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Abstract. We consider the solution of the Schrödinger equation u in R when the initial datum
tends to the Dirac comb. Let hp,δ(t) be the fluctuations in time of

∫
|x|2δ|u(x, t)|2 dx, for 0 < δ < 1,

after removing a smooth background. We prove that the Frisch–Parisi formalism holds for Hδ(t) =∫
[0,t]

hp,δ(2s) ds, which is morally a simplification of the Riemann’s non-differentiable curve R. Our
motivation is to understand the evolution of the vortex filament equation of polygonal filaments,
which are related to R.

1. Introduction

The binormal curvature flow, also known as the vortex filament equation,

χt = χx ∧ χxx, (1)

is a model for the dynamics of vortex filaments in Euler equations. The function χ(t, x) describes a
family of curves in 3d that move with time t and are parametrized by arclength x. Using the Frenet
equations one easily concludes that the right-hand side of (1) is a vector whose modulus equals the
curvature and whose direction is the binormal vector. By differentiating both sides by x, we get the
one dimensional Schrödinger map

Tt = T ∧ Txx, where T := χx ∈ S2. (2)

Our interest in this paper is in curves that can develop corners in finite time. For that purpose, it
is better to use the so-called parallel frame (T, e1, e2) instead of the usual Frenet frame, where the
former is defined by  Tx

(e1)x
(e2)x

 =

 0 α β
−α 0 0
−β 0 0

 ·
Te1
e2

 .

Hasimoto proved in [10] that for T to be a solution of (2), u := α + iβ has to solve the 1d cubic
non-linear Schrödinger equation

iut + uxx +
1

2
((|u|2 −A(t))u = 0,

for some real function A(t); Hasimoto used the Frenet frame, but the proof admits more general
frames.

In [6], de la Hoz and the fourth author studied the evolution of regular planar polygons χM , with
M denoting the number of sides. In particular, they were interested in the trajectories described by
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any of the corners. That is to say, if we assume that at time t = 0 there is a corner at the origin,
then they studied the curve in 3d

RM (t) := χM (t, 0). (3)

These curves show a characteristic fractal behavior which is reminiscent of the so-called Riemann’s
non-differentiable function. In fact, they found compelling numerical evidence that limM→∞RM (t) =
R(t) with

R(t) :=

∫ t

0
uD(0, s) ds,

where uD is the solution of the linear Schödinger equation with initial datum FD =
∑

n∈Z δn, that
is, FD is the Dirac’s comb. It turns out that R is a small modification of the complex version of
Riemann’s function

φ(t) :=

∞∑
n=1

eiπn
2t

iπn2
= 2πiR

(−t
4π

)
− t

2
− iπ

6
.

We notice that uD exhibits the Talbot effect, that is, the appearence of rescaled and weighted Dirac
combs at rational times, which easily justifies the fractal appearence of R. There is a rich literature
about the Talbot effect; see for example [3, 7, 18, 19, 17].

Recently, Banica and the fourth author [2] tightened the connection between R and the binormal
curvature flow. They proved that the evolution of a corner of a suitably chosen sequence of polygonal
vortex filaments approaches R(t) in the limit when the number of sides is infinite. Additionally,
inspired by the work of Jaffard [11], they showed that the limiting behavior of the corners falls
within the multifractal formalism of Frisch and Parisi, which is conjectured to govern turbulent
fluids. By analogy with turbulence, we would expect that R could be understood as the outcome
of some stochastic process; such an interpretation still seems to be missing.

Yet another interesting physical phenomenon, which is closely related to multifractality, is the
intermittency. Roughly speaking, the idea is that the velocity of a fluid in fully developed turbu-
lence may erratically change in very small distances, suggesting a very irregular structure. This
phenomenon, called intermittency in small scales is related to the Frisch–Parisi multifractal for-
malism, but it does not seem to be well-defined in the literature. In [4], by adapting the physical
concept of intermittency to the setting of functions and giving a precise definition, the authors gave
quantitative estimates of the intermittency of the Riemann’s non-differentiable function.

Within this circle of ideas, in [16], during an investigation of the dispersive properties of the free
Schrödinger equation, an interesting behavior was discovered for the functional

hδ[f ](t) :=

∫
|x|2δ|u(x, t)|2 dx, x ∈ Rd for 0 < δ < 1,

where u is the solution of the linear Schrödinger equation with initial datum f . By renormalization
(removing an infinite and rescaling), the authors extended the definition of hδ to periodic initial
data like the Dirac comb FD; let us call hp,δ[f ] (p for periodic) to the renormalization.

During the renormalization of hδ[f ] a smooth function is removed, leaving behind small fluctu-
ations that approach the point function in Figure 1 when f approaches the Dirac comb FD. The
function hp,δ[FD] is supported at rationals, so it is somehow a simplification of uD, which has a
complex structure at irrational times. This simplification offers the possibility of understanding
hard questions associated with uD by considering first hp,δ[FD].

