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A B S T R A C T   

The Rosenzweig-MacArthur predator-prey model is the building block in modeling food chain, food webs and 
ecosystems. There are a number of hidden assumptions involved in the derivation. For instance the prey pop
ulation growth is logistic without predation but also with predation. In order to reveal these we will start with 
modelling a resource-predator-prey system in a closed spatially homogeneous environment. This allows us to 
keep track of the nutrient flow. With an instantaneous remineralisation of the products excreted in the envi
ronment by the populations and dead body mass there is conservation of mass. This allows for a model dimension 
reduction and yields the mass balance predator-prey model. When furthermore the searching and handling 
processes are much faster that the population changing rates, the trophic interaction is described by a Holling 
type II functional response, also assumed in the Rosenzweig-MacArthur model. The derivation uses an extended 
deterministic model with number of searching and handling predators as model variables where the ratio of the 
predator/prey body masses is used as a mechanistic time-scale parameter. This extended model is also used as a 
starting point for the derivation of a stochastic model. We will investigate the stochastic effects of random 
switching between searching and handling of the predators and predator dying. Prey growth by consumption of 
ambient resources is still deterministic and therefore the stochastic model is hybrid. The transient dynamics is 
studied by numerical Monte Carlo simulations and also the quasi-equilibrium distribution for the population 
quantities is calculated. The body mass of the prey individual is the scaling parameter in the stochastic model 
formulation. This allows for a quantification of the mean-field approximation criterion for the justification of 
replacement of the stochastic by a deterministic model.   

1. Introduction 

Predator-prey models such as the Rosenzweig-MacArthur model 
(RM-model) (Rosenzweig and MacArthur, 1963), are important building 
block in food chain, food web and ecosystem models. A trophic inter
action is described by the Holling type II functional response. A 
descriptive logistic growth for the self limiting prey population dy
namics is assumed. The dynamics of the prey-resources is not modelled 
explicitly introducing the bottleneck for having mass conservation 
(Kooijman et al., 2007; Kooi et al., 1998). 

The starting point here is a model discussed in Kooi et al. (1998, 
2002) for the lowest three trophic levels of an aquatic food chain 
whereby resource for the prey in the closed environment is modelled 

explicitly. This allows to keep track of the resource flow and to fulfill 
mass conservation for the whole resource-prey-predator system. The 
volume of the environment is constant and consequently total number of 
individuals and spatial concentration are interchangeable quantities for 
the size of a population. 

The trophic interaction between the prey and the resources is 
modelled by Lotka-Volterra functional response, where the caught prey 
biomass is immediately converted into predator biomass. The predator 
prey interaction where handling prey requires time is given by the 
Holling type II response function. Assuming instantaneous reminerali
sation of the products and dead body mass for both prey and predator 
populations, the conservation of mass law can be used to reduce the 
dimension of the model by an elimination of the nutrient variable. This 
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gives a two-dimensional mass balance predator-prey model, called the 
PPh-model of which the dynamics will be compared with that of the also 
two-dimensional predator-prey RM-model. 

Table 1 gives an overview of the used notations and abbreviations for 
the models. For an introduction into ecosystem-modelling in the closed 
systems with recycling of elemental matter and using mass-balanced 
models we refer also to Gurney and Nisbet (1998). 

To model predation and consumption explicitly the predator popu
lation is split up in searchers and handlers. The predator-prey model 
becomes three dimensional, called the PPd-model. When the searching/ 
handling of prey is much faster than the population size changes a time- 
scale separation argument, called the quasi-steady-state assumption 
(QSSA), is used to justify usage of the Holling type II functional response 
providing a reduction of the PPd-model back to the PPh-model. 

We will show that this procedure leads to an inconsistency where one 
term appears in expressions for both fast and slow when also the dy
namics of the prey population is taken into account. It will be shown that 
the ratio of the body size of the prey individuals and the predator in
dividuals can be used the time-scale parameter. In that sense we revisit 
the derivation of the Holling type II functional response. 

Empirical results show that this ratio is smallest for the lower trophic 
levels of a food chain, Jonsson and Ebenman (1998) and we will show 
that a small ratio justifies the use of the time-scale separation argument. 
Therefore, usage of an algebraic expression (Holling’s disk equation 
Gurney and Nisbet, 1998) is allowed for these lower trophic levels where 
the predator dynamics is again described by one ODEfor the whole 
predator population with the Holling type II functional response. This is 
studied by comparison of the results of a bifurcation analysis of the 
RM-model with the two mass-balance model versions: the PPh-model 
and the PPd-model. 

A general problem with the application of deterministic models is 
that biological phenomena in the real world have often dynamical 
behaviour that is intrinsically erratic due to random processes, and thus 
can be better described by stochastic systems. This random behaviour is 
due to bio-variability in the physiological processes at the individual 
level together with populations that consists of small numbers of the 
individuals. The formulation of the stochastic PPs-model is based on 
internal physiological random processes. The model variables are the 
same as in the deterministic PPd-model where the total system biomass 
is fully conserved across the random events. It is an alternative for 
models where an external ’noise’ component is added to a deterministic 
ODE model. The resulting model equations are called SDE stochastic dif
ferential equations, see for instance (Gardiner, 2009; Stollenwerk et al., 
2017) 

As in the PPd-model we model the trophic interaction by searching 
and handling processes and split the predator population in prey- 

searching and prey-handling predators. Searching is modelled using 
the law of mass action which gives the encounter rate of one prey and 
one predator and handling with exponentially distributed handling 
times. Furthermore the proportional death rate for the predator pop
ulations is modelled as a stochastic death process. All actions are 
modelled as Poisson processes modelling counting the completely at 
random occurrences of certain events that appear to happen at a certain 
intensity. 

