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Resumen de la tesis

Esta tesis es la recopilación de los resultados obtenidos durante mi doctorado, que
empezó en enero de 2018 y terminará a �nales del 2021. La materia principal está
dividida en 5 Capítulos, los Capítulos 2�6. Estos capítulos se pueden reunir en 3
partes, siendo la primera los Capítulos 2 y 3, relacionada con pesos Cp; la segunda,
los Capítulos 4 y 5, relacionada con el teorema de John�Nirenberg; y la última, el
capítulo 6, dedicada a la capacidad de Hajªasz. En estas páginas damos un resumen
de los resultados obtenidos en cada parte, así como una breve motivación de los
mismos.

La clase Cp de pesos

Uno de los principales conceptos en análisis matemático, y más precisamente en análi-
sis armónico, es la clase A∞ de Muckenhoupt. Esta clase, introducida por Mucken-
houpt en los años 70, ha sido un eje principal del análisis armónico desde su origen.
Entre las diferentes propiedades importantes de la claseA∞, encontramos la doblantez,
que grosso modo quiere decir que la medida pesada de una bola grande se puede con-
trolar por la medida pesada de bolas más pequeñas contenidas en la misma, siempre
que la razón entre los radios esté controlada

Pese a que los pesos A∞ son muy importantes e incluso llegamos a utilizarlos en
esta tesis, nuestro principal objeto de estudio es la clase Cp. Debido a la di�cultad
de trabajar con esta clase de pesos, no hay un tratamiento sistemático de ellos. Una
de las di�cultades de los pesos Cp es que no son necesariamente doblantes, lo que es
una de las principales diferencias con respecto a A∞. El primer capítulo de esta tesis
se puede ver como un listado de técnicas que pueden ser útiles a la hora de trabajar
con estos pesos.

La clase Cp de pesos fue introducida por Muckenhoupt en [100], y está relacionada
con la desigualdad en norma pesada entre la transformada de Hilbert y la función
maximal de Hardy�Littlewood. Esta desigualdad había sido probada para pesos A∞
por Coifman y Fe�erman [20], pero, como Muckenhoupt demostró, existen más pesos
para los cuales se cumple. Encontró una condición necesaria para que esta desigualdad
se cumpla, y la bautizó Cp. La p en el nombre Cp responde al exponente de la norma Lp

pesada entre la transformada de Hilbert y la función maximal de Hardy�Littlewood.
Desafortunadamente, Muckenhoupt no pudo demostrar que la condición sea también
su�ciente, pero sí que llegó a conjeturarlo. Esta conjetura, hoy en día conocida como
la conjetura de Muckenhoupt, aún sigue sin resolverse.

Poco después de los resultados de Muckenhoupt, Sawyer estudió el problema en
dimensiones superiores [109]. Usando métodos similares a los de Muckenhoupt, de-
mostró que Cp es una condición necesaria para que la desigualdad en norma pesada en-
tre cada una de las transformadas de Riesz y la función maximal de Hardy�Littlewood.
Esto es una generalización directa de los resultados de Muckenhoput a dimensiones



superiores. Pero no sólo esto, en el mismo trabajo Sawyer demostró que la condición
Cq es su�ciente para que la desigualdad en Lp se cumpla, siendo 1 < p < q. Es perti-
nente en este momento comentar que estas clases están ordenadas en el sentido de que
Cp contiene a Cq siempre que p < q, es decir, Cq es una condición más restrictiva que
Cp. Es más, Sawyer demostró que, en este caso, la desigualdad se cumple para todo
operador de Calderón�Zygmund. Claramente, los resultados de Sawyer no resuelven
la conjetura de Muckenhoupt, pero es una gran respuesta parcial.

Aunque la conjetura no esté resuelta, había esperanza para una solución sencilla
en términos de automejora. Es abiertamente conocido que un peso en Ap pertenece
a Ap−ε para cierto ε > 0 pequeño que depende del peso. Si una condición similar se
cumpletra en el contexto de Cp, la conjetura se resolvería automáticamente. Pero no
es así, como probaron Kahanpää y Mejlbro [69]. En dimensión uno y para cualquier
p > 1, construyeron un peso que pertenece a Cp pero no a ningún Cq si q > p. En
la sección 2.9 damos una generalización de este resultado a un contexto un poco más
general, dando una nueva prueba del mismo resultado. Estas construcciones juegan
con la geometría del soporte del peso, lo que es un ejemplo del comportamiento extraño
que estos pesos pueden tener.

Unos años después del resultado de Kahanpää y Mejlbro, una desigualdad nueva
fue demostrada en el contexto de Cp. En [117], Yabuta demostró que la desigualdad de
Fe�erman�Stein se cumple en Lp con peso si el peso está en Cq para algún 1 < p < q.
Esta desigualdad es la desigualdad en norma con peso entre el operador maximal de
Hardy�Littelwood y el operador maximal agudo de Fe�erman�Stein, que se cumple
para funciones acotadas con soporte compacto. En este contexto, la necesidad de Cp
también fue probada, lo que establece el paralelismo entre esta desigualdad y la de
Coifman�Fe�erman. Estas dos desigualdades estan estrechamente relacionadas, con
lo que es esperable este tipo de paralelismos.

Los resultados mencionados anteriormente eran los únicos resultados conocidos
durante un largo tiempo, hasta que este problema fue revisitado. Lerner dio un
paso en adelante en la solución de la conjetura de Muckenhoupt. Introdujo una clase,
llamada C̃p que está contenida en Cp y contiene a Cq si 1 < p < q, y demostró que esta
clase es su�ciente para que se cumplan tanto la desigualdad de Coifman�Fe�erman
como la de Fe�erman�Stein.

Varias estimaciones para distintos operadores pueden encontrarse en el trabajo
de Cejas, Li, Pérez y Rivera-Ríos [17]. Entre estas estimaciones están algunas de-
sigualdades de tipo débil, así como desigualdades con operadores multilineales de
Calderón�Zygmund.

Pese a que en la última década, se han cuanti�cado satisfactoriamente varias de-
sigualdades con peso en términos del peso, esto sólo ha ocurrido para pesos Ap o A∞.
En esta tesis presentamos una manera de hacer lo mismo para pesos Cp, y daremos
una cuanti�cación de las desigualdades de Coifman�Fe�erman y de Fe�erman�Stein.
Para ello, presentamos una constante, llamada la constante Cp del peso, que codi�ca
el tamaño del peso en la clase Cp. La idea es que cuanto más pequeña sea la constante,
mejor es el peso.

Una vez hemos de�nido esta constante, demostramos una desigiualdad inversa de
Hölder, más débil que la estándar, que caracteriza la clase Cp. Cuanti�camos el expo-
nente de esta desigualdad en términos de la constante Cp. Esta cuanti�cación es en
realidad un resultado paralelo a la desigualdad de Hölder inversa precisa de Hytönen,
Pérez y Rela , [62, 63]. Por este motivo, a�rmamos que nuestra cuanti�cación es
también precisa.

La de�nición de la constante Cp, así como la desigualdad de Hölder inversa, están
contenidas en el capítulo 2. Además, en ese capítulo se encuentra una discusión de la
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propia clase Cp, algunas de sus propiedades principales y algunos ejemplos. También
expandimos el contraejemplo de automejora de Kahanpää y Mejlbro. Nuestra prueba
se generaliza a dimensiones superiores.

La traducción de la cuanti�cación de la desigualdad de Hölder inversa a las cuan-
ti�caciones de las desigualdades en norma no es difícil una vez que sean identi�cadas
las herramientas que son necesarias. En este caso, utilizamos una desigualdad de los
buenos lambdas que tomamos prestada desde [7]. Esta desigualdad combinada con
nuestra desigualdad de Hölder inversa nos permite ontener una desigualdad cuanti�-
cada de la desigualdad de Coifman�Fe�erman. Aun así, debido al comportamiento no
local de las clases Cp, aparece un término logarítmico en la constante, con lo que no
podemos decir que esta dependencia sea precisa. El término logarítmico es totalmente
inevitable mediante nuestros métodos.

Aunque por lo general los operadores sparse suelen dar resultados precisos en tér-
minos de la constante de los pesos, en este caso no es así debido a la naturaleza no
local e estos pesos. Aún así, damos estimaciones de estos operadores en el contexto de
Cp, que aunque no sean precisas no dejan de ser interesantes por su novedad, ya que
incluso de manera cualitativa no eran conocidas hasta ahora. La cuanti�cación de la
desigualdad de Coifman�Fe�erman para operadores de Calderón�Zygmund, operado-
res integrales singulares rough y formas sparse está en el Capítulo 3. La cuanti�cación
de la desigualdad de Fe�erman�Stein se pospone hasta el Capítulo 4, en el que también
demostramos una desigualdad de los buenos lambdas entre los operadores maximal y
maximal agudo con el decaimiento correcto, que es exponencial.

Estimaciones para BMO

La segunda parte de esta tesis está dedicada a obtener estimaciones para funciones de
tipo BMO y está contenida en los capítulos 4 y 5.

El espacio de funciones de oscilación media acotada, BMO, es un espacio clásico
en el análisis matemático. Sirve como una alternativa adecuada a L∞ en ciertos casos,
como, por ejemplo, la integral singular de una función acotada no está acotada pero
sí en BMO. Aunque es más grande que L∞, (y por tanto es una condición más débil)
este espacio es su�cientemente grande como para servir de punto de interpolación.

Más allá de ser el sustituto de L∞ en alguna situación, el espacio BMO es in-
teresante por derecho propio. La propiedad más importante es el teorema de John�
Nirenberg, que a�rma que estas funciones son en realidad localmente exponencial-
mente integrables. Esto puede verse como una propiedad de automejora, ya que
empezando con una condición de integrabilidad L1, obtenemos una integrabilidad ex-
ponencial. Fenómenos parecidos ocurren para otros objetos, como desigualdades de
Poincaré o de Poincaré�Sobolev, y también para objetos geométricos como condiciones
de densidad de capacidad como en el Capítulo 6.

En relación a el espacio BMO, está la función maximal aguda de Fe�erman�Stein.
Que esta función esté acotada es equivalente a que la función original esté en BMO.
Pero esta no es la primera vez que esta función maximal aparece en esta tesis, ya
que ya apareció de manera tangencial en relación a los pesos Cp. Fue Yabuta quien
demostró en [117] la relación entre la función maximal de Hardy�Littlewood y la
función maximal aguda de Fe�erman�Stein en el contexto de pesos Cp.

Para obtener una cuanti�cación de esta desigualdad en términos de la constante
Cp del peso, necesitábamos una desigualdad de los buenos lambdas con decaimiento
exponencial entre las funciones maximales de Hardy�Littlewood y Fe�erman�Stein.
Una desigualdad de estas características no estaba disponible, así que para obtenerla
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trazamos un nuevo camino, que nos llevó a obtener dos extensiones del teorema de
John�Nirenberg. La cuanti�cación de la desigualdad de Fe�erman�Stein para pe-
sos Cp aparece como consecuencia natural de estas extensiones, pero también siguen
resultados adicionales.

Entre las consecuencias obtenidas de las extensiones de John�Nirenberg, está una
versión de una desigualdad con peso de Muckenhoupt y Wheeden. Esta desigualdad
con peso para pesos Ap se puede interpretar como un resultado de automejora, porque
empezando con integrabilidad de L1 sin peso obtenemos Lr,∞ con peso para algún
r > 1.

Las extensiones de John�Nirenberg y sus consecuencias están en el capítulo 4.
Como hemos comentado anteriormente, el teorema de John�Nirenberg se puede

interpretar como un resultado de automejora. Partiendo de cotas para oscilaciones de
tipo L1 obtenemos cotas para oscilaciones de tipo exponencial. Tenemos un punto de
partida, en este caso, oscilaciones medias acotadas, y mejoramos ese punto de partida
a una condición mejor, en este caso la integrabilidad exponencial. Una pregunta
natural sería si se puede tomar un punto de partia más débil, es decir, si empezando
con una condición más suave que BMO se puede obtener el mismo resultado. Si es
así, ¾cuán débil puede ser esa condición?

Esta no es una nueva pregunta, ya que fue planteada por John [65] y por Strömberg
[113]. La condicion minimal correcta para BMO es la oscilación media acotada en
términos de oscilaciones Lϕ para una función cóncava ϕ, que puede arbitrariamente
lento. Recientemente, Logunov, Slavin, Stolyarov, Vasyunin y Zatitskiy [90] dieron
una estimación explícita y cuantitativa de este resultado, dando una estimación de la
norma de BMO de la función en términos de la escala de ϕ. Esta estimación tiene
la desventaja de que no es homogénea en la función. En este trabajo, damos una
prueba nueva y completamente transparente del mismo resultado, que resulta en una
estimación homogénea. Nuestra prueba se puede extender a otras geometrías.

También estudiamos el mismo problema en contextos más generales que la ge-
ometría euclídea. Por ejemplo, extendemos nuestros resultados a espacios de tipo
homogéneo, que son espacios quasi-métricos con una medida doblante. Podemos re-
alizar esta extensión porque nuestro método en el espacio euclídeo es bastante sencillo
y por tanto fácilmente generalizable. Es más, también utilizamos la geometría pe-
culiar de Rn para obtener el mismo resultado para ciertas medidas no doblantes en
Rn. No podemos dar el mismo resultado en espacios métricos generales con medidas
no doblantes, ya que la geometría de Rn es muy especial. Todos estos resultados de
minimalidad de BMO están en el Capítulo 5.

Capacidades de Hajłasz

En la última parte de esta tesis, el capítulo 6, tratamos condiciones de densidad de
capacidad en términos de gradientes de Hajªasz y su automejora en espacios métricos
abstractos. Esta es la primera vez se obtiene la automejora de una condición de
densidad de capacidad en términos de un gradiente no local. La manera en que esta
última parte está conectada con el resto de la tesis no es del todo trivial. Empezamos
intentando demostrar propiedades de automejora de ciertas desigualdades de Hardy
fraccionarias en espacios métricos abstractos, lo que estaría más conectado con la
Sección 4.5. Tal resultado no pudo ser obtenido, pero en su búsqueda dimos con los
resultados que aquí presentamos.

El estudio de automejora de condiciones de densidad de capacidades fue iniciado
por Lewis [88], donde se estudió la automejora de una condición de densidad de
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capacidad en términos de potenciales de Riesz en Rn. A este resultado le siguió el
trabajo de Mikkonen [98], donde se obtuvieron estimadas de tipo Maz'ya con peso
para el p-Laplaciano, así como el trabajo de Björn, MacManus y Shanmugalingam
[6], donde se obtuvieron estimaciones parecidas en espacios métricos. En este último
trabajo, se utilizan gradientes superiores, que son una manera de introducir el concepto
de derivada a espacios métricos. Estos gradientes superiores son objetos locales, ya
que su valor solamente depende de un entorno del punto.

En este trabajo, trabajaremos con gradientes de β-Hajªasz, que fueron introducidos
por Hajªasz en [49] para β = 1. Su naturaleza es altamente no local por su de�nición,
pero asimismo su de�nición es bastante natural. En el caso fraccionario 0 < β < 1,
la misma de�nición aparece de manera orgánica. Es más, se puede demostrar que los
gradientes superiores son en realidad gradientes 1-Hajªasz, lo que de alguna manera
quiere decir que los gradientes de Hajªasz son algo más generales y una herramienta
más versátil que los gradientes superiores.

Una de las ventajas principales de trabajar con estos gradientes de Hajªasz es que
las desigualdades de Poincaré se cumplen para todo exponente sin ninguna hipótesis
extra en la medida. Es decir, para cualquier función y cualquiera de sus posibles
gradientes de Hajªasz se cumple la desigualdad de Poincaré pertinente, ver Sección 6.8.
Esto no es cierto para otras derivadas, como los gradientes superiores, y normalmente
al trabajar con estos gradiente se requiere la hipótesis ad hoc de que desigualdades
de Poincaré se cumplan. Esta hipótesis extra excluye ciertos espacios de medida
doblantes en R, ver [5].

En este trabajo, introducimos una condición de densidad de capacidad similar
a otras condiciones de densidad de capacidad, pero en términos de gradientes de
Hajªasz . Esta condición depende de dos parámetros, el orden de derivación β y el
parámetro de tamaño p, que se mide en términos de integrabilidad. Probamos que esta
condición de densidad de capacidad se automejora en ambos parámetros β y p. Más
precisamente, demostramos que un conjunto E satisface una condición de densidad
de (β, p)-capacidad si y sólo si su codimensión superior de Assouad es estrictamente
menor que βp. Es decir, siempre habrá un pequeño margen para bajar un poco tanto
β como p de manera que su producto siga siendo mayor que la codimensión superior
de Assouad del conjunto.

Esta caracterización de la condición de densidad de capacidad en términos de la
codimensión superior de Assouad es bastante técnica. Es moderadamente sencillo
demostar que la cota en la codimensión implica la condición de densidad de capaci-
dad, utilizando una desigualdad de tipo Maz'ya. También es relativamente sencillo
demostrar que la condición de densidad de capacidad implica una cota no estricta en
la codimensión de Assouad. La parte complicada es obtener la cota estricta.

Para ello, combinamos una técnica de utilizar desigualdades de Poincaré y de
Hardy en este contexto, y utilizamos técnicas conocidas de automejora para estas
desigualdades. El estudio de estas propiedades de automejora fue iniciada por Keith
y Zhong en el celebrado trabajo [71]. En este camino, nos unimos a una línea de
investigación iniciada por Korte, Lehrbäck y Tuominen en [76], donde relacionaron
una condición similar a nuestra condición de densidad de capacidad a desigualdades
de Hardy. Combinamos todos estos métodos y los adaptamos a nuestro contexto para
demostrar nuestros resultados.
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1

Introduction

This thesis is the compilation of the results obtained during my PhD, which started in
January 2018 and is being completed in the end of 2021. The main matter is divided
into �ve chapters, Chapters 2�6. Each of these chapters has its own introductory
part, some longer some shorter. This chapter is intended to be an introduction to the
whole thesis. Without going into technical details, in this Chapter we will not only
motivate the results and the content of the dissertation, but we also explain how and
why these results came to be studied. We also introduce the main notation and some
preliminary concepts that will be used throughout the dissertation.

1.1 The Cp class

One of the main concepts in Analysis, and more in particular in Harmonic Analysis,
is the class A∞ of weights. This class was introduced my Muckenhoupt in the 70's
and has since shaped the history of harmonic analysis. Among the many important
properties of A∞ weights, there is the doubling property, which grosso modo states
that the weighted measure of a big ball is controlled by the weighted measure of
smaller balls contained in it, provided that the ratio between the radii is controlled.

Although A∞ weights are so important and we do use them in this dissertation,
we are mainly concerned with the Cp class. Due to the di�culty of working with this
class of weights, there is not a systematic treatment of it. One of the di�culties of
the Cp weights is that they need not be doubling, which is one of the main di�erences
of these classes with A∞. The �rst chapter of this thesis can be seen as a collection
of techniques that can be useful for working with the Cp classes.

The Cp classes of weights were introduced in [100] by Muckenhoupt, and are re-
lated to the weighted norm inequality between the Hilbert transform and the Hardy�
Littlewood maximal function. This inequality had been shown to hold in any dimen-
sion for A∞ weights by Coifman and Fe�erman [20], but, as Muckenhoupt proved,
there are more weights for which that inequality holds. He found a necessary con-
dition, which he denoted Cp. The p in the name Cp refers to the exponent for the
weighted Lp norm inequality between the Hilbert transform and the Hardy�Littlewood
maximal operator. Alas, Muckenhoupt was not able to prove that this condition is suf-
�cient for the norm inequality to hold, but he conjectured that it is. That conjecture,
known as Muckenhoupt's conjecture, is still not solved.

Shortly after Muckenhouopt's results, Sawyer studied the problem in higher dimen-
sions [109]. Using the methods of Muckenhoupt, he proved that Cp is a necessary con-
dition for the norm inequality between all Riesz transforms and the Hardy�Littlewood
maximal operator to hold. This is a direct generalization to higher dimensions of the



result by Muckenhoupt. But not only this, Sawyer was able to prove that Cq condition
is su�cient for the Lp norm inequality to hold, when q > p > 1. It is pertinent to
comment here that these classes are nested in the sense that Cp contains Cq for p < q,
that is, Cq is a stronger condition than Cp. Moreover, Sawyer proved that, in this case,
the inequality actually holds for all Calderón�Zygmund operators. That inequality is
known as the Coifman�Fe�erman inequality. Clearly, the result of Sawyer does not
directly solve the conjecture, but it is a great partial answer.

Even if the conjecture was not solved, there was hope for an easy solution in the
terms of self-improvement. It is well known that a weight in Ap belongs to Ap−ε for
some small ε > 0 that depends on the weight. If a similar property were to hold for
Cp weights, that is, if for a weight in Cp there would exist a positive ε > 0 such that
the weight belonged to Cp+ε, then Sawyer's result would imply the positive answer
to the conjecture. That hope was hastily dismissed by Kahanpää and Mejlbro [69],
who, in dimension one and for any p > 1, constructed a weight that belongs to Cp
but not to Cq for any q > p. This construction plays with the support of the weight
and serves as an example of the strange behavior that Cp weights can have.

A few years later, a di�erent type of inequality was proved to hold in the context of
Cp weights. In [117], Yabuta showed that the Fe�erman�Stein inequality in weighted
Lp spaces holds for Cq weights if q > p > 1. This inequality is the weighted norm
inequality between the Hardy�Littlewood maximal function and the Fe�erman�Stein
sharp maximal function, and it holds for bounded functions of compact support. In
the same work, the necessity of the weight belonging to Cp was also proved. There-
fore, the same dynamic as for the Coifman�Fe�erman inequality also happens for the
Fe�erman�Stein inequality. These two inequalities are deeply related, so the paral-
lelism for Cp weights between both of them is understandable.

The results mentioned above were the only results on Cp weights for a long time,
until the problem was revisited once again. Lerner made a step forward in solv-
ing Muckenhoupt's conjecture in [83]. He introduced what he called the class C̃p
of weights, which is contained by Cp and contains Cq for all q > p. He actually
showed that this new class is su�cient for the Fe�erman�Stein inequality to hold and,
therefore, also the Coifman�Fe�erman inequality to hold.

Many estimates for Cp weights were also given by Cejas, Li, Pérez and Rivera-Ríos
in [17]. In that work, a wide collection of new estimates are given for Cp weights, that
include weak-type Coifman�Fe�erman estimates and also Coifman�Fe�erman esti-
mates for linear operators that satisfy a condition involving the Fe�erman�Stein max-
imal operator. Among these operators one can �nd multilinear Calderón�Zygmund
operators, some pseudodi�erential operators, and many others.

Not only that, but in [86] Lerner characterized the class of weights for which the
Fe�erman�Stein inequality holds in weighted weak Lp spaces. This class of weights
obtained the name SCp, standing for strong Cp. This class is stronger than Cp but
weaker than Cq if q > p.

In the last decade, many quantitative inequalities have been found for weights of
classes Ap or A∞. The most important of such results is probably the solution of
the A2 conjecture. Proved by Hytönen [61], it states that the weighted L2 norm of
a Calderón�Zygmund operator is controlled by the A2 constant of the weight with a
linear dependence. This result was later improved by Hytönen and Pérez in [62] where
the authors combine the A2 constant with the A∞ constant, which is a more precise
mixed-type estimate.

Although many norm weighted inequalities have been satisfactorily quanti�ed in
terms of the weight, this has only happened in the setting of Ap or A∞ weights. In
this thesis we present a way of obtaining quantitative estimates for Cp weights, and
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we actually give a quanti�cation of both Coifman�Fe�erman and Fe�erman�Stein
inequalities. In order to do that, we introduce a constant, called the Cp constant of
the weight, that encodes the size of the weight in the Cp class. The idea is that the
smaller the constant is, the better the weight is.

Once the constant is de�ned, we obtain a weak reverse Hölder inequality for Cp
weights, in which the dependence of the reverse Hölder exponent is quanti�ed by the
Cp constant. This quanti�cation is actually the same as in the sharp Reverse Hölder
inequality for A∞ weights proved by Hytönen, Pérez and Rela in [62] and [63]. That
is why we claim that our reverse Hölder inequality we present for Cp weights is also
sharp.

The de�nition of the Cp constant and the reverse Hölder inequality are contained
in Chapter 2. In this chapter, we provide a discussion on the Cp class itself, some of
its main properties and a few examples. Also, we expand on the counterexample of
Kahanpää and Mejlbro that disproves the self-improvement of Cp weights. We give a
new proof of this fact that can be expanded to higher dimensions.

The translation of the quanti�cation of the reverse Hölder inequality to the quan-
ti�cation of the Coifman�Fe�erman inequality is not a di�cult task once the correct
tools are identi�ed. The most important tool is a good-λ inequality with exponential
decay between the Calderón�Zygmund and the maximal Hardy�Littlewood operators,
that we borrow from [7]. This inequality, combined with the sharp reverse Hölder in-
equality allows us to obtain a quanti�cation of the Coifman�Fe�erman inequality for
Cp weights. Nevertheless, due to the non-local nature of Cp weights, a logarithmic
dependence on the constant is added, and not the desired linear dependence. This
extra logarithmic term is unavoidable by our methods.

We are also able to prove Coifman�Fe�erman inequalities for more general opera-
tors. Precisely, rough homogeneous singular integral operators. The lack of regularity
of the kernel of these operators makes it impossible for them to satisfy a good-λ in-
equality, less one with exponential decay. Therefore, we need to use the technique
of sparse domination in order to prove Cp Coifman�Fe�erman inequalities for rough
operators. To the best of our knowledge, no Cp estimate was known to be satis�ed
by rough operators until our result.

Although the sparse domination technique is known for delivering sharp estimates
on weights, that is not the case for Cp weights, sadly. Here, the intricate non-local
properties of Cp weights make sparse domination technique not optimal, so the es-
timates obtained for rough operators do not look sharp at all. Nevertheless, their
novelty makes them interesting, since such weighted estimates had not been proven
before, even qualitatively. The quanti�cation of Coifman�Fe�erman inequalities for
Calderón�Zygmund operators, rough homogeneous singular integrals and sparse forms
is given in Chapter 3. The quanti�cation of the inequality of Fe�erman�Stein is post-
poned until Chapter 4, where we obtain a good-λ inequality with exponential decay
between the Hardy�Littlewood maximal operator and the sharp maximal function of
Fe�erman�Stein.

1.2 BMO estimates

The second part of the dissertation is devoted to obtaining estimates for BMO func-
tions, which is contained in Chapters 4 and 5.

The space of functions of bounded mean oscillation, BMO, is a classical space
in analysis. It serves as an adequate alternative for L∞ in some cases, for example,
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the singular integral of a bounded function is not bounded, but lies in BMO. Al-
though the space is larger than L∞ (and therefore the BMO condition is weaker than
boundedness), BMO is strong enough to be used as an interpolation end-point.

Even though it can be used to substitute L∞ in some cases, the space BMO is
interesting in its own right. The most important property of this space is the John�
Nirenberg theorem, that states that these functions are actually locally exponentially
integrable. This can be seen as a self-improvement result on integrability, since start-
ing from an L1 integrability condition we obtain an exponential integrability condition.
Similar phenomena hold for Poincaré and Sobolev�Poincaré inequalities, as shown in
[107], and also for capacity density conditions as in Chapter 6.

Related to the BMO space, there is the Fe�erman�Stein sharp maximal function.
This function being in L∞ is equivalent to the original function being in BMO. But
this is not the �rst time this maximal object appears in this dissertation, since we
already dealt with it tangentially while talking about Cp weights. It was Yabuta
[117] who showed the relation between the Hardy�Littlewood and the Fe�erman�Stein
maximal functions in the context of Cp weights, which is called the Fe�erman�Stein
inequality.

In order to get a precise quanti�cation of the Fe�erman�Stein inequality for Cp
weights, we needed a good-λ type inequality between the Hardy�Littlewood and the
Fe�erman�Stein maximal functions. More precisely, we needed a good-λ inequality
between them with an exponential decay. Such an inequality was not available to us
in the literature, so in order to prove it, we took a new route. This new route led
us to �nding some extensions of the John�Nirenberg theorem. The quanti�cation of
the Fe�erman�Stein inequality for Cp weights comes naturally following one of those
extensions of the John�Nirenberg theorem, but further consequences also follow.

Among the consequences that were obtained from the extensions of the John�
Nirenberg theorem, we �nd a version of a weighted inequality of Muckenhoupt and
Wheeden. This weighted inequality for Ap weights can be seen as a self-improvement
result, since starting from a local unweighted L1 estimate we obtain a weighted Lr,∞

estimate for some r > 1.
The extensions of the John�Nirenberg theorem, along with their consequences and

generalizations are presented in Chapter 4.
As we commented before, John�Nirenberg can be seen as a self-improvement result.

That is, a function that a priori has uniformly bounded L1-type oscillations actually
has uniformly bounded exponential-type oscillations. We have a starting point, in
this case, the function belonging to BMO and we improve that starting point to a
better condition, in this case, exponential integrability. A natural question to be asked
is if this starting point can be weaker, that is, can we have a softer condition that
self-improves to BMO? If so, how much can we weaken this condition?

This is not a new question, it was already addressed by John in [65] and Strömberg
in [113]. The correct minimal condition for BMO is the uniform boundedness of Lϕ-
oscillations for a concave function ϕ, which can grow as slow as we want. More
recently, an explicit quantitative estimate of the BMO norm in terms of the scale
function ϕ was given by Logunov, Slavin, Stolyarov, Vasyunin and Zatitskiy in [90].
This estimate for the norm has the disadvantage of not being homogeneous on the
function. We present a new proof of the same minimality that yields a homogeneous
norm estimate, also being completely transparent. Our proof can also be extended to
other geometries.

We will also study the same problem in more general contexts beyond euclidean
spaces. For example, we extend our methods to spaces of homogeneous type, which
are quasi-metric spaces equipped with a doubling measure. We can do this because
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the method for the euclidean case is quite transparent and it can easily be generalized.
Moreover, we can also use the geometry of Rn to obtain similar results for non-doubling
measures in Rn. We are not able to obtain the same results in abstract quasi-metric
(or even metric) spaces without doubling of the measure, because we use special
properties of the geometry of Rn in this case. All these results concerning minimality
for BMO are developed in Chapter 5.

1.3 Hajłasz capacity density condition

The last part of this thesis, Chapter 6 concerns capacity density conditions in terms
of Hajªasz gradients and their self-improvement in abstract metric spaces. This is the
�rst time that a capacity density condition concerning non-local gradients is proved
to be self-improving in metric spaces. The way this chapter is connected to the
thesis is not as straightforward as the previous chapters. We started trying to prove
self-improvement properties of fractional Hardy inequalities in metric spaces, that is
somewhat related to the self-improvement of Poincaré inequalities of Section 4.5. The
improvement of Hardy inequalities was not obtained but, in the process, we started
working with Hajªasz gradients and eventually came to our results.

The study of self-improvement of capacity density conditions can be tracked back
to the seminal work of Lewis [88], in which self-improvement of a capacity density
condition concerning Riesz potentials was established on Rn. This result was followed
by the work of Mikkonen [98] in which p-Laplace weighted Maz'ya estimates were
obtained, and also by the work of Björn, MacManus and Shanmugalingam [6] in
which similar estimates were obtained in metric spaces. This last result uses upper
gradients, which are a way of de�ning derivatives of functions in metric spaces. Upper
gradients are local objects, since their value only depends on a neighborhood of the
point.

We work with β-Hajªasz gradients, which were introduced in [49] for β = 1. Their
nature is non-local because of their de�nition, but that same de�nition is at the
same time quite natural. In the fractional case 0 < β < 1, the same de�nition
appears naturally. Moreover, upper gradients can be shown to be 1-Hajªasz gradients,
which makes Hajªasz gradients a slightly more general and versatile tool than upper
gradients.

One of the main advantages of working with Hajªasz gradients is that Poincaré
inequalities hold without any extra assumption on the measure. That is, for any
function and any Hajªasz gradient of it, a local Poincaré inquality holds, see Section
6.3. This is not true for other derivatives, such as upper gradients, and usually those
kind of settings require extra hypotheses that exclude some interesting cases such as
certain doubling measures in R, see [5].

We introduce a capacity density condition similarly as other capacity density con-
ditions, but in terms of Hajªasz gradients. This condition thus has two parameters,
the derivative order β and the size parameter p in terms of integrability. We prove
that our condition is self-improving in both β and p. More precisely, we prove that
a set E satis�es a (β, p)-capacity density condition if and only if its upper Assouad
codimension is strictly smaller than the product βp. That is, there is always a small
room for lowering both β and p in a way that their product is still strictly greater
than the upper Assouad codimension.

The characterization of the capacity density condition in terms of the Assouad
codimension is quite technical. It is fairly easy to prove that the strict bound on
the Assouad codimension implies the capacity density condition, using an inequality
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of Maz'ya type. It is also not di�cult to prove that the capacity density condition
implies that the Assouad codimension is smaller or equal to the product βp. The
di�cult part is proving that this bound is strict.

In order to do that, we combine a technique of using Poincaré inequalities and
Hardy-type inequalities to this setting, and we also use some techniques of self-
improvement of Poincaré inequalities. The study of such self-improvement properties
was initiated by Keith and Zhong in thier celebrated work [71]. In this respect, we
joint the line of research initiated by Korte Lehrbäck and Tuominen in [76] in which a
condition similar to our capacity density condition was related to Hardy inequalities.
In [74], a maximal function approach for these methods was proposed to obtaining
Poincaré inequalities. We combine all the methods above for Hardy and Poincaré
inequalities, and we elaborate on those arguments to obtain our results concerning
capacity density conditions.

1.4 Preliminaries and notation

This thesis has several parts that are contained in a few works that have been de-
veloped with di�erent sets of people at di�erent points in time. Therefore, keeping
a uni�ed notation has not been particularly easy and the notation in this document
may be di�erent to the notation in the referred works and even not-standard at some
points. I apologize in advance. I did my best to unify all this expressions and no-
tations to my liking and always trying to make everything easy to understand and
keeping it correct.

1.4.1 Basic notation

The characteristic function of a set E in an ambient space X will be denoted by χ
E
,

ignoring the ambient space. That is,

χ
E

(x) =

{
1, x ∈ E,
0, x 6∈ E.

For an exponent 1 ≤ p ≤ ∞, we use the standard notation p′ to denote the Hölder
conjugate exponent, that is, 1′ =∞, ∞′ = 1 and p′ = p/(p− 1) for 1 < p <∞.

By a weight we mean a nonnegative locally integrable function, usually denoted
by w. Although generally weights are assumed to be positive almost everywhere, we
will let them vanish on sets of positive measure for reasons that will become apparent
shortly. Abusing ever so slightly the notation, we identify the weight function w with
the measure that it de�nes, that is, for a measurable set F we write

w(F ) =

∫
F
w(x)dx,

where dx denotes the Lebesgue measure, or the measure of the ambient space. Clearly,
weighted measures are always absolutely continuous with respect to the ambient mea-
sure.
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A cube in Rn is a cartesian product of n intervals of the same length, usally
denoted by the letter Q. That is, a set of the form

Q =
n∏
j=1

[aj , bj ] = [a1, b1]× · · · × [an, bn].

Since all of our measures in Rn are absolutely continuous with respect to the Lebesgue
measures, it will not be of importance whether the intervals are open, closed or half-
open, since sets of measure zero will not matter in this context.

When we work on Rn, the Lebesgue measure will be denoted by | · |.
For a locally integrable function f , we will use two notations for averages over a

set Q, which will mostly be either a cube or a ball:

fQ = −
∫
Q
f(x)dx =

1

|Q|

∫
Q
f(x)dx.

In the context of a metric space (X,µ), the same notation will be used for averages,
that is, for a set E with �nite measure and an integrable function f , the average of f
over E will be denoted by

fE = −
∫
E
f(y)dµ(y) =

1

µ(E)

∫
E
f(y)dµ(y).

Another standard notation for averages, usually used in the context of sparse operators
and forms is the following one:

〈f〉Q = fQ = −
∫
Q
f(x)dx.

Moreover, with this notation we can denote also Lp-averages, that is, for a positive
function f ,

〈f〉p,Q =
(
(fp)Q

) 1
p =

(
−
∫
Q
f(x)pdx

) 1
p

.

Also, this notation allows us to incorporate weighted averages quite naturally:

〈f〉wp,Q =

(
1

w(Q)

∫
Q
f(x)pw(x)dx

) 1
p

.

We use standard Lebesgue and Lorentz spaces. That is, for a measure space (X,µ),
exponent 0 < p <∞, and a measurable function on X, we de�ne

� ‖f‖Lp(X) =

(∫
X
|f(x)|pdµ(x)

) 1
p

;

� ‖f‖L∞(X) = ess supx∈X |f(x)| = inf{M > 0 : µ({x ∈ X : |f(x)| > M}) = 0}.

� ‖f‖Lp,∞(X) = supt>0 tµ({x ∈ X : |f(x)| > t})
1
p .

1.4.2 The Hardy–Littlewood maximal operator

The Hardy�Littlewood maximal operatorM is de�ned for a locally integrable function
f de�ned on Rn as

Mf(x) = sup
x∈Q

1

|Q|

∫
Q
|f(y)|dy,
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where the supremum is taken over all cubes containing the point x. Taking open or
closed cubes does not change the result.

The Hardy�Littlewood maximal operator has the following boundedness properties
in Rn:

� ‖Mf‖Lp(Rn) ≤ κn (p′)
1
p ‖f‖Lp(Rn), for 1 < p ≤ ∞.

� ‖Mf‖L1,∞(Rn) ≤ 3n‖f‖L1(Rn).

For 0 < s <∞, the operator Ms is de�ned by the expression

Msf(x) = M(|f |s)(x)
1
s = sup

x∈Q

(
−
∫
Q
|f(y)|sdy

) 1
s

.

This operator has the following boundedness-properties:

� ‖Msf‖Lp(Rn) ≤ κn,p,s ‖f‖Lp(Rn), for s < p ≤ ∞.

� ‖Msf‖Ls,∞(Rn) ≤ κn,s‖f‖Ls(Rn).

The maximal operator can also be de�ned in metric spaces using balls, and it satis�es
the same boundedness properties.

1.4.3 Covering and decomposition techniques

For a �xed cube Q, the family of dyadic descendants of Q, D(Q) is obtained by
dividing Q into the 2n cubes that come from splitting each side of Q in two intervals
of half lenght, and iterating this process.

We state and prove the Calderón�Zygmund decomposition technique in its simplest
form. This useful technique was �rst used by Calderón and Zygmund to prove the
boundednes of some singular integral operators [10]. Although it can be done in
di�erent scenarios, such as the whole space Rn, we are going to describe how it can
be applied while working locally at some cube Q. The idea is to decompose the cube
Q into smaller cubes such that the function is somehow controlled in each of these
smaller cubes.

Lemma 1.1 – Calderón–Zygmund decomposition
Let Q be a cube in Rn and f ∈ L1(Q) such that |f |Q = 1. Choose a stopping-
time λ > 1. There exists a family of cubes Q = {Qj}j ⊂ D(Q) with the following
properties:

� The cubes in Q are pairwise disjoint;

� For each Qj ∈ Q, we have λ < −
∫
Qj

|f(y)|dy ≤ 2n λ;

�
∑
Qj∈Q

|Qj | ≤
|Q|
λ

;

� for almost every x ∈ Q \
⋃
Qj∈QQj , we have |f(x)| ≤ λ.

Proof. We use the following iteration. We divide Q into its 2n children and test the
condition

−
∫
P
|f(y)|dy > λ, (1.1)

8 Chapter 1. Introduction



for each P dyadic child of Q. We add the ones that satisfy (1.1) to the family Q. For
the non chosen children, we divide them into their children and continue the process.

The obtained family is clearly pairwise disjoint. The second property holds because
each of the chosen child satis�es (1.1) and its direct parent does not. The third
property also follows from (1.1), since∑

Qj∈Q
|Qj | <

1

λ

∑
Qj∈Q

∫
Qj

|f(y)|dy ≤ 1

λ

∫
Q
|f(y)|dy =

|Q|
λ
.

The last property follows from the Lebesgue di�erentiation theorem.

Lemma 1.2 – Vitali covering
Let X be a space of homogeneous type and let B be a collection of balls in X with
bounded radius. There exists a subcolection B∗ ⊂ B of pairwise disjoint balls such
that ⋃

B∈B
B ⊆

⋃
B∈B∗

κ(4κ+ 1)B. (1.2)

Proof. Let R denote the supremum of the radii of balls in B. Divide the family B into
Bn containing the balls in B with radius in (2−n−1R, 2−nR], for n ≥ 0. We de�ne a
sequence of families as follows. Let H0 = B0 and let B∗0 be a maximal subcollection
of H0 of pairwise disjoint balls, which exists by Zorn's Lemma. Then, we de�ne
inductively

Hn+1 = {B ∈ Bn+1 : B ∩ C = ∅, for all C ∈
n⋃

m=0

B∗},

and B∗n+1 a maximal subcollection of pairwise disjoint balls of Hn+1. Then the family

B∗ =
∞⋃
n=0

B∗

consists of pairwise disjoint balls and satis�es (1.2).

1.4.4 Good-λ inequalities

In this section we introduce the technique of good-λ inequalities that will be used
throughout the dissertation. First, we will use what we call the layer-cake formula or
Cavalieri principle. [45, Proposition 1.1.4]

Lemma 1.3 – Layer cake formula
Let (X,µ) be a measure space and ψ a di�erentiable nonnegative function on [0,∞).
Then for every positive function f on X, we have∫

X
ψ(f(x))dµ(x) =

∫ ∞
0

ψ′(t)µ({x ∈ X : f(x) > t})dt.

The following lemma is the in the same spirit as the layer cake formula, but it
constitutes a discretization on the height.
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Lemma 1.4
Let f ∈ Lp(X) for some measure space (X,µ). Then∫

X
f(x)pdµ(x) ≡p

∑
k∈Z

2kpµ({x ∈ X : f(x) > 2k}),

where the implicit constants only depend on p.

Finally, we introduce the good-λ technique that is used throughout the dissertation
many times.

Lemma 1.5 – Good-λ inequalities
Let (X,µ) be a measure space and let f, g be to functions satisfying

µ({x ∈ X : f(x) > t, g(x) ≤ λt}) ≤ ϕ(λ),

for all 0 < t <∞ and 0 < λ < 1, and some continuous function ϕ such that ϕ(0) = 0.
Then ‖f‖Lp(X) ≤ϕ,p ‖g‖Lp(X) for all 0 < p <∞.

Proof. We use the Layer cake formula in Lemma 1.3. We have

‖f‖Lp(X) = p

∫ ∞
0

tp−1µ
(
{x ∈ X : f(x) > t}

)
dt

≤ p
∫ ∞

0
tp−1µ

(
{x ∈ X : g(x) > λt}

)
dt

+ϕ(λ)p

∫ ∞
0

tp−1µ
(
{x ∈ X : f(x) > t}

)
dt

= λ−p ‖g‖Lp(X) + ϕ(λ) ‖f‖Lp(X).

Now, since ϕ is continuous and going to zero, one can choose λ small enough so that
ϕ(λ) ≤ 1

2 . Passing then the last term to the left hand side �nishes the argument.

10 Chapter 1. Introduction



2

The class Cp of weights

Some of the results in this chapter are contained in the following works:

[12] Canto, J. Sharp Reverse Hölder inequality for Cp Weights and Applications, The
Journal of Geometric Analysis (2021) 31: 4165�4190.

[13] Canto, J., Li, K., Roncal, L., Tapiola, O. Cp estimates for rough homogeneous
singular integrals and sparse forms, Annalli della Scuola Normale Superiore di
Pisa, clase di Scienze (5) Vol XXII (2021), 1131�1168.

In this chapter we will discuss and further develop the results from these two works
that focus on the structure of the Cp classes of weights. We de�ne the Cp constant,
prove a quantitative sharp Reverse Hölder inequality for Cp weights and show the lack
of self-improvement for these classes.

The results concerning quantitative weighted norm inequalities will be discussed in
the following chapter. Nevertheless, since weighted norm inequalities are intrinsically
tied to Cp weights, they will appear throughout this chapter.

First and foremost, let me make a probably silly but important comment that was
noted to me by Javier Martínez-Perales. The most annoying thing about working
with the Cp class is precisely its name, that is, the notation Cp. Usually in analysis,
whenever we want to emphasize that a quantity A is bounded by another quantity
B times a constant �that is somehow relevant but not that much� depending on a
parameter, say p, we write inequalities of the form

A ≤ Cp B.

The problem is therefore evident here: we should not use, in this text, the usual
notation of the ever-changing constant C and use subscripts to specify the parameters
in which this constant depends, because of the confusion it may cause as it is the name
of one of the main object of study in this thesis. That is why we will name these kind
of constants (whenever we are in the Cp context) by the letter κ.



2.1 Historical introduction

Weighted inequalities have been a core �eld of study in Harmonic Analysis since the
70's. It was Muckenhoupt [99] who introduced the Ap class of weights and proved
its characterization in terms of the boundedness of the Hardy�Littlewood maximal
function. Later, it was shown that Ap weights satisfy further properties, such as the
boundedness of the Hilbert transform [60] or Calderón�Zygmund operators [20] in
weighted Lebesgue spaces. Since Ap weights are not the target class of weights for
this dissertation, we will not go into detail on that topic, but we refer to [29, 40] for
more detailed information.

One of the most interesting properties of Ap weights is the reverse Hölder inequality
they satisfy, originally proved by Muckenhoupt. Without going into much detail at
the moment, this means that a weight in Ap will locally be Lq integrable, for some
1 < q < ∞, this q being the reverse Hölder exponent. A weight satisfying a reverse
Hölder inequality is called a Reverse Hölder weight, and the class of weights satisfying
a reverse Hölder inequality with exponent q is usually caled RHq, but it has sometimes
been denoted by Bq [8, Chapter 3]. It is not clear where the name Bq originated, but
it is reasonable to think that it comes as a continuation to Ap in the alphabet.

Let us make two remarks here about the Ap and Bq classes. First of all, a weight
is in some Ap if and only if it belongs to some Bq, but no relation between p and q can
exist. This was proved by Coifman and Fe�erman [20] who showed that the union of
all Ap classes and the union of all Bq classes coincide and equal A∞.

The second remark is their nestedness. That is, whenever p < q, we have the
inclusions Ap ⊂ Aq and Bq ⊂ Bp. This nestedness property is but a consequence of
the de�nitions of these classes and the (standard) Hölder inequality. But the important
key here is that there is self-improvement in some sense. That is, if a weight belongs
to Ap for some p, it also belongs to Aq for some q < p, this q depending on the weight.
The same is true for Bp, that is, a weight belonging to Bp also belongs to Bq for some
q > p, and this q depends on the weight. This fact was �rst proved by Ghering [41],
and it is a key fact in the Ap theory.

Continuing with the alphabet, the class Cp of weights was introduced by Mucken-
houpt in [100]. In its inception, it appeared as an attempt to characterize the weighted
norm inequality between the Hilbert transform and the Hardy�Littlewood maximal
function. That is, the original problem was to, for a �xed p, study which weights w
satisfy the norm inequality

‖Hf‖Lp(w) ≤ κ ‖Mf‖Lp(w), (2.1)

for all bounded f with compact support and κ independent from f , where H denotes
the Hilbert transform and M the Hardy�Littlewood maximal operator.

The answer to this problem has not been completely found, but partial answers
have been given. The �rst answers were by Muckenhoupt [100] and by Sawyer [109],
who established that w ∈ Cp is necessary for (2.1) and its analogue in higher dimen-
sions with the Riesz transforms, but the su�cient condition that was found there was
Cq for some q > p. More precisely, Sawyer proved the following su�cient condition.
If a weight is in Cq for 1 < p < q < ∞ and T is a Calderón�Zygmund operator, see
Chapter 3, there exists κ > 0 such that for all bounded functions f with compact
support, the following inequality holds

‖T ∗f‖Lp(w) ≤ κ‖Mf‖Lp(w), (2.2)

12 Chapter 2. The class Cp of weights



where T ∗ denotes the maximally truncated singular integral operator related to T ,
see Chapter 3.

Sawyer also proved that if there exists K > 0 such that for each of the Riesz
transforms Rj and bounded f with compact support, the following holds for some
1 < p <∞,

‖Rjf‖Lp(w) ≤ κ‖Mf‖Lp(w),

then the weight w is in Cp.
Understandingly, it was conjectured by Muckenhoupt that Cp is the correct su�-

cient condition. This conjecture is known as the Muckenhoupt conjecture.

Conjecture 2.1 – Muckenhoupt [100, 109]
Let 1 < p < ∞ and let w be a weight. Then w ∈ Cp if and only if there for each
Calderón�Zygmund operator T , there exists a constant κ such that for every bounded
function f with compact support, the following inequality holds

‖T ∗f‖Lp(w) ≤ κ ‖Mf‖Lp(w).

The most simple way of proving this conjecture would be, using the known su�-
cient conditions, to prove a self-improvement property between Cp classes. That is,
to prove that a weight in Cp belongs in Cq for some q > p. This is not true, as was
shown by Kahanpaa and Mejlbro in [69], see Section 2.9.