In [16] the authors exposed evidences showing that

Hδ(t) =

∫
[0,t]

hp,δ[FD](s) ds, for 0 < δ < 1, (4)
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Figure 1. Evolution of hp,δ[fε], where fε is a smooth periodic function that ap-
proaches the Dirac comb in the sense of distributions as ε→ 0+.

can be seen as the outcome of a (2/s)-Lévy process with s := 2(1 + δ). Unbeknownst to the
authors, similarities between the Riemann non-differentiable function (which is behind uD) and
Lévy processes had already been pointed out by Jaffard in [12, Sections 2.3 and 4.4].

The velocity of turbulent flows differs widely from point to point, so in this context it has been
introduced the spectrum of singularities of a function, which measures the size of the sets with
different Hölder exponents.

Definition 1.1 (Hölder exponent). Let f be a function and t ∈ R. A function f ∈ C l(t), for real
l ≥ 0, if there is a polynomial Pt of degree at most blc such that in a neighborhood of t

|f(s)− Pt(s)| . |t− s|l.
The Hölder exponent of f at t is

hf (t) := sup{l | f ∈ C l(t)}.

To measure the size of a set, we use the concept of Hausdorff dimension.

Definition 1.2 (Hausdorff dimension). Let A ⊂ Rn and Rε be the set of all coverings of A by sets
Ai of diameter at most ε. Let

Hdε(A) := inf
r∈Rε

∑
Ai∈r

(diamAi)
d.

Then,
Hd(A) := lim

ε→0
Hdε(A)

is the d-dimensional Hausdorff content of A. The Hausdorff dimension of A is

dimHA := inf{d : Hd(A) = 0} = sup{d : Hd(A) = +∞}.

Now we can define the spectrum of singularities of a function.

Definition 1.3 (Spectrum of singularities). Let f be a function and define the set

Γh := {t ∈ R | f has Hölder exponent h at t}.
3



The spectrum of singularities is the function

Df (h) = dimH Γh.

If Γh = ∅, then Df (h) = −∞.

As we mentioned, in [2, Theorem 1(iii)] it was proved that the spectrum of singularities of R (and
modifications of it) is

DR(h) = 4h− 2, for all h ∈
[1

2
,
3

4

]
.

Concerning Hδ, it was proved in [16, Theorem 4] that the spectrum of singularities of Hδ is

DHδ(h) =

{
αh, if h ∈ [0, 1/α],

−∞, if h > 1/α,
(5)

where α = 2/s and s = 2(1 + δ), for 0 < δ < 1. Surprisingly, for α-Lévy processes Jaffard proved in
[14] that the spectrum of singularities is almost surely equal to (5). Before stating our main result,
we describe briefly the Frisch–Parisi formalism.

1.1. Frisch–Parisi formalism. The so-called multifactral formalism for functions relates some
functional norms of a function to its spectrum of singularities. This formalism was introduced by
Frisch and Parisi in order to numerically determine the spectrum of fully turbulent fluids [8]. Even
though the Frisch-Parisi formalism has several versions, we decided to use the wavelet–transform
integral method as described at the introduction of [13]. First we must define the wavelet transform
of a function.

Definition 1.4. The wavelet transform of a function f is defined as ψN ∗ f , where ψN (x) :=
Nψ(Nx). The wavelet ψ is a function whose smoothness and decay are adjusted depending on the
problem, and such that∫

xkψ(x) dx = 0, for k = 0, . . . , L and some suitable L.

The Frisch–Parisi formalism suggests that the spectrum of singularities can be computed through
the scaling exponent ηf , which is defined by

ηf (p) := − lim inf
N→∞

log ‖ψN ∗ f‖pLp
logN

. (6)

The Legendre transform provides a link between Df and ηf through the conjectured relationship:

Df (h) = inf
p>0

(ph− ηf (p) + 1).

1.2. Main result. Since Hδ[FD] might be seen as a simplification of the Riemann’s non-differentia-
ble function, for which the Frisch-Parisi formalism has been proved (see [11] or [2]), then we should
be able to prove the Frisch–Parisi formalism for Hδ[FD] in the range [0, s/2]. We confirm this in
our main theorem below.
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Theorem 1.5 (Frisch–Parisi formalism). Let 0 < δ < 1 and s := 2(1 + δ). Let ψ be an integrable
function such that:

(i)
∫
R ψ = 0.

(ii) |ψ(x)| . x−β, for β > 1 + s.
Let ηHδ be the scaling exponent defined in (6) for the function Hδ. Then,

ηHδ(p) =

{
sp/2, if 0 < p ≤ 2/s,

1, if p ≥ 2/s.

In particular, the Frisch–Parisi formalism holds in the range [0, s/2].

As already said, we see Hδ[FD] as a simplification of the Riemann’s non-differentiable function
R. Therefore, a natural question is to determine whether the multifractal formalism holds true
for the non-linear trajectories RM given in (3). This seems to be a very challenging question at
the theoretical level, so, to gain insight into the subject, we computed numerically the spectrum of
singularities of RM for several values of M ; see Figure 2.A. As a matter of comparision, we also
computed numerically the spectrum of R (Fig. 2.A) and Hδ (Fig. 2.B), for which the theoretical
values are known. In Appendix A we describe the methods used to compute the spectrum of
singularities. Although more careful experiments are needed, they suggest that the spectrum of
singularities of RM should be equal to that of R.