The growth of the prey population remains described by its deter
ministic formulation. This shows that the PPs-model is hybrid (Kang and 
Kurtz, 2013; Kang et al., 2014) involving differential equations driven 
stochastic equations, that is, a Markov process with piecewise deter
ministic ODEs with a time dependent solution. The motivation to model 
the searching, handling and the populations death process stochasti
cally, while the prey growth process remains deterministically, is that in 
this study the size of the nutrient particles (considered as a nutrient 
soup) remains relatively small with respect to the prey individuals. 

The analysis of the models will be used to address the following 
research topics 

1. In the mass-balance formulation using biomass as descriptive vari
able for the size of the populations, an inconsistency occurs because 
the same term appears in expressions for both fast (searching and 
handling predator) and slow prey timescales. Is it possible to over
come this problem by using besides biomass also number of in
dividuals as a dimension?  

2. Are the differences in the bifurcation diagrams and consequently the 
long-term dynamics, for the two-dimensional mechanistic mass- 
balance PPh-model and the descriptive RM-model large?  

3. Are the differences in the long-term dynamics of the deterministic 
and stochastic versions in application to food chain models, with 
parameter values within realistic ranges, of a tri-trophic aquatic food 
chain model large? 

Different analysis methods, such as ODE solvers and bifurcation 
packages are used to study the dynamics of the deterministic models. We 
refer to Guckenheimer and Holmes (1985), Kuznetsov (2004) for an 
introduction into bifurcation analysis. In case of stochastic models, 
Monte Carlo type numerical simulations produce realizations from 
which mean and variances are calculated. In Kooijman et al. (2007) the 
direct Poissonian process method was used and here we use the direct 
Gillespie method (Gillespie, 1976; 2001; Stollenwerk et al., 2017) based 
on exponential next-event distributions for law of mass-action preda
tor-prey encounters and mortality. Furthermore, we study a 
quasi-equilibrium distribution approximated by a multivariate normal 
distribution (Grasman and Herwaarden, 1999). 

In phase-space the stochastic solution shows the characteristic 
counter clock limit cycles where the predator dynamics follows that of 
the prey around the stable equilibrium of the associated deterministic 
model (Gurney and Nisbet, 1998). Stochastic simulations show that this 
holds for spiral equilibria but also for node equilibria. 

The paper is organised as follows. In Section 2 the predator-prey- 
resources PPR-model for the lowest three trophic levels of an aquatic 
food chain is formulated. In Section 3 that model is reduced by one 
dimension using mass conservation. The Holling type II functional 
response describes the predator-prey trophic interaction in this PPh- 
model. In Section 4 we focus on the modelling of trophic interactions. 
The predator population is divided into searchers and handlers of prey, 
called the PPd-model and one extra parameter is introduced: the ratio of 
the body size of the prey versus the predator individuals. A small values 
of the ratio gives by using a time-scale argument the PPh-model again. 
Section 5 gives the observed values of this ratio for real food chains 
depending on the trophic level. In Section 6 the dynamics of the PPd- 
model and the RM-model deterministic model is analysed. In Section 7 
we investigate the stochastic version of the PPd-model of the PPs-model 
by random simulations. This gives again one extra scaling parameter 

Table 1 
Population-prey-resource model relationships. Three dimensional (Predator- 
Prey-Resource) PPR-model is first reduced to two dimensional mechanistic 
(Predator-Prey with Holling type II functional response) PPh-model and the 
descriptive (Rosenzweig-MacArthur) RM-model. The PPh-model is extended to 
two three-dimensional models with searching and handling individuals, namely 
the deterministic (Predator-Prey-deterministic) PPd-model and the stochastic 
(Predator-Prey-stochastic) PPs-model. The PPd-model has one parameter more 
than the PPh-model: the ratio of the individual biomass of prey and predator yε

12. 
The stochastic PPs-model has two extra parameters: the individual biomass of 
prey xε

1 and the individual biomass of predator xε
2.  

PPR-model: Eq. (3) 

reduction reduction 

Mechanistic Descriptive 
PPh-model: Eq. (5) RM-model: Eq. (6,7) 
↓ Extension: deterministic searching/handling   
PPd-model: Eq. (18)  
↓ Extension: stochastic searching/handling   
PPs-model: Section 7   
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namely the biomass of the prey individuals. The results of the stochastic 
model are compared with the corresponding deterministic version PPd- 
model. Finally in Sections 9 and 10 the obtained results are discussed by 
comparison with those in the literature. Our approach is in some sense 
holistic: starting with modelling issues, mathematical model formula
tion, model analysis and numerical experiments answer the research 
topics mentioned above. 