Another important norm inequality that is satis�ed by Cp weights is the
Fe�erman�Stein inequality. This is an inequality between a function f and the sharp
maximal function M ]f . A result by Yabuta [117] states that the Lp(w)-norm of
Mf is bounded by that of M ]f for weights in Cq for q > p, and Cp is necessary.
The parallelism between this result and that of Sawyer's is clear. A more detailed
discussion on the Fe�erman�Stein inequality will be given in Chapter 4, where also a
quantitative estimate is given.

2.2 A brief note on A∞ weights

In this section, we state a few well-known facts about the class A∞. Although this
class is not the target class of study on this Chapter, we have included this section in
order to establish parallelisms between A∞ and Cp, which is the main object of study
in this Chapter. The results in this section will not be proven here, but the reader is
welcomed to visit references on this topic such as [45, Chapter 7]

There are many equivalent de�nitions of A∞ weights, see for example an extensive
list on [30]. We choose to give this one here.

Definition 2.2
Let w be a weight. We say that w is an A∞ weight, and we write w ∈ A∞ if there
exist constants κ ≥ 1 and ε > 0 such that for all cubes Q ∈ Rn and all measurable
E ⊆ Q, the following inequality holds:

w(E) ≤ κ
(
|E|
|Q|

)ε
w(Q). (2.3)

2.2. A brief note on A∞ weights 13



We recall the de�nition of the A∞ constant of Fujii�Wilson, that was introduced
by Hytönen, Pérez and Rela in the works [62, 63] in order to give mixed type Ap-A∞
estimates.

Definition 2.3
Let w be a weight. The A∞ constant of w is the number

[w]A∞ = sup
Q

1

w(Q)

∫
Q
M
(
wχ

Q

)
(x)dx,

where the supremum is taken over all cubes Q.

It is a well known fact that A∞ weights satisfy a Reverse Hölder inequality, for
example, see Coifman and Fe�erman [20]. See also the books [29, 40] a more detailed
discussion on the topic.

Proposition 2.4
Let w be a weight. The following statements are equivalent

1. w ∈ A∞;

2. There exist δ > 0 and κ > 0 such that for all cubes Q,(
−
∫
Q
w(x)1+δdx

) 1
1+δ

≤ κw(Q)

|Q|
.

A quantitative version of this Reverse Hölder inequality was given by Hytönen,
Pérez in [62] and later by them and Rela in [63], in which the exponent is explicitly
given in terms of the Fujii�Wilson constant of the weight. We state it here.

Theorem 2.5 – Sharp Reverse Hölder Inequality for A∞ weights, [63]
Let w ∈ A∞ and let Q be a cube. Then(

−
∫
Q
w(x)1+δdx

) 1
1+δ

≤ 2−
∫
Q
w(x)dx,

for any δ > 0 such that 0 < δ ≤ 1
2n+1[w]A∞−1

.

In Section 2.5 we will give a version of this inequality for Cp weights.

2.3 Weights of class Cp

Let us give the de�nition for this class of weights as was given originally in [100] in R
and then in [109] for higher dimensions.

Definition 2.6
Let 1 < p < ∞. We say that a weight w is of class Cp, and we write w ∈ Cp if
there exist constants κ > 0 and ε > 0 such that for every cube Q ⊂ Rn and every
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measurable E ⊂ Q we have

w(E) ≤ κ

(
|E|
|Q|

)ε ∫
Rn

(Mχ
Q

(x))p(x)w(x)dx. (2.4)

Here M denotes the standard Hardy�Littlewood maximal operator, see Section 1.4.2.

At a �rst sight, the di�erence between Cp and A∞ is the appearance of the quan-
tity

∫
Rn(Mχ

Q
)pw in (2.4) playing the role that w(Q) plays in (2.3). This quantity

recurrently appears whenever Cp weights are on the menu, and its non local behavior
presents the main di�culties that arise in the study of these weights. We will call it
the �Cp-tail of w at Q�.

The way to interpret (2.4) is in a continuity sense, that w measures small sets in a
controlled way; that is, the ratio between the weighted measure w(E) and the Cp-tail
at Q has to be bounded by a power of the ratio between the Lebesgue measures of E
and Q.

Examples 2.7
Let us give a few examples of weights belonging to Cp.

� All A∞ weights are in Cp, see bellow.

� In dimension one, χ
(0,∞)

∈ Cp for all p.

� No integrable function can be Cp.

Let us make a digression and make a few comments on Cp-tails. First, note that
Mχ

Q
is a function that is positive everywhere, that takes value 1 in the cube Q and

tends to zero at in�nity. This makes it clear that any weight in the A∞ class belongs
to Cp. Moreover, since Mχ

Q
≤ 1, we have that for (Mχ

Q
)p ≥ (Mχ

Q
)q for p ≤ q,

which implies Cq ⊆ Cp for p ≤ q. In short, we have

A∞ ⊆ Cq ⊆ Cp, p ≤ q.

Later, we will show that these inclusions are strict whenever p < q.
Note that the inclusions go in the opposite way as for Ap, that satisfy Ap ⊂ Aq

for p ≤ q.
As mentioned before, Cp-tails play an important role in the analysis of Cp weights,

so let us take a look at them. First, let us take a look at the maximal function of the
characteristic of a cube, that is, Mχ

Q
. We have a pointwise estimate which will be

used many times throughout this dissertation.

Lemma 2.8
Let Q be a cube of side-lenght `(Q) and center xQ. There exist constants depending
only on the dimension n such that

Mχ
Q

(x) ' |Q|
|Q|+ dist(x,Q)n

' |Q|
(`(Q) + |x− xQ|)n

.

Lemma 2.9
Let Q be a cube and λ > 1. Then the following pointwise inequality holds almost
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everywhere,
Mχ

Q
(x) ≤Mχ

λQ
(x) ≤ λnMχ

Q
(x).

The proof of the preceding lemma can be generalized to not only dilates of cubes
but to nested cubes.

Lemma 2.10
Let P,Q be two cubes, such that Q ⊂ P . Then, for almost all x ∈ Rn the following
inequality holds,

Mχ
Q

(x) ≤Mχ
P

(x) ≤
(
|P |
|Q|

)n
Mχ

Q
(x).

Clearly, Lemma 2.10 says that Cp-tails of di�erent cubes can always be compared
if they are not too far away and their sizes are not too di�erent, loosely speaking.
This holds for all measures because the estimate in Lemma 2.10 is a pointwise one,
and therefore independent of the measure.

If we try to keep up the analogy with the A∞ counterpart, something similar still
holds. What we mean by this is that, if a weight is in A∞, two cubes that are not too
far away and whose sizes are not too di�erent then their weighted measures are also
not too di�erent. But here we do need that the weight belongs to A∞ because the
counterpart of Lemma 2.10 in the A∞ world, which would be a pointwise inequality
between characteristics of nested cubes fails drastically.

This small discussion, although somewhat loose and non-rigorous, pictures some
of the di�culties that arise while working with Cp weights, that is, their non-local
nature.

We also present the following interesting property, that states that in order to
compute the Cp-tail of a Cp weight w at a cube Q, the values that w takes inside
the cube Q are not really important, that is, we can make a hole in the cube while
computing the tail and still obtain an equivalent quantity.

Lemma 2.11
Let p > 1 and w ∈ Cp. Then there exists a constant κ = κp,w > 0 such that for any
cube Q we have ∫

Rn
Mχ

Q
(x)pw(x)dx ≤ κ

∫
Rn\Q

Mχ
Q

(x)pw(x)dx.

Proof. Let us �x a cube Q and set α = (2κw)
1

nεw , where κw and εw are the constants
in the de�nition of Cp (2.4). Notice that α ≥ 1. Now applying the Cp condition for
αQ and Q gives us

w(Q) ≤ κw
( |Q|
αn|Q|

)εw ∫
Rn

(
Mχ

αQ
(x)
)p
w(x)dx

=
1

2

∫
Rn

(
Mχ

αQ
(x)
)p
w(x)dx

≤ 1

2
w(Q) +

1

2

∫
Rn\Q

(
Mχ

αQ
(x)
)p
w(x)dx,
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since Mχ
αQ

= 1 on Q. In particular,

w(Q) ≤
∫
Rn\Q

(
Mχ

αQ
(x)
)p
w(x)dx

Thus,∫
Rn
Mχ

Q
(x)pw(x)dx = w(Q) +

∫
Rn\Q

(
Mχ

Q
(x)
)p
w(x)dx

≤
∫
Rn\Q

(
Mχ

αQ
(x)
)p
w(x)dx+

∫
Rn\Q

(
Mχ

Q
(x)
)p
w(x)dx

≤
∫
Rn\Q

(
καMχ

Q
(x)
)p
w(x)dx+

∫
Rn\Q

(
Mχ

Q
(x)
)p
w(x)dx

≤ κα,p
∫
Rn\Q

(
Mχ

Q
(x)
)p
w(x)dx,

where we used Lemma 2.35 in the second to last inequality.

Let us now compute, or more precisely, estimate the Cp-tails of the constant weight
w = 1.

Lemma 2.12
There exists a dimensional constant κn > 0 such that for all 1 < p < ∞ and all Q
cubes, the following estimates are true

|Q| ≤
∫
Rn

(
Mχ

Q
(x)
)p
dx ≤ κn p′ |Q|.

Proof. The �rst inequality is trivial, since Mχ
Q
≥ 1 almost everywhere on Q. The

second inequality follows from the operator norm of the Hardy�Littlewood maximal
operator on Lp(Rn), see for example [29].

Finally, let us make a comment on weights that have in�nite Cp tails. Such weights
exist, even in the A∞ class: the weight w(x) = |x|α has in�nite Cp-tails for big enough
α > 0 and �xed p. The following lemma illustrates that a weight has either in�nite
Cp-tails at every cube or the tails are �nite at every cube.

Lemma 2.13
Let 1 < p < ∞ and let w be a weight. Suppose that the Cp-tail of w at Q is in�nite
for some cube Q, that is, there exists a cube Q such that∫

Rn

(
Mχ

Q
(x)
)p
w(x)dx =∞.

Then the same is true for all cubes.

Therefore, we will say that a weight w has in�nite Cp-tails if the Cp-tail of some
cube (and therefore all cubes) is in�nite. Clearly, these weights are always in Cp,
since the right hand side of inequality (2.4) is in�nite. However, these are not very
interesting weights as the following lemma tries to show.

2.3. Weights of class Cp 17



Lemma 2.14
Let w be a weight with in�nite Cp-tails. Then for every non-zero function f , the
following is true:

‖Mf‖Lp(w) =∞.

Many of the quantitative norm inequalities that we study in the next chapter
have the Lp(w) norm of the Hardy�Littlewood maximal operator on the right-hand
side and therefore hold trivially for weights with in�nite Cp-tails, as a consequence of
Lemma 2.13. Thus, having �nite Cp-tails will be a common hypothesis in the proofs
of results of that nature.

As an end to this section, let us mention that it is known that Cp weights satisfy
a weaker version of the Reverse Hölder inequality, in which the Cp-tail appears. See
for example [8]. In Section 2.5 we will give a more detailed discussion on this and
also provide a quantitative estimate on the exponent, but let us state this equivalence
here.

Even though this inequality is clearly weaker than the Reverse Hölder inequality
satis�ed by A∞ weights, we will refer to it as the Reverse Hölder Inequality for Cp
weights, or just Reverse Hölder inequality.

Proposition 2.15 – [8, Lemma 7.7]
Let 1 < p <∞ and let w be a weight. The following statements are equivalent:

1. w ∈ Cp;

2. There exist δ > 0 and κ > 0 such that for all cubes Q,(
−
∫
Q
w(x)1+δdx

) 1
1+δ

≤ κ

|Q|

∫
Rn

(
Mχ

Q
(x)
)p
w(x)dx.

The parallelism between Proposition 2.4 and Proposition 2.15 is clear: in the Cp
world, the role that w(Q) plays in the A∞ world is played by the Cp-tail.

2.4 The Cp constant

In this section, we provide a constant for the Cp class in the spirit of the Fujii�
Wilson constant for A∞ weights from De�nition 2.3. This constant will be used in
the following chapter for giving quantitative estimates for norm inequalities between
a wide variety of operators and objects. In order to introduce this constant, we keep
De�nition 2.3 in mind and take the parallelism between A∞ and Cp to the next level.

Definition 2.16 – Cp constant
For an arbitrary non-zero weight w, we de�ne

[w]Cp := sup
Q

∫
Q
M(χ

Q
w)(x)dx∫

Rn
Mχ

Q
(x)pw(x)dx

,
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where the supremum is taken over all cubes Q. If w = 0, we set [w]Cp = 0.

Notice that if w is not identically zero, the quantity on the denominator is always
strictly greater than zero.

Remark 2.17 A non-zero weight w has in�nite Cp-tails if and only if [w]Cp = 0. Indeed, if
w has in�nite Cp-tails then the denominator equals in�nity and we have [w]Cp = 0.
Conversely, if [w]Cp = 0 we have that for every cube Q,

1∫
Rn(Mχ

Q
)pw

∫
Q
M(χ

Q
w) = 0.

Let us �rst check that the Cp constant is actually �nite for Cp weights.

Proposition 2.18
Let w ∈ Cp. Then [w]Cp <∞.

Proof. We may assume that w has �nite Cp-tails. Let δ > 0 be as in Proposition 2.15.
Then, for all cubes Q, we have

−
∫
Q
M(wχ

Q
)(x)dx ≤

(
−
∫
Q
M(wχ

Q
)(x)1+δdx

) 1
1+δ

≤ κ
(
−
∫
Q
w(x)1+δdx

) 1
1+δ

≤ κ 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx,

where we have used that the maximal function is bounded in L1+δ(Rn) and the Re-
verse Hölder inequality from Proposition 2.15. Rearranging the terms and taking the
supremum over all cubes Q, we obtain the result.

Remark 2.19 For any weight w we have the following relation between the di�erent constants
for q ≤ p, [w]Cq ≤ [w]Cp ≤ [w]A∞ .

Example 2.20
In dimension one, we have [1]Cp = p−1

p+1 , and in higher dimensions, [1]Cp 'n 1
p′ . In

particular this shows that the constant Cp can be arbitrarily small. For p > 1 and
small ε, for wε(x) = |x|n(p−1−ε) we have [wε]Cp . ε.

As the previous example illustrates, for a �xed p and for any ε > 0 there exists a
weight w satisfying 0 < [w]Cp ≤ ε. This is a huge di�erence with the A∞ constant,
and the �rst moment in which the parallelism breaks.

The fact that the Cp constant can be arbitrarily small makes quantitative estimates
take an awkward form in which expressions of the likes of (1 + [w]Cp) appear. So far,
we have not found a way of making this expressions less awkward.

2.5 The Sharp Reverse Hölder Inequality

In this section we will state and prove a result that is analogous to Theorem 2.5 for
Cp weights. With this result, we can con�rm that the de�nition of the Cp constant is
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the correct one, since it lets us have a quantitatively sharp Reverse Hölder inequality
in the same sense as the one for A∞.

Theorem 2.21
Let 1 < p <∞ and let w be a weight such that 0 ≤ [w]Cp <∞. Then w ∈ Cp and w
satis�es, for δ = 1

B(1+[w]Cp ) , with

B =
21+4np+3n(20)n

1− 2−n(p−1)
,

(
−
∫
Q
w(x)1+δdx

) 1
1+δ

≤ 4

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx. (2.5)

Remark 2.22 Notice that B depends on the dimension and on p. Moreover, we have B →∞
whenever p tends to either ∞ or 1.

Remark 2.23 The quanti�cation in terms of the parameters ε and κ in (2.6) is κ = 2 and

ε =
1− 2−n(p−1)

22np+3n(20)n
1

1 + [w]−1
Cp

. (2.6)

In particular, we have that both ε and δ are smaller than one.
Remark 2.24 Also, we note that, since we can show that κ = 2 for the correct ε, we may

always assume that κ = 2 in the de�nition of Cp weights in De�nition 2.6.
We may assume that w has �nite Cp-tails, that is, [w]Cp > 0. Indeed, if [w]Cp = 0

then the right side of (2.5) equals in�nity and the theorem is trivially true.
The proof is inpired by a remark from [3, Section 8.1], and by the proof given in

[63] of the RHI for A∞ weights.
We now introduce a functional over cubes that serves as a discrete analogue for

the Cp-tail. De�ne, for a cube Q

TCp(Q,w) :=
∞∑
k=0

2−n(p−1)k−
∫

2kQ
w(x)dx. (2.7)

We note that α =
∑

k≥0 2−n(p−1)k = (2n(p−1))′ <∞ only depends on n and p. In the
following lemma we prove that the discrete and continuous Cp-tails are equivalent.

Lemma 2.25
Let β =

∑∞
l=0 2−npl. Then, for every weight w and every cube Q, we have

1

β
TCp(Q,w) ≤ 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx ≤ 4np

β
TCp(Q,w). (2.8)

As a corollary of this, we have that TCp(Q,w) <∞ for every cube Q whenever w
has �nite Cp-tails.

Proof. Observe that β =
∑∞

l=0 2−npl = (2np)′ and hence β < 2. Note that for all
x ∈ 2kQ \ 2k−1Q we have 2−kn ≤Mχ

Q
(x) ≤ 2−n(k−2). Then

1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx = −

∫
Q
w +

∞∑
k=1

1

|Q|

∫
2kQ\2k−1Q

Mχ
Q

(x)pw(x)dx,
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so we actually have

−
∫
Q
w(x)dx+

∞∑
k=1

2−npk

|Q|
w(2kQ \ 2k−1Q)

≤ 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx

≤ −
∫
Q
w(x)dx+

∞∑
k=1

2−np(k−2)

|Q|
w(2kQ \ 2k−1Q)

≤ 4np

(
−
∫
Q
w(x)dx+

∞∑
k=1

2−npk

|Q|
w(2kQ \ 2k−1Q)

)
.

Now we rewrite (2.7) in the following way

∞∑
k=0

2−n(p−1)k−
∫

2kQ
w(x)dx

= −
∫
Q
w(x)dx+

∞∑
k=1

2−npk

|Q|

∫
Q
w(x)dx+

k∑
j=1

∫
2jQ\2j−1Q

w(x)dx


= β−
∫
Q
w(x)dx+

1

|Q|

∞∑
j=1

 ∞∑
k=j

2−npk

∫
2jQ\2j−1Q

w(x)dx

= β

−∫
Q
w(x)dx+

1

|Q|

∞∑
j=1

2−pnj
∫

2jQ\2j−1Q
w(x)dx

 .

This �nishes the proof of (2.8).

The next proposition is a �rst approach to the result in Theorem 2.21. It consti-
tutes a bound for the L1+δ norm of the maximal function of the weight, locally at a
cube, in terms of the Cp-tail of the weight.

Proposition 2.26
Let w be a weight and p > 1. Suppose that there exists a constant 0 < γ < ∞ such
that for every cube Q

−
∫
Q
M(χ

Q
w)(x)dx ≤ γ TCp(Q,w). (2.9)

Then there exists 0 < δ ≤ 1
Amax(γ,1) , with

A = 20n
21+3n

1− 2−n(p−1)
,

such that for every cube Q,

−
∫
Q
M(χ

Q
w)(x)1+δdx ≤ 21+n(2p+3) γ TCp(Q,w)1+δ.
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Note that the in�mum of the constants γ such that (2.9) holds is equivalent to the
Cp constant of w, because of Lemma 2.25. In this case we will have 0 < [w]Cp <∞.

Proof. Fix Q = Q(x0, R), that is, the cube centered at the point x0 and with side
length 2R. Note that Q(x,R) is a ball of radius R with the l∞ distance in Rn. The
proof will be carried out following some steps.

Step 1. Let r, ρ > 0 and l ∈ Z be numbers that satisfy R ≤ r < ρ ≤ 2R and
2l(ρ− r) = R. This in particular implies l ≥ 0.

We de�ne a new maximal operator that is a discrete centered Hardy�Littlewood
maximal operator, with scales at a geometric sequence:

M̃v(x) := sup
k∈Z
−
∫
Q(x,2k(ρ−r))

|v(x)|dx.

One can prove the following pointwise bounds between the di�erent maximal functions

M̃v ≤Mv ≤ κM̃v,

where κ = 4n. The �rst inequality is obvious, and the second one follows from the
doubling property of the Lebesgue measure. For t ≥ 0 and a function F we de�ne
the truncated function Ft = min(F, t). Now �x m > 0 with the intention of working
with truncation at level m and letting m → ∞ in the end. Call Qr = Q(x0, r) and
Qρ = Q(x0, ρ).

For any δ > 0 that will be chosen later, we have, using the layer cake formula from
Section 1.4.4,∫

Qr

(M(χ
Qr
w)(x))1+δ

m dx ≤ κ1+δ

∫
Qr

(M̃(χ
Qr
w)(x))δm M̃(χ

Qr
w)(x)dx

≤ κ1+δ

∫
Qr

(M̃(χ
Qρ
w)(x))δm M̃(χ

Qρ
w)(x)dx

≤ κ1+δδ

∫ m

0
λδ−1u({x ∈ Qr : u(x) > λ})dλ,

where u = M̃(χ
Qρ
w). We have used that the maximal operator M̃ is increasing on

the function. To state it in a separate line, we have∫
Qr

(M(χ
Qr
w))m(x)1+δdx ≤ κ1+δδ

∫ m

0
λδ−1u({x ∈ Qr : u(x) > λ})dλ. (2.10)

Step 2. Now we pick λ0 := 2n(l+1)TCp(2Q,w), which is �nite by hypothesis. It is
easy to see that for x ∈ Qr and k ≥ 0, by the choice of λ0, we have

−
∫
Q(x,2k(ρ−r))

χ
Qρ

(y)w(y)dy ≤ λ0. (2.11)

Indeed, we have that Qρ ⊂ 2Q, so we can make

−
∫
Q(x,2k(ρ−r))

χ
Qρ

(y)w(y)dy ≤ −
∫
Q(x,2k(ρ−r))

χ
2Q

(y)w(y)dy

=
|2Q|

|Q(x, 2k(ρ− r))|
−
∫

2Q
w(y)dy

≤ 2n(l+1−k) TCp(2Q,w)
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≤ 2n(l+1) TCp(2Q,w).

This completes the proof of (2.11) when x ∈ Qr and k ≥ 0.
Let λ > λ0 and x ∈ Qr ∩{u > λ}. By the de�nition of u and the choice of λ0, the

fact that Q(x, 2k(ρ− r)) ⊂ Qρ when k < 0 together with (2.11) imply

u(x) = sup
k<0
−
∫
Q(x,2k(ρ−r))

χQρw = sup
k<0
−
∫
Q(x,2k(ρ−r))

w.

For such an x, let kx = max{k : −
∫
Q(x,2k(ρ−r))w > λ}. Trivially, we have

Qr ∩ {u > λ} ⊂
⋃

x∈Qr∩{u>λ}

Q(x,
1

5
2kx(ρ− r)).

We use the Vitali covering Lemma 1.2 for in�nite sets and choose a countable collection
of xi ∈ Qr ∩ {u > λ} so that the family of cubes Qi = Q(xi, 2

kxi (ρ − r)) satisfy the
following properties:

� {x ∈ Qr : u(x) > λ} ⊂
⋃
iQi;

� the cubes 1
5Qi are pairwise disjoint;

� −
∫
Qi

w(y)dy > λ,

� −
∫

2kQi

w(y)dy ≤ λ, for any k ≥ 1

� Qi ⊂ Qρ.

We make the following claim. If we denote Q∗i = 2Qi then for all x ∈ Qi ∩Qr,

u(x) ≤ 2nM(χ
Q∗i
w)(x). (2.12)

Indeed, �x x ∈ Qi ∩Qr and k < 0. If k ≥ kxi then by the stopping time we get

−
∫
Q(x,2k(ρ−r))

w(y)dy ≤ |Q(xi, 2
k+1(ρ− r))|

|Q(x, 2k(ρ− r))|
−
∫
Q(xi,2k+1(ρ−r))

w(y)dy

≤ 2nλ

≤ 2n−
∫
Qi

w(y)dy

≤ 2nM(χ
Q∗i
w)(x).

In the other case, namely k < kxi we have Q(x, 2k(ρ− r)) ⊂ Q∗i ∩Qρ and hence

−
∫
Q(x,2k(ρ−r))

w(y)dy ≤M(χQ∗i
w)(x),

and thus the claim (2.12) is proved.
Step 3. We use now this claim together with the stopping time and the hypothesis

(2.9) to see

u({x ∈ Qr : u(x) > λ}) ≤
∑
i

u(Qi ∩Qr)
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≤
∑
i

∫
Qi∩Qr

u(y)dy

≤ 2n
∑
i

∫
Qi∩Qr

M(χ
Q∗i
w)(y)dy

≤ 2n
∑
i

|Q∗i |−
∫
Q∗i

M(χ
Q∗i
w)(y)dy

≤ 2nγ
∑
i

|Q∗i |TCp(Q∗i , w).

But, using the properties of Qi we get

TCp(Q
∗
i , w) =

∞∑
k=0

2−nk(p−1)−
∫

2k+1Qi

w(y)dy ≤ λα.

Therefore, we have

u({x ∈ Qr : u(x) > λ}) ≤ 2nγ
∑
i

|Q∗i |αλ ≤ (20)nγα
∣∣∣⋃
i

Qi

∣∣∣λ,
where in the last inequality we have used that 1

5Qi are disjoint. Since each one of the
cubes Qi satis�es the properties Qi ⊂ Qρ and λ < −

∫
Qi
w, we have⋃

i

Qi ⊂ {x ∈ Qρ : M(χ
Qρ
w)(x) > λ}.

Therefore, we have obtained for λ > λ0

u({x ∈ Qr : u(x) > λ}) ≤ (20)n α γ λ |{x ∈ Qρ : M(χ
Qρ
w)(x) > λ}|.

Plugging everything on what we had in (2.10) we have∫
Qr

(M(χ
Qr

))m(x)1+δdx (2.13)

≤ κ1+δ λδ0 u(Qr) + κδ+1(20)nγ α δ

∫ m

λ0

λδ |{x ∈ Qρ : M(χ
Qρ
w)(x) > λ}| dλ.

Step 4. For t > 0, we de�ne the function

ϕ(t) =

∫
Qt

M(χ
Qt
w)m(x)1+δ dx.

Observe that ϕ(t) ≤ (2t)nm1+δ < ∞ for any t > 0. We claim that there exists some
K1 > 0 that depends on n, p, δ such that

ϕ(r) ≤ K1 γ |Q| 2nlδ
(
TCp(Q,w)

)1+δ
+ δ κδ+1(20)nγ α ϕ(ρ). (2.14)

Indeed, combining (2.13) we obtained before in the following way:

ϕ(r) ≤ K1 γ |Q|2nlδ
(
TCp(Q,w)

)1+δ
+ κδ+1(20)nγ α

δ

δ + 1

∫
Qρ

M(χ
Qρ
w)m(x)δ+1dx

≤ K1 γ |Q|2nlδ
(
TCp(Q,w)

)1+δ
+ κδ+1(20)nγ α δ ϕ(ρ),
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where K1 = 2n(p+1)(δ+1), and where we have used

u(Qr) =

∫
Qr

M̃(χ
Qρ
w)(x)dx

≤ |2Q|−
∫

2Q
M(χ

2Q
w)(x)dx

≤ 2n|Q|γTCp(2Q,w)

≤ 2np|Q|γTCp(Q,w),

since
TCp(2Q,w) ≤ 2n(p−1)TCp(Q,w).

This yields the claim (2.14).
Step 5. Now we present an iteration scheme starting from claim (2.14). Remember

that l ≥ 0 was an integer such that 2l(ρ− r) = R. Set

t0 = R,

ti+1 = ti + 2−(i+1)R =

i+1∑
j=0

2−jR, i ≥ 0.

Clearly, ti → 2R as i → ∞. This way, 2i+1(ti+1 − ti) = R and we can substitute
ρ = ti+1, ti = r, and l = i + 1 in (2.14). That is, we have the estimate for ϕ(ti) in
terms of ϕ(ti+1):

ϕ(ti) ≤ K22nδi +K3ϕ(ti+1),

where K2 = K12nδγ|Q|(TCp(Q,w))1+δ and K3 = κδ+120nαγδ. Therefore, iterating
this last inequality i0 times we get

ϕ(R) = ϕ(t0)

≤ K2

i0−1∑
j=0

(K32nδ)j +Ki0
3 ϕ(ti0)

≤ K2

i0−1∑
j=0

(K32nδ)j + (K3)i0ϕ(2R). (2.15)

We choose 0 < δ < 1 small enough so that we have the relation

K32nδ = 20nκδ+1γ α δ 2nδ < 1/2. (2.16)

We will postpone the choice of δ for the sake of �nishing the argument. Once we have
(2.16), we can take the limit i0 → ∞ in (2.15). The sum is bounded by 2 and the
second term goes to zero since ϕ(2R) <∞. Hence

ϕ(R) ≤ 2K2 = 21+nδ+n(δ+1)(p+1)γ|Q|(aCp(Q))1+δ

< 21+n(2p+3)γ|Q|(TCp(Q,w))1+δ,

and then
1

|Q|

∫
Q
M(χ

Q
w)m(x)1+δdx ≤ 21+n(2p+3)γ

(
TCp(Q,w)

)1+δ
.

Now, letting m→∞ and using the Fatou lemma we can conclude the proof.
To �nish the proof, we make the choice of δ as follows. Coming back to (2.16) we
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see that, since we have δ in the exponent and γ can be arbitrarily small, we have to
choose δ = 1

A(1+γ) with

A = 2κ2(20)n2nα = (20)n
21+3n

1− 2−n(p−1)
.

Using the last Proposition, we are in shape of proving Theorem 2.21. We are going
to use arguments similar to those from [63, Theorem 2.3].

Proof of Theorem 2.21. Fix a cube Q. Let MQ denote the maximal operator with
respect to the dyadic children of Q, that is

MQv(x) = sup
R∈D(Q)
x∈R

1

|R|

∫
R
|v(y)|dy, x ∈ Q.

By the Lebesgue di�erentiation theorem, we have the estimate∫
Q
w(x)1+δdx ≤

∫
Q
MQw(x)δw(x)dx.

Call now Ωλ = {x ∈ Q : Md,Qw(x) > λ}. For λ ≥ wQ we make the Calderón�
Zygmund decomposition, see Section 1.4.3 for more details, of w at height λ to obtain
Ωλ =

⋃
j Qj with Qj pairwise disjoint and

λ <
1

|Qj |

∫
Qj

w(x)dx ≤ 2nλ.

Multiplying by |Qj | and summing on j, this inequality chain becomes

λ|Ωλ| ≤ w(Ωλ) ≤ 2nλ|Ωλ|.

Therefore, we can make the following computations

−
∫
Q

(
MQw(x)

)δ
w(x)dx =

1

|Q|

∫ ∞
0

δλδ−1w(Ωλ)dλ

≤ wδ+1
Q +

1

|Q|

∫ ∞
wQ

δλδ−1w(Ωλ)dλ

≤ wδ+1
Q + δ2n

1

|Q|

∫ ∞
wQ

λδ|Ωλ|dλ

≤ wδ+1
Q + 2n

δ

δ + 1

1

|Q|

∫
Q

(
MQw(x)

)1+δ
dx.

Now we apply Proposition 2.26. We have [w]Cp ≤ βγ ≤ 4np[w]Cp , so we need δ ≤
β/A(1 + [w]Cp), with β as in Lemma 2.25. So we get

−
∫
Q

(
Md,Qw(x)

)δ
w(x)dx ≤ (1 + 21+n(2p+4) δ

δ + 1
γ)
(
TCp(Q,w)

)1+δ

≤ (1 + 21+n(2p+4) δ

δ + 1
[w]Cp

4np

β
)

×
(
β

|Q|

∫
Rn

(
Mχ

Q
(x)
)p
w(x)dx

)1+δ

,
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where we have used Lemma 2.25. Now, since we have 24np/β multiplying δ, we have
to change the choice of δ slightly and make

δ ≤ 2−4np

β

β

A(1 + [w]Cp)
=

1

B(1 + [w]Cp)
.

This �nishes the proof of the theorem.

2.5.1 Sharpness of the exponent

In this section, we are going to discuss the sharpness of the dependence of δ on the
Cp constant of the weight in the statement of Theorem 2.21.

For a cube Q, it is clear that MχQ equals 1 on the cube and is smaller than 1
outside the cube. Therefore (Mχ

Q
)p converges to χ

Q
a.e. when p → ∞. Moreover,

for a weight w with �nite Cp0-tails for some p0 <∞, by the Dominated Convergence
theorem we have

lim
p→∞

∫
Rn

(
Mχ

Q
(x)
)p
w(x)dx = w(Q).

For any weight w ∈ A∞, we have by the de�nition of the constant [w]A∞ that for
any cube Q ∫

Q
M(wχ

Q
)(x)dx ≤ [w]A∞w(Q) ≤ [w]A∞TCp(Q,w),

where TCp(Q,w) =
∑

k≥0 2−n(p−1)k−
∫

2kQw is the discrete Cp-tail introduced in the
previous section.

If we modify slightly the proof of Proposition 2.26 and Theorem 2.21 and add
some extra hypothesis, we can recover the RHI for A∞ weights. We explain how to
do this in this section.

Fix a number s > 1. This will be the dilation parameter, which was s = 2 in
the previous section. We plan on letting t tend to one in the end. We introduce the
corresponding discrete Cp-tail with respect to s, that is,

T sCp(Q,w) =
∑
k≥0

s−n(p−1)k−
∫
skQ

w(x)dx.

Note that for any weight w with �nite Cp0-tails for some p0 <∞, we have, using the
dominated convergence theorem, that limp→∞ T

s
Cp

(Q) = wQ for any s > 1. Also, for
a �xed s > 1 we introduce the corresponding discrete Cp constant

[w]Cp,s := sup
Q

∫
QM(χ

Q
w)

T sCp(Q,w)
.

Remark 2.27 For a weight w ∈ A∞ and any s > 1 we have limp→∞[w]Cp,s ≤ [w]A∞ . Indeed,
we claim that if w ∈ A∞, then T sCp(Q,w) is �nite for all Q for big enough p0. Then,

by the Dominated Convergence Theorem, limp→∞ T
s
Cp

(Q,w) = w(Q) and the result

follows. In order to see that T sCp(Q,w) is �nite, we use that w ∈ A∞ is doubling, that
is, there exists a constant κ ≥ 1 such that

w(sQ) ≤ κw(Q)
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for all Q. Then,

T sCp(Q,w) =
∑
k≥0

s−n(p−1)k−
∫
skQ

w(x)dx

=
∑
k≥0

s−n(p−1)kw(skQ)

|skQ|

≤
∑
k≥0

s−n(p−1)k κ
kw(Q)

snk|Q|

= wQ
∑
k≥0

( κ

snp

)k
,

which is �nite for big enough p.

Theorem 2.28
Fix 2 ≥ s > 1 and 1 < p <∞. For a weight w in Cp and δ = 1

As,p(1+[w]Cp,s)
and every

cube Q, with

As,p =
5n21+5n

1− s−n(p−1)
,

we have (
1

|Q|

∫
Q
w(x)1+δdx

) 1
1+δ

≤ (2n + 1) T sCp(sQ,w). (2.17)

Before we prove this theorem, we give a proof of Theorem 2.5 as a corollary. More
precisely, we obtain a Reverse Hölder inequality for weights w ∈ A∞ in which the
dependence of the exponent on the A∞ constant is of the same order of the one in
Theorem 2.5, with a worse dimensional constant. This will show that the dependence
of the exponent δ on the Cp constant is sharp in that sense, because Theorem 2.5 is
sharp.

Let w ∈ A∞. By Remark 2.27, we can let p→∞ in equation (2.17) and we obtain(
1

|Q|

∫
Q
w1+δ∞

) 1
1+δ∞

≤ (2n + 1) wsQ, (2.18)

where

δ∞ = lim
p→∞

1− s−n(p−1)

5n21+5n max(1, [w]Cp,s)
=

1

5n21+5n[w]A∞
.

Now we let s→ 1 in (2.18) and obtain(
1

|Q|

∫
Q
w1+δ∞

) 1
1+δ∞

≤ (2n + 1) wQ,

which is in fact the reverse Hölder inequality for A∞ weights.
Remark 2.29 The dimensional constants are bigger from those in Theorem 2.5, but the

dependence on the weight is essentially the same. Because of this, we obtain that the
dependence on w in Theorem 2.21 is sharp.

Proof of Theorem 2.28. We repeat the �rst three steps of the proof of Proposition
2.26, with the following modi�cations. This time, r, ρ, l will satisfy sl(ρ − r) = R
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and R ≤ r < ρ ≤ R. Also, now we will use the maximal operator M̃v(x) =
supk∈Z −

∫
Q(x,sk(ρ−r)) u, and some other trivial changes.

For the fourth step, we leave T sCp(sQ) in the equation, so we get

ϕ(r) ≤ sn(δ+1)γ|Q|snδl
(
T sCp(sQ)

)1+δ
+ (κ1+δ(5s2)nγαs) δ ϕ(ρ),

where αs =
∑

k≥0 s
−nk(p−1) = (1− s−n(p−1))−1. We make a similiar iteration scheme,

namely t0 = R and ti+1 = ti + s−(i+1)R ≤ sR. Now the condition for δ translates to
δ ≤ 1

As,p max(1,γ) where

As,p =
5n21+5n

1− s−n(p−1)
.

The main di�erence is that now we get

1

|Q|

∫
Q
M(χ

Q
w)m(x)1+δdx ≤ 21+5nγ

(
T sCp(sQ,w)

)1+δ
,

where the right part stays bounded whenever p→∞. Now we use Fatou lemma and
make m→∞ to get

1

|Q|

∫
Q
M(χ

Q
w)(x)1+δdx ≤ 21+5nγ

(
T sCp(sQ,w)

)1+δ
. (2.19)

Finally we make the argument in the proof of Theorem 2.21 and combine it with
(2.19). We get

−
∫
Q
w(x)1+δdx ≤ (wQ)1+δ + 2n

δ

1 + δ

1

|Q|

∫
Q
MQw(x)1+δdx

≤ (wQ)1+δ + 2n
δ

1 + δ
21+5nγ

(
T sCp(sQ)

)1+δ

≤ (2n + δ21+6nγ)
(
T sCp(sQ,w)

)1+δ

≤ (2n + 1)
(
T sCp(sQ,w)

)1+δ
,

if δ ≤ 1
21+6nγ

, which is true by the choice of δ. This �nishes the proof.

2.6 Weak self-improvement properties of Cp
It is well-known that Ap weights are self-improving: if w ∈ Ap, then there exists ε > 0
such that w ∈ Ap−ε [20, Lemma 2]. Since this is a particularly convenient property
in many proofs, it would be desirable if Cp weights had a similar property, i.e. for
every w ∈ Cp there existed ε > 0 such that w ∈ Cp+ε. In particular, this property
together with Sawyer's results would prove Muckenhoupt's conjecture Conjecture 2.1.
Unfortunately, this is not true due to an example by Kahanpää and Mejlbro [69,
Theorem 11]. We discuss their counterexample and its generalizations in detail in
Section 2.9.

The failure of this self-improving property raises natural questions about weaker
self-improving properties of Cp weights. For example, although the well-known self-
improving property of classical Reverse Hölder weights [41, Lemma 3] fails in spaces
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of homogeneous type [2, Section 7], the weights are still self-improving in a weak
sense even in this more general setting [2, Section 6] (see also [119, Theorem 3.3]).
Although we show in Section 2.7 that weakening the de�nition of Cp in an obvious
way does not actually change the structure of the corresponding weight class, various
self-improvement and Reverse Hölder questions remain open. In particular:

Open Problem 2.30
Suppose that w ∈ Cp for some 1 < p <∞ and let δ be the Reverse Hölder exponent
from Theorem 2.21. Do there exist cw > 1 and Kw > 1 such that(

−
∫
Q
w(x)c(1+δ)dx

) 1
c(1+δ) ≤ Kw

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx

for every cube Q and every 1 < c ≤ cw?

In this section, we record two observations related to Problem 2.30. First, we prove
the following analogue to the well-known A∞ result that states that for any w ∈ A∞,
there exists some small ε > 0 such that w1+ε ∈ A∞ (see e.g. [64, Corollary 3.17]).
This property is what we call weak self-improvement property of Cp.

Proposition 2.31
Let w ∈ Cp for some 1 < p < ∞. Then there exists ε0 > 0 such that w1+ε ∈ Cp for
every 0 < ε ≤ ε0.

Proof. Let δ be the Reverse Hölder parameter from Theorem 2.21 and set ε0 = δ
2 .

Then, for s = 1 + δ
2+δ , we have s(1 + ε0) = 1 + δ. Thus, we get

(
−
∫
Q
w(x)(1+ε0)sdx

) 1
s ≤

( 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx

) 1+δ
s

=
( 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx

)1+ε0

≤
( 1

|Q|

∫
Rn
Mχ

Q
(x)pdx

) 1+ε0
1+ 1

ε0

( 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)1+ε0dx

)
≤ (cn p

′)ε0 · 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)1+ε0dx,

where we used �rst Theorem 2.21, then the standard Hölder's inequality and �nally
the Lp-boundedness of the Hardy�Littlewood maximal operator. Thus, the weight
w1+ε0 satis�es a Reverse Hölder inequality in the sense of Theorem 2.21 and therefore
w1+ε0 ∈ Cp.

The fact that now also w1+ε ∈ Cp for every 0 < ε ≤ ε0 follows easily from Hölder's
inequality, since the L1+ε average on a cube is bounded by the L1+ε0 average.

In the light of Proposition 2.31, we propose a new problem whose positive answer
would also imply a positive answer to Problem 2.30:
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Open Problem 2.32
Suppose that w ∈ Cp for some 1 < p <∞. Do there exist ε0 > 0 and κ ≥ 1 such that( 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)1+εdx

) 1
1+ε ≤ κ 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx (2.20)

for every cube Q and every 0 < ε ≤ ε0?

As a consequence of Proposition 2.31 we get something slightly worse than (2.20).
We can bound the Cp-tail of w

1+δ by the C p+δ
1+δ

-tail of w for δ smaller than the Reverse

Hölder exponent of w.

Corollary 2.33
Suppose w ∈ Cp for some 1 ≤ p <∞ and let δ0 be the Reverse Hölder exponent from
Theorem 2.21. Then for every 0 < δ ≤ δ0 and every cube Q we have( 1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)1+δdx

) 1
1+δ ≤ Cn,p,δ

1

|Q|

∫
Rn
Mχ

Q
(x)

p+δ
1+δw(x)dx,

Note that when p > 1 the exponent p+δ
1+δ is strictly greater than p.

Since the proof of Corollary 2.33 is a fairly technical computation, we formulate
explicitly the following well-known embedding property of `p spaces:

Lemma 2.34
Let 0 < α < β <∞. Then, for positive numbers an, n ∈ N, we have(∑

n

aβn

) 1
β ≤

(∑
n

aαn

) 1
α
.

Proof. Since an > 0, it is clear that for any n it holds

aαn∑
m a

α
m

≤ 1.

Then, since β > α, we have

(∑
n

aβn

) 1
β

=
(∑

n

aβn

) 1
β

(∑
m a

α
m

) 1
α(∑

m a
α
m

) 1
α

=
(∑

n

( aαn∑
m a

α
m

) β
α
) 1
β
(∑

m

aαm

) 1
α

≤
(∑

n

aαn∑
m a

α
m

) 1
β
(∑

m

aαm

) 1
α

=
(∑

m

aαm

) 1
α
,

which �nishes the proof.
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Proof of Corollary 2.33. We argue by discretizing the tail. By Lemma 2.25, we have

1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)dx ≈n,p

∞∑
k=0

2−n(p−1)k−
∫

2kQ
w(x)dx,

for 1 ≤ p < ∞ and any weight w. The implicit constants do not blow up when p
tends to 1, but they do blow up when p→∞. We get

1

|Q|

∫
Rn
Mχ

Q
(x)pw(x)1+δ(x)dx

(A)
≈ n,p

∞∑
k=0

2−n(p−1)k−
∫

2kQ
w(x)1+δdx

(B)

.
∞∑
k=0

2−n(p−1)k
( 1

|2kQ|

∫
Rn
Mχ

2kQ
(x)pw(x)dx

)1+δ

(A)

.
∞∑
k=0

2−n(p−1)k
( ∞∑
j=0

2−n(p−1)j−
∫

2j+kQ
w(x)dx

)1+δ

(C)

≤
( ∞∑
k,j=0

2−n(p−1) k
1+δ 2−n(p−1)j−

∫
2j+kQ

w
)1+δ

=
( ∞∑
m=0

( m∑
i=0

2−n(p−1)
(

i
1+δ

+(m−i)
))
−
∫

2mQ
w(x)dx

)1+δ

(D)

.
( ∞∑
m=0

2−n(p−1) m
1+δ−
∫

2mQ
w(x)dx

)1+δ

=
( ∞∑
m=0

2
−n
(
p+δ
1+δ
−1

)
m
−
∫

2mQ
w(x)dx

)1+δ

(A)
≈ n,p,δ

( 1

|Q|

∫
Rn
Mχ

Q
(x)

p+δ
1+δw(x)dx

)1+δ
,

where we (A) used the discretization, (B) used the Reverse Hölder inequality, (C)
applied Lemma 2.34 with α = 1

1+δ and β = 1, and (D) calculated the geometric sum
and made obvious estimates.

2.7 On weak Cp and dyadic Cp

When we compare the characterizations of A∞ (2.3) and Cp (2.4), it is obvious that
A∞ ⊂ Cp for every p. However, A∞ weights are not good representatives of Cp
weights because the Cp classes are much bigger than the A∞ class. For example,
A∞ weights are always doubling and they cannot vanish in a set of positive measure
whereas Cp weights can grow arbitrarily fast and their supports can contain holes of
in�nite measure. Thus, the structure of a general Cp weight can be very messy.

In this section, we introduce weak and dyadic Cp weights as an analogy to weak
and dyadic A∞ weights. Although these new classes of weights seem like they are
larger than Cp, this is not the case: weak and dyadic Cp weights are just Cp weights.
We also consider some examples and properties related to Cp weights.

We start by proving an elementary lemma for the Hardy�Littlewood maximal
operator similar to Lemma 2.9 with a general set.
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Lemma 2.35
Let Q0 ⊂ Rn be a cube and E0 ⊂ Q0 a measurable subset such that |E0| ≥ η|Q0| for
some 0 < η ≤ 1. Then there exists a dimensional constant κn such that

M(χ
Q0

)(x) ≤ κn
η
M(χ

E0
)(x)

for almost every x ∈ Rn.

Proof. Let Q(x, r) be the cube with center point x and side length r. There exists a
structural constant Kn ≥ 1 such that

E0 ⊂ Q0 ⊂ Q(x,Kn(dist(x,Q0) + `(Q0))).

The proof now consists of two cases:
Case 1. Suppose that dist(x,Q0) ≤ `(Q0). Then Q0 ⊂ Q(x, 2Kn`(Q0)) =: Qx and

|Q0| ≈ |Qx|. Thus,

M(χ
E0

)(x) ≥ |E0 ∩Qx|
|Qx|

≈ |E0|
|Q0|

≥ η ≥ ηM(χ
Q0

)(x).

Case 2. Suppose that dist(x,Q0) > `(Q0). Then

M(χ
Q0

)(x) = sup
r>dist(x,Q0)

|Q0 ∩Q(x, r)|
|Q(x, r)|

≤ sup
r>dist(x,Q0)

κ′n|Q0|
|Q(x, 2Knr)|

≤ sup
r>dist(x,Q0)

κ′n
η

|E0|
|Q(x, 2Knr)|

= sup
r>dist(x,Q0)

κ′n
η

|E0 ∩Q(x, 2Knr)|
|Q(x, 2Knr)|

≤ κ′n
η
M(χ

E0
)(x).

2.7.1 Weak A∞ weights

Let us recall the de�nition of the weak A∞ classes. The Fujii�Wilson type charac-
terization of these weights was studied in detail in [2] but earlier they have appeared
in other forms in the study of e.g. weighted norm inequalities [108] and elliptic par-
tial di�erential equations and quantitative recti�ability; see e.g. [58] and references
therein.

Definition 2.36 – Weak A∞
Suppose that γ ≥ 1. We say that a weight w belongs to the γ-weak A∞ class Aγ∞ if
there exist positive constants κ, δ > 0 such that

w(E) ≤ κ
(
|E|
|Q|

)δ
w(γQ) (2.21)

for any cube Q and any measurable subset E ⊂ Q, where γQ is the cube of side length
γ`(Q) with the same center point as Q.
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We denote Aweak
∞ :=

⋃
γ≥1A

γ
∞. It was shown in [2] that this de�nition does not

give us a continuum of di�erent weak A∞ classes but the dilation parameter γ is
irrelevant for the structure of the class as long as γ > 1:

Theorem 2.37 – [2]
We have

i) A∞ ( Aγ∞ for every γ > 1;

ii) Aγ∞ = Aweak
∞ for every γ > 1;

iii) w ∈ Aweak
∞ if and only if for every λ > 1 there exists a constant [w]Aλ∞ such that,

for every cube Q, ∫
Q
M(χ

Q
w)(x)dx ≤ [w]Aλ∞w(λQ).

2.7.2 Weak Cp and dyadic Cp

Let us then consider two generalizations of the Cp class. Suppose that γ ≥ 1. We
write

i) w ∈ CD
p if w satis�es condition (2.4) for all Q ∈ D instead of all cubes;

ii) w ∈ Cγp , if w satis�es condition (2.4) for χ
γQ

instead of χ
Q
, and all cubes Q;

iii) w ∈ Cweak
p if w ∈

⋃
α≥1C

α
p .