We wonder whether it is possible to define Hδ replacing uD by the solution of the non-linear
Schrödinger equation, and in that case, whether the resulting Hδ and its spectrum of singularities
is more amenable to theoretical studies.

Notation. We write A . B if A ≤ CB for some constant C > 0; the relations & and ' are similar.
We also write ‖f‖p = ‖f‖Lp([0,1]).

The Hölder exponent is given in Definition 1.1; the Hausdorff dimension is Defintion 1.2; the
spectrum of singularities is Definition 1.3; and the scaling exponent is (6).

Funding. This work was supported by the Basque Government (BERC 2022-2025 program) and
by the Spanish State Research Agency (Severo Ochoa SEV-2017-0718). The second author was
funded by the project PGC2018-094528-B-I00 - IHAIP and by a Juan de la Cierva–Formation grant
FJC2019-039804-I. The third author acknowledges the project PID2020-113156GB-I00, the RyC
project RYC2018-025477-I, and Ikerbasque. The fourth author is supported by ERCEA Advanced
Grant 2014 669689 - HADE and the project PGC2018-094522-B-I00.

2. Proof of Theorem 1.5

To prove Theorem 1.5 it is more convenient to work with hp,δ rather than directly with Hδ. Since
ψ has vanishing mean, we can write it as ψ = φ′. Thus, the operator ψN ∗Hδ is expressed as∫

ψN (x− y)Hδ(y) dy = −
∫

d

dy
φ(N(x− y))Hδ(y) dy =

∫
φ(N(x− y))hp,δ(y) dy. (7)
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Figure 2. The spectrum of singularities D(h) estimated using the wavelet–
transform modulus maxima method for: A) M -sided polygons RM with different
M values and Riemann’s function R, and B) Hδ with two values of α := 1/(1 + δ).
Clearly, up to the numerical errors, it captures the support of D(h) very well in both
cases. See Appendix A for more details about the numerical methods.

Here, the wavelet φ has the following properties: for some c1, c2 > 0,
• |φ(x)| . 1, for |x| ≤ c1, because ψ is integrable;
• decay of the tails: for some α > s,

|x|α|φ(x)| ≤ c2, for |x| ≥ c1,
because of the decay of ψ;
• the Lp-norm is concentrated∫

|x|≤c1
|φ|p dx ≥ 1

2

∫
|φ|p dx.

Along the paper, we will be using systematically the properties of φ without further comment.
Now let us write out the distribution hp,δ[FD] ∈ S ′(T):

hp,δ[FD](x) =
∑

(p,q)=1

aq,δ
qs

δp/q(x), (8)

where s = 2(1 + δ) and

aq,δ = −2b1,δζ(2(1 + δ))


1, if q is odd,
−2(21+2δ − 1), if q ≡ 2 (mod 4),

22(1+δ), if q ≡ 0 (mod 4).

Here ζ is the Riemann zeta function and

b1,δ =
1

(2π)2δ
Γ(2δ)

|Γ(−δ)|Γ(δ)
.

At the end, the only property of aq,δ we will make use of is |aq,δ| 'δ 1.
Let us denote the last integral in (7) by PNhp,δ, so in view of (8)

PNhp,δ(x) =
∑
p/q

aq,δ
qs

φ(N(x− p/q)),
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where from here onwards, the notation
∑

p/q stands for the sum over all pairs of integers p, q such
that (p, q) = 1. Without loss of generality, we will assume that q is nonnegative. There should not
be confusion between the appearance of p as an integer and in the Lp norms. We aim to prove the
next theorem, from which our main theorems follow.

Theorem 2.1. Let 0 < p ≤ ∞, 0 < δ < 1 and s = 2(1 + δ). Then, for N � 1,

‖PNhp,δ‖Lp([0,1]) 'δ


N−1/p, if 2/s ≤ p ≤ ∞,
N−s/2(logN)s/2, if p = 2/s,

N−s/2, if 0 < p ≤ 2/s.

To estimate the Lp norm of PNhp,δ, the idea is to split this function as

PNhp,δ(x) =
∑
p/q

q≤c0
√
N

aq,δ
qs

φ(N(x− p/q)) + (main term M(x))

∑
p/q

q>c0
√
N

aq,δ
qs

φ(N(x− p/q)). (error term E(x))

Here, 0 < c0 � 1 is a constant to be fixed later. In light of the inequality

|‖PNhp,δ‖p − ‖M‖p| ≤ ‖E‖p,

the goal is to get an estimate for ‖M‖p and a suitable upper bound of ‖E‖p.

2.1. The role of M . This subsection is philosophical in nature. We want to discuss what is the
relationship between M and the spectrum of singularities of Hδ.

In [16, Theorem 4], during the proof of (5), it is actually shown that the Hölder exponent of Hδ

is s/µ, for µ > 2, exactly in the set of numbers Γµ with irrationality µ. Let us recall the definition
of irrationality.