2. Three-trophic level population model 

This section describes the predator-prey-resources PPR-system in a 
batch reactor environment which is spatially homogeneous and closed 
for biomass. Such a system forms for instance the three lowest trophic 
levels in a food chain, (Gurney and Nisbet, 1998, Chapter 7). In marine 
systems autotrophic producers, for instance phytoplankton (algae), 
convert light energy to chemical energy which is stored in its organic 
compounds from inorganic nutrients they take up from the environment. 
Their compounds are the resources that become available to hetero
trophic consumers. 

We denote the resource concentration by x0, prey biomass density by 
x1 and predator biomass density by x2 expressed for instance in units C- 
moles per constant environmental volume. The following physiological 
processes in the populations are considered: assimilation, growth and 
maintenance govern how populations can exist and under which con
ditions they survive. The efficiencies of these processes are in general 
not 100% and therefore products are excreted by the prey and predator 
organisms in the reactor. 

The seven dimensional model reads (see Kooi et al., 2002) 

dx0

dt
= − I01f01(x0) x1 + α1p1 + β1z1 + α2p2 + β2z2 , (1a)  

dx1

dt
= μ01f01(x0) x1 − m1x1 − I12f12(x1) x2 , (1b)  

dp1

dt
= (I01 − μ01)f01(x0)x1 − α1p1 ,

dz1

dt
= m1x1 − β1z1 (1c)  

dx2

dt
= μ12f12(x1) x2 − m2x2 , (1d)  

dp2

dt
= (I12 − μ12)f12(x1) x2 − α2p2 ,

dz2

dt
= m2x2 − β2z2 . (1e) 

The prey consumes resource at rate I01f01, a proportion μ01f01 of it 
goes to reproduction of new prey. The assimilation efficiency is y01 = μ01 
/I01. The remaining proportion (I01 − μ01f01) cannot be processed by the 
prey, and hence, is excreted to form the excreted biomass p1. At rate α1, 
this excreted biomass becomes a new resource that can then be used by 
prey and predators. Another contribution to resource comes from dead 
prey z1. We assume that prey individuals die with m1, and at rate β1 dead 
prey are converted into the resource. Similarly predator consumes prey 
at rate I12f12 described by a scaled Holling type II functional response, a 
proportion μ12f12 of it goes to reproduction of new predator. The 
assimilation efficiency is y12 = μ12/I12. The remaining portion 
(I01 − μ01)f12 cannot be processed by the predator, and hence, is excreted 
to form the excreted biomass p2. At rate α2, this excreted biomass be
comes ads to the resource as well as dead predator z2. We assume 
predators die with rate m2, and at rate β2 dead predators are converted 
into the resource. 

The consumption of the nutrients by the prey is modelled by the 
Lotka-Volterra or linear functional response, f01, and the predator-prey 
interaction is modelled by the Holling type II functional response 
given by the scaled functional responsef12, hence 

f01(x0) =
x0

k01
, f12(x1) =

x1

k12 + x1
. (2)  

By assuming instantaneous remineralisation of all excreted products 

from the assimilation, maintenance processes of the populations and 
dead biomass, model (1) becomes the PPR-model: 

dx0

dt
= − μ01

x0

k01
x1 + m1x1 + (I12 − μ12)f1,2(x1) x2 + m2x2 , (3a)  

dx1

dt
= μ01

x0

k01
x1 − m1x1 − I12f1,2(x1) x2 , (3b)  

dx2

dt
= μ12f1,2(x1) x2 − m2x2 . (3c) 

Let C(t) be the sum of the three biomass densities, then summation of 
the three Eq. (3) gives 

dC
dt

= 0 , C(t) = x0(t) + x1(t) + x2(t) = C(0) =: C0 ≥ 0 , (4)  

that is, the sum of the biomasses is a given constant C0. This is the 
deterministic mass-balance population model where f12 is the Holling 
type II functional response Eq. (2) and the state values are expressed in 
dimension of biomass per environmental volume. Table 2 gives a list of 
all the parameters and variables. The model is referred to as the three 
dimensional PPR-model. 

3. Deterministic predator-prey models 

In this section we discuss two predator-prey models with Holling 
type II functional response. Using mass the conservation principle we 
can eliminate the variable x0 and system Eq. (3) is equivalent to the two- 
dimensional predator-prey system which we call the PPh-model 

dx1

dt
=

μ01

k01
x1
(
C0 − x1 − x2

)
− m1x1 − I12f1,2(x1) x2 , (5a)  

dx2

dt
= μ12f1,2(x1) x2 − m2x2 , (5b)  

where the Holling type II functional response in given in Eq. (2). Mass 
conservation gives the side-condition x0 = C0 − x1 − x2 ≥ 0. 

This system resembles the RM-model where the lowest trophic level, 
the nutrients for the prey, is not modelled explicitly. In that formulation 
the prey grows logistically in absence of the predator and this term is not 
altered when the predator population exists, that is the − x1x2 term is 
missing, hence 

dx1

dt
=

μ01

k01
x1
(
C0 − x1

)
− m1x1 − I12f1,2(x1) x2 , (6a)  

dx2

dt
= μ12f1,2(x1) x2 − m2x2 . (6b) 

When the predator population is extinct, x2 = 0, models Eqs. (5a) 
and (6a) for the remaining prey population are equal because the extra 
term is zero. Starting with Eqs. (3a), (3b) where x2 = 0 and following the 
same mass conservation principle we get a dimension reduction for the 
prey dynamics to the logistic growth, see also Kooi et al. (1998) and 
(Gurney and Nisbet, 1998, Chapter 7). 