We also de�ne AD
∞ similarly as CD

p .
Usually, these types of generalizations genuinely weaken the objects in question.

For example, in the case of A∞, we already saw that A∞ is a proper subset of Aweak
∞ ,

and since 1[0,∞) ∈ AD
∞, we also have A∞ ( AD

∞. However, because of the non-local
nature of the Cp condition, these generalizations for Cp classes just end up giving us
back Cp, as the following proposition illustrates.

Proposition 2.38
We have Cp = CD

p = Cγp = Cweak
p for every γ ≥ 1.

Proof. The inclusions

Cp ⊂ CD
p and Cp ⊂ Cγp ⊂ Cweak

p

are obvious and
Cp ⊃ Cγp ⊃ Cweak

p

follow from Lemma 2.35. Thus, we only need to show that CD
p ⊂ Cp.

Suppose that w ∈ CD
p and let Q ⊂ Rn be any cube and E ⊂ Q a measurable set.

There exists 2n dyadic cubes Qi ∈ D and a uniformly bounded constant α ≥ 1 such
that

1) the cubes Qi are pairwise disjoint,

2) `(Qi) ≈ `(Q),

3) Q ⊂
⋃
iQi ⊂ αQ.
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Applying the CD
p property to the sets Qi ∩ E and Lemma 2.35 to M(χ

αQ
) gives us

w(E) =
∑
i

w(E ∩Qi) ≤ κ
∑
i

( |E ∩Qi|
|Qi|

)ε ∫
Rn
Mχ

Qi
(x)pw(x)dx

≤ κ
∑
i

( |E|
|Q|

)ε ∫
Rn
Mχ

αQ
(x)pw(x)dx

≤ κ2n
( |E|
|Q|

)ε ∫
Rn
Mχ

Q
(x)pw(x)dx.

2.7.3 Examples and some properties of Cp weights

In this section, we gather some known results from the literature and consider some
other examples and properties of Cp weights, along with a few results that we have
already discussed. The aim is to have a compiled list of properties and examples that
are related to Cp weights.

i) From Ap theory, (2.21), Lemma 2.35, [2] and Theorem 2.43, it follows that for
1 < p < q <∞ we have

A1 ( Ap ( Aq ( A∞ ( Aweak
∞ ( Cq ( Cp ( C1.

ii) If follows easily from the argument in [2, Example 3.2] that Aweak
∞ contains all

non-negative functions that are monotonic in each variable. By i), all these
functions are also contained in Cp for every p. In particular, Cp weights are
generally non-doubling.

iii) If w ∈ Cp is a doubling weight such that w(2Q) ≤ 2pw(Q), where 2Q is the
concentric dilation of Q with `(2Q) = 2`(Q), then w ∈ A∞ [8, Section 7].

iv) If w ∈ A∞, then wχ
[0,∞)

∈ Cp for every 1 ≤ p <∞ [99].

v) More generally, if w ∈ A∞ and g is a convexely contoured weight (i.e. a weight
such that {x ∈ Rn : g(x) < α} is a convex set for every α ≥ 0), then wg ∈ Cp
for every 1 ≤ p <∞ [8, Proposition 7.3].

vi) If w is a compactly supported weight, then w /∈ Cp for any p. It is straightforward
to prove this. Let us denote P := suppw. For every k ∈ N, let Pk be a cube
such that P ⊂ Pk and |Pk| ≥ 2k|P |. Now, for E = P , we have∫

Rn
Mχ

Pk
(x)pw(x)dx =

∫
P
Mχ

Pk
(x)pw(x)dx =

∫
P
w = w(P ) ∈ (0,∞)

for every k since w is locally integrable. However,( |E|
|Pk|

)ε
≤
( |P |

2k|P |

)ε
↘ 0 as k ↗∞

for every ε > 0. Thus, there do not exist constants C and ε such that (2.4) holds
for every cube Q. This argument also proves that if w ∈ Cp, then w /∈ L1(Rn).
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vii) Even though Cp weights cannot have compact support, their support can have
arbitrarily small measure. Indeed, suppose that w ∈ A∞ and

P =

∞⋃
k=1

[10k, 10k + 1
2k

].

Then |P | = 1 but P is unbounded. We set

v(x) := w(x)1P (x).

• If w(x) = x4, then
∫
RM(χ

Q
)2v =∞ for every cube Q and thus, v ∈ C2.

• If w(x) = 1, then w is integrable and, by vi), w 6∈ Cp for any p.

viii) Suppose that w is a weight such that w(x) ≥ α > 0 for every x ∈ Rn \A, where
A is a bounded set. Since M(χ

Q
) /∈ L1(dx) for any cube Q, we have∫

Rn
M(χ

Q
)(x)w(x)dx ≥ α

∫
Rn\A

M(χ
Q

)(x)dx =∞

and thus, w ∈ C1.

2.8 The Cψ classes of Lerner

The classes Cψ were introduced by Lerner in [83] as intermediate classes between Cp
and Cq for q > p ≥ 1 and a new way to attack Muckenhoupt's conjecture Conjecture
2.1. If 1 < p < q < ∞, we know that Cp is necessary and Cq is su�cient for (2.2) to
hold, so it makes sense to use a intermediate scale between the Lp and Lq norms of
Mχ

Q
in (2.4).

To be more precise, we de�ne generalizations of Cp classes that depend on a Young
function ψ instead of p. As we will see, the choice of the function ψ a�ects the structure
of the class in a signi�cant way.

Definition 2.39
Let ψ be a function de�ned on [0, 1]. We denote w ∈ Cψ if there exist constants
κw, εw > 0 such that for every cube Q and measurable E ⊂ Q we have

w(E) ≤ κw
( |E|
|Q|

)εw ∫
Rn
ψ
(
Mχ

Q
(x)
)
w(x)dx. (2.22)

Without loss of generality, we may assume that κw ≥ 1.

Example 2.40
If we choose the function ψ in a suitable way, we recover classes that we have considered
earlier:

• Let ψp(t) = tp, for 1 < p <∞. Then Cψp = Cp.

• Let ψ∞ = χ
{1}

. Then we have ψ∞(Mχ
Q

) = χ
Q
and thus, Cψ∞ = A∞.
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• Let 0 < a < 1 and ψa = χ
[a,1]

. Then we have ψa(Mχ
Q

) = χ
κaQ

for some

constant κa > 1 and thus, Cψa = Aweak
∞ .

From now on, we consider a Cψ class with a carefully chosen ψ. Similarly chosen
functions would yield similar results, but we have stick to one choice.

Definition 2.41
Let p > 1. We set C̃p := Cϕp for the function ϕp such that ϕp(0) = 0 and

ϕp(t) =
tp

log2(1 + 1
t )
, t ∈ (0, 1].

For notational convenience, we also set ϕp(t) = ϕp(1) for every t > 1. It is
straightforward to check that the function ϕp satis�es the following properties:

1. limt→0 ϕp(t) = 0 and ϕp(1) = 1
log2 2

> 1,

2. both ϕp and t 7→ t−1ϕp(t) are increasing functions,

3. ϕp(2t) ≤ κϕp(t) for some κ > 0 and all t ≥ 0 (and thus, ϕp(λt) ≤ κλϕp(t) for
any λ > 1 and t ≥ 0),

4.
∫ 1

0 ϕp(t)
dt
tp+1 <∞.

The key property of C̃p is that
⋃
q>pCq ⊂ C̃p and we have

w ∈ C̃p =⇒ ‖Mf‖Lp(w) ≤ κ ‖M ]f‖Lp(w) =⇒ w ∈ Cp, (2.23)

whereM ] is the sharp maximal operator of Fe�erman and Stein [37]. The implications
(2.23) were �rst proven by Yabuta [117, Theorem 1, Theorem 2] for w ∈

⋃
q>pCq and

then improved by Lerner [83, Theorem 6.1] to this form. By [83, Remark 6.2] and [17,
Subsection 1.5], we know that this result also gives us (2.2) for e.g. Calderón�Zygmund
operators and every w ∈ C̃p.

Theorem 2.42 – [83, Remark 6.2], [17, Subsection 1.5]
In any dimension, we have: If w ∈ C̃p then Coifman�Fe�erman inequality (2.2) holds
for Calderón�Zygmund operators.

2.9 The counterexample of Kahanpää–Mejlbro

This last section is devoted to the counterexample constructed by Kahanpää and Mejl-
bro in [69], a counterexample that disproves the self-improvement of the Cp classes.
Because of the limited availability of [69], and for convenience of the reader, we give
a self-contained description of their counterexample.

We give a detailed proof of the failure of the self-improving properties of Cp classes

and generalize this also to the context of C̃p. Although we use many central ideas of
Kahanpää and Mejlbro, the proof we present here is di�erent from the one given in
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[69]. In particular, we avoid using the explicit Hilbert transform estimates that had a
key role in [69] and our techniques allow us to consider dimensions higher than 1.

2.9.1 The Kahanpää–Mejlbro weights

As we mentioned earlier, Muckenhoupt's conjecture would be trivially true if every
Cp weight was self-improving with respect to p. Unfortunately, this is not true due to
a construction by Kahanpää and Mejlbro. Let us describe this construction.

For every integer k ∈ Z, let us de�ne the intervals

Ik := [4k − 3, 4k − 1] and Jk :=
[
4k − 1

2
`k, 4k +

1

2
`k

]
,

where `k ∈ (0, 1] are numbers such that infk∈Z `k = 0. For the sake of choosing, we
let `k = 2−|k|−1. See Figure 2.1.

Figure 2.1: The distribution of the intervals Ik (red) and Jk (green)

Let also h = (hk)k∈Z be a sequence of heights such that 0 < hk < 1 for every
k ∈ Z. We de�ne the weight wh to have value 1 in each of the intervals Ik and value
hk in each of the Jk. That is, we de�ne

wh =
∑
k∈Z

χ
Ik

+
∑
k∈Z

hkχJk
. (2.24)

Note that all weights of the form (2.24) have the same support and all agree on
each of the intervals Ik. They are completely determined by the sequence of heights.

We note that in [69], the sum in the de�nition of w was indexed as k ≥ 0. We
have decided to index as k ∈ Z because of symmetry and because this way it is easier
to generalize the construction to higher dimensions.

Theorem 2.43 – [69, Theorem 11, Proposition 12]
Let p > 1. For suitable choices of the sequence of heights h = (hk)k∈Z, the weight wh
satis�es wh ∈ Cp and wh /∈ Cp+ε for any ε > 0. In particular,

Cp \
⋃
q>p

Cq 6= ∅. (2.25)

The property (2.25) can also be seen as a corollary of Theorem 2.45 a).

2.9.2 The Kahanpää–Mejlbro weights and C̃p

Since ϕp(t) ≤ κtp for all t ∈ [0, 1], we have C̃p ⊂ Cp. On the other hand, since

tq ≤ κϕp(t) for every q > p, we have Cq ⊂ C̃p for any q > p. Thus, for any p > 1, we
have ⋃

q>p

Cq =
⋃
ε>0

Cp+ε ⊂ C̃p ⊂ Cp. (2.26)

This raises a natural question: Are these inclusions strict? If the �rst one is not, we
get a self-improving property for C̃p weights. If the second one is not, we have solved

Muckenhoupt's conjecture. Unfortunately, we will next show that C̃p \
⋃
q>pCq 6= ∅
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and Cp \ C̃p 6= ∅. This does not prove or disprove Muckenhoupt's conjecture but it is
one step closer to understanding the solution.

Our main tool for proving that the inclusions in (2.26) are strict in dimension one
is the following generalization of Kahanpää�Mejlbro techniques:

Theorem 2.44
Let 1 < p <∞, h a sequence of heights and let wh be a weight as in (2.24).

i) If wh ∈ Cp, then there exists κ > 0 such that hk ≤ κ(`k)
p−1.

ii) If hk = (`k)
p−1, then wh ∈ Cp.

iii) If wh ∈ C̃p, then there exists κ > 0 such that hk ≤ κ
∫ `k

0
ϕp(t)

dt

t2
.

iv) If hk =
ϕp(`k)
`k

, then wh ∈ C̃p.

One can also prove similar statements as iii) and iv) for the more general class
Cψ assuming that ψ satis�es certain conditions, but for the sake of simplicity we only

consider the class C̃p.
We will postpone the proof of Theorem 2.44 until the next section. Nevertheless,

let us explain how it can be used to prove the strictness of the inclusions in (2.26), or
more precisely, that they are not self-improving.

Theorem 2.45
The following are true:

a) Cp \ C̃p 6= ∅,

b) ∪ε>0Cp+ε ( C̃p.

Proof. We construct weights w of the type (2.24) and then use Theorem 2.44 to prove
the claims.

Let us prove �rst statement a). Let us set hk = (`k)
p−1 for every k ∈ Z. By part

ii) of Theorem 2.44, we know that w ∈ Cp. Let us then use part iii) of Theorem 2.44

to show that w /∈ C̃p. It is enough to show that

inf
0<t<1

∫ t
0 ϕp(s)

ds
s2

tp−1
= 0.

This can be seen easily by computing the limit as t → 0+: by L'Hôpital's rule and
the Fundamental theorem of calculus, we have

lim
t→0+

∫ t
0 ϕp(s)

ds
s2

tp−1
= lim

t→0+

ϕp(t)t
−2

(p− 1)tp−2
=

1

p− 1
lim
t→0+

ϕp(t)

tp
= 0.

Thus, by part iii) of Theorem 2.44, w /∈ C̃p, which proves statement a).
Let us now prove statement b). Let us set

hk =
ϕp(`k)

`k
=

(`k)
p−1

log2(1 + 1
`k

)
.
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for every k ∈ Z. By part iv) of Theorem 2.44, we know that w ∈ C̃p. We then use
part i) of Theorem 2.44 to show that w 6∈ Cp+ε for any ε > 0. To see this, we prove

inf
0<t<1

tp+ε−1

ϕp(t)t−1
= 0.

As in the previous case, we show this by computing the limit as t→ 0+. We get

lim
t→0+

tp+ε−1

ϕp(t)t−1
= lim

t→0+
tε log2

(1 + t

t

)
= lim

t→0+
tε
(

log(1 + t)− log(t)
)2

= 0,

since xα log(x) → 0 as x → 0+ for any α > 0. Thus, by part i) of Theorem 2.44,
w 6∈ Cp+ε. for any ε > 0.

From Theorem 2.42 we know that C̃p is su�cient for (2.2), but from Theorem 2.45

b) there exists a weight w ∈ C̃p \∪ε>0Cp+ε. In particular, this proves that Cp+ε is the
correct su�cient condition for the Coifman�Fe�erman inequality (2.2) to hold. We
state this fact in the following Corollary.

Corollary 2.46
The condition Cp+ε is not necessary for (2.2) to hold for Calderón�Zygmund operators.

2.9.3 Proof of Theorem 2.44

The following counterpart of [69, Proposition 8] will be useful for us in the proof of
Theorem 2.44. It is the analogue of Lemma 2.11 but for C̃p, in which the C̃p-tail is
bounded by the tail with a hole on the integration domain.

Lemma 2.47
Let p > 1 and w ∈ C̃p. Then there exists a constant κ = κϕ,w > 0 such that for any
cube Q we have∫

Rn
ϕp(Mχ

Q
(x))w(x)dx ≤ κ

∫
Rn\Q

ϕp(Mχ
Q

(x))w(x)dx.

Proof. Let us �x a cube Q and set α = (2ϕp(1)κw)
1

nεw , where Cw and εw are the

constants in the de�nition of C̃p = Cϕp (2.22). Notice that α ≥ 1. Now applying the

C̃p condition for αQ and Q gives us

w(Q) ≤ κw
( |Q|
αn|Q|

)εw ∫
Rn
ϕp(Mχ

αQ
(x))w(x)dx

=
1

2ϕp(1)

∫
Rn
ϕp(Mχ

αQ
(x))w(x)dx

≤ 1

2
w(Q) +

1

2ϕp(1)

∫
Rn\Q

ϕp(Mχ
αQ

(x))w(x)dx,

since Mχ
αQ

= 1 on Q and ϕp(1) > 1. In particular,

w(Q) ≤ 1

ϕp(1)

∫
Rn\Q

ϕp(Mχ
αQ

(x))w(x)dx.
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Thus,∫
Rn
ϕp(Mχ

Q
(x))w(x)dx = ϕp(1)w(Q) +

∫
Rn\Q

ϕp(Mχ
Q

(x))w(x)dx

≤
∫
Rn\Q

ϕp(Mχ
αQ

(x))w(x)dx+

∫
Rn\Q

ϕp(Mχ
Q

(x))w(x)dx

(A)

≤
∫
Rn\Q

ϕp(cαMχ
Q

(x))w(x)dx+

∫
Rn\Q

ϕp(Mχ
Q

(x))w(x)dx

(B)

≤ Cα

∫
Rn\Q

ϕp(Mχ
Q

(x))w(x)dx,

where we used (A) Lemma 2.35 and the fact that ϕp is increasing, and (B) the doubling
property of ϕp.

Proof of Theorem 2.44. Let us �x an interval I and a subset E ⊂ I. We denote
A :=

⋃
k Ik. It is straightforward to check that for almost every x ∈ A and every

r > 0 we have
|A ∩ (x− r, x+ r)| ≥ κA r, (2.27)

for a uniformly bounded constant κA > 0. We remark the similarity of condition
(2.27) to capacity density condition and measure density conditions from Chapter 6

Let us begin proving i). Suppose that w ∈ Cp. Notice that by the de�nition of
the weight w, we have hk`k = w(Jk). To simplify the notation, we only consider the
case k = 0 and denote h := h0, ` := `k and J0 := J . Now applying the Cp condition
for the set J = [−1

2`,
1
2`] gives us

h` = w(J) ≤
∫
R

(
Mχ

J
(x)
)p
w(x)dx

(A)

≤ K

∫
R\J

(
Mχ

J
(x)
)p
w(x)dx

= κ

∫
|x|> `

2

(Mχ
J
(x))pw(x) dx

(B)
= κ

∫
|x|>1

(
sup
I′3x

|I ∩ J |
|I|

)p
w(x) dx

(C)

≤ κp

∫
|x|>1

( |J |
|x|

)p
dx

≤ κp `p
∫
|x|>1

|x|−p dx ≤ κp `p,

where we used (A) Lemma 2.11, (B) the fact that w(x) = 0 for every x such that
`
2 < |x| < 1, and (C) for |x| > 1 we have |I ′| & |x| for every interval I ′ such that
J ∩ I ′ 6= ∅. Thus, we have h ≤ κ`p−1.

Let us now prove ii). Suppose that hk = (`k)
p−1 for each k ∈ Z. We want to show

that there exist constants κ > 0 and ε > 0 that are independent of I and E and

w(E) ≤ κ
( |E|
|I|

)ε ∫
R

(Mχ
I
(x))pw(x)dx.

Naturally, we may assume that w(I) > 0. We split the proof into two cases, depending
on the interaction between I and the support of w.
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Case 1: |I ∩A| > 0. By (2.27), we know that there exists a point x0 ∈ I ∩A such
that ∣∣A ∩ (x0 − |I|, x0 + |I|)

∣∣ ≥ KA |I|.

See Figure 2.2 for this case.

[ |︸ ︷︷ ︸
Ik−1

] | [ |︸ ︷︷ ︸
Ik

] | [ |︸ ︷︷ ︸
Ik+1

][ ]

I︷ ︸︸ ︷( x0

︸ ︷︷ ︸
(x0−|I|,x0+|I|)

)

Figure 2.2: Case 1: |I ∩A| > 0.

Thus, since 1A ≤ w ≤ 1 a.e. and it holds that (x0 − |I|, x0 + |I|) ⊂ 3I, we have

w(E) ≤ |E| ≤ K−1
A

|E|
|I|
∣∣A ∩ (x0 − |I|, x0 + |I|)

∣∣
≤ K−1

A

|E|
|I|

w(3I)

≤ KA,p
|E|
|I|

∫
R

(Mχ
I
)pw,

where we used Lemma 2.35 in the last inequality.
Case 2: |I ∩ A| = 0. In this case, we only have exactly one k0 ∈ Z such that

I ∩ Jk0 6= ∅. Let us consider two subcases.
Case 2a: |I| ≤ |Ωk0 |. In this case, we know that w ≤ (`k0)p−1 on E ∩ Jk0 . Thus,

we get

w(E) ≤ (`k0)p−1|Jk0 ∩ E| ≤ (`k0)p−1|E| = (`k0)p−1 |E|
|I|
|I|. (2.28)

Since I ∩ Jk0 6= ∅ and |I| ≤ |Jk0 |, there exists Ĩ ⊂ Jk0 such that Ĩ ⊂ 3I and |Ĩ| = |I|.
See Figure 2.3.

[ | ]︸ ︷︷ ︸
Ik0

[ ]

︸ ︷︷ ︸
Jk0

[

I︷︸︸︷
][︸︷︷︸
Ĩ

]| [ | ]︸ ︷︷ ︸
Ik0+1

Figure 2.3: Case 2a: |I ∩A| = 0, |I| ≤ |Jk0 |.

Thus, we have∫
R

(
Mχ

I
(x)
)p
w(x)dx ≥

∫
Ĩ

(
Mχ

I
(x)
)p
w(x)dx ≥ K hk0 |Ĩ| = (`k0)p−1|I|. (2.29)

Combining (2.28) and (2.29) then gives us

w(E) ≤ κ |E|
|I|

∫
R

(
Mχ

I
(x)
)p
w(x)dx,

which is what we wanted.
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Case 2b: |I| > |Jk0 |. In this case, we have obviously Jk0 ⊂ 3I. See Figure 2.4.

[ | ]︸ ︷︷ ︸
Ik0

[ ]︸ ︷︷ ︸
Jk0

[

I︷ ︸︸ ︷
]| [ | ]︸ ︷︷ ︸

Ik0+1

Figure 2.4: Case 2b: |I ∩A| = 0, |I| > |Jk0
|.

Let xI be the center of I. Since w = 1 on Ik0+1 and |I| ≤ |Ik0+1| = 2, we have∫
R

(
Mχ

I
(x)
)p
w(x)dx ≥

∫
R

( |I|
|I|+ |x− xI |

)p
w(x)dx

≥
∫
Ik0+1

( |I|
|I|+ |x− xI |

)p
w(x)dx

≥ |I|p
∫
Ik0+1

( 1

|Ik0+1|

)p
dx

= 21−p|I|p.

Since `k0 = |Jk0 | < |I|, we also have

w(E) = (`k0)p−1|Jk0 ∩ E| ≤ |Jk0 |p−1|E| ≤ |I|p−1|E| = |I|p |E|
|I|

.

Combining these two estimates gives us what we wanted. This completes the proof of
part ii).

The proof of part iii) is similar to the proof of part i). We use the same notation
as in the proof of part i). Using Lemma 2.47, the facts that ϕp is increasing and
doubling, and that |J | = `, we get

h` = w(J) ≤ κ
∫
R
ϕp
(
Mχ

J
(x)
)
w(x)dx

≤ κ
∫
|x|>`

ϕp
(
Mχ

J
(x)
)
w(x)dx

≤ κ
∫
|x|>1

ϕp

( `

|x|

)
dx

≤ κ
∫ ∞

1
ϕp

( `
x

)
dx

≤ κ `
∫ `

0
ϕp(x)

dx

x2
,

where we used integration by substitution in the last step.
In order to prove vi), we argue as in the proof of ii). The cases 1 and 2a are

essentially the same, since the value of hk does not really play a role in these cases.
Let us prove the case 2b. We get∫

R
ϕp
(
Mχ

J
(x)
)
w(x)dx ≥

∫
R
ϕp

( |I|
|I|+ |x− xI |

)
w(x)dx

≥
∫
Ik0+1

ϕp

( |I|
|I|+ |x− xI |

)
w(x)dx

2.9. The counterexample of Kahanpää�Mejlbro 43



≥
∫
Ik0+1

ϕp

( |I|
2|Ik0+1|

)
dx

≥
∫
Ik0+1

ϕp

( |I|
4

)
dx

≥ κϕ ϕp(|I|),

since ϕp is increasing and doubling and w = 1 a.e. on Ik0+1. Also, we have

w(E) =
ϕp(`k0)

`k0

|Jk0 ∩ E| ≤
ϕp(|Jk0 |)
|Jk0 |

|E| ≤ ϕp(|I|)
|I|

|E| = ϕp(|I|)
|E|
|I|

,

where we used the fact that t 7→ ϕp(t)
t is an increasing function in the last inequality.

This �nishes the proof.

2.9.4 Kahanpää–Mejlbro weights in higher dimensions

Although the de�nition of C̃p makes sense in every dimension, the proof of Theorem
2.45 works only in dimension one since it relies on the one-dimensional construction of
Kahanpää�Mejlbro weights and their properties. In this section, we explain how the
construction and the the proofs of Theorem 2.44 and Theorem 2.45 can be generalized
for higher dimensions.

For a point x = (x1, . . . , xn) ∈ Rn and r > 0, we let Q(x, r) be the (closed) cube
centered at x with side length 2r:

Q(x, r) := [x1 − r, x1 + r]× . . .× [xn − r, xn + r].

Let us construct the n-dimensional analogue of the set A from the proof of Theorem
2.44. For every m = (m1, . . . ,mn) ∈ Zn, we set

Rm := Q(4m− 2, 1) = [4m1 − 3, 4m1 − 1]× . . .× [4mn − 3, 4mn − 1] .

We now use the cubes Rm similarly as the intervals Ik and set A :=
⋃
m∈Zn Rm.

Lemma 2.48
There exists a constant κA > 0 such that, for every x ∈ A and r > 0,

|A ∩Q(x, r)| ≥ κArn. (2.30)

As in the one dimensional case, we remark the similarity of this condition to the
capacity density conditions and measure density condition from Chapter 6.

Proof. Let us �x x ∈ A and 0 < r < ∞. Then x lies inside exactly one of the cubes
Rm. Let us denote this cube by Q0.

Suppose that 0 < r < 2. Let us break Q(x, r) into 2n subcubes of side length r.
Since x ∈ Q0 and `(Q0) = 2 > r, at least one of the subcubes has to lie inside Q0.
Let us denote this subcube by P . Thus,

|A ∩Q(x, r)| ≥ |Q0 ∩Q(x, r)| ≥ |P | = rn.

Suppose now that 2 + 4j ≤ r < 2 + 4(j + 1) for some j ≥ 0. There are at least
(2j + 1)n cubes Rm contained in Q(x, r). See Figure 2.5. Since each of these cubes
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has measure 2n, we get

|A ∩Q(x, r)| ≥ (2j + 1)n2n =
(4j + 2)n

rn
rn ≥ (4j + 2)n

(2 + 4(j + 1))n
rn =

(
1

3

)n
rn.

Q0
x

r = 2

r = 6

r = 10

r = 14

Figure 2.5: Scheme in dimension 2. Q0 = [−1,−3]2 and each of the
grey cubes has sidelength 2, at distance 2 from each other. The dashed
lines represent cubes centered at x with sidelength 2r, for the values

r = 2, 6, 10, 14.

Let us �nally construct the n-dimensional weights. For every m ∈ Zn, let `m be a
number such that 0 < `m < 1 and infm `m = 0, for example, `m = 1/(|m| + 1). We
set

Pm := Q

(
4m,

`m
2

)
=

[
4m1 −

`m
2
, 4m1 +

`m
2

]
× . . .×

[
4mn −

`m
2
, 4mn +

`m
2

]
,

for every m ∈ Z. Thus, we have `(Pm) = `m. See Figure 2.6 for a visual description
of the sets A and Pm in dimension 2. These cubes will be the support of our weight.

Fix a sequence of heights, h = (hm)m∈Zn , that will be indexed by Zn, and that
satisfy 0 < hm < 1 for all m ∈ Zn. We de�ne the Kahanpää�Mejlbro weight wh in an
analogous way as in dimension one, that is,

w = 1A +
∑
m∈Zn

hm1Pm , (2.31)
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Naturally, these weights share a lot of properties with their 1-dimensional counterparts
but because of the dimension, we have to make some modi�cations.

R(−1,−1)

R(−1,0)

R(−1,1)

R(−1,2)

R(0,−1)

R(0,0)

R(0,1)

R(0,2)

R(1,−1)

R(1,0)

R(1,1)

R(1,2)

R(2,−1)

R(2,0)

R(2,1)

R(2,2)

P(0,0)

Figure 2.6: The cubes Rm (in red) and Pm (in green) in R2, with
m = (m1,m2), for `m = 1

|m|+1 . Each Rm has side length 2 and Pm

has sidelength `m.

An analogue of Theorem 2.44 holds for these n-dimensional weights in the follow-
ing form.

Theorem 2.49
Let h = (hm)m∈Z be a sequence of heights and let wh be the weight as in (2.31). The
following statements hold.

i) If wh ∈ Cp, then there exists K > 0 such that hm ≤ K(`m)n(p−1).

ii) If hm = (`m)n(p−1), then wh ∈ Cp.

iii) If wh ∈ C̃p, then there exists K > 0 such that hm ≤ K
∫ (`m)n

0 ϕp(t)
dt
t2
.

iv) If hm =
ϕp(`nm)
`nm

, then wh ∈ C̃p.

The correct exponent is now n(p− 1) instead of p− 1 because |Pm| = (`m)n.
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The proof of this theorem is essentially the same as in the 1-dimensional case.
Since Lemma 2.11 and Lemma 2.47 hold in any dimension, the proofs of i) and iii)
work also in any dimension. Parts ii) and iv) also hold because of (2.30) and there are
no more cases than the 1-dimensional cases 1, 2a and 2b. The rest of the computations
are essentially the same as before.

With the help of Theorem 2.49, it is straightforward to generalize Theorem 2.45
for higher dimensions:

Theorem 2.50
In any dimension, we have

a) Cp \ C̃p 6= ∅,

b)
⋃
ε>0Cp+ε ( C̃p.

In particular, the condition Cp+ε is not necessary for (2.2) to hold for Calderón�
Zygmund operators.
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3

Quantitative weighted
Cp estimates

Some of the results in this chapter are contained in the following works:

[12] Canto, J. Sharp Reverse Hölder inequality for Cp Weights and Applications, The
Journal of Geometric Analysis (2021) 31: 4165�4190.

[13] Canto, J., Li, K., Roncal, L., Tapiola, O. Cp estimates for rough homogeneous
singular integrals and sparse forms, Annalli della Scuola Normale Superiore di
Pisa, clase di Scienze (5) Vol XXII (2021), 1131�1168.

In this section, we will give quantitative weighted norm inequalities, mostly be-
tween singular integral operators and maximal operators. This inequalities will be for
Cp weights and will use the Cp constant that was de�ned in Section 2.4. More pre-
cisely, we will provide quantitative Coifman�Fe�erman-type inequalities for Calderón�
Zygmund operators and rough homogeneous singular integral operators.

Although it is a quantitative weighted norm inequality, we postpone the discus-
sion on the Fe�erman�Stein inequality until Chapter 4. This is because an exponen-
tial decayed good-λ inequality between the sharp maximal operator and the Hardy�
Littlewood maximal operator is needed in order to obtain that inequality, which is
obtained in that Chapter.



3.1 Definitions of the main operators

In this section, we introduce the main operators for which we will obtain quantitative
Cp estimates.

3.1.1 Calderón–Zygmund operators

Let K : Rn × Rn → R be a function de�ned away from the diagonal {(x, y) ∈
Rn × Rn : x = y} that satis�es the following conditions for some constant κK > 0,
the size condition

|K(x, y)| ≤ κK
|x− y|n

, (3.1)

and the regularity condition

|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)| ≤ κK
|y − y′|εK
|x− y|n+εK

, (3.2)

for 2|y− y′| ≤ |x− y| and some εK > 0. A function satisfying (3.1) and (3.2) is called
a Calderón�Zygmund kernel.

Definition 3.1
Let K be a Calderón�Zygmund kernel satisfying (3.1) and (3.2). A Calderón�
Zygmund operator associated to K is a linear operator T : S (Rn) → S ′(Rn) that
satis�es

Tf(x) =

∫
Rn
K(x, y) f(y) dy,

for f ∈ C∞c (Rn) and x outside of the support of f .

Note that one Calderón�Zygmund operator has multiple operators associated to it.
Nevertheless, there is a unique sublinear operator T ∗, which is called the maximally
truncated Calderón�Zygmund singular integral operator, which is de�ned by

T ∗f(x) = sup
ε>0

∣∣∣∣∣
∫
|x−y|>ε

K(x, y)f(y)dy

∣∣∣∣∣ . (3.3)

Calderón�Zygumnd kernels were introduced by Coifman and Meyer in [21], where
they were named as standard kernels. They were eventually called Calderón�Zygmund
kernels because of the work of Calderón and Zygmund [10], in which the boundedness
of similar operators was proved under a slightly regularity condition stronger than
(3.2). Other regularity conditions have been widely studied, such as Hörmander con-
dition [59], or Dini condition [84]. For more on Calderón�Zygmund operators, we refer
to [45, 67, 112]

3.1.2 Rough homogeneous singular integral operators

Rough homogeneous singular integral operators are convolution operators whose ker-
nel is homogeneous of degree −n but satis�es no regularity condition. Let Ω be a
bounded function de�ned on Sn−1 that satis�es the cancellation property∫

Sn−1

Ω(x)dσ(x) = 0. (3.4)
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Definition 3.2
Let Ω ∈ L∞(Sn−1) satisfy the cancellation condition (3.4). The rough singular integral
operator associated to Ω is de�ned by the expression

TΩf(x) = lim
ε→0

∫
|y|>ε

Ω
( y
|y|
)

|y|n
f(x− y) dy, (3.5)

for f ∈ C∞c (Rn).

Cancellation condition (3.4) is necessary for (3.5) to be well de�ned. These op-
erators have been studied intensively by numerous authors both in unweighted and
weighted settings, see e.g. [11, 18, 19, 28, 31, 47, 57, 64, 110, 115].

3.1.3 Sparse operators and sparse forms

Sparse operators come as a newish technique to obtain sharp dominance over several
di�erent operators. There have been di�erent de�nitions for what they are, but we
are going to use them in the following form.

Definition 3.3
Let S be a collection of cubes in Rn, and let 0 < γ < 1. We say that S is γ-sparse if
for every Q ∈ S, there exists an exceptional set EQ ⊂ Q such that |EQ| ≥ γ|Q| and
the sets {EQ}Q∈S are pairwise disjoint.

In most cases, we are going to assume that γ = 1
2 and we will not explicitly mention

the parameter gamma. Therefore, we will just say that the family S is sparse.

Example 3.4
Let Ik = (0, 2k) for k ∈ Z. The family S = {Ik}k∈Z is sparse. Indeed, let EIk =
(2k−1, 2k) ⊂ Ik. Then clearly |EIk | = 1

2 |Ik| and they are pairwise disjoint.

Now, let us de�ne the sparse operator over a sparse family S. It is a sublinear
operator AS , that, applied to a locally integrable function f has the form

ASf(x) =
∑
Q∈S
〈|f |〉Q χQ(x). (3.6)

It is well known that Calderón�Zygmund operators are poinwisely bounded by
sparse operators of form (3.6), see [23, 64, 79, 84].

Theorem 3.5
Let T be a Calderón�Zygmund operator as in De�nition 3.1. There exists a constant
κT such that for any function f ∈ L∞(Rn) with compact support, there exists a sparse
family S = S(f) such that

|Tf(x)| ≤ κTASf(x) = κT
∑
Q∈S
〈|f |〉QχQ(x).

Note that the sparse family in Theorem 3.5 is di�erent for each function f , but
the sparse parameter γ is uniform for each Calderón�Zygmund operator T .

3.1. De�nitions of the main operators 51



Sadly, such pointwise domination is not available for rough operators, but there is
an alternative. This is where sparse forms come into play, which we de�ne now.

Definition 3.6
Let S be a sparse family and let 0 < γ ≤ 1 and 1 < t <∞. The sparse form Λ = Λt,γS
is de�ned, for functions f, g ∈ L1

loc(Rn) by the expression

Λ(f, g) = (t′)γ
∑
Q∈S
〈|f |〉γQ 〈|g|〉t,Q |Q|.

In [24], it was proved that these sparse forms actually bound rough homogeneous
singular integrals, in the duality pairing sense, as the following Theorem states. This
is for γ = 1. For our purposes, we are going to need a similar domination result for
0 < γ < 1 which will be proved in Section 3.5.2.

Theorem 3.7 – Theorem A, [24]
Suppose that TΩ is a rough homogeneous singular integral as in De�nition 3.2. Then,
for any 1 < p <∞ and f, g bounded with compact support, we have∣∣〈TΩf , g

〉∣∣ ≤ κn p′ ‖Ω‖L∞(Sn−1) sup
S

∑
Q∈S
〈|f |〉Q 〈|g|〉p,Q |Q|.

Both Theorem 3.5 and Theorem 3.7 have been used to obtain sharp quantitative
estimates for the norms of Calderón�Zygumnd operators and rough singular integral
operators, respectively, in the weighted spaces Lp(w) when w ∈ Ap. We will expand
on this topic when we discuss weighted norm inequalities for Cp weights.

3.2 The Coifman–Fefferman inequality

In this section, we discuss the weighted norm inequality between Calderón�Zygmund
operators and the Hardy�Littlewood maximal operator. This inequality, �rst proved
by Coifman and Fe�erman [20] for A∞ weights, has the precise statement as follows.

Theorem 3.8 – Theorem III, [20]
Let w ∈ A∞ and let 1 < p < ∞. Let T be a Calderón�Zygmund operator as in
De�nition 3.1. There exists a constant κ such that

‖T ∗f‖Lp(w) ≤ κ ‖Mf‖Lp(w), (3.7)

for any f ∈ L∞(Rn) with compact support. Here T ∗ denotes the maximally truncated
singular integral operator (3.3)

The classical proof of inequality (3.7) in [20] uses a good-λ inequality between the
operators T ∗ and M . If the kernel of T is not regular enough, there is in general no
good-λ inequality and even inequality (3.7) can be false, as is shown in [94].

There are ways of proving inequality (3.7) without using the good-λ inequality. For
example, the proof given in [1] uses a pointwise estimate involving the sharp maximal
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function. Another proof can be found in [26], where the main tool is an extrapolation
result that allows to obtain estimates like (3.7) for any A∞ weight from the smaller
class A1 (see also [27]).

Inequality (3.7) is very important in the classical theory of Calderón�Zygmund
operators, as it is used in the proof of many other weighted norm inequalities. The
�rst, and probably most important consequence of (3.7) is the boundedness of T ∗ in
Lp(w) for any weight w ∈ Ap, 1 < p <∞, namely∫

Rn
T ∗f(x)pw(x)dx ≤ κ

∫
Rn
|f(x)|pw(x)dx.

This comes as a direct corollary of Muckenhoupt's theorem [99] on the boundedness
of the Hardyll�Littlewood maximal operator in weighted norm.

Another consequence of inequality (3.7), though not as direct as the previous one,
is the following inequality, obtained in [105]. For any weight w it holds

‖T ∗f‖Lp(w) ≤ κ‖f‖Lp(M [p]+1w),

where [p] denotes the integer part of p and Mk denotes the k−fold composition of
M . This result is sharp since [p] + 1 cannot be replaced by [p]. This is saying that
inequality (3.7) encodes a lot of information. Very recently, this result was extended in
[89] to the non-smooth case kernels, more precisely to the case case of rough singular
operators TΩ with Ω ∈ L∞(Sn−1), by proving inequality (3.7) for these operators. The
proof of this result is quite di�erent from the classical situation since there is no good-
λ estimate involving these operators and it is a consequence of a sparse domination
result for TΩ obtained in [24] combined with the A∞ extrapolation theorem mentioned
above in [26].

Norm inequalities similar to (3.7) are true for other operators, for instance in [101]
(fractional integrals) or [116] (square functions). Also, in the context of multilinear
harmonic analysis one can �nd other examples, for example, it was shown in [87] an
analogue for multilinear Calderón�Zygmund operators T , namely

‖T (f1, ..., fm)‖Lp(w) ≤ κ‖M(f1, ..., fm)‖Lp(w),

for w ∈ A∞ extending (3.7). We refer to [87] for the de�nition of the operator M.
The proof for the multilinear setting is in the spirit of the proof of inequality (3.7)
given in [1]. There are also inequalities for (3.7) for more singular operators like the
case of commutators of Calderón�Zygmund operators with BMO functions, as was
proved in [106]. In this case, the result is, for w ∈ A∞,

‖[b, T ]f‖Lp(w) ≤ c
∥∥M2f

∥∥
Lp(w)

,

where [b, T ]f = bTf −T (bf) andM2 = M ◦M . The result is false forM , because the
commutator is not of weak type (1,1) and it would then contradict the extrapolation
result from [26].

All of the inequalities mentioned above are true for the class A∞ of weights, but
A∞ is not the whole picture for some of them. The correct class of weights is, in
some sense, the Cp class. Muckenhoupt showed in [100] that A∞ is not necessary
for the CFI (3.7), and that the correct necesary condition is Cp. About su�ciency,
Sawyer [109] proved that w ∈ Cp+η for some η > 0 is su�cient for (3.7) in the range
p ∈ (1,∞). It is still an open conjecture if Cp is a su�cient condition.
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Although Cp weights were introduced in the context of the CFI, other inequali-
ties have been proved to hold for these weights. For example, the Fe�erman�Stein
inequality, between the maximal operators of Hardy�Littlewood and of Fe�erman�
Stein, as can be found in [117], [14] for a quanti�ed version, [86] in the weak-type
context. In [17], the authors extended Sawyer's result to a wider class of operators
than Calderón�Zygmund operators, including some pseudo-di�erential operators and
oscillatory integrals. Finally, in [13], Sawyer's result was extended to rough singular
integrals and sparse forms.

For the rest of the Chapter, we are going to work with Lp estimates for weights in
Cq for some q > p.

3.3 Marcinkiewicz integral estimates

In this section, we are going to introduce the most technical tools in this Chapter.
They are the Marcinkiewicz-type integral operators. These operators arise quite nat-
urally in the context of Cq weighted estimates, and their de�nition features a few
concepts, such as Cq tails, level sets and the Whitney decomposition lemma.

Let us begin with a technical lemma, which shows how the sum of Cq-tails of
pairwise disjoint cubes can be bounded when the weight is in Cq.

Lemma 3.9
Let w ∈ Cq. Fix R ≥ 2 and δ > 0. Then for every cube Q and any collection of
pairwise disjoint cubes {Qj}j that are all contained in Q we have∫

RQ

∑
j

(Mχ
Qj

(x))qw(x)dx ≤ 1

κ1ε
log

κ2R
nq

εδ
w(RQ) + δ

∫
Rn
Mχ

Q
(x)qw(x)dx, (3.8)

where κ1 and κ2 are dimensional constants and ε is the parameter for w in (2.4).
Hence, we have∫

Rn

∑
j

(Mχ
Qj

(x))qw(x)dx ≤ κn 4nq
1

ε

∫
Rn

(Mχ
Q

(x))qw(x)dx. (3.9)

Proof. For λ > 0, we will call Eλ = {x ∈ RQ :
∑

jMχ
Qj

(x)q > λ}. Since the cubes

are pairwise disjoint, we have
∑

j χQj
∈ L∞. Then by the exponential inequality from

[36] we have |Eλ| ≤ κne
−aλ|RQ|, where cn and a are positive dimensional constants.

Then, applying the Cq condition (2.4) we get

w(Eλ) ≤ 2

(
|Eλ|
|RQ|

)ε ∫
Rn

(Mχ
RQ

(x))qw(x)dx

≤ κne−εaλRnq
∫
Rn

(Mχ
Q

(x))qw(x)dx.

Now we compute∫
RQ

∑
j

(Mχ
Qj

(x))qw(x)dx =

∫ ∞
0

w(Et)dt = λw(Eλ) +

∫ ∞
λ

w(Et)dt
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≤ λw(RQ) + κnR
qn 1

aε
e−aελ

∫
Rn

(Mχ
Q

(x))qw(x)dx.

We can choose λ big enough so that

κnR
qn 1

aε
e−aελ ≤ δ,

that is, λ = 1
aε log κnRqn

δaε , and we get (3.8). In order to get (3.9), choose R = 2, δ = 1
ε

and use
∑
Mχq

Qj
≤ 2nqMχ

Q
almost everywhere outside of 2Q.

We remark that there can be no pointwise equivalent of (3.9), that is, there exists
no constant κ > 0 such that, for a cube Q and a family of pairwise disjoint cubes
{Qj}j contained in Q, the following estimate holds.∑

j

(Mχ
Qj

(x))q ≤ κ (Mχ
Q

(x))q. (3.10)

Many examples can be constructed so that (3.10) fails. Let us construct the simplest
one, where the cubes, though disjoint, accumulate at a certain point. Let Q0 = [0, 1]n

and let

Qj = [2−j , 2−j+1]×
n∏

m=2

[0, 2−j ]

See Figure 3.1. Clearly, the cubes Qj ⊂ Q and they are pairwise disjoint. The idea is
that the cubes accumulate around the origin.

Q0

Q1

Q2

Figure 3.1: The cubes Qj for j ≥ 0 in dimension 2.

Let us de�ne the partial sum

SN (x) =

N∑
k=1

Mχ
Qk

(x)q.

Since dist(0, Qk) = 2−k = `(Qk) for every k > 1, we have that, using Lemma 2.8

Mχ
Qk

(0) ≥ κn
1

2
.

Clearly, this means that, for N big enough, we can make SN arbitrarily large on a
neighborhood of the origin, since each of the SN is continuous. This means that the
limit S = limN→∞ SN is not an L∞ function. Therefore, there is no way that (3.10)
holds.
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We now state the Whitney covering lemma. We are going to use this technique in
order to decompose the level sets of some functions.

Lemma 3.10 – Whitney covering lemma
Given R ≥ 1, there is C = C(n,R) such that if Ω is an open subset in Rn, then
Ω = ∪jQj where the Qj are disjoint cubes satisfying

5R ≤ dist(Qj ,Rn \ Ω)

diamQj
≤ 15R,

∑
j

χ
RQj
≤ κχ

Q
.

This decomposition technique is going to be applied to level sets of the form
Ω = {x ∈ Rn : f(x) > λ} for some function f and λ > 0. In order to ensure that
these sets are open, we need the functions to be lower semicontinuous.

Definition 3.11
Let f : Rn → R. We say that f is lower semicontinuous if for every λ ∈ R, the set
{x ∈ Rn : f(x) > λ} is open.

Clearly, continuous functions are always lower-semicontinuous. But the functions
we are going to consider are also lower-semicontinuous.

Lemma 3.12
The following statements are valid.

� For any function f ∈ L1
loc(Rn), its maximal function Mf is lower semicontinu-

ous.

� Let T be a Calderón�Zygmund operator. Then T ∗f is lower semicontinuous for
f good enough.

We now de�ne an auxiliary function that was used in [109]. This operator will
be used to intuitively represent the integral of the function h to the power p after we
apply the Cq condition.

Definition 3.13
Let h be a non-negative lower-semicontinuous function on Rn and k an integer. Let
W(k) be the Whitney decomposition of the level set Ωk = {x ∈ Rn : h(x) > 2k}, that
is, Ωk =

⋃
Q∈W(k)Q. We de�ne the function

Mp,qh(x)p =
∑
k∈Z

∑
Q∈W(k)

2kp(Mχ
Q

(x))q. (3.11)

We need lower-semicontinuity in this de�nition to ensure that we can apply Whit-
ney's decomposition theorem. In the practice, we will apply this operator to Mf and
to T ∗f , which are always lower-semicontinuous by Lemma 3.12.
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This expression arises naturally when estimating Lp(w) norms with w ∈ Cq. In-
deed, by the layer cake representation from Section 1.4.4, we have

‖h‖pLp(w) = p

∫ ∞
0

tp−1w({h > t})dt ≈ p
∑
k∈Z

2kp
∑
Q∈Qk

w(Q).

The role that w(Q) plays in the A∞ theory is often played by
∫
RnM(1Q)qw in the Cq

context. Therefore, the natural Cq counterpart of the above expression is∑
k∈Z

2kp
∑
Q∈Qk

∫
Rn
Mχ

Q
(x)qw(x)dx =

∫
Rn
Mp,qh(x)pw(x)dx.

Now, we prove that the Marcinkiewicz function applied to a maximal function is
bounded, in the Cq weighted L

p norm by the maximal function. We prove this in a
quantitative way. Note that q > p is crucial in the proof.

Lemma 3.14
Let 0 < p < q < ∞ with 1 < q and suppose that w ∈ Cq. Then for any f bounded
with compact support, we have∫

Rn
(Mp,qMf(x))pw(x)dx ≤ κn 2

κn
pq
q−p

1

εw
log

1

εw

∫
Rn

(Mf(x))pw(x)dx, (3.12)

where Mp,q denotes the Marcinkiewicz integral operator as de�ned in (3.11) and εw
is as in (2.6).

Proof. Let W(k) be the Whitney decomposition of Ωk = {x ∈ Rn : Mf(x) > 2k}, for
any integer k. Let N be a positive integer to be chosen later and �x a cube P from
the k −N generation. We have, as in [109],

|Ωk ∩ 5P | ≤ κ2−N |P |, (3.13)

where κ depends only on the dimension n.
Now de�ne the partial sums of the Marcinkiewicz integrals. For a �xed k ∈ Z, we

de�ne the partial sum at scale k as

S(k) = 2kp
∑

Q∈W(k)

∫
Rn

(Mχ
Q

(x))qw(x)dx

We have called this expression partial sum because the following relation holds.∫
Rn

(
Mp,qMf(x)

)p
w(x)dx =

∑
k∈Z

S(k).