Definition 2.2 (Irrationality Measure). A number x has irrationality µ if for every η < µ there are
infinitely many rationals p/q such that

0 <
∣∣∣x− p

q

∣∣∣ < 1

qη
,

but for η > µ there are at most finitely many.

The set Γµ of numbers with irrationality µ has Hausdorff dimension 2/µ, which is consequence
of Jarník’s [15, Theorem 1], that is,

dimW = 2/µ and H2/µ(W ) = +∞,

where W =
{
x |
∣∣∣x− p

q

∣∣∣ < 1

qµ
for infinitely many rationals p/q

}
.

Now if we consider M , it is essentially supported around fractions p/q with q ≤
√
N ; let us

forget about the parameter c0, which is introduced for technical reasons. We can decompose M in
a dyadic parameter λ as

M(x) =
∑
λ≤
√
N

∑
q'λ

aq,δ
qs

φ(N(x− p/q)) =:
∑
λ≤
√
N

Mλ(x).

7



Hence, ignoring the tail of φ, Mλ is supported in a set Vλ which is union of ' λ2 pairwise disjoint
intervals of length 1/N . For each x ∈ Vλ we can find a fraction p/q such that∣∣∣x− p

q

∣∣∣ < 1

N
,

where q ' λ ' N1/µ for some µ ≥ 2. We might see Vλ as a blurring of Γµ at scale 1/N , so let us
rename Vλ as “Γµ” and notice that |“Γµ”| ' N2/µ−1, which is what we would expect of a blurring
at scale 1/N of a set of dimension 2/µ.

We can compute heuristically the Hölder dimension of PNHδ in “Γµ”, where Hδ was defined in
(4). Neglecting E (we are being overbold here), for x, y ∈ “Γµ” with |x− y| ' 1/N we would have

|Hδ(x)−Hδ(y)| 'M(x) ' N−s/µ.

Hence, in “Γµ” the Hölder exponent would be s/µ, which agrees heuristically with [16, Theorem
4]. The Frisch–Parisi formalism is thus reflected in the Lp norm of M , see for instance (10). The
strength of the relationship between M and DHδ fades away as µ → 2, and at µ = 2 the “error
term” E takes the main role.

2.2. Proof of Theorem 2.1: the upper bound. First, we bound PNhp,δ pointwise with a simpler
function. Since φ decays strongly, then to control it pointwise we can tile R with intervals J with
some suitable length |J | = c1 so that

φ(x) ≤
∑
J

bJ1J(x),

where bJ are coefficients decaying very fast; the tiling is so that one of the intervals, call it J0, is
centered at the origin. Hence, we can write

‖PNhp,δ(·)‖p .
∑
J

bJ

∥∥∥∑
p/q

1

qs
1J(N(· − p/q))

∥∥∥
p
.

By translation symmetry, it suffices to consider J = J0.
Let {K} be a tiling of R with intervals of length 4c1/N , one of them centered at zero, and let

{K ′} be another tiling equal to {K} but shifted by 2c1/N . Since every interval Ip/q of length 2c1/N
and centered at p/q is contained in one interval either from {K} or from {K ′}, then∑

p/q

1

qs
1Ip/q(x) ≤

∑
K

∑
p/q ∈K

1

qs
1K(x) +

∑
K′

∑
p/q ∈K′

1

qs
1K′(x).

Let us assume that c0 < (2c1)
−1/2. Hence, it suffices to control the Lp norm of∑

K

∑
p/q ∈K

1

qs
1K =

∑
K

∑
p/q ∈K
q≤c0

√
N

1

qs
1K +

∑
K

∑
p/q ∈K
q>c0

√
N

1

qs
1K =: M + E.

Now we prove an upper bound for E.

Lemma 2.3. Let 0 < p ≤ ∞. Let 0 < δ < 1 and s = 2(1 + δ). Then, for N � 1,

‖E‖p .δ

{
N
− s

2
+ 1

2p′ , if 1 ≤ p ≤ ∞
N−

s
2 , if 0 < p < 1.
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Proof. We begin with the range 1 ≤ p ≤ ∞. We first estimate the L1 norm. Let ϕ be the Euler’s
totient function1, then

‖E‖1 .δ
∑
K

∑
p/q ∈K
q>c0

√
N

1

qs
|K|

.δ
1

N

∑
q>c0

√
N

ϕ(q)

qs

.δ
1

N

∑
q>c0

√
N

1

qs−1
(by ϕ(q) ≤ q)

.δ
1

N
(
√
N)−s+2 = N−s/2.

On the other hand,

‖E‖∞ .δ sup
|K|=2c1/N

∑
p/q ∈K
q>c0

√
N

1

qs
.

Fix an interval K. If kN/(2c1) ≤ q < (k+1)N/(2c1), then there are at most k+1 rationals p/q ∈ K,
so ∑

p/q ∈K
q>c0

√
N

1

qs
≤

∑
c0
√
N<q≤N/(2c1)

1

qs
+
∑
k≥1

∑
k≤2c1q/N<k+1

k + 1

qs

. N (1−s)/2 +N1−s

. N (1−s)/2.