However, we show here that starting with the three level predator- 
prey-resources system Eq. (3), the same principle gives the extra −
x1x2 term in Eq. (5a). The biological interpretation is that the prey uses 
the ingested resources partly for its own but also an extra amount 
needed as building blocks by the predators. The mass conservation law 
shows that in a closed reactor system the prey and predator are also 
(indirectly) competing for the ambient resources in the reactor and 
therefore, there are two negative predator-prey interaction terms in the 
equation for the growth of the prey population. 

Using the usual parameters and notations, the RM-model is presented 
in the familiar expressions 
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dx1

dt
= rx1

(
1 −

x1

K

)
− I12f1,2(x1) x2 , (7a)  

dx2

dt
= μ12f1,2(x1) x2 − m2x2 , (7b)  

with intrinsic growth rate r and carrying capacity K. 

r =
μ01

k01
C0 − m1 , K =

rk01

μ01
= C0 −

m1k01

μ01
. (8)  

In order to have r > 0 and K > 0 we assume: μ01C0/k01 − m1 > 0. Hence, 
the total biomass in the closed system, parameter C0 is an environmental 
parameter similar to the carrying capacity but with a different inter
pretation because it is a conserved quantity and does not refer to an 
asymptotic solution. While in the RM-model we have for a stable prey- 
only equilibrium limt→∞x1 = K, in the mass-balance equation it also 
depends on limt→∞x2. For the biological interpretation of the parameters 
the reader is referred to Table 2. 

It is well known that the Holling type II functional response f12, Eq. 
(2), can be derived using mechanistically motivated time-scale separa
tion between predator-prey physiological processes of searching and 
handling, see for instance (Dawes and Souza, 2013; Metz and Diekmann, 
1986; Metz and Batenburg, 1985) and (Stollenwerk et al., 2017, App. 
A2). Using a time-scale separation argument, Eq. (5) with Eq. (2) is 
purely formulated at the population level. Generally, in this derivation 
the predator population is split up into two sub-population, searchers 
and handlers yielding a three-dimensional system where the time-scale 
parameter ε is small, and the slow time scale t is such that τ = t /ε defines 
the fast timescale: 

dx1

dt
=

μ01

k01
x1
(
C0 − x1 − x2s − x2h

)
− m1x1 −

I12

k12
x1x2s , (9a)  

dx2s

dt
= −

I12

εk12
x1x2s +

I12

ε x2h − m2x2s , (9b)  

dx2h

dt
= +

I12

εk12
x1x2s −

I12

ε x2h + y12
I12

k12
x1x2s − m2x2h , (9c) 

Where searching and handlers predators change at a fast timescale. 
With ε→0, the fast time-scale dynamics of the predator system (x2s(τ),
x2h(τ)) is described by 

dx2s

dτ = −
I12

k12
x1x2s + I12x2h ,

dx2h

dτ =
I12

k12
x1x2s − I12x2h . (10)  

The quasi-steady-state variables x∗
2s and x∗

2h are the fast equilibrium 
values given by 

x∗2s =
k12

k12 + x1
x2 = f12(x1) , x∗2h =

x1

k12 + x1
x2 , (11)  

where we used x2 = x2s + x2h and Eq. (2). 
Adding Eqs. (9b) and (9c) gives, however only in the unrealistic case 

ε = 1, the two-dimensional model Eq. (6) where the conversion from 
prey biomass into predator mass is described by an algebraic equation, 
the Holling type II functional response, Eq. (2). 

The last term in Eq. (9a) and the first term in Eq. (9b) are unequal 
when ε < 1 and therefore, since they present the same quantity, there is 
an inconsistency for small ε. In the next section we will revise this 
derivation. 

4. Deterministic PPd-model 

In compartmental models all individuals that constitute, for both 
prey and predator populations, are assumed identical (also their chem
ical composition). As a consequence the dimension of the population can 
be modelled either by numbers of individuals or by the total biomass. Let 
n1 ∈ N denote the number of the prey individuals per environmental 

volume and n2 ∈ N the number of predator individuals per environ
mental volume. 

Let xε
1 denote the biomass of an single prey individual and xε

2 the 
biomass of a predator individual. Since all individuals are identical we 
have for the prey population x1 = n1xε

1 and for the predator population 
x2 = n2xε

2. We will need the ratio of the masses of the individuals of the 
two populations, the coefficient yε

12 = xε
1/xε

2. 
For the modelling of the predator-prey interaction the predator 

population is divided in searchers and handlers where the number of 
predator individuals are denoted by n2s = x2s/xε

2 and n2h = x2h/xε
2 and 

the number of prey individuals by n1 = x1/xε
1 and of all predators n2 =

x2/xε
2. When searching predators meet prey at contact rate b they are 

converted into handling predators. These handling predators do not feed 
and they convert back into searching predators with a constant specific 
rate k where 1/k is the mean handling time for a prey individual. The 
equations for the searching and handling subpopulation using the pop
ulation individuals n1, n2s and n2h are derived using the pseudo-reaction 
scheme 

N1 + N2s⟶b N2h⟶k N2s . (12)  

The equations read for the trophic interaction 

dn2s

dt
= − b n1n2s + kn2h ,

dn2h

dt
= b n1n2s − kn2h . (13) 