For a �xed k ∈ Z, N ∈ N and a cube P ∈ W(k − N), we de�ne the partial sum at
scale k localized at P as

S(k;N,P ) = 2kp
∑

Q∈W(k)
Q∩P 6=∅

∫
Rn

(Mχ
Q

(x))qw(x)dx.
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Clearly, the following relation between both partial sums hold,

S(k) ≤
∑

P∈W(k−N)

S(k;N,P ).

Because of the Whitney decomposition, Q ∩ R 6= ∅ implies Q ⊂ 5P for large N ,
so can split the integral in two parts, close to P and away from P , that is,

S(k;N,P ) ≤
∫
Rn

2kp
∑

Q∈W(k)
Q⊂5P

Mχ
Q

(x)qw(x)dx

=

∫
10P

+

∫
(10P )c

∑
Q∈W(k)
Q⊂5P

Mχ
Q

(x)qw(x)dx

= I + II for large N.

Let us estimate I. By (3.8), for any η > 0, which will be chosen chosen later, and for
R = 10 we get

I ≤ 2kp
1

κ1ε
log

κ210nq

ηε
w(10P ) + η2kp

∫
Rn

(Mχ
P

)qw.

Now, let us estimate II. Standard estimates for the maximal function of characteris-
tics of cubes show that if xP is the center of the cube P then by Lemma 2.8 and since
1 < q, we have

II ≤ κqn 2kp
∫

(10P )c

∑
Q∈W(k)
Q⊂5P

|Q|q

|x− xP |nq
w(x)dx

≤ κqn 2kp
∫

(10P )c

1

|x− xP |nq
( ∑
Q∈W(k)
Q⊂5P

|Q|
)q
w(x)dx

≤ κqn 2kp
∫

(10P )c

|Ωk ∩ P |q

|x− P |nq
w(x)dx

≤ κqn 2kp
∫

(10P )c

2−qN |P |q

|x− xP |nq
w(x)dx

≤ κqn 2N(p−q)+(k−N)p

∫
Rn

(Mχ
P

(x))qw(x)dx,

where we have used (3.13) on the third inequality. Thus we have, by the Whitney
decomposition theorem, for N large,

S(k) ≤
∑

P∈W(k−N)

S(k;N,P )

≤ 1

κ1ε
log

κ210nq

ηε
2kp

∑
P∈W(k−N)

w(10P )

+
(
η2kp + κqn2N(p−q)+(k−N)p

) ∑
P∈W(k−N)

∫
Rn

(Mχ
P

(x))qw(x)dx

≤ 1

κ1ε
log

κ210nq

ηε
2kp
∫
Rn

( ∑
P∈W(k−N)

χ
10P

(x)
)
w(x)dx
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+
(
η2Np + κqn2N(p−q)

)
2(k−N)p

∑
P∈W(k−N)

∫
Rn

(Mχ
P

(x))qw(x)dx

≤ κn
1

κ1ε
log

κ210nq

ηε
2kpw

(
Ωk−N

)
+ (η2Np + κqn2N(p−q))S(k −N)

= κn2Np
1

κ1ε
log

κ210nq

ηε
2p(k−N)w(Ωk−N ) + (η2Np + κqn2N(p−q))S(k −N).

Now, since q > p, we can chose N so that κqn2N(p−q) < 1
4 , that is, N ≥ κn

q
q−p ; and η

so that η2Np < 1
4 .

This allows us to continue the computations by

S(k) ≤ κn2
κn

pq
q−p

1

ε
(qκn + log

1

ε
+ κn

pq

q − p
)2p(k−N)w(Ωk−N ) +

1

2
S(k −N)

≤
(
κn2

κn
qp
q−p

1

ε
log

1

ε

)
2p(k−N)w(Ωk−N ) +

1

2
S(k −N).

Thus, writing SM =
∑

k≤M S(k) we get

SM ≤
1

2
SM−N +

(
κn2

κn
qp
q−p

1

ε
log

1

ε

) ∑
k≤M

2p(k−N)w(Ωk−N )

≤ 1

2
SM +

(
κn2

κn
qp
q−p

1

ε
log

1

ε

)∑
k∈Z

2p(k−N)w(Ωk−N )

≤ 1

2
SM + κn2

cn
qp
q−p

1

ε
log

1

ε

∫
Rn

(Mf(x))pw(x)dx.

Now, we can argue as in [109], p. 260, to conclude that SM <∞ for each M . Then,
passing it to the left hand side, we obtain

SM ≤ κn2
cn

qp
q−p

1

ε
log

1

ε

∫
Rn

(Mf(x))pw(x)dx.

Now, since SM is increasing in M , we have that

sup
M

SM =

∫
Rn

(Mp,q(Mf))pw,

and therefore we conclude the proof of the lemma.

Remark 3.15 The important part of the dependence of the constant on the exponents p and
q is that the lemma will fail to be true for p = q, with this kind of blowup.

Remark 3.16 The correct dependence of (3.12) on the Cq constant is, after simpli�cations,

κn,p,q
(
1 + [w]Cq

)
log
(
e+ [w]Cq

)
.

In order to have bounds for sparse operators and sparse forms, we introduce the
Marcinkiewicz operator at a �xed level. These operators were introduced in [17].

Definition 3.17
Let h be a positive lower-semicontinuous function on Rn and k an integer. Let W(k)
be the Whitney decomposition of the level set Ωk = {x ∈ Rn : h(x) > 2k}, that is,
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Ωk =
⋃
Q∈W(k)Q. We de�ne the function

Mk,p,qh(x) =
(

2kp
∑
Q∈Qk

Mχ
Q

(x)q
) 1
p
.

The relation between the full and the single-scale Marcinkiewicz operators is clear
and is precisely ∑

k∈Z
Mk,p,qh(x)p = Mp,qh(x)p.

Let us prove an analogue of Lemma 3.9 for sparse families of cubes.

Lemma 3.18
Let Q be a cube and S a sparse family of cubes that are contained in Q. Suppose
that w ∈ Cq with 1 < q <∞. Then∫

Rn

∑
R∈S

Mχ
R

(x)qw(x)dx ≤ κn,q
(
[w]Cq + 1

) ∫
Rn
Mχ

Q
(x)qw(x)dx.

Proof. We start by noticing that if x /∈ 2Q, then we have by Lemma 2.8 and since
1 < q <∞, ∑

R∈S
Mχ

R
(x)q ≤ κn

∑
R∈S

( |R|
dist(x,Q)n

)q
≤ κqn

∑
R∈S

( |ER|
dist(x,Q)n

)q
= κqn

∑
R∈S |ER|q

dist(x,Q)nq

≤ κqn
( |Q|

dist(x,Q)n

)q
≤ κqnMχ

Q
(x)q,

where ER is the exceptional set given by sparsity and we used the assumption q > 1 in
the estimate

∑
R∈S |ER|q ≤ |Q|q. Thus, it is enough to bound

∫
2Q

∑
R∈S

(
Mχ

R

)q
w.

Since ER ⊂ R and |ER| ≥ 1
2 |R| for every R ∈ S, we have the pointwise bound∑

R∈S
(Mχ

R
(x))q ≤ κqn

∑
R∈S

(Mχ
ER

(x))q,

almost everywhere by Lemma 2.35. Also, since the sets ER are pairwise disjoint, we
have

∑
R(χ

ER
)q ≤ 1 ∈ L∞. Thus, by [36, Theorem 1 (3)] there exists c > 0 such that

for every λ > 0 we have

|Fλ| := |{x ∈ 2Q :
∑
R∈S

Mχ
R

(x)q > λ}| ≤ κe−κλ|Q|. (3.14)

Applying the Cq condition (2.4) to Fλ ⊆ 2Q and applying (3.14) we have

w(Fλ) ≤ κ
( |Fλ|
|2Q|

)ε ∫
Rn

(Mχ
2Q

(x))qw(x)dx
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≤ κn,q e
−κ λ

[w]Cq
+1

∫
Rn

(Mχ
Q

(x))qw(x)dx. (3.15)

Thus, for any �xed λ > 0 we have∫
2Q

∑
R∈S

(Mχ
R

(x))qw(x)dx =

∫ ∞
0

w(Ft) dt =

∫ λ

0
w(Ft) dt+

∫ ∞
λ

w(Ft) dt = I1 + I2.

For I1, we can use Lemma 2.35 to see that

I1 ≤ λw(2Q)

≤ λ
∫
Rn
M(χ

2Q
(x))qw(x)dx

≤ κqn λ
∫
Rn
M(χ

Q
(x))qw(x)dx.

For I2, we can use (3.15) to get

I2 ≤ κn,q
∫ ∞
λ

e
−κ t

[w]Cq
+1dt

∫
Rn

(Mχ
Q

(x))qw(x)dt

≤ κn,q([w]Cq + 1)e
−κ λ

[w]Cq
+1

∫
Rn

(Mχ
Q

(x))qw(x)dx.

Thus, we have

I1 + I2 ≤ κ
(
λ+

(
[w]Cq + 1

)
e
−c λ

[w]Cq
+1
)∫

Rn
(Mχ

Q
(x))qw(x)dx,

and choosing λ = [w]Cq + 1 completes the proof.

We now relate the sum of Cp-tails of a sparse family that is contained in the level
set to the Marcinkiewicz operator at the same levle.

Lemma 3.19
Let h be a non-negative lower semicontinuous function, w ∈ Cq, 1 < q < ∞ and
0 < p < ∞. Suppose that k ∈ Z and let S = {Rj} be a sparse collection of cubes
contained in Ωk = {x : h(x) > 2k}. Then

2kp
∑
Rj∈S

∫
Rn

(Mχ
Rj

(x))qw(x)dx ≤ κn,q
(
[w]Cq + 1

) ∫
Rn

(Mk,p,qh(x))pw(x)dx.

Proof. Fix k ∈ Z and let Qk = {Ql}l be the Whitney decomposition of Ωk. For each
Ql ∈ Qk, let Sk,l be the family of cubes Rj whose center is contained in Ql. Then, by
the properties of the Whitney cubes and the fact that Rj ⊂ Ωk, we have Rj ⊂ cnQl
for every Rj ∈ Sk,l. Moreover, each Rj ∈ S is contained in exactly one of the Sk,l.

The desired estimate follows now from applying Lemma 3.18 to each of the collec-
tions Sk,l:

2kp
∑
Rj∈S

∫
Rn

(Mχ
Rj

(x))qw(x)dx = 2kp
∑
Ql∈Qk

∑
Rj∈Sk,l

∫
Rn

(Mχ
Rj

(x))qw(x)dx

≤ κp,q
(
[w]Cq + 1

)
2kp

∑
Ql∈Qk

∫
Rn

(Mχ
Ql

(x))qw(x)dx
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= κp,q,n
(
[w]Cq + 1

) ∫
Rn

(Mk,p,qh(x))pw(x)dx.

Finally, as a Corollary, we give a way of bounding sparse operators in terms of Cq
weights.

Corollary 3.20
Suppose that S is a sparse collection of cubes, f is a locally integrable function, w ∈ Cq
for 1 < q <∞ and 0 < p < q. Then∑

Q∈S
〈f〉pQ

∫
Rn

(Mχ
Q

(x))qw(x)dx ≤ κp,q,n([w]Cq + 1)2 log([w]Cq + e)‖Mf‖pLp(w).

Proof. We start by making a level decomposition of the sparse family: for every k ∈ Z,
we set

Sk : {Q ∈ S : 2k < 〈|f |〉Q ≤ 2k+1}.

Clearly we have S =
⋃
k∈Z Sk. Now, for each Q ∈ Sk, we have trivially Q ⊂ {Mf >

2k}. Thus, Lemmas 3.19 and 3.14 give us∑
Q∈S
〈|f |〉pQ

∫
Rn

(Mχ
Q

(x))qw(x)dx ≤ 2p
∑
k∈Z

2kp
∑
Q∈Sk

∫
Rn

(Mχ
Q

(x))qw(x)dx

≤ κ2p
(
[w]Cq + 1

)∑
k∈Z

∫
Rn

(Mk,p,qMf(x))pw(x)dx.

= κ2p
(
[w]Cq + 1

) ∫
Rn

(Mp,qMf(x))pw(x)dx

≤ κ
(
[w]Cq + 1

)2
log
(
[w]Cq + e

)
‖Mf‖pLp(w),

where κ = κn,p,q. This �nishes the proof.

3.4 Cp weights and the Coifman–Fefferman inequality

We state the quanti�cation of Theorem B from [109].

Theorem 3.21
Fix q > p > 1. For all Calderón�Zygmund operator T , all bounded f with compact
support and all weights w ∈ Cq we have

‖T ∗f‖Lp(w) ≤ κn,T
(
q +

qp2

q − p

)
Φ([w]Cq + 1) ‖Mf‖Lp(w), (3.16)

where Φ(t) = t log(e+ t).

Before proving Theorem 3.21, we provide a norm estimate for the Marcinkiewicz
operator from Section 3.3 in terms of the truncated maximal singular integral operator.
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Lemma 3.22
Under the same assumptions of Theorem 3.21 we have∫

Rn
(Mp,qT

∗f(x))pw(x)dx ≤
(
κn

2p

ε
log

κn10nq2p+2

ε

)∫
Rn

(T ∗f(x))pw(x)dx

+

(
κqn2

κn
p2q
q−p

1

ε2
log

1

ε

)∫
Rn

(Mf(x))pw(x)dx.

Proof. Let W(k) be the Whitney decomposition of the level set Ωk = {x ∈ Rn :
T ∗f(x) > 2k} for integer k. One can prove as in [20] the following inequality: if
Q ∈ W(k − 1) and 5Q 6⊂ {Mf > 2k−N} for some N ≥ 1, then

|{x ∈ Q;T ∗f > 2k}| ≤ κT 2−N |Q|. (3.17)

Let V(k) be the Whitney decomposition of the set {x ∈ Rn : Mf(x) > 2k}. We
observe that for each cube Q ∈ W(k − 1) there are two cases, for a �xed N that we
will chose later.

Case (a). 5Q ⊂ {Mf > 2k−N} in which case 5Q ⊂ cnI for some I ∈ V(k −N).
Case (b). 5Q 6⊂ {Mf > 2k−N} in which case (3.17) implies∑

P∈W(k)
P⊂5Q

|P | ≤ cT 2−N |Q|.

Now de�ne the partial sums in a similar way as in the proof of Lemma 3.9

S(k) =
∑

Q∈W(k)

2kp
∫
Rn

(Mχ
Q

(x))qw(x)dx

and, for a �xed P ∈ W(k − 1)

S(k;P ) =
∑

Q∈W(k)
Q∩P 6=∅

2kp
∫
Rn

(Mχ
Q

(x))qw(x)dx ≤
∑

Q∈W(k)
Q⊂5P

2kp
∫
Rn

(Mχ
Q

(x))qw(x)dx.

Here, the last inequality follows from the Whitney decomposition. For a �xed P , we
split in two parts the integral, close from P and away from P , that is

S(k;P ) ≤
∑

Q∈W(k)
Q⊂5P

2kp
∫
Rn

(Mχ
Q

(x))qw(x)dx

=

∫
10P

+

∫
(10P )c

∑
Q∈W(k)
Q⊂5P

2kp(Mχ
Q

(x))qw(x)dx

= I + II.

By (3.8) with R = 10 we have

I ≤ κn
1

ε
log

κn10nq

εη
2kpw(5P ) + η2kp

∫
Rn

(Mχ
P

(x))qw(x)dx,
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where η > 0 is a positive number that is free and at our disposal. In a similar way as
in the proof of Lemma 3.9, one can show

II ≤ κqn2kp−Nq
∫
Rn

(Mχ
P

(x))qw(x)

Combining estimates for I and II we obtain, for every case (b) cube P ∈ W(k − 1),

S(k;P ) ≤ κn
1

ε
log

κn10nq

εη
2kpw(5P )+(η+κqn2−Nq)2kp

∫
Rn

(Mχ
P

(x))qw(x)dx. (3.18)

Thus, we can split the partial sum S(k) in terms of cubes of W(k − 1) of case (a) or
(b), that is,

S(k) ≤
∑

P∈W(k−1)
P is (a)

S(k;P ) +
∑

P∈W(k−1)
P is (b)

S(k;P ) = III + IV.

Now, since each of the Q ∈ W(k) of type (a) intersects at most κ of the P ∈ W(k−1),
yet again due to the Whitney decomposition, we have

III ≤ κ
∑

I∈V(k−N)

∑
Q∈W(k)
Q⊂κnI

2kp
∫
Rn

(Mχ
Q

(x))qw(x)dx

≤ cqn
1

ε

∑
I∈V(k−N)

2kp
∫
Rn

(Mχ
I
(x))qw(x)dx,

where we have used (3.9) and Mχ
κnI
≤ κnMχ

I
using Lemma 2.8, for two di�erent

κn of course. For the remaining part we have by (3.18)

IV ≤ κn
1

ε
log

κn10nq

εη
2kp

∑
P∈W(k−1)

w(5P )

+ (η + κqn2−Nq)2kp
∑

P∈W(k−1)

w(5P )

∫
Rn

(Mχ
P

(x))qw(x)dx

≤ κn
1

ε
log

κn10nq

εη
2kp
∫
Rn
w(Ωk−1)

+ (η2p + κqn2p−Nq)2(k−1)p
∑

P∈W(k−1)

∫
Rn

(Mχ
P

(x))qw(x)dx

≤ κn2p
1

aε
log

κn10nq

εη
2(k−1)pw(Ωk−1) +

1

2
S(k − 1),

if we choose η small enough and N big enough. This means η = 2−(p+2) and N ≥
κn

p+q
q . Combining now estimates for III and IV we get

S(k) ≤ 1

2
S(k − 1) +

(
cn2p

1

aε
log

κn10nq2p+2

ε

)
2(k−1)pw(Ωk−1)

+

(
κqn2

κn
p
q

(p+q) 1

ε

) ∑
I∈V(k−N)

2(k−N)p

∫
Rn

(Mχ
I
)qw.
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Set SM =
∑

k≤M S(k) and sum the previous inequality over k ≤M to obtain

SM ≤
1

2
SM +

(
κn2p

1

aε
log

κn10nq2p+2

ε

)∫
Rn

(T ∗f(x))pw(x)dx

+

(
κqn2

κn
p
q

(p+q) 1

ε

)∫
Rn

(Mp,q(Mf)(x))pw(x)dx

≤ 1

2
SM +

(
κn2p

1

aε
log

κn10nq2p+2

ε

)∫
Rn

(T ∗f(x))pw(x)dx

+

(
κqn2

κn
p
q

(p+q) 1

ε

)(
κn2

κn
pq
q−p

1

ε
log

1

ε

)∫
Rn

(Mf(x))pw(x)dx,

by (3.12). It can be shown (cf. [109], p.262) that SM < ∞, so taking it to the left
and then taking the supremum over all M we obtain the desired result.

Now we are ready to prove Theorem 3.21. The prove we give is more convoluted
than that in [109] and we incorporate the Reverse Hölder inequality from Theorem
2.21.

Proof of theorem 3.21. Using the exponential decay from [7], we know that if we write
{x ∈ Rn : T ∗f(x) > 2k} =

⋃
j Qj as in the Whitney decomposition theorem, we have

|{x ∈ Qj : T ∗f(x) > 2λ,Mf(x) ≤ γλ}| ≤ κ e−
c
γ |Qj |, (3.19)

for any γ > 0. We call Ej to the set in the left side of (3.19). Then, if we call r to
the exponent 1 + δ in Theorem 2.21, we get

w(Ej) = |Ej |
1

|Ej |

∫
Ej

w(x)dx ≤ |Ej |

(
1

|Ej |

∫
Ej

w(x)rdx

) 1
r

≤ |Ej |
1
r′ |Qj |

1
r

(
1

|Qj |

∫
Qj

w(x)rdx

) 1
r

≤ |Ej |
1
r′ |Qj |

1
r

2

|Qj |

∫
Rn

(Mχ
Qj

(x))qw(x)dx

≤ κe−
κ
γr′

∫
Rn

(Mχ
Qj

(x))qw(x)dx.

We use the standard good-λ techniques as in [109], see Section 1.4.4, combined
with Lemma 3.22 to get∫

Rn
T ∗f(x)pw(x)dx ≤

(
2

γ

)p ∫
Rn
Mf(x)pw(x)dx+ κe

− κ
γr′

∫
Rn

(Mp,qT
∗f(x))pw(x)dx

≤
(

2pγ−p + e
− κ
γr′

(
κqn2

κn
p2q
q−p

1

ε2
log

1

ε

))∫
Rn
Mf(x)pw(x)dx

+ κe
− κ
γr′

(
κn2p

1

ε
log

κn10nq2p+2

ε

)∫
Rn
T ∗f(x)pw(x)dx

Choosing γ−1 ∼ κn(q + p2q
q−p)1

ε log 1
ε we can make

e
− κ
γr′

(
κqn2

κn
p2q
q−p

1

ε2
log

1

ε

)
<

1

2
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and

κe
− κ
γr′

(
κn2p

1

aε
log

κn10nq2p+2

ε

)
<

1

2
.

and taking the term to the left side (which is possible since it is �nite, see [109]) we
obtain ∫

Rn
(T ∗f(x))pw(x)dx ≤ κpn

((
q +

p2q

q − p
)1

ε
log

1

ε

)p ∫
Rn
Mf(x)pw(x)dx.

Remark 3.23 We conjecture that the �rst q in the constant should not be there. That way
limq→∞ cq <∞. We think this should be the case because whenever w ∈ Cq and q is
bigger, we have more information. This way we could recover a weighted inequality
for the A∞ class, though it would be a worse one than the one we mention in the
introduction. For this very reason, we conjecture that the dependence on the Cq
constant is not sharp in this sense.

Conjecture 3.24
Let T be a Calderón�Zygmund operator and let 1 < p < q < ∞. There exists a
constant κ = κn,p,q,T such that for all w ∈ Cq the following holds:

‖T ∗f‖Lp(w) ≤ κ max
(
[w]Cq , 1

)
‖Mf‖Lp(w).

Regarding Muckenhoupt's conjecture 2.1 and the Cp constant, we dare not make a
quantitative conjecture in that respect, that is, how the ratio between the Lp(w) norm
of the singular integral and the maximal operator has to depend on the Cp constant
of the weight w.

We remark that, even if usually sparse domination gives sharper quantitative
bounds on the weights, this is not the case. This is because proving a bound for
the sparse operator already uses the techniques of Marcinkiewicz operators. There-
fore, the dependence that one obtains is essentially the same as that in (3.16).

3.5 Estimates for rough operators

In this section, we will prove Sawyer type Cp estimates for rough homogeneous singular
integrals as in Section 3.1.2.

Theorem 3.25
Let TΩ be a rough homogeneous singular integral as in De�nition 3.2. The following
inequalities hold:

I) if 1 < p < q <∞ and w ∈ Cq, then

‖TΩf‖Lp(w) ≤ κn,p,q
(
[w]Cq + 1

)3
log
(
[w]Cq + e

)
‖Ω‖L∞‖Mf‖Lp(w);

II) if 0 < p ≤ 1 < q <∞ and w ∈ Cq, then

‖TΩf‖Lp(w) ≤ κn,p,q
(
[w]Cq + 1

)1+ 2
p log

1
p
(
[w]Cq + e

)
‖Ω‖L∞‖Mf‖Lp(w).
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The constant κn,p,q satis�es κn,p,q →∞ as q → p.

We want to emphasize that the main novelty of this result is the qualitative esti-
mates that (to the best of our knowledge) were not known earlier. We do not know if
our bounds are sharp with respect to [w]Cp but we strongly suspect that they are not.
We also note that previous proofs for the case 0 < p < 1 and w ∈ A∞ used extrap-
olation theory which is not available for Cp weights. Our method and quantitative
bounds are new even for weights w ∈ A∞.

Our proof relies particularly on a sparse domination result of Conde-Alonso,
Culiuc, Di Plinio and Ou:

Theorem 3.26 – [24, part of Theorem A]
Let TΩ be a rough homogeneous singular integral as in De�nition 3.2. Then, for any
1 < p <∞ we have

|〈TΩf, g〉| ≤ κn p′ ‖Ω‖L∞(Sn−1) sup
S

∑
Q∈S
〈|f |〉Q〈|g|〉p,Q,

where the supremum is taken over all sparse collections S, see Section 3.1.3.

An alternative approach for this result can be found in [85]. Thus, instead of
working directly with rough homogeneous singular integrals, we use Theorem 3.26 to
reduce the question to proving bounds for sparse forms.

Theorem 3.27
Let Λt,γS be the sparse form de�ned as

Λt,γS (f, g) = (t′)γ
∑
Q∈S
〈|f |〉γQ〈|g|〉t,Q|Q|,

where S is a sparse collection of cubes, t > 1 and 0 < γ ≤ 1.

I) Suppose that 1 < p < q < ∞ and w ∈ Cq. Then there exists 1 < s < 2 such
that

Λs,1S (f, gw) ≤ κn,p,q
(
[w]Cq + 1

)3
log
(
[w]Cq + e

)
‖Mf‖Lp(w)‖g‖Lp′ (w).

II) Suppose that 0 < p ≤ 1 < q < ∞ and w ∈ Cq. Then there exists 1 < s <
min{2, 1

1−p} such that

Λs,pS (f, w) ≤ κn,p,q
(
[w]Cq + 1

)p+2
log
(
[w]Cq + e

)
‖Mf‖pLp(w).

The constant κn,p,q satis�es κn,p,q →∞ as q → p.

Part I) of Theorem 3.25 follows from Theorem 3.26 and part I) of Theorem 3.27 in
a very straightforward way but for part II) we need some additional considerations. In
particular, we need to modify some results proven by Lerner [85] and prove a variation
of the sparse domination result for the case 0 < p < 1 (see Theorem 3.29).

We note that in [24], the authors proved similar sparse domination results also
for other classes of operators, namely rough homogeneous singular integrals TΩ with
more general kernel functions Ω and Bochner�Riesz means. Their results combined
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with Theorem 3.27 give Cq-Coifman�Fe�erman estimates also for these operators for
1 ≤ p <∞ but for simplicity, we only consider the operators TΩ with Ω ∈ L∞(Sn−1)
satisfying

∫
Sn−1 Ω dσ = 0.

3.5.1 Proof of part I) of Theorems 3.25 and 3.27

As we stated before, part I) of Theorem 3.25 follows easily from a combination of part
I) Theorem 3.27 and Theorem 3.26. Indeed, let s be the one given by Theorem 3.27.
We apply Theorem 3.26 with parameter s and we get

‖TΩf‖Lp(w) = sup
‖g‖

Lp
′
(w)

=1
|〈TΩf, gw〉|

≤ κn‖Ω‖∞ s′ sup
‖g‖

Lp
′
(w)

=1
sup
S

∑
Q∈S
〈f〉Q〈gw〉s,Q|Q|

≤ κn,p,q‖Ω‖∞
(
[w]Cq + 1

)3
log
(
[w]Cq + e

)
‖Mf‖Lp(w),

where we used part I) of Theorem 3.27 in the last inequality.
We now give the proof of part I) of Theorem 3.27. Let us start by recalling the

dyadic Carleson embedding theorem that we need a couple of times in our proofs.

Theorem 3.28 – Carleson Embedding [62, Theorem 4.5]
Let D be a collection of dyadic cubes, w a weight and aQ a non-negative number for
every Q ∈ D. Suppose that there exists A ≥ 0 such that for every R ∈ D we have∑

Q∈D,Q⊂R
aQ ≤ Aw(R).

Then, for all 1 < α <∞ and h ∈ Lα(w), we have( ∑
R∈D

aR(〈h〉wR)α
) 1
α ≤ A

1
α α′ ‖h‖Lα(w).

Let us then prove part I) of Theorem 3.27. Suppose that 1 < p < q < ∞, and
w ∈ Cq. We want to show that there exists 1 < s < 2 such that

s′
∑
Q∈S
〈|f |〉Q〈|gw|〉s,Q|Q| ≤ κw,n,p,q‖Mf‖Lp(w)‖g‖Lp′ (w).

By rescaling we may assume that ‖Mf‖Lp(w) = ‖g‖Lp′ (w) = 1. To simplify the
notation, we also assume f, g ≥ 0.

Let δ be the Reverse Hölder constant from Theorem 2.21 and set s = 1 + δ
8p and

r = 1 + 1
4p . It is easy to check that

sr < 1 +
1

2p
< p′ and

(
s− 1

r

)
r′ = s+

s− 1

r − 1
< 1 + δ. (3.20)

In particular, (s− 1
r )r′ is an admissible exponent for the Reverse Hölder inequality in

Theorem 2.21. Therefore, by Hölder's inequality and Theorem 2.21 we have∑
Q∈S
〈f〉Q〈gw〉s,Q|Q| ≤

∑
Q∈S
〈f〉Q〈gsrw〉

1
sr
Q 〈w

(s− 1
r

)r′〉
1
sr′
Q |Q|
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≤ 21− 1
sr

∑
Q∈S
〈f〉Q〈gsrw〉

1
sr
Q

( 1

|Q|

∫
Rn
Mχ

Q
(x)qw(x)dx

)1− 1
sr |Q|

≤ 2
∑
Q∈S
〈f〉Q

(∫
Rn
Mχ

Q
(x)qw(x)dx

)1− 1
sr (〈gsr〉wQ) 1

srw(Q)
1
sr .

Let us then split the sparse family into two parts. We set

S1 :=
{
Q ∈ S :

(
〈gsr〉wQ

) 1
srw(Q)

1
sr ≤ 〈f〉

p
p′
Q

(∫
Rn
Mχ

Q
(x)qw(x)dx

) 1
sr
}

and S2 = S \ S1. For the collection S1, we use Corollary 3.20 to see that

∑
Q∈S1

〈f〉Q
(∫

Rn
Mχ

Q
(x)qw(x)dx

)1− 1
sr (〈gsr〉wQ) 1

srw(Q)
1
sr

≤
∑
Q∈S1

〈f〉Q
(∫

Rn
Mχ

Q
(x)qw(x)dx

)1− 1
sr 〈f〉

p
p′
Q

(∫
Rn
Mχ

Q
(x)qw(x)dx

) 1
sr

=
∑
Q∈S1

〈f〉pQ
∫
Rn

(Mχ
Q

(x)qw(x)dx

≤ κn,p,q([w]Cq + 1)2 log([w]Cq + e)‖Mf‖pLp(w)

= κn,p,q([w]Cq + 1)2 log([w]Cq + e).

The collection S2 is trickier. Recall that by the discussion in Chapter 2, we may
suppose that for any cube Q, the Cq-tail of w at Q is �nite. Thus, we have

∑
Q∈S2

〈f〉Q
(
〈gsr〉wQ

) 1
sr

(∫
Rn
Mχ

Q
(x)qw(x)dx

)1− 1
sr
w(Q)

1
sr

≤
∑
Q∈S2

(
〈gsr〉wQ

) p′
psrw(Q)

p′
psr
(
〈gsr〉wQ

) 1
sr

×
(∫

Rn
Mχ

Q
(x))qw(x)dx

)1− 1
sr
− p′
psr
w(Q)

1
sr

≤
∑
Q∈S2

(
〈gsr〉wQ

) p′
srw(Q)

( w(Q)∫
RnMχ

Q
(x)qw(x)dx

) p′
psr

+ 1
sr
−1

=
∑
Q∈S2

(
〈gsr〉wQ

) p′
srw(Q)

( w(Q)∫
RnMχ

Q
(x)qw(x)dx

) p′
sr
−1
.

We set α = p′

sr and

aQ := w(Q)
( w(Q)∫

RnM(χQ)qw

) p′
sr
−1

for every cube Q ∈ S2. By (3.20), we know that α > 1. We claim that there exists
some A > 0 such that for any R ∈ S2 we have∑

Q∈S2,Q⊂R
aQ ≤ Aw(R). (3.21)
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Then, by the Carleson embedding (Theorem 3.28), we know that

∑
Q∈S2

(
〈gsr〉wQ

) p′
srw(Q)

( w(Q)∫
RnMχ

Q
(x)qw(x)dx

) p′
sr
−1

=
∑
Q∈S2

aQ
(
〈gsr〉wQ

)α
≤
(
A

1
αα′‖gsr‖Lα(w)

)α
= A(α′)α‖g‖p

′

Lp′ (w)

≤ κp A.

In the last inequality we have used that, by the choices of r and s, we have 1 < rs <
1 + 1

2p and therefore p′ − rs > p′ − 1− 1
4p = 3p+1

4p(p−1) , which gives

(( p′
rs

)′) p′
rs

=
( p′

p′ − rs

)p′
≤
( 4p2

3p+ 1

)p′
= κp.

Thus, it is enough for us to prove the claim. That is, we need to show that there
exists a constant A > 0 such that (3.21) holds. For this, �x R ∈ S2. We further split
S2 into subcollections S2,j , j ≥ 1, de�ned as

S2,j :=
{
Q ∈ S2 : 2j−1w(Q) ≤

∫
Rn
Mχ

Q
(x)qw(x)dx < 2jw(Q)

}
.

Let S∗2,j = S∗2,j(R) be the collection of maximal subcubes in S2,j which are contained
in R. We now have

∑
Q∈S2,j

Q⊂R

w(Q)
( w(Q)∫

RnMχ
Q

(x)qw(x)dx

) p′
sr
−1

(A)

≤
∑

Q∈S2,j

Q⊂R

21−j
∫
Rn
Mχ

Q
(x)qw(x)dx

(21−j∫
RnMχ

Q
(x)qw(x)dx∫

RnMχ
Q

(x)qw(x)dx

) p′
sr
−1

= 21−j+(1−j)
(
p′
sr
−1
) ∑
Q∈S2,j

Q⊂R

∫
Rn
Mχ

Q
(x)qw(x)dx

= 2(1−j) p
′
sr

∑
P∈S∗2,j

∑
Q∈S2,j

Q⊂P

∫
Rn
Mχ

Q
(x)qw(x)dx

(B)

≤ 2(1−j) p
′
sr
(
[w]Cq + 1

) ∑
P∈S∗2,j

∫
Rn
Mχ

P
(x)qw(x)dx

(A)

≤ 2(1−j) p
′
sr

+j
(
[w]Cq + 1

) ∑
P∈S∗2,j

w(P )

(C)

≤ 2(1−j) p
′
sr

+j
(
[w]Cq + 1

)
w(R),
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where we used (A) the de�nition of the collection S2,j , (B) Lemma 3.18 and (C) the
fact that the cubes in S∗2,j are disjoint. We now sum over j and get

∑
Q∈S2
Q⊂R

aQ =
∑
j≥1

∑
Q∈S2,j

Q⊂R

aQ ≤
(
[w]Cq + 1

)
2
p′
sr

∑
j≥1

2j
(

1− p
′
sr

)
w(R).

Therefore (3.21) holds with

A :=
(
[w]Cq + 1

)
2
p′
sr

∑
j≥1

2j
(

1− p
′
sr

)
= 2

(
[w]Cq + 1

)
1− 21−p′/sr ≤ κp

(
[w]Cq + 1

)
.

Putting all of the above together, we proved that for s = 1 + δ
8p we have

s′
∑
Q∈S
〈|f |〉Q〈|gw|〉s,Q|Q| ≤ s′

(
κn,p,q([w]Cq + 1)2 log([w]Cq + e) + κp

(
[w]Cq + 1

))
.

The constant κn,p,q is the same constant as in Corollary 3.20 and thus, we have

κn,p,q = κn2
κ′n

pq
q−p .

In particular, κn,p,q → ∞ as q → p. Since δ = 1
B([w]Cq+1) where B = B(n, q) as in

Theorem 2.21, we have

s′ =
8p

δ
+ 1 ≈ 8pB([w]Cq + 1).

Hence we see that

s′
∑
Q∈S
〈|f |〉Q〈|gw|〉s,Q|Q| ≤ κn,p,q

(
[w]Cq + 1

)3
log
(
[w]Cq + e

)
for a constant κn,p,q such that κn,p,q →∞ as q → p.

3.5.2 Sparse domination for rough singular integrals revisited

Before we prove part II) of Theorems 3.25 and 3.27, we revisit the sparse domination
principle in [24] and prove a version of it that is more suitable for the case 0 < p < 1.
Let us �rst consider a Calderón�Zygmund operator T . It is now well-known (see e.g.
[64, 79, 84]) that T satis�es a pointwise sparse bound of the type

Tf(x) ≤ κT
∑
i,Q∈Si

χ
Q

(x)〈|f |〉Q.

Now, for 0 < p < 1, we trivially have

|Tf(x)|p ≤ κpT
∑
i,Q∈Si

χ
Q

(x)〈|f |〉pQ,

and thus, for q = 1 + λ and w ∈ Cq for any λ > 0, Corollary 3.20 gives us∫
Rn
|Tf(x)|pw(x)dx ≤ κpT

∑
i,Q∈Si

w(Q)〈|f |〉pQ
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≤ κpT
∑
i,Q∈Si

〈|f |〉pQ
∫
Rn
Mχ

Q
(x)qw(x)dx

≤ κT,n,p,q([w]Cq + 1)2 log([w]Cq + e)‖Mf‖pLp(w).

Qualitative version of this result was proven as a part of [17, Theorem 17] using
di�erent techniques.

To mimic this proof strategy for rough homogeneous singular integrals, we prove
the following sparse domination result:

Theorem 3.29
Suppose that 0 < θ < 1 and 1 < s ≤ 1

1−θ . Then there exists a sparse collection S
such that

|〈|TΩf |θ, g〉| ≤ κ (s′)θ ‖Ω‖θL∞(Sn−1)

∑
Q∈S
|Q|〈|f |〉θQ〈|g|〉s,Q.

Our proof is strongly based on techniques used by Lerner in [85]. For a sublinear
operator T and 0 < θ < 1, we de�ne

M θ
T (f, g)(x) := sup

Q3x

1

|Q|

∫
Q
|T (fχ

Rn\3Q
)(y)|θ|g(y)| dy.

Our main tool is the following variant of [85, Theorem 3.1]:

Theorem 3.30
Let 1 ≤ q ≤ r, 0 < θ < 1 and s ≥ 1. Assume that T is a sublinear operator of weak
type (q, q) and M θ

T satis�es the following estimate:

‖M θ
T (f, g)‖Lν,∞ ≤ N‖f‖θLr‖g‖Ls ,

for exponents satisfying the relation

1

ν
=
θ

r
+

1

s
.

Then for every compactly supported f ∈ Lr(Rn) and every g ∈ Lsloc, there exists a
sparse collection of cubes S such that

〈|Tf |θ, |g|〉 ≤ κT,N
∑
Q∈S
|Q|〈|f |〉θr,Q〈|g|〉s,Q,

where κT,N = κn
(
‖T‖θLq→Lq,∞ +N

)
.

Proof. The proof is essentially the same as the proof of [85, Theorem 3.1]. The only
di�erence is the de�nition of the sets E1 and E2: the �rst set is the same, namely

E1 = {x ∈ Q0 : |T (fχ
3Q0

)(x)| > A〈|f |〉q,3Q0},

and we de�ne the second set as

E2 = {x ∈ Q0 : M θ
T,Q0

(f, g)(x) > B〈|f |〉θr,3Q0
〈|g|〉s,Q0}.

The rest of the proof works as it is with the obvious changes.
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With the help of Theorem 3.30, the proof of Theorem 3.29 is fairly straightforward.

Proof of Theorem 3.29. Let TΩ be a rough homogeneous singular integral. We want
to apply Theorem 3.30 with q = 1 = r. Let 1 < s ≤ 1

1−θ . Since TΩ is of weak-type

(1, 1) by [110], we only need to check the bound for M θ
TΩ
. To be more precise, we

need to show that
‖M θ

TΩ
(f, g)‖Lν,∞ ≤ N‖f‖θL1‖g‖Ls , (3.22)

where 1
ν = θ + 1

s . Let us de�ne an auxiliary operator N θ
p,TΩ

by setting

N θ
p,TΩ

f(x) = sup
Q3x

( 1

|Q|

∫
Q
|TΩ(fχ

Rn\3Q
)(y)|pθdy

) 1
p
.

Notice that we have N θ
p,TΩ

f(x) =
(
N 1
pθ,TΩ

f(x)
)θ
. By Hölder's inequality, we have the

pointwise bound

M θ
TΩ

(f, g)(x) ≤ sup
Q3x

(∫
Q

∣∣TΩ(fχ
Rn\3Q

)(y)
∣∣s′θdy) 1

s′
(∫

Q
|g(y)|sdy

) 1
s

≤ N θ
s′,TΩ

f(x)Msg(x) =
(
N 1
s′θ,TΩ

f(x)
)θ
Msg(x).

Now, combining this pointwise bound with Hölder's inequality for weak spaces (see e.g.

[45, Ex. 1.1.15]), the straightforward estimate
∥∥(N 1

s′θ,TΩ
f
)θ∥∥

L
1
θ
,∞ =

∥∥N 1
s′θ,TΩ

f
∥∥θ
L1,∞

and the weak type (s, s) of Ms, see Section 1.4.2, we get

‖M θ
TΩ

(f, g)‖Lν,∞ ≤ ν−
1
ν θ−θs

1
s

∥∥(N 1
s′θ,TΩ

f
)θ∥∥

L
1
θ
,∞‖Msg‖Ls,∞

≤ κν−
1
ν θ−θ s

1
s ‖N 1

s′θ,TΩ
f‖θL1,∞‖g‖Ls .

By [85, Theorem 1.1, Lemma 3.3], we know that

‖N 1
s′θ,TΩ

f‖L1,∞ ≤ κ s′θ ‖Ω‖L∞(Sn−1)‖f‖L1 ,

provided that 1 ≤ s′θ <∞ which is equivalent to 1 < s ≤ 1
1−θ . Therefore, we have

‖M θ
TΩ

(f, g)‖Lν,∞ ≤ κν−
1
ν θ−θ s

1
s (s′θ)θ ‖Ω‖θL∞(Sn−1)‖f‖

θ
L1‖g‖Ls

≤ κ (s′)θ ‖Ω‖θL∞(Sn−1)‖f‖
θ
L1‖g‖Ls ,

since θ < 1 < s, ν = s/(θs+ 1) and

ν−
1
ν θ−θs

1
s (s′θ)θ = s−θ(s′)θ(sθ + 1)θ+

1
s ≤ κs

1
s (s′)θ ≤ κ(s′)θ.

Thus, (3.22) holds for N = κn(s′)θ‖Ω‖θL∞(Sn−1). Since ‖TΩ‖L1→L1,∞ ≤ κn‖Ω‖L∞(Sn−1)

by [110], we can apply Theorem 3.30, which �nishes the proof.

3.5.3 Proof of part II) of Theorems 3.25 and 3.27

Firstly, we deduce part II) of Theorem 3.25 from the sparse domination presented in
Theorem 3.29 and the bound for the sparse form from Theorem 3.27. Let 0 < p ≤ 1,
we have

‖TΩf‖Lp(w) = ‖|TΩf |p‖
1
p

L1(w)
= |〈|TΩf |p, w〉|

1
p .
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Now, we use Theorem 3.29 to dominate the term |〈|TΩf |p, w〉|, and apply part II) of
Theorem 3.27. We get

|〈|TΩf |p, w〉|
1
p ≤ κ ‖Ω‖L∞s′

(∑
Q∈S
|Q|〈f〉pQ〈w〉s,Q

) 1
p

≤ κn,p,q‖Ω‖L∞
(
[w]Cq + 1

)1+ 2
p log

1
p
(
[w]Cq + e

)
‖Mf‖Lp(w).

We now turn to the proof of part II) of Theorem 3.27. Suppose that 0 < p ≤ 1,
w ∈ Cq for some q > 1 and S is a sparse collection. We want to show that there exists
1 < s < min{2, 1

1−p} such that

(s′)p
∑
Q∈S
|Q|〈|f |〉pQ〈w〉s,Q ≤ κw,p,q,n‖Mf‖pLp(w).

We choose s = 1 + pδ, where δ is the Reverse Hölder exponent from Theorem 2.21.
Hence s′ ≤ κn([w]Cq + 1)/p and we have

(s′)p
∑
Q∈S
|Q|〈|f |〉pQ〈w〉s,Q ≤ κ

( [w]Cq + 1

p

)p∑
Q∈S
〈|f |〉pQ

∫
Mχ

Q
(x)qw(x)dx

≤ κp−p
(
[w]Cq + 1

)p+2
log
(
[w]Cq + e

)
‖Mf‖pLp(w),

where we have used Corollary 3.20 in the last step. The implicit constant κn,p,q
satis�es κn,p,q → ∞ as q → p by the same arguments as in the end of Section 3.5.1.
This completes the proof of Theorem 3.27.
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4

Extensions of the
John–Nirenberg theorem

In this chapter, we discuss the results that were published in the following work, as
well as some further results.

[14] Canto, J., Pérez, C. Extensions of the John�Nirenberg theorem, Proceedings of
the American Mathematical Society 149 (2021), no. 4, 1507�1525.

We want to state that, even though Cp weights appear in this chapter, they don't
play an important role here. Therefore, constants will be denoted by lowercase c.

In this chapter, we introduce two extensions of the John�Nirenberg theorem. The
�rst of these extensions is about Muckenhoupt�Wheeden-type estimates, whereas the
second is a norm estimate for the quotient of the maximal function and the sharp
maximal function. Both these extensions can be used to prove the John�Nirenberg
Theorem, thus the term extension.



4.1 Exponential estimates

The John�Nirenberg theorem is a result about exponential integrability. We introduce
a technique of obtaining this kind of integrability in terms of Lp-integrability. That is,
Proposition 4.1 states that if one can control the Lp-norm of a function as a multiple
of p, then the function will actually be exponentially integrable.

Proposition 4.1
Suppose that (X,µ) is a probability space and f a non-negative function such that
for every 1 ≤ p <∞ we have the Lp bound(∫

X
f(x)pdµ(x)

) 1
p

≤ γ p,

for some constant γ independent from p. Then f ∈ exp(L)(X,µ), meaning

µ({x ∈ X : f(x) > t}) ≤ e−
t

4γ , t > 0.

Proof. We compute∫
X

(
exp

f(x)

4γ
− 1

)
dµ(x) =

∞∑
n=1

1

n!

∫
X

(
f(x)

4γ

)n
dµ(x) ≤

∞∑
n=1

1

n!

(n
4

)n
≤ 1.

Therefore,

µ({x ∈ X : f(x) > t}) = µ({x ∈ X :
f(x)

4γ
− t

4γ
− log 2 > log 2})

≤
∫
X

(
exp

(f(x)

3γ
− t

4γ
− log 2

)
− 1

)
dµ(x)

= 2e
− t

4γ

∫
X

(
exp

f(x)

4γ
− 1

)
dµ(x).

Here we present a minimization lemma that we will use in the proofs of Theorems
4.19 and 4.15, as well as Proposition 4.6.

Lemma 4.2
Let 0 < α <∞. Then

min
1<t<∞

t
tα

tα − 1
≤ e

(
1 +

1

α

)
.

Proof. The function ϕ(t) = tα+1(tα − 1)−1 tends to in�nity at 1 and in�nity. So, if
the derivative vanishes at a unique point, that point has to be a global minimum. The
derivative has the expression

ϕ′(t) =
(α+ 1)tα(tα − 1)− αt2α

(tα − 1)2
,

which vanishes only at t = (α+ 1)
1
α . Therefore, the global minimum is

ϕ
(
(α+ 1)

1
α
)

= (α+ 1)
1
α
α+ 1

α
≤ e

(
1 +

1

α

)
.
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4.2 The John–Nirenberg theorem

The classical John�Nirenberg theorem [66] states that any function of bounded mean
oscillation is locally exponentially integrable, see for example [40].

But before stating the theorem, let us recall what we mean by bounded mean
oscillation.

Definition 4.3
Let f ∈ L1

loc(Rn) be a function. We say that f is of bounded mean oscillation, and
we wwrite f ∈ BMO if

‖f‖BMO = sup
Q
−
∫
Q
|f(x)− fQ|dx < ∞.

The quantity ‖f‖BMO is called the BMO-seminorm of f

Since it is a classical topic, we are not going to expand on the BMO space, but let
us state a few facts.

Proposition 4.4
The following properties about BMO are true.

� ‖f‖BMO = 0 if and only if f is constant almost everywhere.

� The space BMO is a Banach space modulo constants.

� ‖f‖BMO ≤ 2‖f‖L∞ .

�
1

2
−
∫
Q
|f(x)− fQ|dx ≤ inf

c∈C
−
∫
Q
|f(x)− c|dx ≤ −

∫
Q
|f(x)− fQ|dx

The space BMO plays quite an important part on Harmonic Analyis. Among other
applications, it serves as an adequate substitute for L∞ in some cases. For example,
singular integral operators map L∞ into BMO. Also, even if BMO is weaker then
L∞, interpolation between Lp and BMO usually works just as well as interpolation
between Lp and L∞. For more information on the BMO space, we refer to [29, 40,
46].

One of the most relevant properties of the BMO spaces is the John�Nirenberg
theorem. It can be seen as a self-improvement property of integrability of BMO func-
tions, since in its de�nition, these functions are locally integrable but as a consequence
of this theorem, they actually have much better integrable properties than that.