Now, interpolate the two above estimates: for θ = 1/p, p > 1,

‖E‖p . ‖E‖θ1‖E‖1−θ∞
. (N−s/2)θ(N

1−s
2 )1−θ

= N−
s
2
+ 1−θ

2 = N
− s

2
+ 1

2p′ ,

as desired.
For the range 0 < p < 1 we use Hölder with r = 1/p so that ‖E‖p = ‖E‖Lp([0,1]) ≤ ‖E‖1 .

N−s/2. �

It remains to bound the main term M . Notice that each interval K with |K| = 2c1
N contains at

most one rational p/q with q ≤ c0
√
N whenever

c0 < (2c1)
−1/2. (9)

Indeed, this follows by contradiction, since
∣∣p1
q1
− p2

q2

∣∣ ≥ 1
q1q2
≥ 1

c20N
, assuming q1, q2 ≤ c0

√
N . Hence,

we can control the Lp norm as

‖M‖pp =
∑
K

∑
p/q ∈K
q≤c0

√
N

1

qps
|K| . 1

N

∑
p/q

q≤c0
√
N

1

qps
.

1

N

∑
q≤c0

√
N

1

qps−1
,

1The Euler’s totient function ϕ(n) is the number of integers k, 1 ≤ k ≤ n, such that (n, k) = 1
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where we used ϕ(q) ≤ q. We compute the last sum to get

‖M‖p .


N−1/p, if p > 2/s,

N−s/2(logN)s/2, if p = 2/s,

N−s/2, if p < 2/s.

(10)

Inequality (10) and Lemma 2.3 imply the upper bound in Theorem 2.1.

2.3. Proof of Theorem 2.1: the lower bound. Before getting to the proof of the lower bound,
we need a quite technical lemma that says that the tail of φ can be safely ignored.

Recall that for q ≤ c0
√
N with c0 � 1, we denote by Ip/q the interval of length 2c1/N centered

at p/q; we assume that c0 < (2c1)
−1/2 to ensure that the intervals are disjoint. We pick a rational

p0/q0 and define the error function

e(x) =
∑

p/q /∈ 2Ip0/q0

aq,δ
qs

φ(N(x− p/q)), x ∈ Ip0/q0 .

We will show that e, which is the sum of the tails in Ip0/q0 , is small. The reader can skip the next
lemma under the assumption suppφ ⊂ [−c1, c1].

Lemma 2.4 (Tails are negligible). Let s > 2 and q0 ≤ c0
√
N for c0 � 1. Then,

|e(x)| . qs−20

N s−1 , for x ∈ Ip0/q0 .

Proof. Since |x− p/q| ≥ c1/N then

|e(x)| ≤ C c2
Nα

∑
p/q

p/q /∈ 2Ip0/q0

1

qs
1

|x− p/q|α
. (11)

Moreover, we can write x = p0/q0 + δx, with |δx| ≤ c1/N , then∣∣∣x− p

q

∣∣∣ ≥ ∣∣∣p0
q0
− p

q

∣∣∣− c1
N
≥ 1

2

∣∣∣p0
q0
− p

q

∣∣∣.
We replace the above in (11) so that

|e(x)| ≤ C qα0
Nα

∑
p/q

p/q /∈ 2Ip0/q0

qα−s

|qp0 − q0p|α
.

Since p/q /∈ 2Ip0/q0 is the same as

|qp0 − q0p| ≥ 2c1
q0q

N
,

then it is sensible to break the sum above as

|e(x)| ≤ C qα0
Nα

∑
k≥0

∑
{q : k<2c1q0q/N≤k+1}

qα−s
∑

{p : |qp0−q0p|>k}

1

|qp0 − q0p|α
. (12)

To estimate the very last sum in (12), let a denote a residue of a mod q0 such that |a| ≤ q0/2, so
if |qp0| > k then {l : |qp0 + lq0| > k} = Z and∑

{p : |qp0−q0p|>k}

1

|qp0 − pq0|α
=

∑
{l : |qp0+lq0|>k}

1

|qp0 + lq0|α
.

1

|qp0|α
(assume α > 1).
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If |qp0| ≤ k < q0/2 then ∑
{l : |qp0+lq0|>k}

1

|qp0 + lq0|α
.
∑
l 6=0

1

|lq0|α
≤ 1

qα0
.

If |qp0| ≤ q0/2 ≤ k then ∑
{l : |qp0+lq0|>k}

1

|qp0 + lq0|α
.
∑
l≥k/q0

1

|lq0|α
.

1

q0kα−1
.

Now we have to compute the contribution of each case to the sum in (12)
The contribution of the case |qp0| > k is less than

A1 :=
qα0
Nα

∑
0≤k<q0/2

∑
{q : k<2c1q0q/N≤k+1}

1{|qp0|>k}(q)
qα−s

|qp0|α
. (13)

The last sum in q runs over an interval of length N/(2c1q0) ≥ q0 if c0 � 1 (recall that q0 ≤ c0
√
N),

so we can break it into a number ' N/(2c1q20) of blocks K of length q0 so that∑
{q : k<2c1q0q/N≤k+1}

1{|qp0|>k}(q)
qα−s

|qp0|α
≤
∑
K

∑
q∈K

1{|qp0|>k}(q)
qα−s

|qp0|α
;

see Figure 3.

