.

Now we prove the last case in (88), that is, that sm0+1(α) ≥ sm(α) for m0 + 2 ≤ m ≤ m1 and
for βm0+1,1 ≤ α ≤ n −m0. From (78) and (86) we see that sm(α) = s5,m(α), so we have to prove
sm0+1(α) ≥ s5,m(α) for m ≥ m0 + 2.

When n 6∈ 3N we have βm0+1, 2 ≥ n − m0, so sm0+1(α) = s5,m0+1(α) and we have to prove
s5,m0+1(α) ≥ s5,m(α), but this follows like in (91). When n ∈ 3N, then m0 = n/3− 1 and we also
have to study the range

βm0+1, 2 =
n+ (m0 + 1) + 1

2
=

2n

3
+

1

2
≤ α ≤ 2n

3
+ 1 = n−m0.

In this range sm0+1(α) = s4,m0+1(α), so we must prove s4,m0+1(α) ≥ s5,m(α) for m ≥ m0 + 2. For
that, it is enough to check s4,m0+1(α) ≥ s5,m0+2(α). Since sm0+1(βm0+1, 2) ≥ s5,m0+2(βm0+1, 2), we
only need to prove the inequality at α = 2n/3 + 1, which follows after algebraic manipulation.

To prove (89), by the first case in (81) it is enough to show that s3,m0(α) < s3,m0+1(α) =
sm0+1(α) ≤ sI(α) for n/2 ≤ α ≤ βm0+1,1. This follows like in (84), so we conclude the proof of the
lemma. �
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After Lemmas 5.3 and 5.4, it only remains to analyze the range βm0+1,1 ≤ α ≤ n−m0.

Lemma 5.5. Let m0 = b(n− 1)/3c. Then,

• When n = 6,

s(α) = s3,m0(α), for n/2 ≤ α ≤ n−m0. (92)

• When n ≥ 8,

s(α) =


s5,m0+1(α), βm0+1,1 ≤ α ≤ n−m0 − 2 + 3

n− 2m0 − 4

n−m0 − 5
,

s3,m0(α), n−m0 − 2 + 3
n− 2m0 − 4

n−m0 − 5
≤ α ≤ n−m0.

(93)

Proof. From the first case in (81) and the last case in (88) we have that

s(α) = max{s3,m0(α), sm0+1(α)}.
When n /∈ 3N then (78) and (86) imply that sm0+1(α) = s5,m0+1(α), so

s(α) = max{s3,m0(α), s5,m0+1(α)},
which is precisely (93); notice that n −m0 − 5 > 0 in this case. When n ∈ 3N and n 6= 6, then
m0 = n/3− 1 and

s(α) =

{
max{s3,m0(α), s5,m0+1(α)}, βm0+1,1 ≤ α ≤ 2n/3 + 1/2,

max{s3,m0(α), s4,m0+1(α)}, 2n/3 + 1/2 ≤ α ≤ 2n/3 + 1,

which again leads to (93); notice that

n−m0 − 2 + 3
n− 2m0 − 4

n−m0 − 5
= βm0+1, 2 =

2n

3
+

1

2
.

When n = 6, we have s3,m0(α) = s5,m0+1(α), so we may choose s3,m0 in the first maximum above
to reach (92). �

Gathering the results of this section, we get Theorem 1.1.

Remark 5.6. Given that βm,2 plays no role in the final statement of Theorem 1.1, for simplicity
we rename βm,1 as βm.
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[28] Sjögren, P., and Sjölin, P. Convergence properties for the time-dependent Schrödinger equation. Ann. Acad.
Sci. Fenn. Ser. A I Math. 14, 1 (1989), 13–25.
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