Theorem 4.5 – John–Nirenberg [66]
Let f ∈ BMO and Q a cube. Then, for some dimensional constant cn,

|{x ∈ Q : |f(x)− fQ| > t}| ≤ 2 e
− cn t
‖f‖BMO |Q|.

Proof. We just need to combine Proposition 4.6 with the exponential estimate from
Proposition 4.1.
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We are going to give a proof of the John�Nirenberg theorem that, despite its
simplicity, seems to have been overlooked throughout literature. The proof consists of
using the Calderón�Zygmund decomposition technique to bound the Lp-oscillations by
a power of p and using Proposition 4.1 to deduce �nally the exponential integrability.
A similar proof can be found in [67].

Proposition 4.6
Let f ∈ BMO. Then for every cube Q and p ≥ 1,(

1

|Q|

∫
Q
|f(x)− fQ|pdx

) 1
p

≤ cn p ‖f‖BMO.

Remark 4.7 Usually this result is presented as a corollary of the John�Nirenberg theorem.
Therefore, they are actually equivalent.

Proof of Proposition 4.6. We may suppose ‖f‖BMO = 1 by homogeneity. Let L > 1 to
be chosen. We make the Calderón�Zygmund decomposition of |f −fQ| in Q at height
L, see Section 1.4.3 for more details. We obtain a family {Qj} of dyadic subcubes of
Q. These cubes are pairwise disjoint with respect to the property

L <
1

|Qj |

∫
Qj

|f(x)− fQ|dx ≤ 2nL.

Moreover, if x 6∈ ∪jQj , then |f(x)− fQ| ≤ L.
Using the disjointness, we have for almost every x ∈ Q,

f(x)− fQ = (f(x)− fQ)χ
(∪jQj)c

(x)

+
∑
j

(fQj − fQ)χ
Qj

(x)

+
∑
j

(f(x)− fQj )χQj (x)

= A1(x) +A2(x) +B(x).

By the Calderón�Zygmund decomposition, we have |A1| ≤ L and |A2| ≤ 2nL
almost everywhere, so |A1 +A2| ≤ 2nL since they have disjoint support. Now, for the
remaining part, we compute the norm

(
1

|Q|

∫
Q
|B(x)|p

) 1
p

=

 1

|Q|
∑
j

∫
Qj

|f(x)− fQj |pdx

 1
p

≤ sup
R

(
1

|R|

∫
R
|f(x)− fR|pdx

) 1
p

∑
j

|Q|
|Qj |

 1
p

≤ X

L
1
p

,

where X equals the corresponding supremum, which is taken over all cubes R.
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Combining the estimates for A1, A2 and B, we have(
1

|Q|

∫
Q
|f(x)− fQ|pdx

) 1
p

≤ 2nL+
X

L
1
p

. (4.1)

Since (4.1) holds for all cubes Q and L > 1, the right hand side being independent
from Q, we can take the supremum over all cubes Q and we get

X ≤ 2nL+
X

L
1
p

.

Passing the last term to the left, we get

X ≤ 2n inf
L>1

L(L
1
p )′ ≤ 2n+1 e p,

where in the last inequality we used Lemma 4.2. But we can only do this if X <
∞, which a priori might not be true. Of course, one can use the John�Nirenberg
theorem to prove X 'p ‖f‖BMO, but since we are providing an di�erent proof of
John�Nirenberg we cannot do that.

The way of avoiding this problem is by making a truncation of f at height m > 0.
If f is a real function, call fm the truncation

f(x) =


−m, f(x) < −m
f(x), −m ≤ f(x) ≤ m
m, f(x) > m.

In the case that f is a complex-valued function, one can do a similar trick, using the
argument and the modulus. More precisely,

f(x) =

{
f(x), |f(x)| ≤ m
m ei arg(f(x)), |f(x)| > m.

In any case, it is easy to prove

1

|Q|

∫
Q
|fm(x)− (fm)Q|dx ≤

2

|Q|

∫
Q
|f(x)− fQ|dx

If we work with the functions fm instead of f , arguing in the same way

Xm ≤ 2nL+
Xm

L
1
p

.

But now, Xm ≤ 2m < ∞, so the rest of the proof can continue. The last step is to
let m→∞ with the help of Monotone Convergence.

The rest of the chapter is devoted to providing two extensions of the classical John�
Nirenberg theorem for BMO functions. The second extension is an improvement of
some classical estimates by Muckenhoupt and Wheeden [102] concerning weighted lo-
cal mean oscillations. These estimates were already discussed in the work bi Omprosi,
Pérez, Rela and Rivera-Ríos [103] in a more restrictive setting. The �rst extension
constitutes an improvement of a result of Karagulyan [70], which is in turn a more pre-
cise version of the classical Fe�erman�Stein inequalities relating the Hardy�Littlewood
and the sharp maximal functions.
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These two extensions, although di�erent a priori, are obtained by a similar method
as the proof we gave for the John�Nirenber theorem, and also using some ideas from
the work by Pérez and Rela [107].

4.3 First extension: Weighted mean oscillation

The �rst extension of the John�Nirenberg theorem we consider in this section is mo-
tivated by a classical result of Muckenhoupt and Wheeden in [102]. In order to state
said result, we introduce, in the language of [102], weighted bounded mean oscillations.

Definition 4.8
Let w be a weight on Rn. A function f is said to be of bounded mean oscillation with
respect to w if there exists some c > 0 such that for every cube Q, the following holds∫

Q
|f(x)− fQ|dx ≤ c w(Q). (4.2)

The class of functions that satis�es (4.2) is called weighted BMO and is denoted by
BMOw.

There are other de�nitions for weighted BMO spaces, for example one where the
presence of the weight comes in both sides of inequality (4.2).

This class of functions is interesting because it is connected to the theory of
weighted Hardy spaces [39] and to the context of extrapolation [52] (see more de-
tails in [25]).

Theorem 4.9 – Muckenhoupt–Wheeden [102]
Let 1 ≤ p <∞ and w ∈ Ap. Then f is of bounded mean oscillation with weight w if
and only if for every 1 ≤ r < ∞ satisfying 1 ≤ r ≤ p′, there exists a constant c > 0
such that, for all cubes Q,∫

Q
|f(x)− fQ|rw(x)1−r ≤ cw(Q). (4.3)

As was shown in [102], the range 1 ≤ r ≤ p′ is optimal, since for any given p > 1
there exist f, w for which w ∈ Aq for all q > p but (4.3) fails for r = p′.

In [103] the authors obtained a mixed-type Ap�A∞ quantitative estimate of in-
equality (4.3). Here we are going to improve Theorem 1.7 from that paper, using a
simpli�ed and more transparent argument that avoids completely the use of sparse
domination.

In order to do that, we are going to introduce a bumped Ap class of weights and
their corresponding bumped weighted BMO space. We remark that these objects are
not standard and therefore, the notation we use is also not standard.

For a weight w, exponent r > 1 and for any cube Q, we de�ne the bumped measure
of the cube Q as

wr(Q) = |Q|
(
−
∫
Q
w(x)rdx

) 1
r

= |Q|
1
r′

(∫
Q
w(x)r(x)

) 1
r

.
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Remark 4.10 Please note that, even if we use the word bumped measure, the expression wr
is de�nitely not a measure, since the additivity property does not hold for disjoint
cubes. Nevertheless, it constitutes a bumped version of the measure at a cube, that is,
a bumped w(Q). By Hölder's inequality, it is clear that w(Q) ≤ wr(Q) for any r ≥ 1.

We also need to de�ne a local version of the dyadic maximal operator, see 1.4.2

Definition 4.11
Let Q be a cube and let D(Q) be the collection of dyadic descendants of Q. The dyadic
maximal operator localized to Q is de�ned, for a function h ∈ L1(Q) and x ∈ Q, by
the expression

MQh(x) = sup
P∈D(Q)
x∈P

−
∫
P
|h(y)|dy.

Definition 4.12
For a weight w and p > 1, r ≥ 1, we de�ne the following bumped Ap constant

[w]Arp = sup
Q

(
−
∫
Q
w(x)rdx

) 1
r
(
−
∫
Q
w(x)1−p′dx

)p−1

.

The class of weights w such that [w]Arp is �nite is called A
r
p.

Note that [w]Ap ≤ [w]Arp for r ≥ 1.

Definition 4.13
Let w be a weight that is positive almost everywhere and let r > 1. We de�ne the
space of bumped weighted bounded mean oscillations BMOw,r as the set of functions
f such that the quantity

‖f‖BMOw,r = sup
Q

1

wr(Q)

∫
Q
|f(x)− fQ|dx

is �nite, where the supremum is taken over all cubes Q.

Note that when r = 1, we have that both weighted spaces that we de�ne are
actually the same, that is, BMOw = BMOw,1.

Let us now state the �rst extension of the John�Nirenberg theorem.

Theorem 4.14
Let p, r > 1, w such that [w]Arp <∞ and let f locally integrable such that

‖f‖BMOw,r <∞.

Then we have the estimate(
1

wr(Q)

∫
Q

(
|f(x)− fQ|

w(x)

)p′
w(x)dx

) 1
p′

≤ cn p′ [w]
1
p

Arp
(r′)

1
p′ ‖f‖BMOw,r .

Proof. We may suppose by homogeneity that ‖f‖BMOw,r = 1. We are going to use
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a decomposition that is similar to the Calderón�Zygmund decomposition, see Sec-
tion 1.4.3. If we let L > 1, to be chosen later, we can choose a family of maximal
subcubes {Qj} in Q such that

1

wr(Qj)

∫
Qj

|f(x)− fQ|dx > L. (4.4)

Observe that if the family is empty we can see that |f(x)− fQ| ≤ Lw(x) for almost
every x ∈ Q and the result is trivial. Also since ‖f‖BMOw,r = 1, we have that Q is
not one of the selected cubes. We can check that, if Q′j denotes the ancestor of Qj ,
the following properties hold:

(i)
1

wr(Q′j)

∫
Q′j

|f(x)− fQ| dx ≤ L;

(ii) |fQj − fQ| ≤ 2n L

(
−
∫
Q′j

w(x)rdx

) 1
r

;

(iii)
∑
j

wr(Qj) ≤
wr(Q)

L
because of (4.4) and ‖f‖BMOw,r = 1;

(iv) |f(x)− fQ| ≤ L w(x) for almost every x 6∈ ∪jQj .

Using the fact that the cubes {Qj} are pairwise disjoint, we have for almost every
x ∈ Q,

f(x)− fQ = (f(x)− fQ)χ
(∪jQj)c

(x)

+
∑
j

(fQj − fQ)χ
Qj

(x)

+
∑
j

(f(x)− fQj )χQj (x)

= A1(x) +A2(x) +B(x).

Since p′ > 1, we can use the triangular inequality to get

( 1

wr(Q)

∫
Q

(
|f(x)− fQ|

w(x)

)p′
w(x)dx

) 1
p′

≤

(
1

wr(Q)

∫
(∪jQj)c

(
|f(x)− fQ|

w(x)

)p′
w(x)dx

) 1
p′

+

 1

wr(Q)

∑
j

∫
Qj

( |fQj − fQ|
w(x)

)p′
w(x)dx

 1
p′

+

 1

wr(Q)

∑
j

∫
Qj

( |f(x)− fQj |
w(x)

)p′
w(x)dx

 1
p′

= A1 +A2 +B.
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Now, since w(Q) ≤ wr(Q) the �rst term is A1 ≤ L, by (iv). To bound B we
denote

X = sup
R

(
1

wr(R)

∫
R

(
|f(x)− fR|

w(x)

)p′
w(x)

) 1
p′

.

and use that
∑

j wr(Qj) ≤
wr(Q)
L , the third property of the family of the cubes {Qj},

to obtain:

B ≤ X

 1

wr(Q)

∑
j

wr(Qj)

 1
p′

≤ X
(

1

L

) 1
p′

.

The argument for bounding A2 is more delicate. We start the computations:

A2 =

 1

wr(Q)

∑
j

∫
Qj

|fQj − fQ|p
′
w(x)p

′−1dx

 1
p′

≤ 2nL

 1

wr(Q)

∑
j

(
1

|Q′j |

∫
Q′j

w(x)rdx

) p′
r ∫

Qj

w(x)p
′−1dx


1
p′

≤ 2nL

 1

wr(Q)

∑
j

wr(Q
′
j)

(
1

|Q′j |

∫
Q′j

wr

) p′−1
r
(

1

|Q′j |

∫
Qj

wp
′−1

)(p′−1)(p−1)


1
p′

≤ 2nL[w]
1
p

Arp

 1

wr(Q)

∑
j

|Q′j |

(
1

|Q′j |

∫
Q′j

w(x)rdx

) 1
r


1
p′

.

In order to bound the term in the sum, we recall the following result by Kol-
mogorov. If (X,µ) is a probability space, then for ε < 1

‖g‖Lε(X) ≤
(

1

1− ε

) 1
ε

‖g‖L1,∞(X).

We have

∑
j

|Q′j |

(
1

|Q′j |

∫
Q′j

w(x)rdx

) 1
r

≤ 2n
∑
j

|Qj | inf
z∈Qj

MQ(wrχ
Q

)(z)
1
r

≤ 2n|Q| −
∫
Q
MQ(wrχ

Q
)(x)

1
r dx

≤ 2n
1

1− 1
r

‖MQ(wrχ
Q

)‖
1
r

L1,∞(Q, dx|Q| )
|Q|

≤ 2nr′|Q|
(
−
∫
Q
w(x)rdx

) 1
r

= 2n r′wr(Q),
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where MQ is the local dyadic maximal operator over Q as in De�nition 4.11, whose
weak type (1, 1) bound is one. Thus, we have the bound

A2 ≤ 2n [w]
1
p

Arp
(r′)

1
p′ L.

Combining the bounds for A1, A2 and B, we have for every cube Q and L > 1(
1

wr(Q)

∫
Q

(
|f(x)− fQ|

w(x)

)p′
w(x)dx

) 1
p′

≤ L+ 2n [w]
1
p

Arp
(r′)

1
p′ L+X

(
1

L

) 1
p′

(4.5)

and thus for each L

X ≤ 2n+1 [w]
1
p

Arp
(r′)

1
p′ L+X

(
1

L

) 1
p′

.

Hence, if we assume X <∞,

X ≤ cn p′[w]
1
p

Arp
(r′)

1
p′ .

This �nishes the proof in the case that X < ∞. In order to remove the hypothesis
X <∞, it is enough to replace �rst for each cube Q(

1

wr(Q)

∫
Q

(
|f(x)− fQ|

w(x)

)p′
w(x)dx

) 1
p′

by (
1

wr(Q)

∫
Q

min
{ |f(x)− fQ|

w(x)
,m
}p′

w(x)dx

) 1
p′

.

The argument done before works exactly to get the following variant of (4.5): For
every L > 1 and m ≥ 1,(

1

wr(Q)

∫
Q

min
{ |f(x)− fQ|

w(x)
,m
}p′

w(x)dx

) 1
p′

≤ L+ 2n [w]
1
p

Arp
(r′)

1
p′ L+Xm

(
1

L

) 1
p′

,

where now, instead of X we have Xm de�ned by:

Xm := sup
Q∈D

(
1

wr(Q)

∫
Q

min
{ |f(x)− fQ|

w(x)
,m
}p′

w(x)dx

) 1
p′

m ≥ 1.

Then,

Xm ≤ 2n+1 [w]
1
p

Arp
(r′)

1
p′ L+Xm

(
1

L

) 1
p′

L > 1, m ≥ 1.

Therefore, since Xm ≤ m we have

Xm ≤ cn p′[w]
1
p

Arp
(r′)

1
p′ m ≥ 1.

Hence for each cube Q(
1

wr(Q)

∫
Q

min
{ |f(x)− fQ|

w(x)
,m
}p′

dxwdx

) 1
p′

≤ cn p′[w]
1
p

Arp
(r′)

1
p′ m ≥ 1.
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Finally, let m→∞ to �nish the proof.

If the weight belongs to one of the Muckenhoupt classes Ap, we know that it
satis�es a Reverse Hölder inequality, so for r > 1 close enough to 1 (but depending
on the weight itself), we actually have

[w]Arp ≤ cw [w]Ap .

The following Corollary illustrates this situation with more detail.

Corollary 4.15
Let f ∈ BMOw,1. The following statements hold.

(i) If w ∈ A1 we have that for every q > 1,(
1

w(Q)

∫
Q

∣∣∣∣f(x)− fQ
w(x)

∣∣∣∣q w(x)dx

) 1
q

≤ cn q [w]
1
q′
A1

[w]
1
q

A∞
‖f‖BMOw,1 ,

and hence for any cube Q∥∥∥f−fQw ∥∥∥
expL

(
Q,

w(x)dx
w(Q)

) ≤ cn [w]A1 ‖f‖BMOw,1 . (4.6)

(ii) If w ∈ Ap with 1 < p <∞ then,(
1

w(Q)

∫
Q

∣∣∣∣f(x)− fQ
w(x)

∣∣∣∣p′ w(x)dx

) 1
p′

≤ cn p′ [w]
1
p

Ap
[w]

1
p′
A∞
‖f‖BMOw,1 .

Proof. Part (1) follows from part (2) since [w]A1 ≥ [w]Ap , p > 1. In order to prove
part (2), choose r = 1 + δ with δ as in Theorem 2.5. This way [w]Arp ≤ 2[w]Ap ,
r′ ≤ cn[w]A∞ and wr(Q) ≤ 2w(Q). The result follows from Theorem 4.14.

Remark 4.16 From (4.6), we can deduce a weighted John�Nirenberg-type estimate for
BMOw. That is, if a weight w ∈ A1, then for any t > 0 and any cube Q, the
following holds.

w({x ∈ Q : |f(x)− fQ| > tw(x)}) ≤ 2e
− t
cn[w]A1

‖f‖BMOw,1 w(Q).

If the weight is actually the Lebesgue measure, this is precisely the John�Nirenberg
theorem. Therefore, Theorem 4.14 can be seen as an extension of John�Nirenberg.

4.4 Second extension: an inequality of Karagulyan’s

The second extension is motivated by the work of Karagulyan [70], who already pro-
vided an extension of the John�Nirenberg theorem. We improve this interesting result
by providing a di�erent more �exible proof with several di�erent advantages. How-
ever, this �rst extension is also inspired by the work of Pérez and Rela [107], where
a di�erent approach to the main results from the work of Fabes Kenig and Serapioni
[35] concerning degenerate Poincaré�Sobolev inequalities is found.
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We obtain two di�erent consequences of this improvement of the John�Nirenberg
theorem. Firstly, we derive some degenerate Poincaré�Sobolev endpoint inequalities
not available from the methods in [107]. Secondly, this improvement will be applied
within the context of the Cp class of weights.

To establish this result we recall the sharp maximal function introduced by Fef-
ferman and Stein.

Definition 4.17
Let h ∈ L1

loc(Rn). The sharp maximal function of h is de�ned by the expression

M ]h(x) = sup
x∈R

1

|R|

∫
R
|h(y)− hR|dy,

where the supremum is taken over all cubes R that contain the point x.

Karagulyan proved in [70] the following interesting exponential decay. Although
his work uses balls instead of cubes as a basis of di�erentiation, both resulting objects
are equivalent.

Proposition 4.18 – Karagulyan [70]
Let f ∈ L1

loc and let B a ball in Rn, then

|{x ∈ B :
|f(x)− fB|
M ]f(x)

> λ}| ≤ cn e
−cn λ|B|.

The �rst main result of this chapter, Theorem 4.19, improves this exponential
decay in several ways. On one hand, we have the decay for the local maximal function
and on the other hand, we obtain weighted estimates. The method of proof is di�erent
from that in[70].

Let us now state our generalization of Proposition 4.18 and the second extension
of the John�Nirenberg theorem.

Theorem 4.19
Let f be a locally integrable function. Then for any cube Q, for any 1 ≤ p <∞ and
1 < r <∞, the following estimate holds(

1

wr(Q)

∫
Q

(
MQ(f − fQ)(x)

M ]f(x)

)p
w(x)dx

) 1
p

≤ cn pr′. (4.7)

Proof. Fix a cube Q. We make the local Calderón�Zygmund decomposition in the
cube Q of the function

F (x) =
|f(x)− fQ|
osc(f,Q)

at height λ > 1 to be precised later. We have used the notation

osc(f,Q) = −
∫
Q
|f(y)− fQ|dy.

More precisely, we choose the dyadic subcubes {Qj} of Q, maximal for the inclusion
among the cubes R that satisfy −

∫
R F (x)dx > λ. The cubes {Qj} are pairwise disjoint
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and satisfy the following properties:

� osc(f,Q)λ < −
∫
Qj

|f(y)− fQ|dy ≤ 2nλ osc(f,Q),

� λ
∑

j |Qj | ≤ |Q|,

� For x 6∈
⋃
j Qj , MQ(f − fQ)(x) ≤ λ osc(f,Q).

The �rst two properties follow from the stopping time and the maximality. To prove
the third one, note that −

∫
R |f(y)− fQ|dy/osc(f,Q) ≤ λ for all dyadic R that contains

x.
Now, by maximality of the cubes, for x ∈ Qj we can localize the maximal function

in the following way

MQ(f − fQ)(x) = MQj (f − fQ)(x) ≤MQj (f − fQj )(x) + |fQ − fQj |. (4.8)

Moreover, for x ∈ Qj , we have

|fQ − fQj |
M ]f(x)

=

∣∣∣−∫
Qj

(f(y)− fQ)dy
∣∣∣

M ]f(x)
≤
−
∫
Qj

|f(y)− fQ|dy

osc(f,Q)
≤ 2nλ, (4.9)

by the Calderón�Zygmund decomposition. Thus, we have found the following point-
wise bound, for a.e. x ∈ Q,

MQ(f − fQ)(x)

M ]f(x)
=
MQ(f − fQ)(x)

M ]f(x)
χ
Q\∪jQj

(x) +
∑
j

MQ(f − fQ)(x)

M ]f(x)
χ
Qj

(x)

≤ λχ
Q\∪jQj

(x) +
∑
j

(
MQj (f − fQj )(x)

M ]f(x)
+
|fQ − fQj |
M ]f(x)

)
χ
Qj

(x)

≤ λχ
Q\∪jQj

(x) +
∑
j

(
MQj (f − fQj )(x)

M ]f(x)
+ 2nλ

)
χ
Qj

(x)

≤ 2nλ+
∑
j

MQj (f − fQj )(x)

M ]f(x)
χ
Qj

(x).

We have used (4.8) and (4.9) in the �rst and second inequalities respectively.
Now we compute the norm. Using the triangular inequality, Jensen's inequality

and the fact that the Qj are pairwise disjoint, we get( 1

wr(Q)

∫
Q

(MQ(f − fQ)(x)

M ]f(x)

)p
w(x)dx

) 1
p

≤ 2nλ+

∑
j

wr(Qj)

wr(Q)

1

wr(Qj)

∫
Q

(
MQj (f − fQj )(x)

M ]f(x)

)p
w(x)dx

 1
p

≤ 2nλ+X

 1

wr(Q)

∑
j

wr(Qj)

 1
p

≤ 2nλ+
X

λ
1
pr′
.
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We have used that, by Hölder's and one of the main properties of the family Qj ,

∑
j

wr(Qj) ≤ wr(Q)

(
1

λ

) 1
r′

,

and we have set

X = sup
R∈D

(
1

wr(R)

∫
R

(
MR(f − fR)(x)

M ]f(x)

)p
w(x)dx

) 1
p

.

Now take the supremum over all dyadic cubes Q and obtain, for arbitrary λ > 1,

X ≤ 2nλ+
X

λ
1
pr′
.

This in turn implies, if we assume X <∞, that

X ≤ 2nλ
λ

1
pr′

λ
1
pr′ − 1

.

Applying Lemma 4.2, we see X ≤ cn pr′, since λ > 1 was free. This �nishes the proof
if we assume that X <∞.

In order to remove the hypothesis X < ∞, we argue as follows. Let K > 0 large
and ε > 0 small. It is enough to work with

Xε,K := sup
Q∈D

(
1

wr(Q)

∫
Q

(
MQ(fK − (fK)Q)(x)

M ]fK(x) + ε

)p
w(x)dx

) 1
p

≤ 2
K

ε
<∞

for a suitable truncation fK of f at height K. For example, one can take

fK(x) =


−K, f(x) < −K,
f(x), −K ≤ f(x) ≤ K,
K, K < f(x).

Making the same computations as above with some trivial changes, we can obtain the
bounds for Xε,K independently of ε and K. Finally, monotone convergence �nishes
the argument, by letting K →∞ and ε→ 0.

Remark 4.20 Since throughout the proof the only cubes that appear are dyadic descendants
of Q, we actually obtain the stronger estimate(

1

wr(Q)

∫
Q

(
MQ(f − fQ)(x)

M ]
Qf(x)

)p
w(x)dx

) 1
p

≤ cn pr′,

where M ]
Q is the sharp operator taking the supremum over dyadic descendants of Q.

Since M ]
Q ≤M ], this last estimate is stronger.

Remark 4.21 We remark that the corresponding result replacing the Lp norm by the (larger)
Lorentz norm Lp,q with 1 ≤ q < p cannot be proved even in the simplest situation
w = 1 and without M .

Remark 4.22 We also remark that the factor p in (4.7) (or (4.10)) it is crucial since it yields
the exponential type result as follows.
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4.4.1 When the weight is A∞

Even though Theorem 4.19 holds for all positive weights, it takes a more interesting
form when applied to A∞ weights. This is because, since these weights satisfy a
Reverse Hölder inequality, see Theorem 2.5, the bumped measure wr(Q) is bounded
by w(Q).

Corollary 4.23
Let w ∈ A∞ and let also f ∈ L1

loc(Rn). For any cube Q and 1 < p <∞, the following
holds (

1

w(Q)

∫
Q

(
MQ(f − fQ)(x)

M ]f(x)

)p
w(x)dx

) 1
p

≤ cn p [w]A∞ . (4.10)

Proof. Since w ∈ A∞, we choose r = 1 + δ with δ as in Theorem 2.5. This way,
wr(Q) ≤ 2w(Q) and r′ ≤ cn[w]A∞ . From this observation, applying Theorem 4.19,
inequality (4.10) follows.

Corollary 4.24
For a weight w ∈ A∞ and f ∈ L1

loc(Rn), the following John�Nirenberg-type estimate
holds. ∥∥∥∥MQ(f − fQ)

M ]f

∥∥∥∥
expL(Q, wdx

w(Q)
)

≤ cn [w]A∞

This means that there exist dimensional constants c1, c2 > 0 such that

w

({
x ∈ Q :

MQ(f − fQ)(x)

M ]f(x)
> t

})
≤ c1 e

−c2 t/[w]A∞ w(Q), t > 0.

Proof. Apply Proposition 4.1 to (4.10).

We call this result improved John�Nirenberg estimate because if w = 1 and f ∈
BMO, then M ]f(x) ≤ ‖f‖BMO for a.e. x and, therefore,

|{x ∈ Q : MQ(f − fQ) > t}| ≤ c1 e
−c2 t
‖f‖BMO |Q|, t > 0.

This implies the John�Nirenberg Theorem by Lebesgue di�erentiation theorem, be-
cause MQ(f − fQ) ≥ f − fQ a.e. in Q.

Corollary 4.25
For every cube and λ, γ > 0 we have the following good-λ type inequality

w
(
{x ∈ Q : MQ(f − fQ) > λ,M ]f(x) ≤ γλ}

)
≤ c1 e

−c2
γ[w]A∞ w(Q).
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4.5 Generalized Poincaré inequalities

As an application of Theorem 4.19, we improve the main result in [38], at least in the
simplest situation of cubes, which at the same time provides a limiting result that
could not be treated in Theorem 1.14 of [107].

Let w be an A∞ weight and let a be a functional over cubes of Rn. By that we
mean a real-valued mapping de�ned over the set of cubes in Rn. We will assume that
a satis�es the Dr(w) condition for some r > 1 as introduced in [38].

Definition 4.26
Let a be a functional over cubes and let w be a weight. We say that a satis�es the
Dr(w) condition, and we write a ∈ Dr(w) if for every cube Q and every collection Λ
of pairwise disjoint subcubes of Q, the following inequality holds:∑

P∈Λ

w(P ) a(P )r ≤ ‖a‖rw(Q)a(Q)r, (4.11)

for some constant ‖a‖ > 0 that plays the role of the �norm" of a.

These kind of functionals were studied in relation with self improvement properties
of generalized Poincaré inequalities in [38], further studied in [93] and more recently
improved in [107]. We establish now an new endpoint result in the spirit of Theorem
1.14 in [107] which was missing since Theorem 4.19 was not available.

Theorem 4.27
Let w ∈ A∞ and a a functional satisfying Dr(w) condition (4.11) for some r > 1. Let
f be a locally integrable function such that for every cube Q,

1

|Q|

∫
Q
|f(x)− fQ|dx ≤ a(Q). (4.12)

Then, for every cube Q,

‖f − fQ‖Lr,∞
(
Q, w

w(Q)

) ≤ cn r [w]A∞ ‖a‖ a(Q).

Remark 4.28 The method in [38], based on the good-λ method of Burkholder�Gundy [9],
yields an exponential bound in [w]A∞ . We still use here the good-λ method but we
use instead Corollary 4.25.

Proof of Theorem 4.27. Fix a cube Q. We have to prove that for every t > 0,

tr w({x ∈ Q : |f(x)− fQ| > t}) ≤ (cn‖a‖[w]A∞)r a(Q)r w(Q),

with cn independent from everything but the dimension.
MQ will denote the dyadic maximal operator localized in Q. Since (f − fQ) ≤

MQ(f − fQ) almost everywhere, we can just estimate the bigger set

Ωt = {x ∈ Q : MQ(f − fQ)(x) > t}.

Let Qj be the maximal cubes that form Ωt. They can be found by the Calderón�
Zygmund decomposition, see Section 1.4.3. Let q = 2n+1 as in [107], and let us make

90 Chapter 4. Extensions of the John�Nirenberg theorem



the same computations that they do . We arrive to

w(Ωqt) ≤
∑
j

w(EQj ),

where

EQj = {x ∈ Qj : MQ(f − fQj )(x) > t}
= {x ∈ Qj : MQj (f − fQj )(x) > t},

by the maximality of the cubes Qj . Now we will use the good-λ from Corollary 4.25.
We use the version with the dyadic sharp maximal function in Remark 4.20. Let γ > 0
to be chosen later. Then

EQj ⊆ {x ∈ Qj : MQj (f − fQj )(x) > t, M ]
df(x) ≤ γt}

⋃
{x ∈ Qj : M ]

df(x) > γt}

= Aj
⋃
Bj

and therefore

w(EQj ) ≤ w(Aj) + w(Bj).

For Aj sets, let s > 1 be the exponent for the Reverse Hölder inequality for w ∈ A∞
as in Theorem 2.5. Then, using Corollary 4.25, we have∑

j

w(Aj) ≤ c1e
− c2
sγ

∑
j

w(Qj) = c1e
− c2
sγw(Ωt).

Remember that c1, c2 > 0 are dimensional constants. On the other hand, for Bj we
can argue as follows. We have⋃

j

Bj ⊆ {x ∈ Q : M ]
df(x) > γt} =

⋃
i

Ri,

where Ri are the maximal dyadic subcubes of Q such that

γt <
1

|Ri|

∫
Ri

|f(x)− fRi |dx.

Now, using the starting point (4.12), we clearly have

γt ≤ a(Ri).

Therefore, using that a satis�es the Dr(w) condition, we have∑
j

w(Bj) ≤ w
(
{x ∈ Q : M ]

df(x) > γt}
)

=
∑
i

w(Ri)

≤
(

1

γt

)r∑
i

w(Ri)a(Ri)
r

≤ ‖a‖r
(

1

γt

)r
w(Q)a(Q)r.
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Now, if we put everything together, we get

(qt)rw(Ωqt) ≤ c1(tq)re
− c2
γsw(Ωt) +

(
q
‖a‖
γ

)r
w(Q)a(Q)r.

Since we have qt on the left and t on the right, we de�ne the function

ϕ(N) = sup
0<t≤N

trw(Ωt).

This function is increasing, so we have

ϕ(N) ≤ ϕ(Nq) ≤ c1q
re
− c2
γsϕ(N) +

(
q
‖a‖
γ

)r
w(Q)a(Q)r.

The parameter γ is free, and we make the choice so that

c1q
re
− c2
sγ =

1

2
,

which means
γ =

cn
r[w]A∞

.

This yields the result, since ‖f − fQ‖Lr,∞(Q,w) ≤ supN ϕ(N).

4.6 Application to Cp weights: Fefferman–Stein inequality

As a second application of Theorem 4.19 we provide an improvement of theorem of
Yabuta [117] concerning a classical inequality of Fe�ereman�Stein relating the Hardy-
Littlewood maximal function M and the sharp maximal function M ] introduced by
them in [37].

This inequality, �rst proved for A∞ weights, is deeply related to the theory of Cp
weights. The situation is very similar to the Coifman�Fe�erman inequality that was
described in Chapters 2 and 3.

Theorem 4.29 – Yabuta [117]
Let w be a weight such that the following inequality holds for all f ∈ L∞ with compact
support,

‖f‖Lp(w) ≤ c ‖M ]f‖Lp(w),

for a �xed constant c > 0. Then w ∈ Cp.
Conversely, suppose that w ∈ Cq for some 1 < p < q < ∞. Then, there exists a

constant c = cw,q,p > 0 such that for all f ∈ L∞ with compact support,

‖Mf‖Lp(w) ≤ c ‖M ]f‖Lp(w). (4.13)

One could make a conjecture in the spirit of Muckenhoupt's conjecture 2.1, stating
that w ∈ Cp is the correct su�cient condition for (4.13) to hold.
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In this line, Lerner [85] proved a characterization of weights satisfying a weak
Fe�erman�Stein inequality

‖f‖Lp,∞(w) ≤ C‖M ]f‖Lp(w).

The weights satisfying this inequality are of a di�erent class of weights, called SCp
(strong Cp). This class is contained in Cp and contains Cp+ε for every ε > 0.

As a consequence of Theorem 4.19, we are able to give a nice quantitative version
of Yabuta's inequality, since the good-λ with exponential decay between the sharp
maximal function and the Hardy�Littlewood maximal function was not available to
us before.

Theorem 4.30 – Quantitative Fefferman–Stein for Cp weights
Let 1 < p < q <∞ and w ∈ Cq. Then for any f ∈ L∞c (Rn) we have

‖Mf‖Lp(w) ≤ cn
pq

q − p
(1 + [w]Cq) log(e+ [w]Cq)‖M ]f‖Lp(w),

where the constant cn only depends on n.

Remark 4.31 We remark that, as a consequence of Corollary 4.25, we can also obtain the
following weighted inequality for A∞ weights by standard arguments:

‖Mf‖Lp(w) ≤ c [w]A∞ ‖M ]f‖Lp(w), 0 < p <∞.

This inequality is not new, see for example [82].
Theorem 4.30 has a straight application to the wide class of operators described

in [17]. Indeed, we say that an operator satis�es the (D) property if there are some
constants δ ∈ (0, 1) and cT > 0 such that for all f ,

M ]
δ(Tf)(x) ≤ cTMf(x), a.e. x. (D)

Here M denotes the standard Hardy�Littlewood maximal operator and we use the
notation M ]

δf = M ](f δ)
1
δ . This property is modeled by a result in [1] where (D)

was proved for any Calderón�Zygmund operator. It also holds for some square func-
tion operators and some pseudo-di�erential operators. The version for multilinear
Calderón�Zygmund operators was obtained in [87]. There is a more exhaustive list
in [17].

Corollary 4.32
Let 1 < p < q <∞ and T be an operator that satis�es the property (D) with constant
cT for some p

q < δ < 1. Then for w ∈ Cq we have

‖Tf‖Lp(w) ≤ cn cT
(

pq

δq − p
max(1, [w]Cq log+[w]Cq)

) 1
δ

‖Mf‖Lp(w).

The rest of this section is devoted to proving Theorem 4.30 and Corollary 4.32.
We are going to use the improved John�Nirenberg Theorem 4.19 to give a quantitative
version of Theorem II in [117].

First, we need to obtain a non-dyadic unweighted version of Corollary 4.25.
That is, a version of it in which the maximal operator inside actually is the
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Hardy�Littlewood one and not the one that only takes into account the dyadic
descendants.

Theorem 4.33
Let Q be an arbitrary cube and f a locally integrable function, non constant on Q.
Then for any λ > 0 we have∣∣∣∣∣

{
x ∈ Q :

M
(
(f − fQ)χ

Q

)
(x)

M ]f(x)
> λ

}∣∣∣∣∣ ≤ c e−cλ|Q|,
where c > 0 is a dimensional constant. Here M denotes the standard Hardy�
Littlewood maximal operator.

In order to pass from the dyadic setting to the full setting, we need a bit of help.
We will use a result from [22], which will allow us to obtain the general case from the
dyadic setting. This is a result that says that there are n + 1 dyadic families such
that the sum of their respective maximal operators can actually bound the Hardy�
Littlewood maximal operator. We give a version of the proof by Conde-Alonso that
is adjusted to our needs.

Lemma 4.34
Let Q ⊂ Rn be a cube. Then there exist n + 1 dyadic systems {Aj}nj=0 and n + 1
cubes, Qj ∈ Aj such that the following two conditions are satis�ed

1. Mf(x) ≤ cn
∑n

j=0Mjf(x) a.e. for any function f , where Mj is the dyadic
maximal function with respect to the dyadic system Aj , j = 0, ..., n.

2. Q ⊂ ∩nj=0Qj and the |Q| ' |Qj | for all j.

Proof. Given the cube Q, we construct the dyadic systems as in Theorem A in [22],
but with a slight change on the starting cubes.

We choose the cubes Qj00 so that Q = ∩jQj00. This is possible by construction,
after making a translation and dilation. Indeed, we may suppose Q = [pn−1

pn
, 1]n, pn

being the smallest odd integer strictly greater than n. Following the proof in [22], we
have Qj00 = [0, 1]n+ j

pn
(1, .., 1). These cubes satisfy property (2). Then call Qj = Qj00

and apply the same procedure as in [22].

Proof of Theorem 4.33. Fix the cube Q and the function f , and choose Q0, ..., Qn and
A0, ...,An as in Lemma 4.34. We have

∣∣∣{x ∈ Q :
M
(
(f − fQ)χ

Q

)
(x)

M ]f(x)
> λ

}∣∣∣
≤

n∑
j=0

∣∣∣{x ∈ Q :
Mj

(
(f − fQ)χ

Q

)
(x)

M ]f(x)
>

λ

n+ 1

}∣∣∣
≤

n∑
j=0

∣∣∣{x ∈ Qj :
Mj

(
(f − fQ)χ

Qj

)
(x)

M ]f(x)
>

λ

n+ 1

}∣∣∣
=

n∑
j=0

∣∣∣{x ∈ Qj :
MQj (f − fQ)(x)

M ]f(x)
>

λ

n+ 1

}∣∣∣.
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Now, since Q and Qj have comparable size, we have for x ∈ Qj ,

|fQ − fQj |
M ]f(x)

≤ |Qj |
|Q|

−
∫
Qj

|f(y)− fQj |dy

−
∫
Qj

|f(y)− fQj |dy
≤ cn.

So, for λ
n+1 ≥ cn we get for each j,

∣∣∣{x ∈ Qj :
MQj (f − fQ)(x)

M ]f(x)
>

λ

n+ 1

}∣∣∣
≤
∣∣∣{x ∈ Qj :

MQj (f − fQj )(x)

M ]f(x)
+ cn >

λ

n+ 1

}∣∣∣
≤
∣∣∣{x ∈ Qj :

MQj (f − fQj )(x)

M ]f(x)
>

λ

n+ 1
− cn

}∣∣∣
≤ c e−c(λ−cn)|Qj |

≤ c e−c(
λ
n+1
−cn)|Q|.

This �nishes the proof for λ
n+1 > cn. The other case follows since in that case e−λ is

bounded from bellow.

We now give the key estimate, which is a good-λ estimate between M and M ]

with exponential decay.

Proposition 4.35
Let f be a function and λ > 0. Let Ωλ = {x ∈ Rn : Mf(x) > λ} = ∪Q as in the
Whitney decomposition, Proposition 3.10. Then for any Q in the decomposition and
γ small enough,

|{x ∈ Q : Mf(x) > 4nλ,M ]f(x) ≤ γλ}| ≤ c e−
c
γ |Q|,

where c > only depends on the dimension.

Proof. Let Q be the multiple of Q such that Q ∩ (Ωλ)c 6= ∅, as in the Whitney
decomposition. We prove that if x ∈ Q satis�esMf(x) > 4nλ andM ]f(x) ≤ γλ then

M((f − fQ)χ
Q

)(x)

M ]f(x)
>

1

γ
. (4.14)

Then we can directly apply Theorem 4.33 and we will be done.
Let x ∈ Q. Because of the Whitney decomposition, Mf(x) > 4nλ implies

M(fχ
Q

)(x) > 4nλ. Also as a consequence of the Whitney decomposition, |f |Q ≤ λ,
so

4nλ ≤M(fχ
Q

)(x)

≤M((f − fQ)χ
Q

)(x) + |f |Q
≤M((f − fQ)χ

Q
)(x) + λ,
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which implies M((f − fQ)χ
Q

)(x) > λ. This proves (4.14). Therefore we have

|{x ∈ Q : Mf(x) > 4nλ,M ]f(x) ≤ γλ}|
≤ |{x ∈ Q : M((f − fQ)χ

Q
)(x) > 4nλ,M ]f(x) ≤ γλ}|

≤

∣∣∣∣∣
{
x ∈ Q :

M((f − fQ)χ
Q

)(x)

M ]f(x)
>

1

γ

}∣∣∣∣∣
≤ c e−

1
cγ |Q|.

This ends the proof, since Q and Q have comparable size.

Now we prove Theorem 4.30. The proof follows mainly the one in [117], but we use
the good-λ inequality from Proposition 4.35. We also keep an eye for the dependence
on the constant of the weight, which is in fact our main objective.

We are going use Marcinkiewicz operators that were introduced in Section 3.3 from
Chapter 3.

Proof of Theorem 4.30. We may assume, arguing as in [117], that both norms are
�nite. De�ne Ωk = {x ∈ Rn : Mf(x) > 2k} for k ∈ Z. We write, following the
Whitney decomposition technique that we used in Chapter 3

Ωk =
⋃
j

Q, Q ∈ W(k) disjoint cubes.

By Proposition 4.35 we have, for each k ∈ Z and each Q ∈ W(k) the following estimate

|{x ∈ Q : Mf(x) > 4n2k,M ]f(x) ≤ γλ}| ≤ c e−
c
γ |Q|,

which in turn yields, using Theorem 2.21,

w({x ∈ Q : Mf(x) > 4n2k,M ]f(x) ≤ γλ}) ≤ ce−c
ε
γ

∫
Rn
Mχ

Q
(x)qw(x)dx,

where ε = cn
max(1,[w]Cq ) . These computations, together with the standard argument

that uses the good-λ technique yield∫
Rn
Mf(x)pw(x)dx ≤ 2p

∑
k∈Z

2kpw(Ωk)

≤ (cn)p
∑
k∈Z

2kpw({x ∈ Rn : M ]f(x) > γ2k})

+ cne
− cε
γ

∑
k∈Z

∑
Q∈W(k)

2kp
∫
Rn
Mχ

Q
(x)qw(x)dx

≤
(
cn
γ

)p ∫
Rn
M ]f(x)pw(x)dx+ cne

− cε
γ

∫
Rn

(Mp,q(Mf)(x))pw,

where Mp,q is the Marcinkiewicz operator as De�nition 3.13. We now use Lemma 3.9
and obtain∫

Rn
(Mp,qMf(x))pw(x)dx ≤ 2

cn
pq
q−p

1

ε
log

1

ε

∫
RnMf(x)pw(x)dx.
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So, if we choose

1

γ
= cn

pq

q − p
1

ε
log

1

ε
= cn

pq

q − p
max(1, [w]Cq log+[w]Cq),

we can absorb the last term to the left side and we obtain

‖Mf‖Lp(w) ≤ cn
pq

q − p
max(1, [w]Cq log+[w]Cq)

∥∥M ]f
∥∥
Lp(w)

.

This �nishes the proof.

Remark 4.36 Note that the quantitative dependence on the constant of the weight is es-
sentially the same as in Theorem 3.21 for the Coifman�Fe�erman inequality. This
is because both proofs are based on the Marcinkiewicz-integral techniques. In or-
der to obtain better dependence for any of these inequalities, we would need other
techniques.

Proof of Corollary 4.32. Since p
δ < q, we can make the following computations:

‖Tf‖Lp(w) ≤ ‖Mδ(Tf)‖Lp(w) =
∥∥M(Tf δ)

∥∥ 1
δ

L
p
δ (w)

≤ cn
(

pq

δq − p
max(1, [w]Cq log+[w]Cq)

) 1
δ ∥∥M ](Tf δ)

∥∥ 1
δ

L
p
δ (w)

= cn

(
pq

δq − p
max(1, [w]Cq log+[w]Cq)

) 1
δ
∥∥∥M ]

δ(Tf)
∥∥∥
Lp(w)

≤ cn cT
(

pq

δq − p
max(1, [w]Cq log+[w]Cq)

) 1
δ

‖Mf‖Lp(w).

4.7 Further extensions: polynomial approximation

In this section we generalize Theorems 4.19 and 4.14 to the context of polynomials.
More precisely, we show that the average fQ can be replaced with an appropriate
polynomial PQf of �xed degree k. It is not clear how to obtain this polynomial
approximation from the sparse techniques in [103].

Let Pk(Q) denote the space of polynomials of degree at most k restricted to the
cube Q, and let mk denote the dimension of Pk(Q), which depends only on k and n.
The degree k will be frozen from now on, so we omit the subscript k if there is no
room for confusion.

Proposition 4.37
The dimension of the space of polynomials in n variables of degree up to k is precisely

mk =
(
n+ k + 1
n+ 1

)
.

Proof. For each 0 ≤ j ≤ k, the

We are going to work with the L2(Q) space with normalized measure, namely
we consider the standard product 〈f, g〉Q = −

∫
Q fg. First, we have to construct an
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orthonormal basis of P(Q). We choose any orthonormal basis of P([0, 1]n), namely
{ej}mkj=1. For a general cube Q = y + `[0, 1]n, we choose the basis formed by

ej,Q(x) = ej
(x− y

`

)
.

Note that {ej,Q}j is indeed an orthonormal basis because the measure in Q is nor-
malized. Moreover, for a �xed degree k, all the basis vectors have uniformly bounded
L∞ norm for every cube Q. If we were to increase the degree k, we would just have
to introduce new vectors to the basis.

We de�ne the orthogonal projection operator, that for any integrable function
gives the projection in L2(Q) to the space of polynomials.

Definition 4.38
Let Q be a cube in Rn and let k ≥ 1. The projection operator PQ is de�ned as

PQ : L1(Q) −→ P(Q)
f 7−→

∑mk
j=0〈f, ej,Q〉Q ej,Q,

where {ej,Q}mkj=0 is the orthonormal basis of Pk(Q) from the discussion above.

Notice then that the projection operator is indeed de�ned in the whole L1(Q)
and not only in L2(Q) because the ej,Q are polynomials and therefore they belong to
L∞(Q). Using the fact that the vectors {ej,Q} are uniformly bounded, one can prove
that PQ is actually bounded from L1(Q) to L∞(Q), as the following Proposition
illustrates.

Proposition 4.39
Let Q be a cube, k ≥ 1 and f ∈ L1(Q). Then the projection PQf of f satis�es

|PQf(x)| ≤ γ −
∫
Q
|f(y)|dy, (4.15)

for any f ∈ L1(Q), and where γ is a constant depending only on the dimension n and
on k.

Combining these properties we can show the following optimality property of the
chosen polynomial projection.

Proposition 4.40
The projection PQf is a good approximation of f in Pk(Q) in the Lp(Q) distance,
that is,

inf
π∈Pk

(
−
∫
Q
|f(x)− π(x)|pdx

) 1
p

≈
(
−
∫
Q
|f(x)− PQf(x)|pdx

) 1
p

.

Proof. The inequality in the direction �≤� is trivial. To prove the opposite inequality,
observe that since PQ is a projection we have PQπ = π for any polynomial of degree
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at most k, and therefore by the triangle inequality(
−
∫
Q
|f(x)− PQf(x)|pdx

) 1
p

≤
(
−
∫
Q
|f(x)− π(x)|pdx

) 1
p

+

(
−
∫
Q
|PQ(f − π)(x)|pdx

) 1
p

≤ (1 + γ)

(
−
∫
Q
|f(x)− π(x)|pdx

) 1
p

,

by (4.15).

Before we state the main results of this section, we introduce the sharp maximal
function in this polynomial context, which has form one can expect.

Definition 4.41
Let f ∈ L1

loc(Rn) and let k ≥ 1. The polynomial sharp maximal function of degree k
of f is de�ned by the expression

M ]
kf(x) = sup

Q3x

1

|Q|

∫
Q
|f(x)− PQf(x)|dx.

The case k = 0 corresponds to the usual sharp maximal function.
We state the maximal polynomial theorem, which corresponds to Theorem 4.19

in the polynomial context.

Theorem 4.42
Let f ∈ L1

loc, Q a cube, 1 < r <∞ and 1 ≤ p <∞. Then(
1

wr(Q)

∫
Q

(MQ(f − PQf)(x)

M ]
kf(x)

)p
w(x)dx

) 1
p

≤ cn r′ γ p.