Figure 3. Blocks K of length q0

Since (p0, q0) = 1, then qp0 runs over all residues r mod q0, so we may bound this case as∑
{q : k<2c1q0q/N≤k+1}

1{|qp0|>k}(q)
qα−s

|qp0|α
.
(

(k + 1)
N

c1q0

)α−s∑
K

∑
r∈K
|r|>k

1

|r|α

.
1

q0(k + 1)s−1

( N

c1q0

)α+1−s

We replace it in (13) so that

A1 .
qα0
Nα

∑
0≤k<q0/2

1

q0(k + 1)s−1

( N

c1q0

)α+1−s
.

qs−20

N s−1 . (14)

The contribution of the case |qp0| ≤ k < q0/2 is less than

A2 :=
qα0
Nα

∑
0≤k<q0/2

∑
{q : k<2c1q0q/N≤k+1}

1{|qp0|≤k}(q)
qα−s

qα0

.
1

Nα

∑
0≤k<q0/2

[
(k + 1)

N

q0

]α−s ∑
{q : k<2c1q0q/N≤k+1}

1{|qp0|≤k}(q).

11



We estimate the last sum in q as before, breaking the sum into blocks of length q0, so that

A2 .
1

N sqα−s0

∑
0≤k<q0/2

(k + 1)α−s
∑
K

∑
r∈K
|r|≤k

1{|qp0|≤k}(q)

.
1

N sqα−s0

∑
0≤k<q0/2

(k + 1)α−s(k + 1)
N

2c1q20

.
1

N s−1 . (15)

The contribution of the case k ≥ q0/2 is less than

A3 :=
qα0
Nα

∑
k≥q0/2

∑
{q : k<2c1q0q/N≤k+1}

qα−s

q0kα−1

.
qα0
Nα
· N

α+1−s

qα+2−s
0

∑
k≥q0/2

1

ks−1

.
1

N s−1 . (16)

We sum up all the contributions (14), (15) and (16) to the error term (12) to find out

|e(x)| . A1 +A2 +A3 .
qs−20

N s−1 , for x ∈ Ip0/q0 ,

which is what we wanted. �

After this lemma, for each p0/q0 with q0 ≤ c0
√
N , we can split PNhp,δ as

PNhp,δ(x) =
∑

p/q ∈ 2Ip0/q0
q≤c0

√
N

aq,δ
qs

φ(N(x−p/q))+
∑

p/q ∈ 2Ip0/q0
q>c0

√
N

aq,δ
qs

φ(N(x−p/q))+e(x), if x ∈ Ip0/q0 .

Since the only fraction p/q ∈ 2Ip0/q0 with q ≤ c0
√
N , for c0 � 1, is p0/q0 itself, then we can write

this decomposition as

PNhp,δ(x) =
aq0,δ
qs0

φ(N(x− p0/q0)) +
∑

p/q ∈ 2Ip0/q0
q>c0

√
N

aq,δ
qs

φ(N(x− p/q)) + e(x), if x ∈ Ip0/q0 ,

=: M(x) + E(x) + e(x). (17)

2.3.1. The range p > 2/s. We estimate the Lp norm of M by integrating in the interval I0, that is,
p0/q0 = 0, so

‖M‖Lp(I0) & N
−1/p.

The Lp norm of E is
‖E‖Lp(I0) .

1

N1/p

∑
p/q∈2I0
q>c0

√
N

1

qs
.

Since |p/q| ≤ 2c1/N then necessarily q ≥ N/(2c1) > c0
√
N , and the number of fractions with

denominator q in 2I0 is ≤ 2c1q/N , so

‖E‖Lp(I0) .
1

N1/p

∑
q≥N/(2c1)

1

Nqs−1
. N−1/p−s+1.

12



By Lemma 2.4 we have
‖e‖Lp(I0) . N

−1/p−s+1.

This leads us to the conclusion

‖PNhp,δ‖p ≥ ‖PNhp,δ‖Lp(I0) & N
−1/p,

which proves the lower bound in Theorem 2.1 for the range p > 2/s.

2.3.2. The range 0 < p ≤ 2/s. The lower bound will be estimated by integrating PNhp,δ over

U :=
⋃
p/q

q≤c0
√
N

Ip/q. (18)

Since the intervals are pairwise disjoint (see (9))

|U | =
∑
p/q

q≤c0
√
N

|Ip/q| ≤
2c1
N

∑
p/q

q≤c0
√
N

1 ≤ 2c1
N

∑
q≤c0

√
N

ϕ(q) ≤ 2c1
N

∑
q≤c0

√
N

q ≤ 2c20c1. (19)

By Lemma 2.4 the Lp norm of e is small

‖e‖pLp(U) .
∑
p/q

q≤c0
√
N

qp(s−2)

Np(s−1) |Ip/q| .
1

Np(s−1)+1

∑
q≤c0

√
N

qp(s−2)+1 . cp(s−2)+2
0 N−ps/2. (20)

In the decomposition (17), the Lp norm of the main term is

‖M‖Lp(U) &
( ∑

p/q

q≤c0
√
N

∫
x∈Ip/q

1

qps
|φ(N(x− p/q))|p dx

)1/p

&
( 1

N

∑
q≤c0

√
N

ϕ(q)

qps

)1/p
, (21)

by using the properties of φ. We estimate the last sum in the next lemma.