We interpret now the results in the mass density formulation, that is 
the state variables are the population biomass densities x1, x2s and x2h. 
The implementation of these details requires a partitioning of the 
predators x2(t) = x2s(t) + x2h(t) into searching x2s and food-handling x2h 

sub-populations. 
Using biomasses again instead of numbers for the state variables we 

get 

dx2s

dt
= − b

x1

xε
1
x2s + kx2h ,

dx2h

dt
= b

x1

xε
1
x2s − kx2h . (14) 

We assume that the interactions of the population individuals n1, n2s 

and n2h, that rate b is related to I12/k12 and k to I12 as follows 

b =
I12xε

1

k12yε
12

, k =
I12

yε
12

. (15)  

Both rates b and k are inversely proportional to the ratio yε
12 of the 

biomass of the prey and predator. This is motivated as follows where we 
assume that the predator body size is fixed. When the biomass of the 
prey individuals is, for instance, halved, the number of prey individuals 
doubles and according to the law of mass action also the attack rate b 
doubles. Hence, we assume the attack rate proportional to the prey- 
predator size ratio yε

12 and this is equivalent to the assumption made 
in Troost et al. (2008) that the capture time is proportional to 1/yε

12. 
Furthermore, when the size of the prey individuals is halved (and the 
digestion rate in the predator remains the same) also the handling time 
is halved and therefore the handling rate k per individual doubles. 

In addition we introduce the fast time scale variable τ = t/yε
12 besides 

the slow time scale t. With yε
12→0, the fast time-scale dynamics of the 

predator system (x2s(τ), x2h(τ)) is described by Eq. (10) with ε = yε
12. 

The positive fast equilibrium, quasi-steady-state (x∗
2s, x∗

2h) Eq. (11), of 
the system Eq. (10) needs to be unique and stable considered as the 
equilibrium of the single equation: 

dx2s

dτ = −
I12

k12
x1x2s + I12(x2 − x2s) . (16)  

The Jacobian evaluated in the quasi-steady-state equilibrium reads 

dx2s

dτ |x∗2s
= −

I12

k12
x1 − I12 < 0 , (17)  

and hence the quasi-steady-state equilibrium Eq. (11) is globally stable. 
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This shows that there are no spurious equilibria occurring and therefore 
that the application of the time-scale technique is robust. 

Combining the predator-prey trophic interaction Eq. (10) with ε =
yε

12 the terms presenting the other processes such a prey growth and prey 
and predator mortality from Eq. (5) with x2(t) = x2s(t)+ x2h(t), gives 
the PPd-model 

dx1

dt
=

μ01

k01
x1
(
C0 − x1 − x2s − x2h

)
− m1x1 −

I12

k12
x1x2s , (18a)  

dx2s

dt
= −

I12

k12yε
12

x1x2s +
I12

yε
12

x2h − m2x2s , (18b)  

dx2h

dt
= +

I12

k12yε
12

x1x2s −
I12

yε
12

x2h + y12
I12

k12
x1x2s − m2x2h . (18c) 

The three-dimensional system PPd-model (18) becomes equivalent 
with the PPh-model when limyε

12↓0. To show this we add of (18b) and 
(18c) and we use 

I12

k12
x1x∗2s = I12

x1

k12 + x1
x2 = I12f1,2(x1) x2 , (19)  

The PPd-model is also taken as starting point for the formulation the 
stochastic version PPs-model in Section 7. 

Fig. 1. Phase-space analysis for prey x1(t) and predator x2(t) phase-space analysis for left column k12 = 1/3 (stable equilibrium: ‘•’) and right column k12 = 1 /8 
(unstable equilibrium: ‘∘’). The initial values for the state variables prey x1(0) = 0.2 and predator x2(0) = 0.7 are indicated by ‘□’. The blue curve is the parabolic 
x1-nullcline. Top panel: RM-model system (6). Middle panel: system PPh-model: Eq. (5). Bottom panel: PPd-model system Eq. (18). The additional parameter is yε

12 =

1/4. For comparison the equilibrium point in the left panel indicated by the open circle ∘ on the nullcline belongs to the PPh-model is shown. Note that there is no 
convergence to this PPh-model equilibrium ‘∘’ but to a somewhat higher prey value x∗

1 . (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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5. Body mass ratios in food chains 

In Jonsson and Ebenman (1998) the empirical pattern of decreasing 
predator-prey body mass ratios with increasing trophic height is studied. 
The predator-prey body mass ratio 1/yε

12 was proposed to be the 
following function of the trophic position i of the consumer in the chain, 
and decreases toward unity with increasing consumer trophic position 
as observed in many real food chains 

yε
i,i+1 =

1
1 + 300e(1− i) . (20)  

The starting value for the average prey-predator body mass ratio be
tween the primary and secondary consumer (trophic level, i = 1) in a 
data set analyzed by the authors is yε

12 ≈ 1/300, see (Jonsson and 
Ebenman, 1998, Eq. (5)). For i = 2 yε

12 is 1/110, i = 2: 1/42, i = 3: 1/16, 
i = 4: 1/6.5. It increases toward unity with increasing predator trophic 
level. So, for higher levels of long food chains, the sizes of the predator 
and its prey become almost equal. 