Proof of Theorem 4.42. Fix L > 1 and make the Calderón�Zygmund decomposition
of the function

F (x) =
|f(x)− PQf(x)|

osck(f,Q)
,

where now

osck(f,Q) = −
∫
Q
|f(y)− PQf(y)|dy.

We obtain cubes {Qj} that satisfy:

� L < −
∫
Qj

|f(x)− PQf(x)|
osck(f,Q)

dx ≤ 2nL

�
∑
Qj

|Qj | ≤
|Q|
L

� for almost every x 6∈
⋃
j Qj , it holds

|f(x)− PQf(x)|
osck(f,Q)

≤ L

Fix one of these cubes Qj and let x ∈ Qj . We can localize by maximality, meaning:

MQ(f − PQ)(x) = MQj (f − PQf)(x) ≤MQj (f − PQjf)(x) +MQj (PQjf − PQf)(x).
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Now, the function PQjf − PQf is not constant, but we can bound it. Indeed, since
both are polynomials of degree at most k, Qj ⊂ Q and both PQj and PQ are projection
operators, we have

PQjf − PQf = PQjf − PQj (PQf) = PQj (f − PQf).

Therefore, using (4.15) we get

|PQjf(x)− PQf(x)| ≤ |PQj (f − PQ)(x)| ≤ γ−
∫
Qj

|f − PQf | ≤ 2n L γ osck(f,Q).

And, since the maximal function is bounded in L∞ with norm one, we directly have

MQj (PQjf − PQf)(x) ≤ γ2nL osck(f,Q).

Now, this means that for x ∈ Qj ,

MQ(f − PQf)(x)

M ]
kf(x)

≤ 2nLγ +
MQj (f − PQjf)(x)

M ]
kf(x)

and therefore

( 1

wr(Q)

∫
Q

(MQ(f − PQf)(x)

M ]
kf(x)

)p
w(x)dx

) 1
p

≤ 2nLγ +

 1

wr(Q)

∑
j

wr(Qj)

wr(Qj)

∫
Qj

(MQj (f − PQjf)(x)

M ]f(x)

)p
w(x)dx

 1
p

≤ 2nγL+
X

L
1
p

.

From here, the result follows as in the proof of Theorem 4.19.

Finally, we state the polynomial version of Theorem 4.14. We introduce the
weighted polynomial BMO norm, that is, for a certain weight w we de�ne

‖f‖BMOrk(w) := sup
Q

1

wr(Q)

∫
Q
|f − PQf |.

Theorem 4.43
Let 1 < p <∞ and r > 1. Let w a weight and f a function satisfying [w]Arp <∞ and
‖f‖BMOrk(w) <∞. Then

(
1

wr(Q)

∫
Q

∣∣∣∣f(x)− PQf
w(x)

∣∣∣∣p′ w(x)dx

) 1
p′

≤ cn γ p′
(
[w]Arp

) 1
p
(
r′
) 1
p′ ‖f‖BMOrk(w).

Since the proofs of these theorems are very similar to the zero degree case but
making only the appropriate changes that have been illustrated in the proof of, The-
orem 4.42, we are just going to give a sketch of the proof of Theorem 4.43 mentioning
the places in which the main changes have to be made.
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Sketch of the proof of Theorem 4.43. Let us �x L > 1 to be chosen later and make
the mixed-type Calderón�Zygmund decomposition at height L of the function

|f − PQf |.

That is, we select the maximal cubes {Qj} that satisfy

1

wr(Qj)

∫
Qj

|f(y)− PQf(y)|dy > L.

As in the proof of Theorem 4.42, these cubes will satisfy

�
∑
j

wr(Qj) ≤
wr(Q)

L
;

� For almost every x ∈ Qj ,

|PQf(x)− PQjf(x)| ≤ 2n L γ
wr(Q

′
j)

|Q′j |
,

where Q′j is the parent of Qj ;

� |f(x)− PQf(x)| ≤ Lw(x) almost everywhere outside of
⋃
j Qj .

Therefore, one can compute as before( 1

wr(Q)

∫
Q

(f(x)− PQf(x)

w(x)

)q
w(x)dx

) 1
q

≤

(
1

w(Q)

∫
(
⋃
j Qj)

c

L w(x)dx

) 1
q

+

 1

wr(Q)

∑
j

∫
Qj

|PQjf(x)− PQf(x)|qw(x)1−qdx

 1
q

+

 1

wr(Q)

∑
j

∫
Qj

( |f(x)− PQjf(x)|
w(x)

)q
w(x)dx

 1
q

= A1 +A2 +B.

Clearly, A1 ≤ L and B ≤ X

L
1
q
, where

X = sup
R∈D(Q)

(
1

wr(R)

∫
R

( |f(x)− PRf(x)

w(x)

)q
w(x)dx

) 1
q

.

In order to bound A2 we can argue as in the proof of Theorem 4.14 but using the new
properties of the Calderón�Zygmund cubes to get

A2 ≤ 2n γ L
(
r′
) 1
q
(
[w]Ar

q′

) 1
q′ .

The proof follows as in the proof of Theorem 4.14.

Remark 4.44 One can also obtain A∞ results analogous to Corollaries 4.25 and 4.15.
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5

Minimal conditions for BMO

In this chapter, we will discuss the results that were published in the work

[15] Canto, J., Pérez, C., Rela, E. Minimal conditions for BMO to appear in J.
Funct. Anal.

The chapter is organized as follows. In Section 5.1 we give a brief introduction
to the problem that we deal with in this chapter. In Section 5.2, we introduce the
Luxemburg-type expressions that will be used throughout the chapter. The main
result, that is, Theorem 5.5 in which we prove the minimality conditions for the
classical space BMO, comes in Section 5.3. In the last two sections, Sections 5.4 and
5.5, generalizations of the main result are give, in spaces of homogeneous type and
non-doubling measures in Rn respectively. Finally, we also consider rectangle-based
BMO, which is sometimes called bmo.



5.1 Introduction

In the previous chapter, we discussed the John�Nirenberg Theorem 4.5. In that
theorem, a self-improvement property was established for functions in BMO, providing
a local exponential integrability estimate. Moreover, no better self-improvement can
be found, so the John�Nirenberg theorem is the maximal integrability condition for
BMO.

The main concern of this chapter is precisely the opposite problem: instead of
studying self-improvement properties with BMO as an starting point, we want to
�nd how much we can weaken the initial starting point but still self-improve back
to BMO. More precisely, we show that the membership of a given function to BMO
can be obtained from a much weaker condition on generalized averages de�ned by
Luxemburg type norms.

Even though this problem was already addressed in a qualitative fashion by John in
[65] and later by Strömberg in [113], our point of view is more quantitative, motivated
by the recent work [90] which in turn was motivated by [91]. Our results extend those
in [90], giving more precise estimates that can also be applied to di�erent contexts
such as spaces of homogeneous type or non-doubling measures in Rn.

5.2 BMO through Luxemburg

One of the main tools in this chapter concerns Orlicz-type spaces. We refer to [116]
for a general discussion of the theory. These spaces provide a more precise way of
studying integrability of functions, because they expand the scale of Lp-integrability.

Although the general theory of Orlicz spaces deals with convex functions, these
spaces can be de�ned for quite general functions. Our concern in this work is with
functions ϕ which are concave, increasing and satisfy ϕ(0) = 0 and ϕ(t) → ∞ as
t→∞.

Let us begin our discussion in Rn, for simplicity. Generalizing these concepts
to other spaces, such as spaces of homogeneous type is fairly straightforward, see
Section 5.4.

Definition 5.1
Let Q be a cube in Rn and let ϕ : [0,∞]→ [0,∞] be an non-decreasing function. The
Orlicz-type space Lϕ(Q, dx|Q|) with respect to ϕ is de�ned as the set of functions f for
which there exists some λ > 0 such that

−
∫
Q
ϕ

(
|f(x)|
λ

)
dx <∞. (5.1)

Expression (5.1) is not homogeneous in f , so in order to have an expression that
is actually homogeneous, we introduce the quantity

‖f‖ϕ,Q = inf
{
λ > 0 : −

∫
Q
ϕ
( |f(x)|

λ

)
dx ≤ 1

}
. (5.2)

Proposition 5.2
Let ϕ be a convex function such that ϕ(0) = 0. Then (5.2) is a norm.
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Proof. The only property that is not trivial is the triangular inequality, which is where
convexity is actually used. Let f, g be two functions de�ned on Q. We need to prove

‖f + g‖ϕ,Q ≤ ‖f‖ϕ,Q + ‖g‖ϕ,Q.

In our work, the function ϕ will not be convex but concave, so in this case, (5.2)
will not satisfy the triangular inequality in general and thus it is not a norm. However,
we will use sometimes the word �norm" even though (5.2) is not a norm in the usual
sense. Nevertheless, using the concavity we can prove a relation with the L1-norm in
the cube

Proposition 5.3
Let ϕ be a concave function and Q be a cube in Rn. Then,

‖f‖ϕ,Q ≤
1

ϕ−1(1)
‖f‖L1(Q, dx|Q| )

.

Proof. Let us use λ = 1
ϕ−1(1)

‖f‖L1(Q, dx|Q| )
as a test number for (5.2). Then ,

−
∫
Q
ϕ
( |f(x)|

1
ϕ−1(1)

‖f‖L1(Q, dx|Q| )

)
dx ≤ ϕ

ϕ−1(1)−
∫
Q

|f(x)|
‖f‖L1(Q, dx|Q| )

dx


= ϕ

(
ϕ−1(1)

)
= 1,

where we used Jensen's inequality in the �rst inequality, since ϕ is concave.

Finally, we de�ne the appropriate BMO space in this context. A way of doing so
might be to substitute the L1 norm in the oscillation by means of (5.2), that is,

sup
Q
‖f − fQ‖ϕ,Q,

where the supremum is taken over all cubes Q. But since f might not be a priori
locally integrable, using the average fQ is not really allowed. We note that, in the
classical BMO we have, as noted in Proposition 4.4

inf
c∈C
−
∫
Q
|f(x)− c|dx ≤ −

∫
Q
|f(x)− fQ|dx ≤

1

2
inf
c∈C
−
∫
Q
|f(x)− c|dx. (5.3)

Therefore, we introduce the BMOϕ space using a similar expression to (5.3)

Definition 5.4
Let ϕ be a function on [0,∞]. The space BMOϕ is de�ned as the set of functions f
such that the quantity

‖f‖BMOϕ = sup
Q

inf
c
‖f − c‖ϕ,Q (5.4)

= sup
Q

inf
c

inf
{
λ > 0 : −

∫
Q
ϕ
( |f(x)− c|

λ

)
dx ≤ 1

}
,
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is �nite. The supremum is taken over all cubes Q.

One easy but key observation is that, if ‖f‖BMOϕ ≤ 1, then for each Q there exits
a constant cQ such that

−
∫
Q
ϕ(|f(x)− cQ|)dx ≤ 2.

This de�nition of BMOϕ can naturally be generalized to other contexts such as SHT,
Rn with a more general measure or even the basis of rectangles.

We will focus on the special class of increasing and concave functions ϕ in [0,∞)
with ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Such functions must be continuous and
subadditive, that is,

ϕ(t1 + t2) ≤ ϕ(t1) + ϕ(t2).

5.3 Minimal condition for BMO

Without further ado, let us state the main result of this chapter.

Theorem 5.5
Let ϕ be an increasing, concave function with ϕ(0) = 0 and such that limt→∞ ϕ(t) =
+∞. Then BMOϕ = BMO with the following quantitative estimates:

ϕ−1(1) ‖f‖BMOϕ ≤ ‖f‖BMO ≤
(
2ϕ−1(4) + ϕ−1(2 + 2n+2)

)
‖f‖BMOϕ .

Remark 5.6 Although concavity of ϕ is needed for the �rst inequality above, just subaddi-
tivity is su�cient for the second inequality. This observation could be useful for other
circumstances or functions ϕ.

Proof of Theorem 5.5. The �rst inequality follows from Proposition 5.3 in Section 5.2,
so we need only to prove the second one.

Let us �x a function f ∈ BMOϕ with norm one, and let us �x a cube Q. Then we
can �nd a constant cQ such that

−
∫
Q
ϕ(|f(x)− cQ|)dx ≤ 2. (5.5)

Recall that the goal here is to bound the oscillation of f uniformly over all cubes. To
that end, we introduce the quantity

X = sup
Q cube

−
∫
Q
|f(x)− cQ| dx,

where cQ is such that (5.5) holds for Q. Note that by last property in Proposition (4.4)
it is enough to show that the bound claimed in the theorem holds for this quantity. At
certain point we will need to manipulate this X, so we need to start by assuming that
it is �nite. In order to do that, we will work with the following truncated quantity,
that is,

Xm = sup
Q cube

−
∫
Q

min{|f(x)− cQ|,m} dx, m ≥ 1. (5.6)
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We consider here the usual dyadic Calderón�Zygmund decomposition of ϕ(|f−cQ|)
adapted to Q at height L > 2, see Section 1.4.3 for more details. The result is the
collection {Qj} of maximal dyadic subcubes of Q satisfying

� L < −
∫
Qj

ϕ(|f(x)− cQ|)dx ≤ 2nL,

� ϕ(|f(x)− cQ|) ≤ L, for almost every x ∈ Q \
⋃
j

Qj ,

�
1

|Q|
∑
j

|Qj | ≤
2

L
.

Now, let us �x a cube Qj . For a point x ∈ Qj , we have

|f(x)− cQ| ≤ |f(x)− cQj |+ |cQ − cQj |,

where cQj is a constant so that −
∫
Qj
ϕ(|f − cQj |) ≤ 2. We bound the second term as

follows:

|cQ − cQj | = ϕ−1
(
−
∫
Qj

ϕ(|cQ − cQj |)dx
)

≤ ϕ−1
(
−
∫
Qj

ϕ(|f(x)− cQ|)dx+−
∫
Qj

ϕ(|f(x)− cQj |)dx
)

≤ ϕ−1
(
2nL+ 2

)
.

Here we have used the de�nition of the norm ‖f‖BMOϕ , the properties of the Calderón�
Zygmund decomposition, and the fact that ϕ is subadditive and ϕ−1 increasing.

We now proceed to estimate

−
∫
Q

min
{
|f(x)− cQ|,m

}
dx,

for m ∈ N. We split the cube into the two sets:
⋃
j Qj and Q \

⋃
j Qj . On the

�rst one, we have a good pointwise estimate on the size of f − cQ. On the second,
we will use that the CZ cubes are disjoint and the previous estimate. We will use a
basic but key inequality: for any choice of positive parameters a, b and m, we have
that min

{
a+ b,m

}
≤ min

{
a,m

}
+ b. Now, we start by controlling the integral over

Q \
⋃
Qj as

1

|Q|

∫
Q\∪Qj

min
{
|f(x)− cQ|,m

}
dx ≤ ϕ−1(L).

Taking this into account, we proceed to estimate the average over the cube as follows

−
∫
Q

min
{
|f(x)− cQ|,m

}
dx ≤ ϕ−1(L) +

1

|Q|
∑
j

∫
Qj

min
{
|f(x)− cQ|,m

}
dx

= ϕ−1(L) +
1

|Q|
∑
j

|Qj |−
∫
Qj

min
{
|f(x)− cQ|,m

}
dx.

5.3. Minimal condition for BMO 107



The average over Qj is controlled by using the key property about the minimum,
namely

−
∫
Qj

min
{
|f(x)− cQ|,m

}
dx ≤ −

∫
Qj

min
{
|f(x)− cQj |+ |cQ − cQj |,m

}
dx

≤ −
∫
Qj

min
{
|f(x)− cQj |,m

}
dx+ |cQ − cQj |

≤ Xm + ϕ−1
(
2 + 2nL

)
.

Therefore, collecting estimates we get

−
∫
Q

min
{
|f(x)− cQ|,m

}
dx ≤ ϕ−1(L) +

1

|Q|
∑
j

|Qj |
(
Xm + ϕ−1

(
2 + 2nL

))
≤ ϕ−1

(
L) +

2Xm

L
+

2

L
ϕ−1

(
2 + 2nL

)
,

where Xm is the quantity de�ned by (5.6), which is trivially bounded by m. Then,
we can also take the supremum on the left hand side to obtain

Xm ≤ ϕ−1
(
L) +

2

L
ϕ−1

(
2 + 2nL

)
+

2Xm

L
.

Now take L = 4 and absorb Xm into the LHS,

Xm ≤ 2ϕ−1
(
4) + ϕ−1

(
2 + 2n+2

)
,

and hence for any cube Q and for any m ∈ N,

−
∫
Q

min
{
|f(x)− cQ|,m

}
dx ≤ 2ϕ−1

(
4) + ϕ−1

(
2 + 2n+2

)
,

and letting m→∞ concludes the proof of the theorem.

Theorem 5.5 can be seen as an improvement of the main result from [90]. There,
the authors deal with a quantity similar to (5.4) de�ned as

Kϕ,Q(f) = sup
J subcube Q

−
∫
J
ϕ (|f(x)− fJ | dx) . (5.7)

They obtain, under some conditions on ϕ′, ϕ′′ and ϕ′′′, that the �niteness of Kϕ,Q(f)
implies the membership of f to BMO(Q). Their approach is based on the Bellman
function method, and they obtain quantitative upper and lower bounds on ‖f‖BMO

in terms of (5.7). However, their estimates are not homogeneous which might be a
drawback for some applications.

Our proof here is based in the classical (dyadic) Calderón�Zygmund decomposition
at a local level on a given cube Q. The method is transparent and allows to precisely
track the involved constants to give the result in Theorem 5.5 without any regularity
hypothesis on ϕ. Furthermore, our proof yields homogeneous estimates and it does
not require a priori local integrability for f .

We can go even further in the search for minimal conditions on the function ϕ.
We mention that in [90], the main result can be extended to almost any measurable
function ϕ going to in�nity at in�nity. Our method is also able to produce a similar
result.
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Theorem 5.7
Let ψ : [0,∞) → [0,∞) be any measurable function such that ψ(0) = 0 and
limt→∞ ψ(t) = +∞. Then

‖f‖BMO ≤ cn,ψ‖f‖BMOψ . (5.8)

The main idea for the proof is to replace a general function ψ going to +∞ with
a related function ϕ for which we can apply Theorem 5.5.

Proof of Theorem 5.7. Let ψ : [0,+∞) → [0,+∞) be a function such that ψ(0) = 0
and limt→∞ ψ(t) = +∞. Just by using the hypothesis on the behavior of ψ at in�nity,
we can �nd some non negative t0 ∈ [0,∞) (depending on ψ) and a polygonal function
ϕ : [0,+∞)→ [0,+∞) which will be concave for large values of t and smaller than ψ.

More precisely, we will have that ϕ(t) = 0 for all t ≤ t0 (we need to wait until ψ
goes away from zero). Then, for t ≥ t0, ϕ will be constructed as a polygonal consisting
of consecutive segments with endpoints (tn, n), (tn+1, n+1) with n ∈ N chosen in such
a way that the resulting polygonal is continuous, concave and such that ϕ(t) ≤ ψ(t)
for all t ∈ [0,∞). Using this auxiliary function and since we have immediately that

‖f‖BMOϕ ≤ ‖f‖BMOψ ,

we will prove (5.8) for the new function ϕ instead of ψ. An inspection of the proof of
Theorem 5.5 shows that the key step is to obtain

|cQ − cQj | ≤ ϕ−1
(
2nL+ 2

)
,

where the subadditivity is used. Here, we proceed as follows using the layer cake
formula, see Section 1.4.3. Write A(x) = |cQ − f(x)| and B(x) = |f(x)− cQj |, so∫

Qj

ϕ(|cQ − cQj |) dx ≤
∫
Qj

ϕ(|cQ − f(x)|+ |f(x)− cQj |) dx

=

∫ ∞
0

ϕ′(t)|{x ∈ Qj : A(x) +B(x) > t}| dt

= I.

Note that ϕ is di�erentiable almost everywhere since it is a polygonal. We can split
the integral at t = 2t0 to obtain

I =

∫ 2t0

0
ϕ′(t)|{A+B > t}| dt+

∫ ∞
2t0

ϕ′(t)|{A+B > t}| dt

≤ |Qj |ϕ(2t0) +

∫ ∞
2t0

ϕ′(t)|{A > t/2}| dt+

∫ ∞
2t0

ϕ′(t)|{B > t/2}| dt

= |Qj |ϕ(2t0) + 2

∫ ∞
t0

ϕ′(2u)|{A > u}| du+ 2

∫ ∞
t0

ϕ′(2u)|{B > u}| du.

Now we use that the derivative function ϕ′ is non negative and decreasing in (t0,∞),
and so we obtain

I ≤ |Qj |ϕ(2t0) + 2

∫ ∞
t0

ϕ′(u)|{A > u}| du+ 2

∫ ∞
t0

ϕ′(u)|{B > u}| du

≤ |Qj |ϕ(2t0) + 2

∫ ∞
0

ϕ′(u)|{A > u}| du+ 2

∫ ∞
0

ϕ′(u)|{B > u}| du
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= |Qj |ϕ(2t0) + 2

∫
Qj

ϕ(|f(x)− cQ|)dx+ 2

∫
Qj

ϕ(|f(x)− cQj |)dx.

Finally, dividing by the measure of Qj we obtain a similar estimate as in the
original proof. Indeed, whenever |cQ − cQj | ≥ t0, we obtain

|cQ − cQj | = ϕ−1
(
−
∫
Qj

ϕ(|cQ − cQj |)df
)

≤ ϕ−1
(
ϕ(2t0) + 2−

∫
Qj

ϕ(|f − cQ|)dx+ 2−
∫
Qj

ϕ(|f − cQj |)dx
)

≤ ϕ−1
(
ϕ(2t0) + 2n+1L+ 4

)
,

where ϕ−1 is the inverse of ϕ restricted to [t0,+∞). Otherwise, we simply bound
|cQ− cQj | ≤ t0 with the obvious consequences over the �nal estimate. From here, the
proof follows the same steps as in Theorem 5.5 to obtain

‖f‖BMO ≤ cn,ϕ‖f‖BMOϕ ≤ cn,ψ‖f‖BMOψ .

5.4 Spaces of homogeneous type

The method of proof of Theorem 5.5 is �exible enough to also solve the same problem
in various di�erent settings. We will prove the same result in the context of spaces
of homogeneous type where the space (X, d, µ) is endowed with a quasi metric and a
doubling measure. Let us give the precise de�nition.

Definition 5.8 – Space of homogeneous type
A space of homogeneous type is a triplet (X, d, µ) consisting on a point set X, a quasi-
metric d, and a doubling measure µ. More precisely, d is a function d : X×X→ [0,∞)
such that

� d(x, y) = 0 if and only if x = y;

� d(x, y) = d(y, x) for all x, y ∈ X;

� d(x, z) ≤ κ
(
d(x, y) + d(y, z)

)
for all x, y, z ∈ X.

The constant κ is called the quasi-metric constant of X. Moreover, we assume that the
open balls with respect to d are measurable and that there exists a constant, cµ > 0,
which we call the doubling constant of µ such that

µ
(
B(x, 2r)

)
≤ cµ µ

(
B(x, r)

)
, (5.9)

for all x ∈ X and all r > 0.

Even if d is a quasi-metric and not a metric, we can de�ne balls of center x ∈ X
and radius r > 0 as

B(x, r) = {y ∈ X : d(x, y) < r}.

By [92], we may assume that these balls are measurable, since we can de�ne an
equivalent quasi-norm for which they actually are measurable. Thus, De�nition 5.8 is
coherent.
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Let c is the smallest constant for which (5.9) holds. The number D = log2 c is
usually called the doubling order of µ. Then by iterating, we have

µ(B)

µ(P )
≤ cµ,κ

(
r(B)

r(P )

)D
, (5.10)

for every pair P,B of balls such that P ⊂ B.
Let us now de�ne the BMO and BMOϕ spaces in spaces of homogeneous type.

Definition 5.9
For a function ϕ we de�ne the ‖f‖BMOϕ(X) and the corresponding class as:

‖f‖BMOϕ(X) := sup
B

inf
c∈R

inf

{
λ > 0 : −

∫
B
ϕ
( |f(x)− c|

λ

)
dµ(x) ≤ 1

}
,

where the supremum is taken over all balls B ⊂ X. We also de�ne BMO(X) with the
quantity

‖f‖BMO(X) = sup
B

inf
c
−
∫
B
|f − c|dµ.

Theorem 5.10
Let ϕ satisfy the same condition as in Theorem 5.5. Then BMO(X) = BMOϕ(X) and

ϕ−1(1) ‖f‖BMOϕ(X) ≤ ‖f‖BMO(X) ≤ cϕ,µ ‖f‖BMOϕ(X).

The proof of this theorem requires an adapted version of the classical Calderón�
Zygmund decomposition theorem and some other covering lemmas that we will develop
accordingly.

In view of Lemma 1.2, we de�ne, for a ball B, the dilation

B∗ = κ(4κ+ 1)B.

We also �x the following notation for dilations. Fix γ > κ and we set

B̃ := γ B.

This is needed because when doing the Vitali covering, dilating the balls may result in
going outside the original ball B, but the following lemma guaranties that the dilated
balls stay inside of B̃. For a ball B we denote by xB and r(B) the center and radius
of B respectively.

Lemma 5.11
Let B be a ball and let ε > 0. There exists L > 1 big enough so that if P is another
ball with center in B and satisfying

µ(P ) ≤ µ(B̃)

L
,

then r(P ) ≤ εr(B). If ε is small enough, this also implies P ∗ ⊂ B̃.
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Proof. By contradiction, suppose that there exists some α > 1 such that r(P ) ≥ αr(B)
with α independent from L. This implies B̃ ⊂ κ(γ + 1) 1

αP . Indeed, for y ∈ B̃,

d(y, xP ) ≤ κ
(
d(y, xB) + d(xB, xP )

)
≤ κ

(
γr(B) + r(B)

)
≤ κ(γ + 1)

1

α
r(P ).

This bound on the radii will imply a bound on the measures. Indeed, by (5.10),

µ(B̃) ≤ µ
((γ + 1)κ

α
P
)
≤ cµ,κ

((γ + 1)κ

α

)D
µ(P )

≤ cµ,κ
L

((γ + 1)κ

α

)D
µ(B̃).

This implies that cµ,κ

(
(γ+1)κ
α

)D
≥ L which is not possible for L big enough.

Now we prove the last statement. We set y ∈ P ∗ and we want to see y ∈ γB = B̃.
Indeed,

d(y, cB) ≤ κ
(
d(y, cP ) + d(cP , cB)

)
≤ κ

(
κ(4κ+ 1)εr(B) + r(B)

)
≤ κ

(
κ(4κ+ 1)ε+ 1)r(B).

Now, since γ > κ, there exists ε > 0 small enough such that

κ
(
κ(4κ+ 1)ε+ 1) ≤ γ.

Thus, y ∈ B̃ and we are done.

Proof of Theorem 5.10. Assume that ‖f‖BMOϕ(X) = 1. Set for a ball P a constant cP
such that

−
∫
P
ϕ(|f(x)− cP |)dx ≤ 2.

We are going to set X in a slightly di�erent way from before, namely

X = sup
P
−
∫
P
|f(x)− cP̃ |dx.

Notice that the ball of the integral and the one inside are related but not the same.
Nevertheless, it is clear that ‖f‖BMO ≤ X. As in the proof of Theorem 5.5, the
hypothesis X < ∞ will be needed. This can be obtained via a truncation argument
as in that proof, but we omit it for the sake of clarity. Thus, we may assume that
X <∞.

Now let us begin with the actual proof. Fix a ball B and L > 1 to be precised
later. We make a decomposition in balls of the function ϕ(|f − cB̃|) in the spirit of
Calderón�Zygmund and using the Vitali covering. By that, we mean the following
process.

We are going to make a covering by balls of the set

ΩL = {x ∈ B : ϕ(|f(x)− cB̃|) > L}.
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By the Lebesge di�erentiation theorem, for any x ∈ ΩL, there exists a ball Bx centered
at x and contained in B̃ and such that

−
∫
Bx

ϕ(|f(y)− cB̃|)dµ(y) > L. (5.11)

Moreover, we can choose this Bx to be maximal with respect to the radius. That is,
any other ball B′x ⊂ B̃ satisfying (5.11) must also satisfy r(B′x) ≤ 2r(Bx). This can
be done since all balls contained in B̃ have bounded radius.

Now we have a family B = {Bx}x and we apply the Vitali Lemma 1.2 to get a
�maximal" subfamily B′ = {Bj}. If L is big enough, we can apply Lemma 5.11 and
this ensures that B∗j ⊂ B̃ and, by the maximality of the radius of each of the Bj , since
r(B∗j ) ≥ 2r(Bj),

−
∫
B∗j

ϕ(|f(y)− cB̃|)dµ(y) ≤ L.

Moreover, we have the estimate∑
j

µ(Bj) ≤
1

L

∑
j

∫
Bj

ϕ(|f(x)− cB̃|)dx

≤ 1

L

∫
B̃
ϕ(|f(x)− cB̃|)dx

≤ 2

L
µ(B̃) ≤ CX

L
µ(B),

where CX denotes a constant depending on the doubling property of µ.
Let us summarize all the properties of the family {Bj}:

� The balls Bj are pairwise disjoint and all contained in B̃.

� ΩL ⊂ ∪jB∗j

� The balls B∗j are contained in B̃ and −
∫
B∗j

ϕ(|f(x)− cB̃|)dx ≤ L.

�
∑

j µ(B∗j ) ≤ CX
∑

j µ(Bj) ≤ CX
L µ(B).

Now we begin to estimate −
∫
|f(x)− cB̃|dx.

−
∫
B
|f(x)− cB̃|dµ(x) ≤ 1

µ(B)

∫
(ΩL)c

|f(x)− cB̃|dµ(x) +
1

µ(B)

∫
ΩL

|f(x)− cB̃|dx

≤ ϕ−1(L) +
1

µ(B)

∑
j

∫
B∗j

|f(y)− cB̃|dµ(y)

≤ ϕ−1(L) +
1

µ(B)

∑
j

∫
B∗j

(
|f(y)− c

B̃∗j
|+ |cB̃ − cB̃∗j |

)
dµ(y)

= (∗).

We now estimate |cB̃ − cB̃∗j |:

|cB̃ − cB̃∗j | = ϕ−1
(
−
∫
B∗j

ϕ(|cB̃ − cB̃∗j |)dµ(y)
)
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≤ ϕ−1
(
−
∫
B∗j

ϕ(|f(y)− cB̃|)dµ(y) +−
∫
B∗j

ϕ(|f(y)− c
B̃∗j
|)dµ(y)

)
≤ ϕ−1

(
L+ CX−

∫
B̃∗j

ϕ(|f(y)− c
B̃∗j
|)dµ(y)

)
≤ ϕ−1

(
L+ 2CX

)
.

And therefore,

(∗) ≤ ϕ−1(L) +
1

µ(B)

∑
j

∫
B∗j

(
|f(y)− c

B̃∗j
|+ ϕ−1

(
L+ 2CX

))
dµ(y)

≤ ϕ−1(L) +
∑
j

µ(B∗j )

µ(B)
−
∫
B∗j

(
|f(y)− c

B̃∗j
|+ ϕ−1

(
L+ 2CX

))
dµ(y)

≤ ϕ−1(L) + CX
∑
j

µ(Bj)

µ(B)

(
−
∫
B∗j

|f(y)− c
B̃∗j
|dµ(y) + ϕ−1

(
L+ 2CX

))
≤ ϕ−1(L) + CX

X

L
+
CX
L
ϕ−1(L+ 2CX)

≤ CL,X,ϕ + CX
X

L
.

In order to �nish, we take the supremum on the left, choose L big enough and argue
as in the euclidean case.

5.5 Non-doubling measures in Rn

We will also study the problem in Rn endowed with a quite general non doubling
measure µ. The usual requirement is to ask for the measure to be non atomic. In
that case, it is known that there is an orthogonal system of coordinates such that
µ(∂(Q)) = 0 for any cube Q with sides parallel to the axes from that coordinate
system, which is assumed to be the canonical one (see [95]). We mention, as an
example of such measures, that a very natural choice satisfying these conditions is the
class of measures with polynomial growth, meaning that there exists a constant C > 0
and a positive number α such that

µ(B(x, r)) ≤ Crα x ∈ supp(µ). (5.12)

The natural de�nitions of BMO and BMOϕ in this context are the following. We
will say that f ∈ BMO(µ) if

‖f‖BMO(µ) := sup
Q
−
∫
Q
|f − fQ| dµ <∞,

and f ∈ BMOϕ(µ) if

‖f‖BMOϕ(µ) := sup
Q

inf
c∈R

inf

{
λ > 0 :

1

µ(Q)

∫
Q
ϕ

(
|f − c|
λ

)
dµ ≤ 1

}
<∞.
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Theorem 5.12
Let ϕ be as in Theorem 5.5. Then, for any non-atomic measure µ, we have that
BMO(µ) = BMOϕ(µ) and

ϕ−1(1) ‖f‖BMOϕ(µ) ≤ ‖f‖BMO(µ) ≤ cϕ,n ‖f‖BMOϕ(µ).

The proof of the above theorem relies on a variation of the standard Calderón�
Zygmund decomposition and Besicovitch's covering theorem that we borrow from
[104]. The precise statement is in Lemma 5.13.

So far, we can see (and it will become clear in the actual proof) that the heart of the
matter is to have the correct version of a Calderón�Zygmund decomposition adapted
to the problem that we need to solve, taking into account the geometric features of
the space (like in the case of spaces of homogeneous type) or the nondoubling nature
of the measure (like in Theorem 5.12).

The rest of this section is dedicated to proving Theorem 5.12. Let's consider
a nondoubling measure satisfying the growth condition (5.12). Therefore, it is non
atomic and by [95, Theorem 2] we can choose a coordinate system such that µ(∂Q) = 0
for every cube Q de�ned over that system.

We will present the proof for n = 1 separately, since the situation there is much
easier than in higher dimensions. The heart of our main argument is the Calderón�
Zygmund decomposition. Here, in the nondoubling setting, we will abandon the metric
to split the cubes and use the measure instead. We will construct a µ-dyadic grid of
subintervals such that every interval I is divided into two subintervals each one of half
of the measure of I. We sketch here the construction.

The �rst generation G1(I) of the dyadic grid consists of the two disjoint subinter-
vals I+, I− of I satisfying µ(I+) = µ(I−) = µ(I)/2 (note that this partition may be
non unique, in that case we choose the one that maximizes the length of I−, just to
�x a criterion) The next generation is G2(I) is G1(I+) ∪ G1(I−) and then the con-
struction procedure continues recursively. Recall that the measure is non atomic, so
we can take closed intervals sharing the endpoints. We denote by DµI the family of
all the dyadic intervals resulting from this procedure. A sequence of nested intervals
in this grid will be called a chain. That is, a chain C will be of the form C = {Ji}i∈N
such that Ji ∈ Gi(I), and Ji+1 ⊂ Ji for all i ≥ 1.

We can de�ne C∞ :=
⋂
J∈C J as the limit set of the chain C. Then, we have that

C∞ could be either a single point or a closed interval of positive length. In any case,
we clearly have that µ(C∞) = 0. We need to get rid of those limit sets C∞ of positive
length, so we call them removable. The argument here is that in the real line there are
at most countable many of them and the whole union is also a µ-null set. We denote
by R the set of all chains with removable limits. If we de�ne

E := I \
⋃
C∈R
C∞,

we conclude that µ(I) = µ(E) and, in addition, for any x ∈ E, there exists a chain of
nested intervals shrinking to x. Therefore the grid DµI forms a di�erential basis on E.
Also, the dyadic structure of the basis guarantees the Vitali covering property (see
[48, Ch.1]) and therefore this basis di�erentiates L1(E).

Associated to this grid we de�ne a dyadic maximal operator as follows. For any
x ∈ E,

MD
µ
I f(x) = sup

J∈DµI
−
∫
J
|f(y)| dµ(y),
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By a standard di�erentiation argument, we have that this maximal function satis�es
that f ≤MD

µ
I f , almost everywhere on E.

Now we can proceed with the proof of the 1 dimensional case of Theorem 5.12.
Let us �x a function f ∈ BMOϕ(µ) with norm one, and let us �x an interval I. As
before, we can �nd a constant cI such that

−
∫
I
ϕ(|f(y)− cI |) dµ(y) ≤ 2.

We de�ne again the corresponding X as

X = sup
I interval

−
∫
I
|f(x)− cI | dµ(x).

As in the euclidean setting, a truncation argument allows us to assume X <∞. Using
our µ-dyadic construction, we can perform a Calderón�Zygmund decomposition of
ϕ(|f − cI |) adapted to I at height L > 2. We then obtain a family {Ij} of dyadic
subintervals of I satisfying

� L < −
∫
Ij

ϕ(|f(x)− cI |)dµ(x) ≤ 2L,

� ϕ(|f(x)− cI |) ≤ L for µ-almost every x ∈ I \
⋃
j

Ij .

�
1

µ(I)

∑
j

µ(Ij) ≤
2

L
.

Once we have this crucial decomposition, we can develop the same proof as in the
case of the Lebesgue measure. On a �xed maximal interval Ij , we write again

|f(x)− cI | ≤ |f(x)− cIj |+ |cI − cIj |,

where cIj is a constant so that −
∫
Ij
ϕ(|f − cIj |) ≤ 2. We obtain

|cI − cIj | ≤ ϕ−1
(
2L+ 2

)
Following the same line of ideas, we can control the averges to estimate the BMOµ
norm

−
∫
I
|f(x)− cI |dµ(x) ≤ ϕ−1

(
L) +

1

µ(I)

∑
j

µ(Ij)
(
−
∫
Ij

|f(x)− cIj |dµ(x) + |cI − cIj |
)

≤ ϕ−1
(
L) +

1

µ(I)

∑
j

µ(Ij)
(
X + ϕ−1

(
2L+ 2

))
≤ ϕ−1

(
L) +

2

L
X +

2

L
ϕ−1

(
2L+ 2

)
Finally, taking the supremum over all intervals on the left hand side and choosing
L = 4 we obtain

X ≤ 2ϕ−1
(
4) + ϕ−1

(
10
)
,

which �nishes the proof.
Now we present the proof for n > 1. Again, the key step is to construct an

adequate Calderón�Zygmund decomposition with dyadic structure. The ideal tool
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can be found in the work from [104] and consists in the following combination of the
Calderón�Zygmund decomposition and Besicovitch's covering theorem. We include
here the statement of that lemma.

Lemma 5.13 – Besicovitch–Calderón–Zygmund decomposition
Let Q be a cube and let g ∈ L1

µ(Q) be a nonnegative function. Also let L be a positive
number such that −

∫
Q g(x) dµ(x) < L. Then there is a family of quasidisjoint cubes

{Qj} contained in Q satisfying

1

µ (Qj)

∫
Qj

gdµ = L

for each j and such that

g(x) ≤ L for µ-almost every x ∈ Q \
⋃
j

Qj .

More precisely, we can write

⋃
Qj =

B(n)⋃
k=1

⋃
Qj∈Fk

Qj ,

where each Fk is a family of disjoint cubes selected from the original collection. The
number B(n) is a geometric constant depending only on the dimension n known as
the Besicovitch constant.

We can now provide the proof for Theorem 5.12 in the remaining cases n > 1.
Let's start again with a function f such that ‖f‖BMOϕ(µ) = 1 and �x a cube Q and
the corresponding cQ ∈ R giving us the initial estimate

−
∫
Q
ϕ(|f(x)− cQ|) dµ(x) ≤ 2.

We de�ne again the corresponding X as

X = sup
Q cube

−
∫
Q
|f(x)− cQ| dµ(x).

Applying Lemma 5.13 with L > 2, we obtain a quite similar collection of cubes as
in the previous case. Precisely, we obtain the family of cuasidisjoint cubes {Qj}
satisfying

� −
∫
Qj

ϕ(|f(x)− cQ|)dx = L,

� ϕ(|f(x)− cQ|) ≤ L a.e. x ∈ Q \
⋃
j

Qj ,

and a minor di�erence in the next property:

�
1

µ(Q)

∑
j

µ(Qj) ≤
B(n)

L
.
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Once we have this crucial decomposition, we can develop the same proof as in the
standard situation (choosing the number cQj according to the same criterion) to obtain

−
∫
I
|f(x)− cQ|dx ≤ ϕ−1

(
L) +

1

µ(Q)

∑
j

µ(Qj)
(
−
∫
Qj

|f(x)− cQj |dx+ |cQ − cQj |
)

≤ ϕ−1
(
L) +

1

µ(Q)

∑
j

µ(Qj)
(
X + ϕ−1

(
2L+ 2

))
≤ ϕ−1

(
L) +

B(n)

L
X +

B(n)

L
ϕ−1

(
2L+ 2

)
Finally, taking the supremum over all cubes on the left hand side and choosing L =
2B(n) we obtain

X ≤ 2ϕ−1
(
2B(n)) + ϕ−1

(
4B(n) + 2),

which �nishes the proof. The assumption that X < ∞ can be done using the same
truncation argument as before.

5.6 Rectangles and non-doubling measures

For the basis of rectangles in Rn, the appropriate decomposition lemma is a very clever
argument proven by Korenovskyy, Lerner and Stokolos in [75] known as a generalized
version of Riesz's Rising sun lemma. Using that lemma we can provide a proof that
extends, in some sense, Theorem 5.5 and Theorem 5.12 at the same time: we can
prove the analogue result for basis of rectangles and with non doubling measures.

To present the result, we need to de�ne here the �little" bmo(µ) space in the same
way of the usual BMO(µ) but with rectangles instead of cubes. We refer the reader
to the recent article [53] for several results on this space.

Definition 5.14
Let ϕ be an increasing function with ϕ(0) = 0 and let µ be a Radon measure. We
denote by bmoϕ(µ), little BMOϕ(µ) the class of functions f satisfying

‖f‖bmoϕ(µ) := sup
R

inf
c
‖f − c‖ϕ,R,µ <∞,

where the supremum is taken over all rectangles with sides parallel to the coordinate
axes and the local averages are de�ned as in (5.2) but with respect to the measure µ,
that is,

‖f‖ϕ,R,µ := inf

{
λ > 0 :

1

|R|

∫
R
ϕ

(
|f(x)|
λ

)
dµ(x) ≤ 1

}
.

Theorem 5.15
Let ϕ be as in Theorem 5.5. Then, for any non-atomic measure µ, we have that
bmo(µ) = bmoϕ(µ) and

ϕ−1(1) ‖f‖bmoϕ(µ) ≤ ‖f‖bmo(µ) ≤ cϕ,n ‖f‖bmoϕ(µ).

At this point, the only important thing is to show that we do have an appropriate
decomposition lemma. We include here the statement of the aforementioned Rising
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sun lemma.

Lemma 5.16 – Riesz’s Rising Sun
Let R be a rectangle in Rn and let µ be a measure such that µ(∂P ) = 0 for any
rectangle P (for example, a measure satisfying (5.12) or, more generally, any non-
atomic measure). Let h be a real function in L1

µ(R) and let λ > hR. There exist an
at most countable family of pairwise disjoint rectangles Rj ⊂ R such that hRj = λ
and h(x) ≤ λ for almost every x ∈ R \

⋃
j Rj .

Moreover, the total mass of the selected cubes cannot be too big, meaning that if
h ≥ 0, ∑

j

µ(Rj) =
∑
j

1

λ

∫
Rj

h(x) dµ(x) ≤ µ(R)

λ
−
∫
R
h(x) dµ(x).

Equipped with this lemma, the rest of the proof of Theorem 5.15 follows the exact
same steps as in Theorem 5.5. The relevant quantity is of course

X = sup
R rectangle

−
∫
R
|f(x)− cR| dµ(x), (5.13)

where cR is a constant such that

−
∫
R
ϕ(f(x)− cR)dµ(x) ≤ 2.

Note that Lemma 5.16 is particularly well adapted to the setting of rectangles (and
not useful for cubes) since the decomposition is always into rectangles, even if we start
with a cube (see the discussion in [75]). Then, when intercalating the average of the
form

−
∫
Rj

|f(x)− cRj | dµ(x).

from the decomposition, we can control it by using our X de�ned in (5.13), so the
proof of Theorem 5.15 can be obtained following the same line of ideas.

5.6. Rectangles and non-doubling measures 119





6

Hajłasz capacity density condition

In this chapter, we discuss and expand on the results that were obtained in

[16] Canto, J., Vähäkangas, A.V., Hajªasz capacity density condition is self-
improving, arXiv:2108.09077v1.

That work was done during the short-stay of my PhD in University of Jyväskylä
that, due to the COVID-19 pandemic had to be done online. I want to explicitly
thank Antti Vähäkangas again for all the hard work that he did in order to make the
online stay as welcoming and productive as it turned out to be.

Since the work that is treated in this chapter was done in the framework of the
research visit, its relation to the rest of the thesis is not straightforward. The collabora-
tion started by trying to prove self-improvement of some fractional Hardy inequalities
in metric spaces, and due to the unpredictable nature of math, we ended up with the
concepts that eventually �nd their place in this Chapter.

The results in this chapter are based on quantitative estimates and absorption
arguments, where it is often crucial to track the dependencies of constants quantita-
tively. For this purpose, we will use the following notational convention: C(∗, · · · , ∗)
denotes a positive constant which quantitatively depends on the quantities indicated
by the ∗'s but whose actual value can change from one occurrence to another, even
within a single line. We remark that, in this chapter, there is no possible confusion
with the weights of class Cp as there might have been in Chapters 2 and 3.



6.1 Introduction

In this chapter, we introduce a Hajªasz (β, p)-capacity density condition in terms of
Hajªasz gradients of order 0 < β ≤ 1, see Sections 6.3 and 6.4. The main result,
Theorem 6.39, states that this condition is doubly open-ended, that is, a Hajªasz
(β, p)-capacity density condition is self-improving both in p and in β if X is a complete
geodesic space. This result is new, since previously there was no self-improvement of
similar non-local capacity density conditions in metric spaces.

The study of such conditions can be traced back to the seminal work by Lewis [88],
who established self-improvement of Riesz (β, p)-capacity density conditions in Rn.
His result has been followed by other works incorporating di�erent techniques often in
metric spaces, like nonlinear potential theory [6, 98], and local Hardy inequalities [81].

A distinctive feature of our result is that we prove the self-improvement of a
capacity density condition for a non-local gradient for the �rst time in metric spaces.
We make use of a recent advance [74] in Poincaré inequalities, whose self-improvement
properties were originally shown by Keith�Zhong in their celebrated work [71]. In
this respect, we join the line of research initiated in [76], and continued in [33, 34],
for bringing together the seemingly distinct self-improvement properties of capacity
density conditions and Poincaré inequalities.

We use various techniques and concepts in the proof of Theorem 6.39. The fun-
damental idea is to use a geometric concept, more precisely the upper Assouad codi-
mension, and characterize the capacity density with a strict upper bound on this
codimension. Here we are motivated by the recent approach from [32], where the
Assouad codimension bound is used to give necessary and su�cient conditions for
certain fractional Hardy inequalities; we also refer to [80]. The principal di�culty is
to prove a strict bound on the codimension. To this end we relate the capacity den-
sity condition to boundary Poincaré inequalities, and we show their self-improvement
roughly speaking in two steps: (1) Keith�Zhong estimates on maximal functions and
(2) Koskela�Zhong estimates on Hardy inequalities. For these purposes, respectively,
we adapt the maximal function methods from [74] and the local Hardy arguments
from [81].

One of the main challenges our method is able to overcome is the nonlocal nature
of Hajªasz gradients [44]. More speci�cally, if a function u is constant in a set A ⊂ X
and g is a Hajªasz gradient of u, then gχ

X\A
is not necessarily a Hajªasz gradient of

u. This fact makes it impossible to directly use the standard localization techniques.
More speci�cally, there is no access to neither pointwise glueing lemma nor pointwise
Leibniz rule, both of which are used while proving similar self-improvement properties
for capacity density conditions involving p-weak upper gradients, for example, by the
Wannebo approach [114] that was used in [81] to show corresponding local Hardy
inequalities. The Hajªasz gradients satisfy nonlocal versions of these basic tools, both
of which we employ in our method.

There is a clear advantage to working with Hajªasz gradients: Poincaré inequali-
ties hold for all measures, see Section 6.3. Other types of gradients, such as p-weak
upper gradients [4], do not have this property and therefore corresponding Poincaré
inequalities need to be assumed a priori, as was the case in previous works such as
[6, 33, 34, 81, 98]. We remark that this requirement already excludes many doubling
measures in R equipped with Euclidean distance [5]. Our method has also a disad-
vantage. We need to assume that X is a complete geodesic space. We do not know
how far this condition could be relaxed.

The outline of this Chapter is as follows. After a brief discussion on notation
and preliminary concepts in Section 6.2, Hajªasz gradients are introduced in Section

122 Chapter 6. Hajªasz capacity density condition



6.3 along with their calculus and various Poincaré inequalities. Capacity density
condition is discussed in Section 6.4, and some preliminary su�cient and necessary
bounds on the Assouad codimension are given in Section 6.5. The most technical part
of the work is contained in Sections 6.6, 6.7 and 6.8, in which the analytic framework
of the self-improvement is gradually developed. Finally, the main result is given in
Section 6.9, in which we show that various geometrical and analytical conditions are
equivalent to the capacity density condition. The geometrical conditions are open-
ended by de�nition, and hence all analytical conditions are seen to be self-improving
or doubly open-ended.