Lemma 2.5. Let 0 < α ≤ 2 and M � 1. Then,∑
1≤q≤M

ϕ(q)

qα
&

{
logM if α = 2,

M2−α if 0 < α < 2.
(22)

Proof. Recall the identity

ϕ(q) = q
∑
d|q

µ(d)

d
, (23)

where µ is the Möbius function; see [9, Section 16.3].
Let M0 � 1 and replace (23) into the left-hand side of (22) so that∑

1≤q≤M

ϕ(q)

qα
≥

∑
M0≤q≤M

ϕ(q)

qα

'
∑

M0≤m≤M

1

mα−1

∑
m/2≤q≤m

∑
d|q

µ(d)

d
, (24)

13



where m ∈ 2N. For each dyadic block we have∑
m/2≤q≤m

∑
d|q

µ(d)

d
=
∑
d≥1

µ(d)

d

∑
m/2≤q≤m

1d|q(q)

=
∑

1≤d≤m

µ(d)

d

∑
m/(2d)≤k≤m/d

1

=
∑

1≤d≤m

µ(d)

d

(m
2d

)
+

∑
1≤d≤m

µ(d)

d

(
− m

2d
+

∑
m/(2d)≤k≤m/d

1
)

Since |m/(2d)− |{k | m/(2d) ≤ k ≤ m/d}|| . 1 and |µ(d)| ≤ 1, then∑
m/2≤q≤m

∑
d|q

µ(d)

d
=
m

2

∑
1≤d≤m

µ(d)

d2
+O(logm)

=
m

2ζ(2)
− m

2

∑
d>m

µ(d)

d2
+O(logm)

=
m

2ζ(2)
+O(logm).

Here, we used the identity
∑

d≥1 µ(d)/d2 = 1/ζ(2), where ζ is the Riemann zeta function, see [9,
Theorem 287].

Going back to (24), for M0 � 1 we get∑
1≤q≤M

ϕ(q)

qα
&

∑
M0≤m≤M

1

mα−2 ,

which yields (22). �

We apply Lemma 2.5 to (21) with c0 � 1 to find out that for N � 1 we have

‖M‖p &

{
N−s/2(log c0N)1/p, if p = 2/s

c
2/p−s
0 N−s/2, if p < 2/s.

(25)

It remains to bound the error term

E(x) =
∑

p/q∈2Ip0/q0
q>c0

√
N

aq,δ
qs

φ(N(x− p/q)), if x ∈ Ip0/q0 . (26)

To compute the Lp norm we use Hölder with exponent r = 1/p so that, in view of (19),

‖E‖Lp(U) ≤ |U |1/(pr
′)‖E‖L1(U) . c

2/p−2
0 ‖E‖L1(U).

The L1 norm is

‖E‖L1(U) .
∑
p′/q′

q′≤c0
√
N

∑
p/q ∈ 2Ip′/q′
q>c0

√
N

1

qs
|Ip′/q′ | .

1

N

∑
p/q

q>c0
√
N

1

qs

∑
p′/q′

q′≤c0
√
N

1{|p/q−p′/q′|≤2c1/N}(p
′/q′).

The last sum in p′/q′ is at most one because of the restriction q′ ≤ c0
√
N . Indeed, if there were

at least two, say p1/q1, p2/q2 with |p/q − pi/qi| ≤ 2c1/N , then 1/(q1q2) ≤ |p1/q2 − p1/q2| ≤ 4c1/N

and 1/(q1q2) ≥ 1/(c20N), which implies c0 > 1/(2c
1/2
1 ), contradiction to (9). If the last sum in p′/q′
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is not empty (which happens when q >
√
N/(2c0c1)), then necessarily p′/q′ 6= p/q, which implies

that 1 ≤ 2c1qq
′/N or q ≥ N/(2c1q′) ≥

√
N/(2c0c1). Hence,

‖E‖L1(U) .
1

N

∑
p/q

q≥
√
N/(2c0c1)

1

qs
.

1

N

∑
q≥
√
N/(2c0c1)

ϕ(q)

qs
. cs−20 N−s/2. (27)

In Appendix B we prove a better upper bound, but for the present purposes this is enough. We get
thus

‖E‖Lp(U) . c
2/p+s−4
0 N−s/2. (28)

We can now conclude the lower bound. We have

‖PNhp,δ‖Lp(U) ≥ ‖M‖Lp(U) − ‖E‖Lp(U) − ‖e‖Lp(U),

so, when p < 2/s, from (25), (28) and (20) we get

‖PNhp,δ‖p ≥ ‖PNhp,δ‖Lp(U) & c
2/p
0 (c−s0 − Cc

s
0 − Ccs−40 )N−s/2 & N−s/2 (by s > 2).