Note that in Jonsson and Ebenman (1998) an additional parameter k 
occurs but the authors state that its value is close to 1 and therefore it is 
not introduced here. 

6. Phase-space and bifurcation analysis of deterministic models 

We present the results of a bifurcation analysis for the deterministic 
population based models. We refer to Guckenheimer and Holmes 
(1985), Kot (2001), Kuznetsov (2004) for an introduction into 

bifurcation analysis. The reference parameter values are given in 
Table 2. 

Phase-space plots are shown in Fig. 1 for the RM-model (top panel), 
PPh-model (middle panel) and PPd-model (bottom panel). Two values 
for are used: k12 = 1/3 (left panels) with a stable equilibrium and k12 =

1/8 (right panels) with a stable limit cycle. 
The phase-space plots for the RM-model are shown in Fig. 1a,b where 

we take the same initial values as for the other deterministic models, 
that is x1(0) = 0.2 and x2(0) = 0.7. This model in described by the set of 
ODEs in Eq. (6) together with Eq. (8). 

Figure 1 c,d displays the numerical simulation results for the PPh- 
model. In the phase-space diagrams because C0 = 1 and x0 > 0 the dy
namics is limited to the left-lower triangle of the state space (0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 1) while for the RM-model there is not this restriction. The 
amplitude of the limit cycle is lower that that in the RM-model and 
especially the bottom value of the cycle is larger. 

Figure 1 e,f displays the numerical simulation results for the PPd- 
model (18). The additional parameter is yε

12 = 1/4, so larger than 1/
300 the empirical value for the lowest level of food chains and webs in 
Eq. (20). 

In Table 3 the explicit expressions for the equilibria of the RM-model 
and PPh-model are given, see also Kooi and Poggiale (2018). Since these 
models are two-dimensional it is easy to perform a bifurcation analysis. 
A Hopf bifurcation occurs when the trace of the Jacobian matrix eval
uated at equilibrium E2 is zero and a transcritical bifurcation TC when its 
determinant is zero, see (Kot, 2001, p. 134). This TC bifurcation occurs 
for parameter values where x2 = 0, hence the predator-prey equilibrium 

Fig. 2. One-parameter bifurcation diagram for k12. All other parameter values are given in Table 2. a) the RM-model Eq. (6), b) PPh-system Eq. (5), c) PPd-system 
Eq. (18). In the bottom-subpanels the prey population x1 is depicted and in the top-subpanels the predator x2. Red lines indicate stable equilibria or maxima and 
minima values of limit cycles and blue lines unstable equilibria. The prey-only equilibria E1, see Table 3 (above transcritical bifurcation TC) and interior predator- 
prey E2 equilibria (between TC and Hopf bifurcation H) and the maximum and minimum values for the limit cycle L2 (above H) are shown. ((For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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E2 coincides with the prey-only equilibrium E1. For the PPh-model this 
means that x1 = C0 and hence x0 = 0 as a result of the assumption that 
m1 = 0. This is biological realistic with instantaneous remineralisation. 

The analytical expressions were obtained with Maple (2017) and 
shown also in Table 3 with the exception of the three dimensional 
PPd-model because in that case the expressions are unmanageable. 

We perform a numerical bifurcation analysis with the parameter 
values from Table 2. One- and two-parameter diagrams are calculated 
with the computer package AUTO Doedel and Oldeman (2009). 
Continuation of the parameter k12 the gives the bifurcation diagrams 
shown in Fig. 2. There are two bifurcations involved. The transcritical 
bifurcation TC and the Hopf bifurcation H. Below the transcritical 
bifurcation TC only the prey population exists in stable equilibrium E1. 
There is coexistence in stable equilibria E2 in the interval between 
transcritical bifurcation TC and Hopf bifurcation H and above the Hopf 
bifurcation as stable limit cycles. 

These numerical results for the RM-model in Fig. 2a show that the 
limit cycle for parameter values above the supercritical Hopf bifurcation 
H is stable and that the minimum values become very small for small k12. 
This phenomenon is related to the “paradox of enrichment” (Dawes and 
Souza, 2013; Rosenzweig, 1971), because catastrophic extinction due to 
stochastic fluctuations is likely, as we will see in the discussion of the 
PPs-model results below. 

For the PPh-model by the bifurcation diagram is shown in Fig. 2a 
where the additional parameter is yε

12 = 1/4. This diagram looks the 
same as Fig. 2b for the RM-model. The main difference is that the Hopf 
bifurcation H is at somewhat higher k12 value and the predator biomass 
is smaller and this holds similarly for the amplitude of the limit cycle. 

For the PPd-model the one-parameter bifurcation diagram is shown 
in Fig. 2c. This diagram looks again similar to the one in Fig. 2b for the 
PPh-model. The main difference is that the transcritical bifurcations TC 
and Hopf bifurcation H occur at lower k12 values. Furthermore the 
equilibrium E2 values and the amplitude of the limit cycle are smaller. 

At the Hopf bifurcation the real parts of two conjugate eigenvalues of 
the Jacobian are zero while at the transcritical bifurcation one eigen
value is zero and the other is negative. This indicates that there is a 
focus-node point that plays the same role as a bifurcation point. At this 
point two real eigenvalues are equal and negative. It marks the transi
tion between a stable node and a focus (spiral sink). Hence the quali
tative long-term dynamics of the deterministic system does not change 
when the bifurcation parameter crosses this point; in both cases there is 
convergence to the equilibrium. We will see below that this point is 
important when stochasticity is taken into account. 