6.2 Notation

Let us introduce some concepts that we will need in order to state the main concepts

6.2.1 Metric spaces

Throughout this chapter, unless otherwise speci�ed, we are going to work with a
metric measure space X = (X, d, µ), that is, a point-set X equipped with a metric d
and a positive complete Borel measure µ such that 0 < µ(B) <∞ for all balls B ⊂ X,
each of which is always an open set of the form

B = B(x, r) = {y ∈ X : d(y, x) < r}

with x ∈ X and r > 0. As in [4, p. 2], we extend µ as a Borel regular (outer) measure
on X. We remark that the space X is separable under these assumptions, see [4,
Proposition 1.6]. We also assume that #X ≥ 2 and that the measure µ is doubling,
that is, there is a constant cµ > 1, called the doubling constant of µ, such that

µ(2B) ≤ cµ µ(B) (6.1)

for all balls B = B(x, r) in X. Here we use for 0 < t <∞ the notation tB = B(x, tr).
In particular, for all balls B = B(x, r) that are centered at x ∈ A ⊂ X with radius
r ≤ diam(A), we have that

µ(B)

µ(A)
≥ 2−s

(
r

diam(A)

)s
, (6.2)

where s = log2 cµ > 0. We refer to [54, p. 31].
The closure of a set A ⊂ X is denoted by A. In particular, if B ⊂ X is a ball,

then the notation B refers to the closure of the ball B. We remark that the closure
of an open ball may not be the same set as the closed ball with the same center and
radius.

Remark 6.1 Although the setting is similar to that of spaces of homogeneous type that we
discussed in Section 5.4, we remark that it is not quite the same, since in this case,
the result of Macías�Segovia [92] that ensures the measurability of balls is no longer
available.
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6.2.2 Geodesic spaces

For some of the results we actually need more structure in the ambient space than
just metric structure. That is why we introduce geodesic spaces.

Let X be a metric space satisfying the conditions stated in Section 6.2.1. By a
curve we mean a nonconstant, recti�able, continuous mapping from a compact interval
of R to X; we tacitly assume that all curves are parametrized by their arc-length. We
say that X is a geodesic space, if every pair of points in X can be joined by a curve
whose length is equal to the distance between the two points. In particular, it easily
follows that

0 < diam(2B) ≤ 4 diam(B) (6.3)

for all balls B = B(x, r) in a geodesic space X. The measure µ is reverse doubling in
a geodesic space X, in the sense that there is a constant 0 < cR = C(cµ) < 1 such
that

µ(B(x, r/2)) ≤ cR µ(B(x, r)) (6.4)

for every x ∈ X and 0 < r < diam(X)/2. See for instance [4, Lemma 3.7].
We now borrow two lemmas that will be useful to us in the sequel. The �rst lemma

concerns continuity on the radius of the measure of balls for a �xed measurable set,
whereas the second lemma ensures that the restriction of the measure (and therefore
the corresponding σ-algebra) to a ball still gives a doubling measure, in geodesic
spaces.

Lemma 6.2 – Lemma 12.1.2, [56]
Suppose that X is a geodesic space and A ⊂ X is a measurable set. Then the function

r 7→ µ(B(x, r) ∩A)

µ(B(x, r))
: (0,∞)→ R

is continuous whenever x ∈ X.

Lemma 6.3 – Lemma 2.5, [74]
Suppose that B = B(x, r) and B′ = B(x′, r′) are two balls in a geodesic space X such
that x′ ∈ B and 0 < r′ ≤ diam(B). Then µ(B′) ≤ c3

µµ(B′ ∩B).

Proof. It su�ces to �nd y ∈ X such that B(y, r′/4) ⊂ B′ ∩ B. Inequality µ(B′) ≤
c3
µµ(B′ ∩ B) then follows from the doubling condition (6.1) and the fact that B′ ⊂
B(y, 2r′).

Assume �rst that x ∈ B(x′, r′/4). In this case we may choose y = x′, since we
have for all z ∈ B(x′, r′/4) that

d(z, x) ≤ d(z, x′) + d(x′, x) < r′/4 + r′/4 = r′/2 ≤ diam(B)/2 ≤ r ,

and hence B(x′, r′/4) ⊂ B′ ∩B(x, r) = B′ ∩B.
Let us then consider the case x 6∈ B(x′, r′/4). Since X is a geodesic space, there

exists an arc-length parametrized curve γ : [0, `] → X with γ(0) = x′, γ(`) = x and
` = d(x, x′). We claim that y = γ(r′/4) satis�es the required condition B(y, r′/4) ⊂
B′ ∩B. In order to prove the claim, let us �x a point z ∈ B(y, r′/4). Then

d(z, x′) ≤ d(z, y) + d(y, x′) < r′/4 + d(γ(r′/4), γ(0)) ≤ r′/2 < r′ .
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Hence z ∈ B(x′, r′) and therefore B(y, r′/4) ⊂ B(x′, r′) = B′. Moreover, since ` =
d(x, x′),

d(z, x) ≤ d(z, y) + d(y, x) < r′/4 + d(γ(r′/4), γ(`))

≤ r′/4 + (`− r′/4) = ` = d(x, x′) < r .

It follows that z ∈ B(x, r) = B and therefore B(y, r′/4) ⊂ B′ ∩B.

6.2.3 Hölder and Lipschitz functions

Let A ⊂ X. We say that u : A→ R is a β-Hölder function, with an exponent 0 < β ≤ 1
and a constant 0 ≤ κ <∞, if

|u(x)− u(y)| ≤ κ d(x, y)β for all x, y ∈ A .

If u : A → R is a β-Hölder function, with a constant κ, then the classical McShane
extension

v(x) = inf{u(y) + κ d(x, y)β : y ∈ A} , x ∈ X , (6.5)

de�nes a β-Hölder function v : X → R, with the constant κ, which satis�es v|A = u;
we refer to [54, pp. 43�44]. The set of all β-Hölder functions u : A→ R is denoted by
Lipβ(A). The 1-Hölder functions are also called Lipschitz functions.

6.3 Hajłasz gradients

We work with Hajªasz β-gradients of order 0 < β ≤ 1 in a metric space X.

Definition 6.4
For each function u : X → R, we let DβH(u) be the (possibly empty) family of all
measurable functions g : X → [0,∞] such that

|u(x)− u(y)| ≤ d(x, y)β
(
g(x) + g(y)

)
(6.6)

almost everywhere, i.e., there exists an exceptional set N = N(g) ⊂ X for which

µ(N) = 0 and inequality (6.6) holds for every x, y ∈ X \N . A function g ∈ DβH(u) is
called a Hajªasz β-gradient of the function u.

The Hajªasz 1-gradients in metric spaces are introduced in [49]. More details on
these gradients and their applications can be found, for instance, from [43, 44, 50,
111, 118].

Proposition 6.5
The following basic properties are easy to verify for all β-Hölder functions u, v : X → R

(D1) |a|g ∈ DβH(au) if a ∈ R and g ∈ DβH(u);

(D2) gu + gv ∈ DβH(u+ v) if gu ∈ DβH(u) and gv ∈ DβH(v);

(D3) If f : R → R is a Lipschitz function with constant κ, then κg ∈ DβH(f ◦ u) if

g ∈ DβH(u).
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There are both disadvantages and advantages to working with Hajªasz gradients.
A technical disadvantage is their nonlocality [44]. For instance, if u is constant on

some set A ⊂ X and g ∈ DβH(u), then gχ
X\A

need not belong to DβH(u). This is a

technical disadvantage while comparing Hajªasz gradients to weak upper gradients,
since by glueing lemma, see for instance [4, Lemma 2.19], the corresponding local-
ization property holds. This makes the application of p-weak upper gradients more
�exible. However, the following nonlocal glueing lemma from [74, Lemma 6.6] holds
in the setting of Hajªasz gradients. We recall the proof for convenience.

Lemma 6.6
Let 0 < β ≤ 1 and let A ⊂ X be a Borel set. Let u : X → R be a β-Hölder function
and suppose that v : X → R is such that v|X\A = u|X\A and there exists a constant

κ ≥ 0 such that |v(x)− v(y)| ≤ κ d(x, y)β for all x, y ∈ X. Then

gv = κχ
A

+ guχ
X\A
∈ DβH(v)

whenever gu ∈ DβH(u).

Proof. Fix a function gu ∈ DβH(u) and let N ⊂ X be the exceptional set such that
µ(N) = 0 and inequality (6.6) holds for every x, y ∈ X \N and with g = gu.

Fix x, y ∈ X \N . If x, y ∈ X \A, then

|v(x)− v(y)| = |u(x)− u(y)| ≤ d(x, y)β
(
gu(x) + gu(y)

)
= d(x, y)β

(
gv(x) + gv(y)

)
.

If x ∈ A or y ∈ A, then

|v(x)− v(y)| ≤ κ d(x, y)β ≤ d(x, y)β
(
gv(x) + gv(y)

)
.

By combining the estimates above, we �nd that

|v(x)− v(y)| ≤ d(x, y)β
(
gv(x) + gv(y)

)
whenever x, y ∈ X \N . The desired conclusion gv ∈ DβH(v) follows.

The following nonlocal generalization of the Leibniz rule is from [50]. The proof
is recalled for the convenience of the reader. The nonlocality is re�ected by the
appearence of the two global terms ‖ψ‖∞ and κ in the statement below.

Lemma 6.7
Let 0 < β ≤ 1, let u : X → R be a bounded β-Hölder function, and let ψ : X → R be
a bounded β-Hölder function with a constant κ ≥ 0. Then uψ : X → R is a β-Hölder
function and

(gu‖ψ‖∞+κ|u|)χ
{ψ 6=0}

∈ DβH(uψ)

for all gu ∈ DβH(u). Here {ψ 6= 0} = {y ∈ X : ψ(y) 6= 0}.

Proof. Fix x, y ∈ X. Then

|u(x)ψ(x)− u(y)ψ(y)| = |u(x)ψ(x)− u(y)ψ(x) + u(y)ψ(x)− u(y)ψ(y)|
≤ |ψ(x)||u(x)− u(y)|+ |u(y)||ψ(x)− ψ(y)| .

(6.7)

126 Chapter 6. Hajªasz capacity density condition



Since u and ψ are both bounded β-Hölder functions inX, it follows that uψ is β-Hölder
in X.

Fix a function gu ∈ DβH(u) and let N ⊂ X be the exceptional set such that
µ(N) = 0 and inequality (6.6) holds for every x, y ∈ X \N and with g = gu. Denote
h = (gu‖ψ‖∞+κ|u|)χ

{ψ 6=0}
. Let x, y ∈ X \N . It su�ces to show that

|u(x)ψ(x)− u(y)ψ(y)| ≤ d(x, y)β(h(x) + h(y)) .

By (6.7), we get

|u(x)ψ(x)− u(y)ψ(y)| ≤ |ψ(x)|d(x, y)β(gu(x) + gu(y)) + |u(y)|κd(x, y)β

= d(x, y)β (|ψ(x)|(gu(x) + gu(y)) + κ|u(y)|) .
(6.8)

Next we do a case study. If x, y ∈ {ψ 6= 0}, then by (6.8) we have

|u(x)ψ(x)− u(y)ψ(y)| ≤ d(x, y)β
(
gu(x)‖ψ‖∞χ{ψ 6=0}

(x)

+ (gu(y)‖ψ‖∞ + κ|u(y)|)χ
{ψ 6=0}

(y)
)

≤ d(x, y)β(h(x) + h(y)) .

If x ∈ X \ {ψ 6= 0} and y ∈ {ψ 6= 0}, then

|u(x)ψ(x)− u(y)ψ(y)| ≤ d(x, y)β
(
κ|u(y)|χ

{ψ 6=0}
(y)
)

= d(x, y)βh(y) ≤ d(x, y)β(h(x) + h(y)) .

The case x ∈ {ψ 6= 0} and y ∈ X\{ψ 6= 0} is symmetric and the last case is trivial.

A signi�cant advantage of working with Hajªasz gradients is that Poincaré in-
equalities are always valid [43, 118]. The same is not true for the usual p-weak upper
gradients, in which case a Poincaré inequality often has to be assumed.

The following theorem gives a (β, p, p)-Poincaré inequality for any 1 ≤ p < ∞.
This inequality relates the Hajªasz gradient to the given measure.

Theorem 6.8
Suppose that X is a metric space. Fix exponents 1 ≤ p <∞ and 0 < β ≤ 1. Suppose
that u ∈ Lipβ(X) and that g ∈ DβH(u). Then(

−
∫
B
|u(x)− uB|p dµ(x)

)1/p

≤ 2 diam(B)β
(
−
∫
B
g(x)p dµ(x)

)1/p

holds whenever B ⊂ X is a ball.

Proof. We follow the proof of [54, Theorem 5.15]. Let N = N(g) ⊂ X be the excep-
tional set such that µ(N) = 0 and (6.6) holds for every x, y ∈ X \ N . By Hölder's
inequality

−
∫
B
|u(x)− uB|p dµ(x) ≤ −

∫
B\N
−
∫
B\N
|u(y)− u(x)|p dµ(y) dµ(x) .
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Applying (6.6), we obtain

−
∫
B\N
−
∫
B\N
|u(y)− u(x)|p dµ(y) dµ(x)

≤ −
∫
B\N
−
∫
B\N

d(x, y)βp (g(x) + g(y))p dµ(y) dµ(x)

≤ 2p−1 diam(B)βp−
∫
B\N
−
∫
B\N

(g(x)p + g(y)p) dµ(y) dµ(x)

≤ 2p diam(B)βp−
∫
B
g(x)p dµ(x) .

The claimed inequality follows by combining the above estimates.

In a geodesic space, even a stronger (β, p, q)-Poincaré inequality holds for some
q < p. In the context of p-weak upper gradients, this result corresponds to the deep
theorem of Keith and Zhong [71]. In our context the proof is simpler, since we have
(β, q, q)-Poincaré inequalities for all exponents 1 < q < p by Theorem 6.8. It remains
to argue that one of these inequalities self-improves to a (β, p, q)-Poincaré inequality
when q < p is su�ciently close to p.

Theorem 6.9
Suppose that X is a geodesic space. Fix exponents 1 < p < ∞ and 0 < β ≤ 1.
Suppose that u ∈ Lipβ(X) and that g ∈ DβH(u). Then there exists an exponent
1 < q < p and a constant C, both depending on cµ, p and β, such that(

−
∫
B
|u(x)− uB|p dµ(x)

)1/p

≤ C diam(B)β
(
−
∫
B
g(x)q dµ(x)

)1/q

holds whenever B ⊂ X is a ball.

Proof. Fix Q = Q(β, p, cµ) such that Q > max{log2 cµ, βp}. Since

lim
q→p

Qq/(Q− βq) = Qp/(Q− βp) > p ,

there exists 1 < q = q(β, p, cµ) < p such that p < Qq/(Q−βq) and βq < Q. Theorem
6.8 and Hölder's inequality implies that

−
∫
B
|u(x)− uB| dµ(x) ≤

(
−
∫
B
|u(x)− uB|q dµ(x)

)1/q

≤ 2 diam(B)β
(
−
∫
B
g(x)q dµ(x)

)1/q

whenever B ⊂ X is a ball. Now the claim follows from [74, Theorem 3.6], which is
based on the covering argument from [51]. We also refer to [42, Lemma 2.2].

6.4 Capacity density condition

In this section we de�ne the capacity density condition. This condition is based on the
following notion of variational capacity, and it is weaker than the well known measure
density condition. We also prove boundary Poincaré inequalities for sets satisfying a
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capacity density condition. This is done with the aid of so-called Maz′ya's inequality,
which provides an important link between Poincaré inequalities and capacities.

Definition 6.10
Let 1 ≤ p < ∞, 0 < β ≤ 1, and let Ω ⊂ X be an open set. The variational
(β, p)-capacity of a subset F ⊂ Ω with dist(F,X \ Ω) > 0 is

capβ,p(F,Ω) = inf
u

inf
g

∫
X
g(x)p dµ(x) ,

where the in�mums are taken over all β-Hölder functions u in X, with u ≥ 1 in F
and u = 0 in X \ Ω, and over all g ∈ DβH(u).

Remark 6.11 We may take the in�mum in De�nition 6.10 among all u satisfying addi-
tionally 0 ≤ u ≤ 1. This follows by considering the β-Hölder function function
v = max{0,min{u, 1}} since g ∈ DβH(v) by Property (D3) of Proposition 6.5.

Definition 6.12
A closed set E ⊂ X satis�es a (β, p)-capacity density condition, for 1 ≤ p < ∞ and
0 < β ≤ 1, if there exists a constant c0 > 0 such that

capβ,p(E ∩B(x, r), B(x, 2r)) ≥ c0r
−βpµ(B(x, r)) (6.9)

for all x ∈ E and all 0 < r < (1/8) diam(E).

Remark 6.13 The upper bound of r by a multiple of the diameter of the set responds to the
fact that we are somehow more concerned with what happens locally, that is, close to
the set. If such bound was not imposed, and if µ(X) =∞, no bounded set could ever
satisfy (6.9).

Example 6.14
We say that a closed set E ⊂ X satis�es a measure density condition, if there exists
a constant c1 such that

µ(E ∩B(x, r)) ≥ c1 µ(B(x, r)) (6.10)

for all x ∈ E and all 0 < r < (1/8) diam(E). Assume that 1 ≤ p <∞ and 0 < β ≤ 1,
and that a set E satis�es a measure density condition. Then it is easy to show that E
satis�es a (β, p)-capacity density condition, see below. We remark that the measure
density condition has been applied in [72] to study Hajªasz Sobolev spaces with zero
boundary values on E.

Fix x ∈ E and 0 < r < (1/8) diam(E). We aim to show that (6.9) holds. For this
purpose, we write F = E ∩ B(x, r) and B = B(x, r). Let u ∈ Lipβ(X) be such that

0 ≤ u ≤ 1, u = 1 in F and u = 0 in X \ 2B. Let also g ∈ DβH(u). By the properties
of u and the reverse doubling inequality (6.4), we obtain

0 ≤ u4B = −
∫

4B
u(y) dµ(y) ≤ µ(2B)

µ(4B)
≤ cR < 1.
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If y ∈ F , we have v(y) = 1 and therefore

|u(y)− v4B| ≥ 1− u4B ≥ 1− cR = C(cµ) > 0.

Applying the measure density condition (6.10) and the (β, p, p)-Poincaré inequality,
see Theorem 6.8, we obtain

c1µ(B) ≤ µ(F ) ≤ C(cµ, p)

∫
F
|u(y)− u4B|p dµ(y)

≤ C(cµ, p)

∫
4B
|u(y)− u4B|p dµ(y)

≤ C(cµ, p)r
βp

∫
4B
g(y)p dµ(y) ≤ C(cµ, p)r

βp

∫
X
g(y)p dµ(y) .

By taking in�mum over functions u and g as above, we see that

capβ,p(E ∩B(x, r), 2B) = capβ,p(F, 2B) ≥ C(c1, cµ, p)r
−βpµ(B) .

This shows that E satis�es a (β, p)-capacity density condition (6.9).

Next, we introduce a Maz′ya-type inequality. This inequality establishes a link
between capacities and Poincaré inequalities. More precisely, we can bound the size
of u in a ball by the ratio of the size if a Hajªasz gradient and the capacity of the zero
set of u in said ball. We refer to [96, Chapter 10] and [97, Chapter 14] for further
details on inequalities of this type.

Theorem 6.15
Let 1 ≤ p < ∞, 0 < β ≤ 1, and let B(z, r) ⊂ X be a ball. Assume that u is a

β-Hölder function in X and g ∈ DβH(u). Then there exists a constant C = C(p) such
that

−
∫
B(z,r)

|u(x)|p dµ(x) ≤ C

capβ,p
(
{u = 0} ∩B(z, r2), B(z, r)

) ∫
B(z,r)

g(x)p dµ(x) .

Here {u = 0} = {y ∈ X : u(y) = 0}.

Proof. We adapt the proof of [73, Theorem 5.47], which in turn is based on [4, Theorem
5.53]. Let M = sup{|u(x)| : x ∈ B(z, r)} < ∞. By considering min{M, |u|} instead
of u and using (D3), we may assume that u is a bounded β-Hölder function in X and
that u ≥ 0 in B(z, r). Write B = B(z, r) and

uB,p =

(
−
∫
B
u(x)p dµ(x)

) 1
p

= µ(B)
− 1
p ‖u‖Lp(B) <∞ .

If uB,p = 0 the claim is true, and thus we may assume that uB,p > 0. We want to
choose a test function for the capacity. In order to do that, we de�ne the cut-o�
function ψ by the expression

ψ(x) = max
{

0, 1− (2r−1)βd
(
x,B(z, r2)

)β}
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for every x ∈ X. Then 0 ≤ ψ ≤ 1, ψ = 0 in X \B(z, r), ψ = 1 in B(z, r2), and ψ is a
β-Hölder function in X with a constant (2r−1)β . Let

v(x) = ψ(x)

(
1− u(x)

uB,p

)
, x ∈ X .

Then v = 1 in {u = 0} ∩ B(z, r2) and v = 0 in X \ B(z, r). By Lemma 6.7, and
properties (D1) and (D2), the function v is β-Hölder in X and

gv =

(
g

uB,p
‖ψ‖∞ + (2r−1)β

∣∣∣∣1− u

uB,p

∣∣∣∣)χ{ψ 6=0}
∈ DβH(v) .

Here we used the fact that g ∈ DβH(u) by assumptions. Now, the pair v and gv is
admissible for testing the capacity. Thus, we obtain

capβ,p
(
{u = 0} ∩B(z, r2), B(z, r)

)
≤
∫
X
gv(x)p dµ(x)

≤ C(p)

(uB,p)p

∫
B
g(x)p dµ(x) +

C(p)

rβp(uB,p)p

∫
B
|u(x)− uB,p|p dµ(x) .

(6.11)

We use Minkowski's inequality and the (β, p, p)-Poincaré inequality in Theorem 6.8
to estimate the second term on the right-hand side of (6.11), and obtain(

−
∫
B
|u(x)− uB,p|p dµ(x)

) 1
p

≤
(
−
∫
B
|u(x)− uB|p dµ(x)

) 1
p

+ |uB,p − uB|

≤ Crβ
(
−
∫
B
g(x)p dµ(x)

) 1
p

+ µ(B)
− 1
p
∣∣‖u‖Lp(B) − ‖uB‖Lp(B)

∣∣. (6.12)

By the triangle inequality and the above Poincaré inequality, we have

µ(B)
− 1
p
∣∣‖u‖Lp(B) − ‖uB‖Lp(B)

∣∣ ≤ µ(B)
− 1
p ‖u− uB‖Lp(B)

=

(
−
∫
B
|u(x)− uB|p dµ(x)

) 1
p

≤ Crβ
(
−
∫
B
g(x)p dµ(x)

) 1
p

.

Together with (6.12) this gives(
−
∫
B
|u(x)− uB,p|p dµ(x)

) 1
p

≤ Crβ
(
−
∫
B
g(x)p dµ(x)

) 1
p

,

and thus ∫
B
|u(x)− uB,p|p dµ(x) ≤ C(p)rβp

∫
B
g(x)p dµ(x).

Substituting this to (6.11) and recalling that B = B(z, r), we arrive at

capβ,p
(
{u = 0} ∩B(z, r2), B(z, r)

)
≤ C(p)

(uB,p)p

∫
B(z,r)

g(x)p dµ(x).

The claim follows by reorganizing the terms.

We now establish a boundary Poincaré inequality for a set E satisfying a capacity
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density condition. More precisely, we prove that a function u that vanishes on the set
E satis�es Poincaré inequalities at balls centered in E. The Maz′ya-type inequality
in Theorem 6.15 is a key tool in the proof.

Theorem 6.16
Let 1 ≤ p <∞ and 0 < β ≤ 1. Assume that E ⊂ X satis�es a (β, p)-capacity density
condition with a constant c0. Then there is a constant C = C(p, c0, cµ) such that

−
∫
B(x,R)

|u(x)|p dµ(x) ≤ CRβp−
∫
B(x,R)

g(x)p dµ(x)

whenever u : X → R is a β-Hölder function in X such that u = 0 in E, g ∈ DβH(u),
and B(x,R) is a ball with x ∈ E and 0 < R < diam(E)/4.

Proof. Let x ∈ E and 0 < R < diam(E)/4. We denote r = R/2 < diam(E)/8.
Applying the capacity density condition in the ball B = B(x, r) gives

capβ,p(E ∩B, 2B) ≥ c0r
−βpµ(B) .

Write {u = 0} = {y ∈ X : u(y) = 0} ⊃ E. By the monotonicity of capacity and the
doubling condition we have

1

capβ,p({u = 0} ∩B, 2B)
≤ 1

capβ,p(E ∩B, 2B)
≤ C(c0)rβp

µ(B)
≤ C(c0, cµ)Rβp

µ(2B)
.

The desired inequality, for the ball B(x,R) = B(x, 2r) = 2B, follows from Theo-
rem 6.15.

6.5 Necessary and sufficient geometrical conditions

In this section we adapt the approach in [32] by giving necessary and su�cient geo-
metrical conditions for a set E to satisfy the (β, p)-capacity density condition. These
conditions are given in terms of some bounds for the upper Assouad codimension [68],
which we introduce now.

Definition 6.17
When E ⊂ X and r > 0, the open r-neighbourhood of E is the set

Er = {x ∈ X : d(x,E) < r}.

The upper Assouad codimension of E ⊂ X, denoted by co dimA(E), is the in�mum
of all Q ≥ 0 for which there is c > 0 such that

µ(Er ∩B(x,R))

µ(B(x,R))
≥ c
( r
R

)Q
for every x ∈ E and all 0 < r < R < diam(E). If diam(E) = 0, then the restriction
R < diam(E) is removed.
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Observe that a larger set has a smaller Assouad codimension. In order to develop
our methods, we are going to use suitable versions of Hausdor� contents that we
borrow from [80].

Definition 6.18
The (ρ-restricted) Hausdor� content of codimension q ≥ 0 of a set F ⊂ X is de�ned
by

Hµ,qρ (F ) = inf

{∑
k

µ(B(xk, rk)) r
−q
k : F ⊂

⋃
k

B(xk, rk) and 0 < rk ≤ ρ

}
.

We are going to give bounds for this Hausdor� content in terms of the measure and
the capacity. On the one hand, we state a lower bound for the Hausdor� content of a
set truncated in a �xed ball in terms of the measure and radius of the truncating ball.
The proof uses completeness via construction of a compact Cantor-type set inside E,
to which mass is uniformly distributed by a Carathéodory construction.

Lemma 6.19 – [80, Lemma 5.1]
Assume that X is a complete metric space. Let E ⊂ X be a closed set, and assume
that co dimA(E) < q. Then there exists a constant C > 0 such that

Hµ,qr (E ∩B(x, r)) ≥ Cr−qµ(B(x, r)) (6.13)

for every x ∈ E and all 0 < r < diam(E).

On the other hand, Hausdor� contents gives a lower bound for capacity by follow-
ing lemma. The proof is based on a covering argument, where the covering balls are
chosen by chaining. The proof is a more sophisticated variant of the argument given
in Example 6.14. Similar covering arguments via chaining have been widely used; see
for instance [55].

Lemma 6.20
Let 0 < β ≤ 1, 1 ≤ p < ∞, and 0 < η < p. Assume that B = B(x0, r) ⊂ X is a
ball with r < diam(X)/8, and assume that F ⊂ B is a closed set. Then there is a
constant C = C(β, p, η, cµ) > 0 such that

rβ(p−η) capβ,p(F, 2B) ≥ CHµ,βη20r (F ) .

Proof. We adapt the proof of [32, Lemma 4.6] for our purposes. Let u ∈ Lipβ(X) be

such that 0 ≤ u ≤ 1 in X, u = 1 in F and u = 0 in X \ 2B. Let also g ∈ DβH(u).
We aim to cover the set F by balls that are chosen by chaining. In order to do so, we
�x x ∈ F and write B0 = 4B = B(x0, 4r), r0 = 4r, rj = 2−j+1r and Bj = B(x, rj),
j = 1, 2, . . .. Observe that Bj+1 ⊂ Bj and µ(Bj) ≤ c3

µµ(Bj+1) if j = 0, 1, 2, . . ..
By the above properties of u and the reverse doubling inequality (6.4), we obtain

0 ≤ uB0 = −
∫
B0

u(y) dµ(y) ≤ µ(2B)

µ(4B)
≤ cR < 1.
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Since x ∈ F , we �nd that u(x) = 1 and therefore

|u(x)− uB0 | ≥ 1− uB0 ≥ 1− cR = C(cµ) > 0.

We write δ = β(p − η)/p > 0. Using the Poincaré inequality in Theorem 6.8 and
abbreviating C = C(β, p, η, cµ), we obtain

∞∑
j=0

2−jδ = C(1− cR) ≤ C|u(x)− uB0 |

≤ C
∞∑
j=0

|uBj+1 − uBj | ≤ C
∞∑
j=0

µ(Bj)

µ(Bj+1)
−
∫
Bj

|u(y)− uBj | dµ(y)

≤ C
∞∑
j=0

(
−
∫
Bj

|u(y)− uBj |p dµ(y)

) 1
p

≤ C
∞∑
j=0

rβj

(
−
∫
Bj

g(y)p dµ(y)

) 1
p

.

By comparing the series in the left- and right-hand side of these inequalities, we see
that there exists j ∈ {0, 1, 2, . . .} depending on x such that

2−jδp ≤ C(β, p, η, cµ)rβpj −
∫
Bj

g(y)p dµ(y). (6.14)

Write rx = rj and Bx = Bj . Then x ∈ Bx and straightforward estimates based on
(6.14) give

µ(Bx)r−βηx ≤ C(β, p, η, cµ)rβ(p−η)

∫
Bx

g(y)p dµ(y) .

By the Vitali covering lemma 1.2, see also [4, Lemma 1.7], we obtain points xk ∈ F ,
k = 1, 2, . . ., such that the balls Bxk ⊂ B0 = 4B with radii rxk ≤ 4r are pairwise
disjoint and F ⊂

⋃∞
k=1 5Bxk . Hence,

Hµ,βη20r (F ) ≤
∞∑
k=1

µ(5Bxk)(5rxk)−βη ≤ C
∞∑
k=1

rβ(p−η)

∫
Bxk

g(x)p dµ(x)

≤ Crβ(p−η)

∫
4B
g(x)p dµ(x) ≤ Crβ(p−η)

∫
X
g(x)p dµ(x) ,

where C = C(β, p, η, cµ). We remark that the scale 20r of the Hausdor� content in
the left-hand side comes from the fact that radii of the covering balls 5Bxk for F are
bounded by 20r. The desired inequality follows by taking in�mum over all functions
g ∈ DβH(u) and then over all functions u as above.

The following theorem gives an upper bound for the upper Assouad codimension
for sets satisfying a capacity density condition. We emphasize the strict inequality
co dimA(E) < βp and completeness in the assumptions below.

Theorem 6.21
Assume that X is a complete metric space. Let 1 ≤ p < ∞ and 0 < β ≤ 1. Let
E be a closed set with co dimA(E) < βp. Then E satis�es a (β, p)-capacity density
condition.

Proof. Fix 0 < η < p such that co dimA(E) < βη. Let x ∈ E and 0 < r < diam(E)/8,
and write B = B(x, r). By a simple covering argument using the doubling condition,
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it follows that Hµ,βη20r (E ∩B) ≥ CHµ,βηr (E ∩B) with a constant C independent of B.
Applying also Lemma 6.20 and then Lemma 6.19 gives

rβ(p−η) capβ,p(E ∩B, 2B) ≥ CHµ,βη20r (E ∩B) ≥ CHµ,βηr (E ∩B) ≥ r−βηµ(B) .

After simpli�cation, we obtain

capβ,p(E ∩B, 2B) ≥ Cr−βpµ(B) ,

and the claim follows.

As a partial converse to this result, we prove by using boundary Poincaré inequal-
ities, that a capacity density condition implies an upper bound for the upper Assouad
codimension. This upper bound is not strict.

Theorem 6.22
Let 1 ≤ p <∞ and 0 < β ≤ 1. Assume that E ⊂ X satis�es a (β, p)-capacity density
condition. Then co dimA(E) ≤ βp.

Proof. The proof of this Theorem is an adaptation of the proof of [32, Theorem 5.3]
to our setting. By using the doubling condition, it su�ces to show that

µ(Er ∩B(w,R))

µ(B(w,R))
≥ c
( r
R

)βp
, (6.15)

for all w ∈ E and 0 < r < R < diam(E)/4, where the constant c is independent of w,
r and R.

If µ(Er ∩ B(w,R)) ≥ 1
2µ(B(w,R)), the claim is clear since

(
r
R

)βp ≤ 1. Thus we
may assume in the sequel that µ(Er ∩B(w,R)) < 1

2µ(B(w,R)), whence

µ(B(w,R) \ Er) ≥ 1
2µ(B(w,R)) > 0. (6.16)

We de�ne a β-Hölder function u : X → R by

u(x) = min{1, r−βd(x,E)β} , x ∈ X.

Then u = 0 in E, u = 1 in X \ Er, and

|u(x)− u(y)| ≤ r−βd(x, y)β for all x, y ∈ X.

We obtain

R−βp
∫
B(w,R)

|u(x)|p dµ(x) ≥ R−βp
∫
B(w,R)\Er

|u(x)|p dµ(x)

= R−βpµ(B(w,R) \ Er)
≥ 1

2R
−βpµ(B(w,R)),

(6.17)

where the last step follows from (6.16).
Since u = 1 in X \ Er and u is a β-Hölder function with a constant r−β , Lemma

6.6 implies that g = r−βχ
Er
∈ DβH(u). We observe from (6.17) and Theorem 6.16
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that

Cr−βpµ(Er ∩B(w,R)) = C

∫
B(w,R)

g(x)p dµ(x)

≥ 2R−βp
∫
B(w,R)

|u(x)|p dµ(x)

≥ R−βpµ(B(w,R)) ,

(6.18)

where the constant C is independent of w, r and R. The claim (6.15) follows from
(6.18).

Observe that the upper bound co dimA(E) ≤ βp appears in the conclusion of
Theorem 6.22. The rest of the chapter is devoted to showing the strict inequality
co dimA(E) < βp for 1 < p < ∞, which leads to a characterization of the (β, p)-
capacity density condition in terms of this strict dimensional inequality.

The strategy is to combine the methods in [74] and [81] to prove a signi�cantly
stronger variant of the boundary Poincaré inequality, which involves maximal opera-
tors, see Theorem 6.28. We use this maximal inequality to prove a Hardy inequality,
Theorem 6.36. This variant leads to the characterization in Theorem 6.38 of the (β, p)-
capacity density condition in terms of the strict inequality co dimA(E) < βp, among
other geometric and analytic conditions. Certain additional geometric assumptions
are needed for the proof of Theorem 6.38, namely geodesic property of X. We are not
aware, to which extent this geometric assumption can be relaxed.

6.6 Local boundary Poincaré inequality

Our next aim is to show Theorem 6.28, which concerns inequalities localized to a �xed
ball B0 centered at E. The proof of this theorem requires that we �rst truncate the
closed set E to a smaller set EQ contained in a Whitney-type ball Q ⊂ B0 such that
a local variant of the boundary Poincaré inequality remains valid. The choice of the
Whitney-type ball Q and the construction of the set EQ are given in this section.

This truncation construction, that we borrow from [81], is done in such a way
that a local Poincaré inequality holds, see Lemma 6.26. This inequality is local in
two senses: on one hand, the inequality holds only for balls B ⊂ Q∗; on the other
hand, it holds for functions vanishing on the truncated set EQ. Due to the subtlety of
its consequences, the truncation in this section may seem arbitrary, but it is actually
needed for our purposes.

Assume that E is a closed set in a geodesic space X. Fix a ball B0 = B(w,R) ⊂ X
with w ∈ E and R < diam(E). De�ne a family of balls

B0 = {B ⊂ X : B is a ball such that B ⊂ B0} . (6.19)

We also need a single Whitney-type ball Q = B(w, rQ) ⊂ B0, where

rQ =
R

128
. (6.20)
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The 4-dilation of the Whitney-type ball is denoted by Q∗ = 4Q = B(w, 4rQ). Now it
holds that Q∗ ( X, since otherwise

diam(X) = diam(Q∗) ≤ R/16 < diam(E) ≤ diam(X) .

The following proposition illustrates a few properties that are straightforward to
verify. For instance, property (W1) follows from inequality (6.3); we omit the simple
proofs.

Proposition 6.23
The following properties hold:

(W1) If B ⊂ X is a ball such that B∩Q 6= ∅ 6= 2B∩(X \Q∗), then diam(B) ≥ 3rQ/4;

(W2) If B ⊂ Q∗ is a ball, then B ∈ B0;

(W3) If B ⊂ Q∗ is a ball, x ∈ B and 0 < r ≤ diam(B), then B(x, 5r) ∈ B0;

(W4) If x ∈ Q∗ and 0 < r ≤ 2 diam(Q∗), then B(x, r) ∈ B0.

Observe that there is some overlap between the properties (W2)�(W4). The
slightly di�erent formulations will conveniently guide the reader in the sequel.

The following Lemma 6.24 gives us the truncated set EQ ⊂ Q that contains big
pieces of the original set E at small scales. This big pieces property is not always
satis�ed by E ∩Q, so it cannot be used instead.

Lemma 6.24
Assume that E ⊂ X is a closed set in a geodesic space X and that Q = B(w, rQ) for

w ∈ E and rQ > 0. Let E0
Q = E ∩ 1

2Q, de�ne inductively, for every j ∈ N, that

EjQ =
⋃

x∈Ej−1
Q

E ∩B(x, 2−j−1r) , and set EQ =
⋃
j∈N0

EjQ.

Then the following statements hold:

(a) w ∈ EQ;

(b) EQ ⊂ E;

(c) EQ ⊂ Q;

(d) Ej−1
Q ⊂ EjQ ⊂ EQ for every j ∈ N.

Proof. Part (a) is is true since w ∈ E0
B. Part (b) follows from the facts that E is

closed and ∪jEjB ⊂ E by de�nition. To verify (c), we �x x ∈ EjB. If j = 0, then
x ∈ B. If j > 0, then by induction we �nd a sequence xj , . . . , x0 such xj = x and, for

each k = 0, . . . , j, xk ∈ EkB and xk ∈ E ∩B(xk−1, 2−k−1r) if k > 0. It follows that

d(x,w) ≤
j∑

k=1

d(xk, xk−1) + d(x0, w) ≤
j∑

k=1

2−k−1r + 2−1r < r .
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Hence, x ∈ B(w, r) ⊂ B. We have shown that EjB ⊂ B whenever j ∈ N0, whence it

follows that also EB ⊂ B. To prove (d) we �x j ∈ N and x ∈ Ej−1
B . By de�nition we

have x ∈ E and, hence, x ∈ E ∩B(x, 2−j−1r) ⊂ EjB.

The next lemma shows that the truncated set EQ in Lemma 6.24 really contains
big pieces of the original set E at all small scales. By using these balls we later employ
the capacity density condition of E, see the proof of Lemma 6.26 for details.

Lemma 6.25
Let E, Q, and EQ be as in Lemma 6.24. Suppose that m ∈ N0 and x ∈ X is such

that d(x,EQ) < 2−m+1rQ. Then there exists a ball B̂ = B(yx,m, 2
−m−1rQ) such that

yx,m ∈ E,
E ∩ 2−1B̂ = EQ ∩ 2−1B̂ ,

and B̂ ⊂ B(x, 2−m+2rQ).

Proof. In this proof we will apply Lemma 6.24 several times without further notice.
Since d(x,EB) < 2−m+1r there exists y ∈ ∪j∈N0E

j
B ⊂ E such that d(y, x) < 2−m+1r.

Let us �x j ∈ N0 such that y ∈ EjB. There are two cases to be treated.
First, let us consider the case when j > m ≥ 0. By induction, there are points

yk ∈ EkB with k = m, . . . , j such that yj = y and yk ∈ E ∩ B(yk−1, 2−k−1r) for every
k = m+ 1, . . . , j. It follows that

d(ym, y) = d(yj , ym)

≤
j∑

k=m+1

d(yk, yk−1)

≤
j∑

k=m+1

2−k−1r

< 2−m−1r .

Take yx,m = ym ∈ EmB ⊂ E and B̂ = B(ym, 2
−m−1r). If σ ≥ 1 and z ∈ σB̂, then

d(z, x) ≤ d(z, ym) + d(ym, y) + d(y, x)

≤ σ2−m−1r + 2−m−1r + 2−m+1r

< σ2−m+2r ,

and thus σB̂ ⊂ B(x, σ2−m+2r). Moreover, since ym ∈ EmB , we have

2−1B̂ ∩ E = E ∩B(ym, 2−m−2r)

⊂
⋃

z∈EmB

E ∩B(z, 2−m−2r)

= Em+1
B ⊂ EB .

On the other hand EB ⊂ E, and thus 2−1B̂ ∩ E = 2−1B̂ ∩ EB.

138 Chapter 6. Hajªasz capacity density condition



Let us then consider the case m ≥ j ≥ 0. We take yx,m = y ∈ E and B̂ =

B(y, 2−m−1r). Then, for every σ ≥ 1 and each z ∈ σB̂,

d(z, x) ≤ d(z, y) + d(y, x)

< σ2−m−1r + 2−m+1r

< σ2−m+2r ,

and so σB̂ ⊂ B(x, σ2−m+2r). Since y ∈ EjB ⊂ EmB ⊂ EB we can repeat the argument

above, with ym replaced by y, and it follows as above that 2−1B̂∩E = 2−1B̂∩EB.

A similar truncation procedure is a standard technique when proving the self-
improvement of di�erent capacity density conditions. It originally appears in [88, p.
180] for Riesz capacities in Rn, and later also in [98] for Rn and in [6] for general
metric spaces.

With the aid of big pieces inside the truncated set EQ, we can show that a localized
variant of the boundary Poincaré inequality in Theorem 6.16 holds for the truncated
set EQ, if E satis�es a capacity density condition.

Lemma 6.26
Let X be a geodesic space. Assume that 1 ≤ p < ∞ and 0 < β ≤ 1. Suppose that
a closed set E ⊂ X satis�es the (β, p)-capacity density condition with a constant
c0. Let B0 = B(w,R) ⊂ X be a ball with w ∈ E and R < diam(E), and let
Q = B(w, rQ) ⊂ B0 be the corresponding Whitney-type ball. Assume that B ⊂ Q∗

is a ball with a center xB ∈ EQ. Then there is a constant K = K(p, cµ, c0) such that

−
∫
B
|u(x)|p dµ(x) ≤ K diam(B)βp−

∫
B
g(x)p dµ(x) (6.21)

for all β-Hölder functions u in X with u = 0 in EQ, and for all g ∈ DβH(u).

Proof. Fix a ball B = B(xB, rB) ⊂ Q∗ with xB ∈ EQ. Recall that rQ = R/128 as in
(6.20). Since B ⊂ Q∗ ( X, we have

0 < rB ≤ diam(B) ≤ diam(Q∗) ≤ 8rQ .

Hence, we can choose m ∈ N0 such that 2−m+2rQ < rB ≤ 2−m+3rQ. Then

d(xB, EQ) = 0 < 2−m+1rQ .

By Lemma 6.25 with x = xB there exists a ball B̂ = B(y, 2−m−1rQ) such that y ∈ E,

E ∩ 2−1B̂ = EQ ∩ 2−1B̂ (6.22)

and B̂ ⊂ B(xB, 2
−m+2rQ) ⊂ B(xB, rB) = B. Observe also that B ⊂ 32B̂.

Fix a β-Hölder function u in X with u = 0 in EQ, and let g ∈ DβH(u). We estimate

−
∫
B
|u(x)|p dµ(x) ≤ C(p)−

∫
B
|u(x)− uB|p dµ(x) + C(p)|uB − uB̂|

p + C(p)|u
B̂
|p .
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By the (β, p, p)-Poincaré inequality in Theorem 6.8, we obtain

−
∫
B
|u(x)− uB|p dµ(x) ≤ C(p) diam(B)βp−

∫
B
g(x)p dµ(x) .

Using also Hölder's inequality and the doubling condition, we get

|uB − uB̂|
p ≤ −

∫
B̂
|u(x)− uB|p dµ(x)

≤ C(cµ)−
∫
B
|u(x)− uB|p dµ(x)

≤ C(p, cµ) diam(B)βp−
∫
B
g(x)p dµ(x) .

In order to estimate the remaining term |u
B̂
|p, we write

{u = 0} = {y ∈ X : u(y) = 0} ⊃ EQ .

By using the monotonicity of capacity, identity (6.22), the assumed capacity density
condition, and the doubling condition, we obtain

capβ,p({u = 0} ∩ 2−1B̂, B̂) ≥ capβ,p(EQ ∩ 2−1B̂, B̂)

= capβ,p(E ∩ 2−1B̂, B̂)

≥ c0(2−m−2rQ)−βpµ(2−1B̂)

≥ C(cµ, c0)r−βpB µ(B) .

By Theorem 6.15, we obtain

|u
B̂
|p ≤ −

∫
B̂
|u(x)|p dµ(x)

≤ C(p)
(

capβ,p({u = 0} ∩ 2−1B̂, B̂)
)−1

∫
B̂
g(x)p dµ(x)

≤ C(p, cµ, c0)
rβpB
µ(B)

∫
B̂
g(x)p dµ(x)

≤ C(p, cµ, c0) diam(B)βp−
∫
B
g(x)p dµ(x) .

The proof is completed by combining the above estimates for the three terms.

6.7 Maximal boundary Poincaré inequalities

This section is the most technical section of this Chapter. Here, we formulate and
prove our key results, Theorem 6.28 and Theorem 6.29. These theorems give improved
variants of the local boundary Poincaré inequality (6.21). The improved variants are
norm inequalities for a combination of two maximal functions. Hence, we can view
Theorem 6.28 and Theorem 6.29 as maximal boundary Poincaré inequalities.
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The method adapts [74] to the setting of boundary Poincaré inequalities. Never-
theless, the adaptation of the argument there to our setting is nontrivial. That is why
this lengthy and technical section is developed in full detail.

Let us begin by introducing the maximal operators that we are going to use
throughout this section.

Definition 6.27
Let X be a geodesic space, 1 < p < ∞ and 0 < β ≤ 1. If B 6= ∅ is a given family of
balls in X, then we de�ne a fractional sharp maximal function

M ],p
β,Bu(x) = sup

x∈B∈B

(
1

diam(B)βp
−
∫
B
|u(y)− uB|p dµ(y)

)1/p

, x ∈ X , (6.23)

whenever u : X → R is a β-Hölder function. We also de�ne the maximal function
adapted to a given set EQ ⊂ X by

M
EQ,p
β,B u(x) = sup

x∈B∈B

( χ
EQ

(xB)

diam(B)βp
−
∫
B
|u(y)|p dµ(y)

)1/p

, x ∈ X , (6.24)

whenever u : X → R is a β-Hölder function such that u = 0 in EQ. Here xB is the
center of the ball B ∈ B. The supremums in (6.23) and (6.24) are de�ned to be zero,
if there is no ball B in B that contains the point x.

We are mostly interested in maximal functions for the ball family (6.19). The
following is the main result in this section.

Theorem 6.28
Let X be a geodesic space. Let 1 < p < ∞ and 0 < β ≤ 1. Let E ⊂ X be a
closed set which satis�es the (β, p)-capacity density condition with a constant c0. Let
B0 = B(w,R) be a ball with w ∈ E and R < diam(E). Let EQ be the truncation
of E to the Whitney-type ball Q as in Section 6.6. Then there exists a constant
C = C(β, p, cµ, c0) > 0 such that inequality∫

B0

(
M ],p
β,B0

u(x) +M
EQ,p
β,B0

u(x)
)p
dµ(x) ≤ C

∫
B0

g(x)p dµ(x) (6.25)

holds whenever u ∈ Lipβ(X) is such that u = 0 in EQ and g ∈ DβH(u).

Proof. We use the following Theorem 6.29 with ε = 0. Observe that the �rst term on
the right-hand side of (6.26) is �nite, since u is a β-Hölder function in X such that
u = 0 in EQ. Inequality (6.25) is obtained when this term is absorbed to the left-hand
side after choosing the number k large enough, depending only on β, p, cµ and c0.

Theorem 6.29
Let X be a geodesic space. Let 1 < q < p < ∞ and 0 < β ≤ 1 be such that
the (β, p, q)-Poincaré inequality in Theorem 6.9 holds. Let E ⊂ X be a closed set
satisfying the (β, p)-capacity density condition with a constant c0. Let B0 = B(w,R)
be a ball with w ∈ E and R < diam(E). Let EQ be the truncation of E to the
Whitney-type ball Q = B(w, rQ) ⊂ B0 as in Section 6.6. Let K = K(p, cµ, c0) > 0
be the constant for the local boundary Poincaré inequality in Lemma 6.26. Assume
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that k ∈ N, 0 ≤ ε < (p− q)/2, and α = βp2/(2(s + βp)) > 0 with s = log2 cµ. Then
inequality∫

B0

(
M ],p
β,B0

u+M
EQ,p
β,B0

u
)p−ε

dµ

≤ C1

(
2k(ε−α) +

K4kε

kp−1

)∫
B0

(
M ],p
β,B0

u+M
EQ,p
β,B0

u
)p−ε

dµ

+ C1C(k, ε)K

∫
B0\{M],p

β,B0
u+M

EQ,p

β,B0
u=0}

gp
(
M ],p
β,B0

u+M
EQ,p
β,B0

u
)−ε

dµ

+ C3

∫
B0

gp−ε dµ . (6.26)

holds for each u ∈ Lipβ(X) with u = 0 in EQ and every g ∈ DβH(u). Here C1 =

C1(β, p, cµ), C1 = C1(β, p, cµ), C3 = C(β, p, cµ), C(k, ε) = (4kε − 1)/ε if ε > 0 and
C(k, 0) = k.