For the critical exponent p = 2/s we get (observe that the only logarithmic term below comes from
M)

‖PNhp,δ‖p ≥ ‖PNhp,δ‖Lp(U) & N
−s/2(log c0N)s/2,

which concludes the proof of Theorem 2.1 when 0 < p ≤ 2/s.

Appendix A. Numerical Simulations

For a given signal/function, we calculate its spectrum of singularities D(h) numerically using the
wavelet transform modulus maxima (WTMM) method implemented in MATLAB using the Wavelab
850 toolbox [5]. With a suitable choice of a wavelet, through the wavelet coefficients, we compute the
partition function, scaling exponent η(p) and thus, D(h) is estimated using the Legendre transform
(see [20] for their precise definition as they are different from the ones mentioned earlier). The input
parameters consist of the signal X with length N = 2J , the number of scales, range of parameters p
and h. Thus, for X = Hδ in Figure 2.B, we choose J = 13, α = 0.7, 0.9, p ∈ [−5, 5], h ∈ [hmin, hmax],
where hmin = 0, hmax = 1/α, that is, the support of Hδ, and the wavelet used is the first derivative
of a Gaussian. To further compare them quantitatively, we calculate the error as defined in [20,
(32)] and obtain the values 0.0956 and 0.1166 for α = 0.7 and α = 0.9, respectively. We notice that
these results are indeed comparable with the ones obtained in [20] and can be reduced further with
a larger N .

Next, we estimate D(h) for R and RM in the context of vortex filament equation. More precisely,
we consider the input signal X as the trajectory of the third component (without the vertical
height) of the M -sided filament curve [6]. With p ∈ [−5, 5], hmin = 0.4 and hmax = 0.8, we plot
the Riemann’s function R and RM , for M = 3, 5, 8, 15, in Figure 2.A. The plots show the estimated
values of D(h) where its maximum value varies with M and converges to that of R (circled points).
Indeed, forM = 15, the agreement is remarkable and deviations from the theoretical values (starred
points) are a result of a numerical error, which is minimum when the wavelet chosen is the second
derivative of a Gaussian. The support of D(h) in each case is very close to 0.25.

Appendix B. Counting rationals

In the next proposition we improve the upper bound ‖E‖L1(U) . c
s−2
0 N−s/2 we proved in (27).

Proposition B.1. Let U be the set (18) and E the function (26). Then,

‖E‖L1(U) . c
s
0N
−s/2.
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Proof. The L1 norm is

‖E‖L1(U) .
1

N

∑
p/q

q>c0
√
N

∑
p′/q′

q′≤c0
√
N

1

qs
1{|p/q−p′/q′|≤2c1/N}(p/q, p

′/q′).

Now we break the ranges q > c0
√
N and q′ ≤ c0

√
N dyadically into parameters λ, µ ∈ 2N, respec-

tively, so that

‖E‖L1(U) .
1

N

∑
λ<c0

√
N

µ≥c0
√
N

µ−s
∑

p/q, p′/q′

q'λ, q′'µ

1{|p/q−p′/q′|≤2c1/N}(p/q, p
′/q′).

Equivalently, we have to count at most how many pairs of rationals (p/q, p′/q′) satisfy

0 < |q′p− qp′| ≤ 2c1
λµ

N
; (29)

for that, we use the arguments in [1, Proposition 4.2].
For m ∈ Z \ {0}, the goal is to count how many representations has m as m = q′p − qp′ with

0 ≤ p < q and 0 ≤ p′ < q′, so let us fix q and q′. If (q, q′) = d then necessarily m = dm̃, so let
us clear out d from the representation of m and write m̃ = q̃′p − q̃p′, where q′ = dq̃′, q = dq̃ and
(q̃, q̃′) = 1. Now assume that q̃′p − q̃p′ = q̃′r − q̃r′, or after reordering q̃′(p − r) = q̃(p′ − r′). This
implies that q̃ | (p − r) so, for some l ∈ Z, we have 0 ≤ r = p + lq̃ < q (recall that 0 ≤ p < q and
q = dq̃) and then the number of different r’s is at most d. In conclusion, for every m divisible by d
there are d representations m = q′p− qp′ with 0 ≤ p < q and 0 ≤ p′ < q′.

The above paragraph shows that, for fixed q and q′, the number of choice of pairs (p, p′) satisfying
(29) is ≤ 2c1λµ/N , so the total number of fractions satisfying (29) is . 2c1λ

2µ2/N . Notice that
the collection of representations is empty unless λµ ≥ N/(2c1), so

‖E‖L1(U) .
1

N2

∑
λ<c0

√
N

µ≥c0
√
N

µ2−sλ21{λµ≥N/(2c1)}(λ, µ)

=
1

N2

∑
λ<c0

√
N

λ2
∑

µ≥N/(2c1λ)

µ2−s (by N/(2c1λ) ≥ c0
√
N for c0 � 1)

.
1

N s

∑
λ<c0

√
N

λs . cs0N
−s/2,

where we used that µ and λ are dyadic. The proof is completed. �
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