The two-parameter diagrams are shown in Fig. 3. For I12 = 5/3 the 
results are shown in the one-parameter diagram Fig. 2 for parameter k12. 
There are two bifurcation curves TC and H. Below the transcritical 
bifurcation TC only the prey population exists in stable equilibrium E1. 
There is coexistence in stable equilibria in the region denoted by E2 
between Hopf bifurcation H and transcritical bifurcation TC curve and as 
stable limit cycles denoted L2 in the region above the H curve. 

The analytical expressions for the two-dimensional models: RM- 
model (6) and PPh-model (5) are given in Table 4. For the TC curve is 
fixed by the condition that the determinant of the Jacobian matrix 
evaluated in the equilibrium is zero. In the case of the Hopf bifurcation it 
is that its trace equals zero. For the three-dimensional PPd-model the 
analytical expressions are not shown because they are very complicated. 

The bifurcation portrait (equilibria prey population, equilibria prey- 
predator equilibrium and limit cycles) is, with the reference parameter 
values from Table 2, almost the same for the three models. 

Modelling mechanistic mass conservation in the PPh-model with 
respect to the descriptive RM-model logistic growth rate of the prey 
population gives limited changes in the position of the Hopf bifurcation 
H that separates the regions with stable coexistence in equilibria E2 and 
on limit cycles L2, see Fig. 3b versus Fig. 3a. Introducing additionally 
two compartments for the predator as searchers and handlers in the PPd- 
model alters the position of the transcritical bifurcation TC, see Fig. 3c 
versus Fig. 3b. 

7. Stochastic population PPs-model 

We start with a heuristic derivation of the PPs-model. The PPd-model 
Eq. (18) describes the dynamics of the predator-prey dynamics in the 
closed environment whereby the predator population consists of two 
compartments, searchers and handlers, hence a three-dimensional sys
tem for x = (x1,x2s,x2h) ∈ R3

+, the deterministic variables. In the deriva
tion of the PPs-model the three model variables will be expressed 
intermediately in numbers of individuals instead of biomasses via n1 =

x1/xε
1 and n2 = x2/xε

2. Later in the final PPs-model we will again use 
biomasses with X = (X1,X2s,X2h) ∈ R3

+ now random variables where 
X2 = X2s + X2h. Mass conservation can be used to calculate X0 = C0 −

X1 − X2 which is now also a stochastic variable. 
However, at random events these quantities will change in finite 

steps with sizes of the prey xε
1 and predator xε

2 individuals. We adhere to 

Table 2 
Parameters and state variables for RM-, PPh-, PPd-, and PPs-models; : t=time, 
m=biomass, #=numbers, v=volume of the reactor. Reference values and di
mensions are given. For the subindices we have: resources i = 0, prey i = 1, 
predator i = 2.  

Parameter Value Dimension Interpretation 

t   t Time 
x0   m v− 1  Substrate density 

xi   m v− 1  Biomass population density, i = 1,2  

ni   # v− 1  Number density of individuals, i = 1,2  

xε
i   m Biomass of one individual, i = 1,2  

yε
12   — Predator-prey Body Size Ratio, xε

1/xε
2  

fi− 1,i   — Scaled functional response, i = 1,2, Eq. (2)  
k   t− 1  Predator handling rate of one prey individual 

b   # t− 1 v− 1  Catch rate by individual predator 

C0  1 m v− 1  Initial biomass in environment 

I01  5 /3  t− 1  Nutrient ingestion rate by prey 

μ01  1 t− 1  Maximum prey growth rate 

y01  1 — Assimilation efficiency ambient resource prey 
conversion 

k01  1 m v− 1  Scaling functional response prey 

m1  0 t− 1  Mortality rate of prey 

I12  5 /3  t− 1  Maximum prey ingestion rate 

μ12  5 /3  t− 1  Maximum population growth rate 

y12  1 — Assimilation efficiency prey-predator 
conversion 

k12   m v− 1  Half-saturation constant, predator 

m2  1 t− 1  Mortality rate predator 

r  1 t− 1  Intrinsic prey growth rate 

K  1 m v− 1  Carrying capacity of prey  

Table 3 
Equilibria of RM-model (6) and PPh-model (5) for reference values given in 
Table 2 where I12 = 5/3. When the prey-predator equilibrium E2 is unstable a 
stable limit-cycle denoted by L2 exists. In the plots only the maximum and 
minimum values are shown.  

Equilibria System composition 

RM-model  
E1 = (1,0) Prey-only 

E2 =

(
k12

I12 − 1
,k12

I12 − 1 − k12

(I12 − 1)2

)
Prey-predator 

PPh-model  
E1 = (1,0) Prey-only 

E2 =

(
k12

I12 − 1
,k12

I12 − 1 − k12

(I12 − 1)2 + k12(I12 − 1)

)
Prey-predator  
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the continuous instead of discrete formulation because some processes 
are modeled as continuous time processes. This is related to the fact that 
the number of infinitesimal small nutrient particles is assumed to be 
infinite. The final stochastic PPs-model will be a continuous time Mar
kov chain model, hence memoryless, since the future state of the process 
after present time t depends on the values on t and not on previous times 
prior to t in X ∈ R3

+. 
After an arbitrary predator individual started randomly searching for 

a prey individual then an encounter with one prey individual occurs in 
mean time yε

12k12/I12 × X1X2s later. At this event the number of prey 
individuals decreases by one and simultaneously one searching predator 
individual converts into one handling predator. But expressed in bio
masses the biomass of the prey population decreases stepwise with xε

1 
and the biomass of the predator population increases stepwise with xε

1. 
The predator handling cycle is completed after mean handling time yε

12 
/I12 × X2h, at which a handling predator becomes a searching predator. 