Remark 6.30 Observe that Theorem 6.29 implies a variant of Theorem 6.28 when we choose
ε > 0 to be su�ciently small. We omit the formulation of this variant, since we do
not use it. This is because of the following defect: one of the terms is the integral of

gp
(
M ],p
β,B0

u+M
EQ,p
β,B0

u
)−ε

instead of gp−ε. Because of its independent interest, we have
however chosen to formulate Theorem 6.29 such that it incorporates the parameter ε.

The proof of Theorem 6.29 is completed in Section 6.7.4. For the proof, we need
preparations that are treated in Sections 6.7.1 � 6.7.3. At this stage, we already �x
X, E, B0, Q, EQ, K, B0, p, β, q, ε, k and u as in the statement of Theorem 6.29.
Notice, however, that the β-Hajªasz gradient g of u is not yet �xed. We abbreviate

M ]u = M ],p
β,B0

u and MEQu = M
EQ,p
β,B0

u, and denote

Uλ = {x ∈ B0 : M ]u(x) +MEQu(x) > λ} , λ > 0 .

The sets Uλ are open in X. If F ⊂ X is a Borel set and λ > 0, we write UλF = Uλ∩F .
We refer to these objects throughout Section 6.7 without further notice.

6.7.1 Localization to Whitney-type ball

We need a smaller maximal function that is localized to the Whitney-type ball Q.
Consider the ball family

BQ = {B ⊂ X : B is a ball such that B ⊂ Q∗}

and de�ne
M

EQ
Q u = χ

Q∗
M

EQ,p
β,BQ u . (6.27)

If λ > 0, we write

Qλ = {x ∈ Q∗ : M
EQ
Q u(x) > λ} . (6.28)

We estimate the left-hand side of (6.25) in terms of (6.27) with the aid of the following
norm estimate. We will later be able to estimate the smaller maximal function (6.27).
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Lemma 6.31
There are constants C1 = C(p, cµ) and C2 = C(β, p, cµ) such that∫

B0

(
M ]u(x) +MEQu(x)

)p−ε
dµ(x)

≤ C1

∫
B0

(
M

EQ
Q u(x)

)p−ε
dµ(x) + C2

∫
B0

g(x)p−ε dµ(x)

for all g ∈ DβH(u).

Proof. Fix g ∈ DβH(u). We have∫
B0

(
M ]u(x) +MEQu(x)

)p−ε
dµ(x)

≤ C(p)

∫
B0

(
M ]u(x)

)p−ε
dµ(x) + C(p)

∫
B0

(
MEQu(x)

)p−ε
dµ(x) .

(6.29)

Let x ∈ B0 and let B ∈ B0 be such that x ∈ B. By (6.19) and the (β, p, q)-Poincaré
inequality, see Theorem 6.9, we obtain(

1

diam(B)βp
−
∫
B
|u(y)− uB|p dµ(y)

)1/p

≤ C(cµ, p, β)

(
−
∫
B
g(y)q dµ(y)

)1/q

≤ C(cµ, p, β)(M(gqχ
B0

)(x))
1
q .

Here M is the non-centered Hardy�Littlewood maximal function operator. By taking
supremum over balls B as above, we obtain

M ]u(x) = M ],p
β,B0

u(x) ≤ C(β, p, cµ)(M(gqχ
B0

)(x))
1
q .

Since p − ε > q, the Hardy�Littlewood maximal function theorem [4, Theorem 3.13]
implies that∫

B0

(
M ]u(x)

)p−ε
dµ(x) ≤ C(β, p, cµ)

∫
B0

(M(gqχ
B0

)(x))
p−ε
q dµ(x)

≤ C(β, p, cµ)

p− q − ε

∫
B0

g(x)p−ε dµ(x) .

Since ε < (p− q)/2, this provides an estimate for the �rst term in the right-hand side
of (6.29).

In order to estimate the second term in the right-hand side of (6.29), we let x ∈
B0 \Q∗ and let B ∈ B0 be such that x ∈ B. We will estimate the term( χ

EQ
(xB)

diam(B)βp
−
∫
B
|u(y)|p dµ(y)

)1/p

,

where xB is the center of B. Clearly we may assume that xB ∈ EQ ⊂ Q. By condition
(W1), we see that diam(B) ≥ C diam(B0) and µ(B) ≥ C(cµ)µ(B0). Since B ∈ B0,
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we have B ⊂ B0. Thus,( χ
EQ

(xB)

diam(B)βp
−
∫
B
|u(y)|p dµ(y)

)1/p

≤ C(p, cµ)

(
1

diam(B0)βp
−
∫
B0

|u(y)|p dµ(y)

)1/p

.

By taking supremum over balls B as above, we obtain

MEQu(x) = M
EQ,p
β,B0

u(x) ≤ C(p, cµ)

(
1

diam(B0)βp
−
∫
B0

|u(y)|p dµ(y)

)1/p

for all x ∈ B0 \Q∗. By integrating, we obtain∫
B0\Q∗

(
MEQu(x)

)p−ε
dµ(x)

≤ C(p, cµ)µ(B0)

(
1

diam(B0)βp
−
∫
B0

|u(y)|p dµ(y)

) p−ε
p

≤ C(p, cµ)µ(B0)

diam(B0)β(p−ε)

[(
−
∫
B0

|u(y)− uQ∗ |p dµ(y)

) p−ε
p

+ |uQ∗ |p−ε
]
.

(6.30)

By the (β, p, q)-Poincaré inequality and Hölder's inequality with q < p− ε, we obtain

C(p, cµ)µ(B0)

diam(B0)β(p−ε)

(
−
∫
B0

|u(y)− uQ∗ |p dµ(y)

) p−ε
p

≤ C(p, cµ)µ(B0)

diam(B0)β(p−ε)

[(
−
∫
B0

|u(y)− uB0 |p dµ(y)

) p−ε
p

+ |uB0 − uQ∗ |p−ε
]

≤ C(p, cµ)µ(B0)

diam(B0)β(p−ε)

(
−
∫
B0

|u(y)− uB0 |p dµ(y)

) p−ε
p

≤ C(β, p, cµ)µ(B0)

(
−
∫
B0

g(x)q dµ(x)

) p−ε
q

≤ C(β, p, cµ)

∫
B0

g(x)p−ε dµ(x) .

On the other hand, since Q∗ = B(w, 4rQ) with w ∈ EQ and rQ = R/128, we have

C(p, cµ)µ(B0)

diam(B0)β(p−ε) |uQ∗ |
p−ε ≤ C(p, cµ)

µ(Q∗)

diam(Q∗)β(p−ε) |uQ∗ |
p−ε

≤ C(p, cµ)

∫
Q∗

(
χ
EQ

(w)

diam(Q∗)βp
−
∫
Q∗
|u(y)|p dµ(y)

) p−ε
p

dµ(x)

≤ C(p, cµ)

∫
Q∗

(
χ
Q∗

(x)M
EQ,p
β,BQ u(x)

)p−ε
dµ(x)

= C(p, cµ)

∫
B0

(
M

EQ
Q u(x)

)p−ε
dµ(x) .

This concludes the estimate for the integral in (6.30) over B0 \Q∗.
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To estimate the integral over the set Q∗, we �x x ∈ Q∗. Let B ∈ B0 be such that
x ∈ B. If B ⊂ Q∗, then( χ

EQ
(xB)

diam(B)βp
−
∫
B
|u(y)|p dµ(y)

)1/p

≤ χ
Q∗

(x)M
EQ,p
β,BQ u(x) = M

EQ
Q u(x) .

Next we consider the case B 6⊂ Q∗, and again we need to estimate the quantity( χ
EQ

(xB)

diam(B)βp
−
∫
B
|u(y)|p dµ(y)

)1/p

.

We may assume that xB ∈ EQ ⊂ Q. By condition (W1), we obtain diam(B) ≥
C diam(B0) and µ(B) ≥ C(cµ)µ(B0). Hence,( χ

EQ
(xB)

diam(B)βp
−
∫
B
|u(y)|p dµ(y)

)1/p

≤ C(p, cµ)

(
1

diam(B0)βp
−
∫
B0

|u(y)|p dµ(y)

)1/p

.

By taking supremum over balls B as above, we obtain

MEQu(x) ≤MEQ
Q u(x) + C(p, cµ)

(
1

diam(B0)βp
−
∫
B0

|u(y)|p dµ(y)

)1/p

for all x ∈ Q∗. It follows that∫
Q∗

(
MEQu(x)

)p−ε
dµ(x) ≤ C(p, cµ)

∫
B0

(
M

EQ
Q u(x)

)p−ε
dµ(x)

+ C(p, cµ)µ(B0)

(
1

diam(B0)βp
−
∫
B0

|u(y)|p dµ(y)

) p−ε
p

.

We can now estimate as above, and complete the proof.

The following lemma is variant of [74, Lemma 4.12]. We also refer to [50, Lemma
3.6].

Lemma 6.32
Fix x, y ∈ Q∗. Then

|u(x)− u(y)| ≤ C(β, cµ) d(x, y)β
(
M ]u(x) +M ]u(y)

)
(6.31)

and
|u(x)| ≤ C(β, cµ) d(x,EQ)β

(
M ]u(x) +MEQu(x)

)
. (6.32)

Furthermore, assuming that λ > 0, then the restriction u|EQ∪(Q∗\Uλ) is a β-Hölder

function in the set EQ ∪ (Q∗ \ Uλ) with constant κ = C(β, cµ)λ.

Proof. The property (W4) is used below several times without further notice. Let
z ∈ Q∗ and 0 < r ≤ 2 diam(Q∗). Write Bi = B(z, 2−ir) ∈ B0 for each i ∈ {0, 1, . . .}.
Then, with the standard `telescoping' argument, see for instance the proof of [50,
Lemma 3.6], we obtain

|u(z)− uB(z,r)| ≤ cµ
∞∑
i=0

−
∫
Bi

|u− uBi | dµ
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≤ cµ
∞∑
i=0

2β(1−i)rβ
(

1

diam(Bi)βp
−
∫
Bi

|u− uBi |p dµ
)1/p

≤ cµM ]u(z)

∞∑
i=0

2β(1−i)rβ ≤ C(β, cµ) rβM ]u(z) .

Fix x, y ∈ Q∗. Since 0 < d = d(x, y) ≤ diam(Q∗), we obtain

|u(y)− uB(x,d)| ≤ |u(y)− uB(y,2d)|+ |uB(y,2d) − uB(x,d)|

≤ C(β, cµ) dβM ]u(y) +
µ(B(y, 2d))

µ(B(x, d))
−
∫
B(y,2d)

|u− uB(y,2d)| dµ

≤ C(β, cµ) dβ

[
M ]u(y)

+

(
1

diam(B(y, 2d))βp
−
∫
B(y,2d)

|u− uB(y,2d)|p dµ
)1/p

]
≤ C(β, cµ) dβM ]u(y) .

It follows that

|u(x)− u(y)| ≤ |u(x)− uB(x,d)|+ |uB(x,d) − u(y)|
≤ C(β, cµ) d(x, y)β

(
M ]u(x) +M ]u(y)

)
,

which is the desired inequality (6.31).
To prove inequality (6.32), we let x ∈ Q∗. If d(x,EQ) = 0, then x ∈ EQ and we

are done since u = 0 in EQ. Therefore we may assume that d(x,EQ) > 0. Then there
exists y ∈ EQ ⊂ Q ⊂ Q∗ such that d = d(x, y) < min{2d(x,EQ),diam(Q∗)} and we
have

|u(x)| ≤ |u(x)− uB(y,d)|+ |uB(y,d)|

≤ C(β, cµ)dβM ]u(x) + cµ−
∫
B(y,2d)

|u| dµ

≤ C(β, cµ)dβM ]u(x) + cµ(4d)β

(
χ
EQ

(y)

diam(B(y, 2d))βp
−
∫
B(y,2d)

|u|p dµ

) 1
p

≤ C(β, cµ)dβ
(
M ]u(x) +MEQu(x)

)
≤ C(β, cµ)d(x,EQ)β

(
M ]u(x) +MEQu(x)

)
.

Inequality (6.32) follows.
Fix λ > 0. Next we show that u|(EQ ∪ (Q∗ \ Uλ)) is β-Hölder with constant

κ = C(β, cµ)λ. Let x, y ∈ EQ ∪ (Q∗ \ Uλ). There are four cases to be considered.
First, if x, y ∈ EQ, then

|u(x)− u(y)| = 0 ≤ κd(x, y)β,

since u = 0 in EQ. If x, y ∈ Q∗ \ Uλ, then we apply (6.31) and obtain

|u(x)− u(y)| ≤ C(β, cµ)d(x, y)β
(
M ]u(x) +M ]u(y)

)
≤ C(β, cµ)λd(x, y)β .
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Here we also used the fact that Q∗ ⊂ B0. If x ∈ EQ and y ∈ Q∗ \Uλ, we apply (6.32)
and get

|u(x)− u(y)| = |u(y)| ≤ C(β, cµ)d(y,EQ)β
(
M ]u(y) +MEQu(y)

)
≤ C(β, cµ)λd(x, y)β .

The last case x ∈ Q∗ \ Uλ and y ∈ EQ is treated in similar way.

6.7.2 Stopping construction

We continue as in [74] and construct a stopping family Sλ(Q) of pairwise disjoint
balls whose 5-dilations cover the set Qλ ⊂ Q∗ = B(w, 4rQ); recall (6.28). Let B ∈ BQ
be a ball centered at xB ∈ EQ ⊂ Q. The parent ball of B is then de�ned to be
π(B) = 2B if 2B ⊂ Q∗ and π(B) = Q∗ otherwise. Observe that B ⊂ π(B) ∈ BQ
and the center of π(B) satis�es xπ(B) ∈ {xB, w} ⊂ EQ. It follows that all the balls
B ⊂ π(B) ⊂ π(π(B)) ⊂ · · · are well-de�ned, belong to BQ and are centered at EQ. By
inequalities (6.1) and (6.3), and property (W1) if needed, we have µ(π(B)) ≤ c5

µµ(B)
and diam(π(B)) ≤ 16 diam(B).

Then we come to the stopping time argument. We will use as a threshold value
the number

λQ =

(
1

diam(Q∗)βp
−
∫
Q∗
|u(y)|p dµ(y)

)1/p

=

( χ
EQ

(w)

diam(Q∗)βp
−
∫
Q∗
|u(y)|p dµ(y)

)1/p

.

Fix a level λ > λQ/2. Fix a point x ∈ Qλ ⊂ Q∗. If λQ/2 < λ < λQ, then we choose
Bx = Q∗ ∈ BQ. If λ ≥ λQ, then by using the condition x ∈ Qλ we �rst choose a
starting ball B, with x ∈ B ∈ BQ, such that

λ <

( χ
EQ

(xB)

diam(B)βp
−
∫
B
|u(y)|p dµ(y)

)1/p

.

Observe that xB ∈ EQ ⊂ Q. We continue by looking at the balls B ⊂ π(B) ⊂
π(π(B)) ⊂ · · · and we stop at the �rst among them, denoted by Bx ∈ BQ, that
satis�es the following two stopping conditions:

λ <

( χ
EQ

(xBx)

diam(Bx)βp
−
∫
Bx

|u(y)|p dµ(y)

)1/p

,( χ
EQ

(xπ(Bx))

diam(π(Bx))βp
−
∫
π(Bx)

|u(y)|p dµ(y)

)1/p

≤ λ .

The inequality λ ≥ λQ in combination with the fact that Q∗ ( X ensures the existence
of such a stopping ball.

In any case, the chosen ball Bx ∈ BQ contains the point x, is centered at xBx ∈ EQ,
and satis�es inequalities

λ <

( χ
EQ

(xBx)

diam(Bx)βp
−
∫
Bx

|u(y)|p dµ(y)

)1/p

≤ 16c5/p
µ λ . (6.33)
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By the 5r-covering lemma [4, Lemma 1.7], we obtain a countable disjoint family

Sλ(Q) ⊂ {Bx : x ∈ Qλ} , λ > λQ/2 ,

of stopping balls such that Qλ ⊂
⋃
B∈Sλ(Q) 5B. Let us remark that, by the condition

(W2) and stopping inequality (6.33), we have B ⊂ Uλ if B ∈ Sλ(Q) and λ > λQ/2.

6.7.3 Level set estimates

Next we prove two technical results: Lemma 6.33 and Lemma 6.34. We follow the
approach in [74] quite closely, but we give details since technical modi�cations are
required. A counterpart of the following lemma can be found also in [71, Lemma
3.1.2]. Recall that k ∈ N is a �xed number and α = βp2/(2(s + βp)) > 0 with
s = log2 cµ > 0.

Lemma 6.33
Suppose that λ > λQ/2 and let B ∈ Sλ(Q) be such that µ(U2kλ

B ) < µ(B)/2. Then

1

diam(B)βp

∫
U2kλ
B

|u(x)|p dµ(x)

≤ C(p, cµ)2−kα(2kλ)pµ(U2kλ
B ) +

C(p, cµ)

diam(B)βp

∫
B\U2kλ

|u(x)|p dµ(x) .

(6.34)

Proof. Fix x ∈ U2kλ
B ⊂ B and consider the function h : (0,∞)→ R,

r 7→ h(r) =
µ(U2kλ

B ∩B(x, r))

µ(B ∩B(x, r))
=
µ(U2kλ

B ∩B(x, r))

µ(B(x, r))
·
(
µ(B ∩B(x, r))

µ(B(x, r))

)−1

.

By Lemma 6.2 and the fact that B is open, we �nd that h : (0,∞)→ R is continuous.

Observe that U2kλ
B = U2kλ ∩ B is also open. Since h(r) = 1 for small values of r > 0

and h(r) < 1/2 for r > diam(B), we have h(rx) = 1/2 for some 0 < rx ≤ diam(B).
Write B′x = B(x, rx). Then

µ(U2kλ
B ∩B′x)

µ(B ∩B′x)
= h(rx) =

1

2
(6.35)

and
µ((B \ U2kλ) ∩B′x)

µ(B ∩B′x)
= 1−

µ(U2kλ
B ∩B′x)

µ(B ∩B′x)
= 1− h(rx) =

1

2
. (6.36)

The 5r-covering lemma [4, Lemma 1.7] gives us a countable disjoint family Gλ ⊂ {B′x :

x ∈ U2kλ
B } such that U2kλ

B ⊂
⋃
B′∈Gλ 5B′. Then (6.35) and (6.36) hold for every ball

B′ ∈ Gλ; namely, by denoting B′I = U2kλ
B ∩B′ and B′O = (B \U2kλ)∩B′, we have the

following comparison identities:

µ(B′I) =
µ(B ∩B′)

2
= µ(B′O) , (6.37)

where all the measures are strictly positive. These identities are important and they
are used several times throughout the remainder of this proof.
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Wemultiply the left-hand side of (6.34) by diam(B)βp and then estimate as follows:∫
U2kλ
B

|u|p dµ ≤
∑
B′∈Gλ

∫
5B′∩B

|u|p dµ

≤ 2p−1
∑
B′∈Gλ

µ(5B′ ∩B)|uB′O |
p + 2p−1

∑
B′∈Gλ

∫
5B′∩B

|u− uB′O |
p dµ .

(6.38)

By (6.1) and Lemma 6.3, we �nd that

µ(5B′ ∩B) ≤ µ(8B′) ≤ c3
µµ(B′) ≤ c6

µµ(B ∩B′) (6.39)

for all B′ ∈ Gλ. Hence, by the comparison identities (6.37),

2p−1
∑
B′∈Gλ

µ(5B′ ∩B)|uB′O |
p ≤ C(p, cµ)

∑
B′∈Gλ

µ(B′O)−
∫
B′O

|u(x)|p dµ(x)

= C(p, cµ)
∑
B′∈Gλ

∫
B′O

|u(x)|p dµ(x)

≤ C(p, cµ)

∫
B\U2kλ

|u(x)|p dµ(x) .

This concludes our analysis of the `easy term' in (6.38). In order to treat the remaining
term therein, we do need some preparations.

Let us �x a ball B′ ∈ Gλ that satis�es
∫

5B′∩B|u− uB′O |
p dµ 6= 0. We claim that

−
∫

5B′∩B
|u(x)− uB′O |

p dµ(x) ≤ C(p, cµ)2−kα(2kλ)p diam(B)βp . (6.40)

In order to prove this inequality, we �x a number m ∈ R such that

(2mλ)p diam(5B′)βp = −
∫

5B′∩B
|u(x)− uB′O |

p dµ(x) . (6.41)

Let us �rst consider the casem < k/2. Thenm−k < −k/2, and since always α < p/2,
the desired inequality (6.40) is obtained case as follows:

−
∫

5B′∩B
|u− uB′O |

p dµ = 2(m−k)p(2kλ)p diam(5B′)βp

≤ 10p 2−kp/2(2kλ)p diam(B)βp

≤ C(p)2−kα(2kλ)p diam(B)βp .

Next we consider the case k/2 ≤ m. Observe from (6.39) and the comparison
identities (6.37) that

−
∫

5B′∩B
|u(x)− uB′O |

p dµ(x) ≤ 2p−1−
∫

5B′∩B
|u(x)− u5B′ |p dµ(x) + 2p−1|u5B′ − uB′O |

p

≤ 2p+1c6
µ−
∫

5B′
|u(x)− u5B′ |p dµ(x)

≤ 2p+1c6
µ(2kλ)pdiam(5B′)βp ,

where the last step follows from condition (W3) and the fact that 5B′ ⊃ B′O 6= ∅. By
taking also (6.41) into account, we see that 2mp ≤ 2p+1c6

µ2kp. On the other hand, we
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have

(2mλ)p diam(5B′)βpµ(B′ ∩B) ≤
∫

5B′∩B
|u(x)− uB′O |

p dµ(x)

≤ 2p−1

∫
5B′∩B

|u(x)|p dµ(x) + 2p−1µ(5B′ ∩B)|uB′O |
p

≤ 2p+1c6
µ

∫
B
|u(x)|p dµ(x)

≤ 2 · 32pc11
µ λ

p diam(B)βpµ(B) ,

where the last step follows from the fact that B ∈ Sλ(Q) in combination with inequal-
ity (6.33). In particular, if s = log2 cµ then by inequality (6.2) and Lemma 6.3, we
obtain that (

diam(5B′)

diam(B)

)s+βp
≤ 20s

diam(5B′)βpµ(B′)

diam(B)βpµ(B)

≤ 20s · c3
µ

diam(5B′)βpµ(B′ ∩B)

diam(B)βpµ(B)

≤ 2 · 20s · 32p · c14
µ · 2−mp

≤ 2 · 20s · 32p · c14
µ · 2−kp/2 .

This, in turn, implies that(
diam(5B′)

diam(B)

)βp
≤ 2 · 20s · 32p · c14

µ · 2
−kβp2

2(s+βp) = C(p, cµ)2−kα .

Combining the above estimates, we see that

−
∫

5B′∩B
|u− uB′O |

p dµ = (2mλ)p diam(5B′)βp ≤ C(p, cµ)2−kα(2kλ)p diam(B)βp .

That is, inequality (6.40) holds also in the present case k/2 ≤ m. This concludes the
proof of inequality (6.40).

By using (6.39) and (6.37) and inequality (6.40), we estimate the second term in
(6.38) as follows:

2p−1
∑
B′∈Gλ

∫
5B′∩B

|u(x)− uB′O |
p dµ(x) ≤ 2pc6

µ

∑
B′∈Gλ

µ(B′I)−
∫

5B′∩B
|u(x)− uB′O |

p dµ(x)

≤ C(p, cµ)2−kα(2kλ)p diam(B)βp
∑
B′∈Gλ

µ(B′I)

≤ C(p, cµ)2−kα(2kλ)p diam(B)βpµ(U2kλ
B ) .

Inequality (6.34) follows by collecting the above estimates.

The following lemma is essential for the proof of Theorem 6.29, and it is the
only place in the proof where the capacity density condition is needed. Recall from
Lemma 6.26 that this condition implies a local boundary Poincaré inequality, which
is used here one single time.
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Lemma 6.34
Let λ > λQ/2 and g ∈ DβH(u). Then

λpµ(Qλ) ≤ C(β, p, cµ)

[
(λ2k)p

2kα
µ(U2kλ) +

K

kp

2k−1∑
j=k

(λ2j)pµ(U2jλ) +K

∫
Uλ\U4kλ

gp dµ

]
.

Proof. By the covering property Qλ ⊂
⋃
B∈Sλ(Q) 5B and doubling condition (6.1),

λpµ(Qλ) ≤ λp
∑

B∈Sλ(Q)

µ(5B) ≤ c3
µ

∑
B∈Sλ(Q)

λpµ(B) .

Recall also that B ⊂ Uλ if B ∈ Sλ(Q). Therefore, and using the fact that Sλ(Q) is a
disjoint family, it su�ces to prove that inequality

λpµ(B) ≤ C(β, p, cµ)

[
(λ2k)p

2kα
µ(U2kλ

B ) +
K

kp

2k−1∑
j=k

(λ2j)pµ(U2jλ
B ) +K

∫
B\U4kλ

gp dµ

]
(6.42)

holds for every B ∈ Sλ(Q). To this end, let us �x a ball B ∈ Sλ(Q).

If µ(U2kλ
B ) ≥ µ(B)/2, then

λpµ(B) ≤ 2λpµ(U2kλ
B ) = 2

(λ2k)p

2kp
µ(U2kλ

B ) ≤ 2
(λ2k)p

2kα
µ(U2kλ

B ) ,

which su�ces for the required local estimate (6.42). Let us then consider the more

di�cult case µ(U2kλ
B ) < µ(B)/2. In this case, by the stopping inequality (6.33),

λpµ(B) ≤
χ
EQ

(xB)

diam(B)βp

∫
B
|u(x)|p dµ(x)

=
χ
EQ

(xB)

diam(B)βp

∫
X

(
χ
B\U2kλ

(x) + χ
U2kλ
B

(x)
)
|u(x)|p dµ(x) .

By Lemma 6.33 it su�ces to estimate the integral over the set B \ U2kλ = B \ U2kλ
B ;

observe that the measure of this set is strictly positive. We remark that the local
boundary Poincaré inequality in Lemma 6.26 will be used to estimate this integral.

Fix a number i ∈ N. Since B ⊂ Q∗, it follows from Lemma 6.32 that the restriction
u|
EQ∪(B\U2iλ)

is a β-Hölder function with a constant κi = C(β, cµ)2iλ. We can now

use the McShane extension (6.5) and extend u|
EQ∪(B\U2iλ)

to a function u2iλ : X → R
that is β-Hölder with the constant κi and satis�es the restriction identity

u2iλ(x) = u(x)

for all x ∈ EQ ∪ (B \ U2iλ). Observe that u2iλ = 0 in EQ, since u = 0 in EQ.
The crucial idea that was originally used by Keith�Zhong in [71] is to consider the

function

h(x) =
1

k

2k−1∑
i=k

u2iλ(x) , x ∈ X .
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We want to apply Lemma 6.6. In order to do so, observe that u2iλ|X\A = u|X\A,
where

A = X \ (B \ U2iλ) = X \ (B \ U2iλ
B ) = (X \B) ∪ U2iλ

B .

Therefore, by Lemma 6.6 and properties (D1)�(D2), we obtain that

gh =
1

k

2k−1∑
i=k

(
κiχ

(X\B)∪U2iλ
B

+ gχ
B\U2iλ

)
∈ DβH(h) .

Observe that U2kλ
B ⊃ U2(k+1)λ

B ⊃ · · · ⊃ U2(2k−1)λ
B ⊃ U4kλ

B . By using these inclusions it
is straightforward to show that the following pointwise estimates are valid in X,

χ
B
gph ≤

(
1

k

2k−1∑
i=k

(
κi χ

U2iλ
B

+ gχ
B\U2iλ

))p

≤ 2p
(

1

k

2k−1∑
i=k

κi χ
U2iλ
B

)p
+ 2pgpχ

B\U4kλ

≤ C(β, p, cµ)

kp

2k−1∑
j=k

( j∑
i=k

2iλ

)p
χ
U2jλ
B

+ 2pgpχ
B\U4kλ

≤ C(β, p, cµ)

kp

2k−1∑
j=k

(λ2j)pχ
U2jλ
B

+ 2pgpχ
B\U4kλ

.

Observe that h ∈ Lipβ(X) is zero in EQ and h coincides with u on B \ U2kλ, and

recall that gh ∈ DβH(h). Notice also that B ⊂ Q∗ and xB ∈ EQ. The local boundary
Poincaré inequality in Lemma 6.26 implies that

χ
EQ

(xB)

diam(B)βp

∫
B\U2kλ

|u(x)|p dµ(x)

=
χ
EQ

(xB)

diam(B)βp

∫
B
|h(x)|p dµ(x)

≤ K
∫
B
gh(x)p dµ(x)

≤ C(β, p, cµ)K

kp

2k−1∑
j=k

(λ2j)pµ(U2jλ
B ) + 2pK

∫
B\U4kλ

g(x)p dµ(x) .

The desired local inequality (6.42) follows by combining the estimates above.

6.7.4 Completing proof of Theorem 6.29

We complete the proof as in [74]. Recall that u : X → R is a β-Hölder function with
u = 0 in EQ and that

M ]u+MEQu = M ],p
β,B0

u+M
EQ,p
β,B0

u .

Let us �x a function g ∈ DβH(u). Observe that the left-hand side of inequality (6.26)
is �nite. Without loss of generality, we may further assume that it is nonzero. By
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Lemma 6.31,∫
B0

(
M ]u(x) +MEQu(x)

)p−ε
dµ(x)

≤ C(p, cµ)

∫
B0

(
M

EQ
Q u(x)

)p−ε
dµ(x) + C(β, p, cµ)

∫
B0

g(x)p−ε(x) dµ(x) .

We have∫
B0

(
M

EQ
Q u(x)

)p−ε
dµ(x) =

∫
Q∗

(
M

EQ
Q u(x)

)p−ε
dµ(x) = (p− ε)

∫ ∞
0

λp−εµ(Qλ)
dλ

λ
.

Since Qλ = Q∗ = Q2λ for every λ ∈ (0, λQ/2), we �nd that

(p− ε)
∫ λQ/2

0
λp−εµ(Qλ)

dλ

λ
=

(p− ε)
2p−ε

∫ λQ/2

0
(2λ)p−εµ(Q2λ)

dλ

λ

≤ (p− ε)
2p−ε

∫ ∞
0

σp−εµ(Qσ)
dσ

σ

=
1

2p−ε

∫
Q∗

(
M

EQ
Q u(x)

)p−ε
dµ(x) .

On the other hand, by Lemma 6.34, for each λ > λQ/2,

λp−εµ(Qλ) ≤ C(β, p, cµ)λ−ε
[

(λ2k)p

2kα
µ(U2kλ)

+
K

kp

2k−1∑
j=k

(λ2j)pµ(U2jλ) +K

∫
Uλ\U4kλ

gp dµ

]
.

Since p− ε > 1, it follows that∫
Q∗

(
M

EQ
Q u(x)

)p−ε
dµ(x) ≤ 2(p− ε)

∫ ∞
λQ/2

λp−εµ(Qλ)
dλ

λ

≤ C(β, p, cµ)(I1(Q) + I2(Q) + I3(Q)) ,

where

I1(Q) =
2kε

2kα

∫ ∞
0

(λ2k)p−εµ(U2kλ)
dλ

λ
,

I2(Q) =
K

kp

2k−1∑
j=k

2jε
∫ ∞

0
(2jλ)p−εµ(U2jλ)

dλ

λ
,

I3(Q) = K

∫ ∞
0

λ−ε
∫
Uλ\U4kλ

g(x)p dµ(x)
dλ

λ
.

We estimate these three terms separately. First,

I1(Q) ≤ 2k(ε−α)

p− ε

∫
B0

(
M ]u(x) +MEQu(x)

)p−ε
dµ(x)

≤ 2k(ε−α)

∫
B0

(
M ]u(x) +MEQu(x)

)p−ε
dµ(x) .
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Second,

I2(Q) ≤ K

kp

2k−1∑
j=k

2jε
∫ ∞

0
(2jλ)p−εµ(U2jλ)

dλ

λ

≤ K

kp(p− ε)

( 2k−1∑
j=k

2jε
)∫

B0

(
M ]u(x) +MEQu(x)

)p−ε
dµ

≤ K4kε

kp−1

∫
B0

(
M ]u(x) +MEQu(x)

)p−ε
dµ .

Third, by Fubini's theorem,

I3(Q) ≤ K
∫
B0\{M]u+M

EQu=0}

(∫ ∞
0

λ−εχ
Uλ\U4kλ

(x)
dλ

λ

)
g(x)p dµ(x)

≤ C(k, ε)K

∫
B0\{M]u+M

EQu=0}
g(x)p(M ]u(x) +MEQu(x))−ε dµ(x) .

Combining the estimates above, we arrive at the desired conclusion.

6.8 Local Hardy inequalities

We apply Theorem 6.28 in order to obtain a local Hardy inequality, see (6.43) in
Theorem 6.35. This inequality is then shown to be self-improving, see Theorem 6.36,
and in this respect we follow the strategy in [81]. However, we remark that the easier
Wannebo approach [114] for establishing local Hardy inequalities as in [81] is not
available to us, due to absence of pointwise Leibniz and chain rules in the setting of
Hajªasz gradients.

Theorem 6.35
Let X be a geodesic space. Let 1 < p < ∞ and 0 < β ≤ 1. Let E ⊂ X be a
closed set which satis�es the (β, p)-capacity density condition with a constant c0. Let
B0 = B(w,R) be a ball with w ∈ E and R < diam(E). Let EQ be the truncation
of E to the Whitney-type ball Q as in Section 6.6. Then there exists a constant
C = C(β, p, cµ, c0) such that∫

B(w,R)\EQ

|u(x)|p

d(x,EQ)βp
dµ(x) ≤ C

∫
B(w,R)

g(x)p dµ(x) (6.43)

holds whenever u ∈ Lipβ(X) is such that u = 0 in EQ and g ∈ DβH(u).

Proof. Let u ∈ Lipβ(X) be such that u = 0 in EQ and let g ∈ DβH(u). Lemma 6.32
implies that

|u(x)| ≤ C(β, cµ)d(x,EQ)β
(
M ],p
β,B0

u(x) +M
EQ,p
β,B0

u(x)
)
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for all x ∈ Q∗. Therefore∫
Q∗\EQ

|u(x)|p

d(x,EQ)βp
dµ(x) ≤ C(β, p, cµ)

∫
B(w,R)

(
M ],p
β,B0

u(x) +M
EQ,p
β,B0

u(x)
)p

dµ(x) .

By Theorem 6.28, we obtain∫
Q∗\EQ

|u(x)|p

d(x,EQ)βp
dµ(x) ≤ C(β, p, cµ, c0)

∫
B(w,R)

g(x)p dµ(x) . (6.44)

It remains to bound the integral over B(w,R) \Q∗. Since EQ ⊂ Q and Q∗ = 4Q, we
have d(x,EQ) ≥ 3rQ > R/64 for all x ∈ B(w,R) \Q∗. Thus, we obtain∫

B(w,R)\Q∗

|u(x)|p

d(x,EQ)βp
dµ(x) ≤ 64βp

Rβp

∫
B(w,R)

|u(x)|p dµ(x)

≤ 3p64βp

Rβp

(∫
B(w,R)

|u(x)− uB(w,R)|p dµ(x)

+ µ(B(w,R))|uB(w,R) − uQ∗ |p

+ µ(B(w,R))|uQ∗ |p
)
.

By the (β, p, p)-Poincaré inequality in Lemma 6.8,∫
B(w,R)

|u(x)− uB(w,R)|p dµ(x) ≤ 2p diam(B(w,R))βp
∫
B(w,R)

g(x)p dµ(x)

≤ C(p)Rβp
∫
B(w,R)

g(x)p dµ(x) .

For the second term, we have

µ(B(w,R))|uB(w,R) − uQ∗ |p ≤ µ(B(w,R))−
∫
Q∗
|u(x)− uB(w,R)|p dµ(x)

≤ C(cµ)

∫
B(w,R)

|u(x)− uB(w,R)|p dµ(x)

≤ C(p, cµ)Rβp
∫
B(w,R)

g(x)p dµ(x) .

For the third term, we have d(x,EQ) ≤ d(x,w) < 4rQ < R for every x ∈ Q∗. Thus,

µ(B(w,R))|uQ∗ |p ≤ C(cµ)

∫
Q∗\EQ

|u(x)|p dµ(x)

≤ Rβp
∫
Q∗\EQ

|u(x)|p

d(x,EQ)βp
dµ(x) .

Applying inequality (6.44), we get

µ(B(w,R))|uQ∗ |p ≤ C(β, p, cµ, c0)Rβp
∫
B(w,R)

g(x)p dµ(x) .

The desired inequality follows by combining the estimates above.

Next we improve the local Hardy inequality in Theorem 6.35. This is done by
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adapting the Koskela�Zhong truncation argument from [77] to the setting of Hajªasz
gradients; see also [81] and [73, Theorem 7.32] whose proof we modify to our purposes.

Theorem 6.36
Let X be a geodesic space. Let 1 < p < ∞ and 0 < β ≤ 1. Let E ⊂ X be a
closed set which satis�es the (β, p)-capacity density condition with a constant c0. Let
B0 = B(w,R) be a ball with w ∈ E and R < diam(E). Let EQ be the truncation of
E to the Whitney-type ball Q as in Section 6.6, and let C1 = C1(β, p, cµ, c0) be the
constant in (6.43), see Theorem 6.35. Then there exist 0 < ε = ε(p, C1) < p− 1 and
C = C(p, C1) such that inequality∫

B(w,R)\EQ

|u(x)|p−ε

d(x,EQ)β(p−ε) dµ(x) ≤ C
∫
B(w,R)

g(x)p−ε dµ(x) (6.45)

holds whenever u ∈ Lipβ(X) is such that u = 0 in EQ and g ∈ DβH(u).

Proof. Without loss of generality, we may assume that C1 ≥ 1 in (6.43). Let u ∈
Lipβ(X) be such that u = 0 in EQ and let g ∈ DβH(u). Let κ ≥ 0 be the β-
Hölder constant of u in X. By rede�ning g = κ in the exceptional set N = N(g) of
measure zero, we may assume that (6.6) holds for all x, y ∈ X. Let λ > 0 and de�ne
Fλ = Gλ ∩Hλ, where

Gλ =
{
x ∈ B(w,R) : g(x) ≤ λ

}
and

Hλ = {x ∈ B(w,R) : |u(x)| ≤ λd(x,EQ)β}.

We show that the restriction of u to Fλ ∪ EQ is a β-Hölder function with a constant
2λ. Assume that x, y ∈ Fλ. Then (6.6) implies

|u(x)− u(y)| ≤ d(x, y)β (g(x) + g(y)) ≤ 2λd(x, y)β .

On the other hand, if x ∈ Fλ and y ∈ EQ, then

|u(x)− u(y)| = |u(x)| ≤ λd(x,EQ)β ≤ 2λd(x, y)β .

The case x ∈ EQ and y ∈ Fλ is treated in the same way. If x, y ∈ EQ, then |u(x) −
u(y)| = 0. All in all, we see that u is a β-Hölder function in Fλ ∪EQ with a constant
2λ.

We apply the McShane extension 6.5 and extend the restriction u|Fλ∪EQ to a β-
Hölder function function v in X with constant 2λ. Then v = u = 0 in EQ and v = u
in Fλ, thus

gv = gχ
Fλ

+ 2λχ
X\Fλ

∈ DβH(v)

by Lemma 6.6.
By applying Theorem 6.35 to the function v and its Hajªasz β-gradient gv, we

obtain∫
(B(w,R)\EQ)∩Fλ

|u(x)|p

d(x,EQ)βp
dµ(x) ≤

∫
B(w,R)\EQ

|v(x)|p

d(x,EQ)βp
dµ(x)

≤ C1

∫
Fλ

g(x)p dµ(x) + C12pλpµ(B(w,R) \ Fλ) .
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Since Hλ = Fλ ∪ (Hλ \Gλ) and C1 ≥ 1, it follows that∫
(B(w,R)\EQ)∩Hλ

|u(x)|p

d(x,EQ)βp
dµ(x)

≤ C1

∫
Fλ

g(x)p dµ(x) + C12pλpµ(B(w,R) \ Fλ)

+

∫
(Hλ\EQ)\Gλ

|u(x)|p

d(x,EQ)βp
dµ(x)

≤ C1

∫
Gλ

g(x)p dµ(x) + C12pλp
(
µ(B(w,R) \ Fλ) + µ(Hλ \Gλ)

)
≤ C1

∫
Gλ

g(x)p dµ(x) + C12p+1λp
(
µ(B(w,R) \Hλ) + µ(B(w,R) \Gλ)

)
.

(6.46)

Here λ > 0 was arbitrary, and thus we conclude that (6.46) holds for every λ > 0.
Next we multiply (6.46) by λ−1−ε, where 0 < ε < p−1, and integrate with respect

to λ over the set (0,∞). With a change of the order of integration on the left-hand
side, this gives

1

ε

∫
B(w,R)\EQ

(
|u(x)|

d(x,EQ)β

)p−ε
dµ(x) ≤ C1

∫ ∞
0

λ−1−ε
∫
Gλ

g(x)p dµ(x) dλ

+ C12p+1

∫ ∞
0

λp−1−ε(µ(B(w,R) \Hλ) + µ(B(w,R) \Gλ)
)
dλ .

By the de�nition of Gλ, we �nd that the �rst term on the right-hand side is dominated
by

C1

ε

∫
B(w,R)

g(x)p−ε dµ(x) .

Using the de�nitions of Hλ and Gλ, the second term on the right-hand side can be
estimated from above by

C12p+1

p− ε

(∫
B(w,R)\EQ

(
|u(x)|

d(x,EQ)β

)p−ε
dµ(x) +

∫
B(w,R)

g(x)p−ε dµ(x)

)
.

By combining the estimates above, we obtain∫
B(w,R)\EQ

(
|u(x)|

d(x,EQ)β

)p−ε
dµ(x)

≤ C2

∫
B(w,R)\EQ

(
|u(x)|

d(x,EQ)β

)p−ε
dµ(x) + C3

∫
B(w,R)

g(x)p−ε dµ(x) ,

(6.47)

where C2 = C12p+1 ε
p−ε and C3 = C1

(
1+2p+1 ε

p−ε
)
. We choose 0 < ε = ε(C1, p) < p−1

so small that

C2 = C12p+1 ε

p− ε
<

1

2
.

This allows us to absorb the �rst term in the right-hand side of (6.47) to the left-hand
side. Observe that this term is �nite, since u is β-Hölder in X and u = 0 in EQ.
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6.9 Self-improvement of the capacity density condition

As an application of Theorem 6.36, we strengthen Theorem 6.22 in complete geodesic
spaces. This leads to the conclusion that the Hajªasz capacity density condition is self-
improving or doubly open-ended in such spaces. In fact, we characterize the Hajªasz
capacity density condition in various geometrical and analytical quantities, the latter
of which are all shown to be doubly open-ended.

Theorem 6.37
Let X be a geodesic space. Let 1 < p <∞ and 0 < β ≤ 1. Let E ⊂ X be a closed set
which satis�es the (β, p)-capacity density condition with a constant c0. Then there
exists ε > 0, depending on β, p, cµ and c0, such that co dimA(E) ≤ β(p− ε).

Proof. Let w ∈ E and 0 < r < R < diam(E). Let EQ be the truncation of E to the
ball Q ⊂ B0 = B(w,R) as in Section 6.6. Let ε > 0 be as in Theorem 6.36. Observe
that

EQ,r = {x ∈ X : d(x,EQ) < r} ⊂ {x ∈ X : d(x,E) < r} = Er .

Hence, it su�ces to show that

µ(EQ,r ∩B(w,R))

µ(B(w,R))
≥ c
( r
R

)β(p−ε)
, (6.48)

where the constant c is independent of w, r and R.

If r ≥ R/4, then the claim is clear since
(
r
R

)β(p−ε) ≤ 1 and

µ(EQ,r ∩B(w,R)) ≥ µ(B(w,R/4)) ≥ C(µ)µ(B(w,R)) .

The claim is clear also if µ(EQ,r ∩ B(w,R)) ≥ 1
2µ(B(w,R)). Thus we may assume

that r < R/4 and that µ(EQ,r ∩B(w,R)) < 1
2µ(B(w,R)), whence

µ(B(w,R) \ EQ,r) ≥ 1
2µ(B(w,R)) > 0. (6.49)

Let us now consider the β-Hölder function u : X → R,

u(x) = min{1, r−βd(x,EQ)β} , x ∈ X.

Then u = 0 in EQ, u = 1 in X \ EQ,r, and

|u(x)− u(y)| ≤ r−βd(x, y)β for all x, y ∈ X.

We aim to apply Theorem 6.36. Recall also that w ∈ EQ. Thus we obtain∫
B0\EQ

|u(x)|p−ε

d(x,EQ)β(p−ε) dµ(x) ≥ R−β(p−ε)
∫
B0\EQ

|u(x)|p−ε dµ(x)

≥ R−β(p−ε)
∫
B0\EQ,r

|u(x)|p−ε dµ(x)

≥ R−β(p−ε)µ(B(w,R) \ EQ,r)
≥ 2−1R−β(p−ε)µ(B(w,R)) ,

(6.50)

where the last step follows from (6.49).
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Since u = 1 in X \EQ,r and u is a β-Hölder function with a constant r−β , Lemma

6.6 implies that g = r−βχ
EQ,r

∈ DβH(u). Observe that∫
B0

gp−ε dµ ≤ r−β(p−ε)µ(EQ,r ∩B0) = r−β(p−ε)µ(EQ,r ∩B(w,R)) .

Hence, the claim (6.48) follows from (6.50) and Theorem 6.36.

The following theorem is a compilation of the results in this chapter. It states the
equivalence of some geometrical conditions (1)�(2) and analytical conditions (3)�(6),
one of which is the capacity density condition. We emphasize that the capacity density
condition (3) is characterized in terms of the upper Assouad codimension (1); in fact,
this characterization follows immediately from Theorem 6.21 and Theorem 6.37.

Theorem 6.38
Let X be a complete geodesic space. Let 1 < p <∞ and 0 < β ≤ 1. Let E ⊂ X be a
closed set. Then the following conditions are equivalent:

(1) co dimA(E) < βp.

(2) E satis�es the Hausdor� content density condition (6.13) for some 0 < q < βp.

(3) E satis�es the (β, p)-capacity density condition.

(4) E satis�es the local (β, p, p)-boundary Poincaré inequality (6.21).

(5) E satis�es the maximal (β, p, p)-boundary Poincaré inequality (6.25).

(6) E satis�es the local (β, p, p)-Hardy inequality (6.43).

Proof. The implication from (1) to (2) is a consequence of Lemma 6.19 with
co dimA(E) < q < βp. The implication from (2) to (3) follows by adapting the proof
of Theorem 6.21 with η = q/β. The implication from (3) to (4) follows from Theorem
6.26. The implication from (4) to (5) follows from the proof of Theorem 6.28, which
remains valid if we assume (4) instead of the (β, p)-capacity density condition. The
implication from (5) to (6) follows from the proof of Theorem 6.35. Finally, condition
(6) implies the improved local Hardy inequality (6.45) and the proof of Theorem 6.37
then shows the remaining implication from (6) to (1).

Finally, we state the main result of this Chapter, Theorem 6.39. It is the self-
improvement or double open-endedness property of the (β, p)-capacity density condi-
tion. Namely, in addition to integrability exponent p, also the order β of fractional
di�erentiability can be lowered. A similar phenomenon is observed in [88] for Riesz
capacities in Rn. See also [78], where solutions to nonlocal equations with measurable
coe�cients are shown to be both higher integrable and higher di�erentiable.

Theorem 6.39
Let X be a complete geodesic space, and let 1 < p <∞ and 0 < β ≤ 1. Assume that
a closed set E ⊂ X satis�es the (β, p)-capacity density condition. Then there exists
0 < δ < min{β, p − 1} such that E satis�es the (γ, q)-capacity density condition for
all β − δ < γ ≤ 1 and p− δ < q <∞.

6.9. Self-improvement of the capacity density condition 159



Proof. We have co dimA(E) < βp by Theorem 6.38. Since limδ→0(β− δ)(p− δ) = βp,
there exists 0 < δ < min{β, p − 1} such that co dimA(E) < (β − δ)(p − δ). Now if
β − δ < γ ≤ 1 and p− δ < q <∞, then

co dimA(E) < (β − δ)(p− δ) < γq .

The claim follows from Theorem 6.38.

A similar argument shows that the analytical conditions (4)�(6) in Theorem 6.38
are also doubly open ended. The geometrical conditions (1)�(2) are open-ended by
de�nition.
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