We assume that the ingested prey individual biomass is added to the 

predator population biomass at the beginning of the handling period, 
that is at the moment a searching predator encounters a prey. This as
sures momentary conservation of biomass. Another option would be to 
add the prey individual biomass at the end of the handling process. 
However, this would lead to a delay between the moment a prey indi
vidual leaves its population and that its biomass is added to the predator 
population. A numerical study showed that the results obtained using 
this protocol differs from that where the biomass switch between the 
two populations occurs at one single moment, obviously a result of the 
fact that in this scenario the biomass of the prey individual is not taken 
into account during the digestion time leading to a delay effect. 

The Poisson intensity λ(t) has an interpretation that when dt is a 
small time interval, λ(t)dt is the probability of one occurrence of a 
random event of the Poisson process in the interval dt after t. The sto
chastic processes parameters are listed in Table 5. 

Two stochastic processes involved are the predator-prey interaction, 
namely encounter of prey individuals with randomly searching predator 
individual with intensity λS = I12/(k12yε

12) × X1X2s using the law of 
mass action, and when the handling predator individual starts searching 
again with intensity λH = I12/yε

12 × X2h. The other two processes are the 
loss of the searching and handling predator individuals where the 
probability of one occurrence is the exponentially distributed time till 
disappearance, namely λDs = m2 x2s and λDh = m2 x2h, respectively. 

In the next section we use the expressions from Table 5 in the Gil
lespie’s direct method Gillespie (1976), see Appendix A, to get realisa
tions. In Appendix B we discuss the quasi-equilibrium distribution. 

Fig. 3. Two-parameter diagrams for the three models with I12, and k12 as bifurcation parameters, for a) RM-model, b) PPh-model and c) PPd-model. All other 
parameter values are given in Table 2 and the additional parameter value for the PPd-model is yε

12 = 1/4. The analytical expressions for the curves in top panels are 
given in Table 4. 

Table 4 
Bifurcation curves in (k12, I12) parameter plane of the two- 
dimensional RM-model (6) and PPh-model (5) where other param
eter values given in Table 2.  

RM-model  

ITC
12 = k12 + 1  IH12 =

1 + k12

1 − k12  
PPh-model  
ITC
12 = k12 + 1  

IH12 =
k2

12 + 2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k4
12 + 8k2

12

√

2(1 − k12)
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8. Phase-space analysis of the PPs-model 

The dynamics of the stochastic PPs-model is studied by analyzing 
realizations presented in the phase-space diagrams using Gillespie’s 
direct method Gillespie (1976), see Appendix A. We will alter the 
additional parameters: first the individual biomass ratio yε

12 and there
after the biomass of the prey individuals xε

1. When xε
1≪1 and yε

12≪1 the 
results become comparable with the PPh-model. When xε

1↓0 and when 
yε

12 is not small the results become comparable with those of the 
PPd-model. 

We compare the simulation results of the PPs-model where xε
1 and yε

12 

are relatively small with the deterministic PPh-model results in Fig. 4 
where the additional parameters are yε

12 = 1/40 and xε
1 = 0.00001. One 

realization of the stochastic PPs-model where k12 = 1/3 and k12 = 1/8 is 
shown in the left panel Fig. 4a and c. For comparison the results for the 
PPh-model are shown in the right panel Fig. 4b,d. Because the additional 
parameters are low the stochasticity effects are expected to be low. 
Indeed the results show that the dynamics in both panels of Fig. 4 the 
stochastic versus the deterministic case are very similar. There is 
“convergence” to the stable equilibrium of the PPh-model when k12 =

1/3. The “transient” dynamics predicted by the two models are very 
much the same. This is expected because the size of the prey individuals 
is very small and furthermore also the ratio of the sizes of the prey versus 
the prey individuals is small (40 times smaller). However, close the 
stable equilibrium there are stochastic oscillations studied in 
Appendix B. 

Two realizations of the stochastic PPs-model with k12 = 1/8 are 
shown in the left/bottom panel Fig. 4c. For comparison the results for 
the PPs-model are shown in the right panel Fig. 4d. Starting with x1(0) =
0.2, x2(0) = 0.7 there is no “convergence” to the limit cycle of the PPh- 
model. The “transient” dynamics ends at a point where due to the sto
chasticity the prey population goes extinct in finite time and thereafter 
the predator because of lack of food. Starting with x1(0) = 0.2 and 
x2(0) = 0.2 gives “convergence” to a stable limit cycle. However, when 
during such a cycle the minimum prey and predator values are rather 
low there is a high chance of prey extinction in the range where the 
realization is close to the vertical axis (in the first searching process in 
Table 5 x1 becomes negative, that is zero). From that point in time the 
prey population becomes negative and goes extinct after which the 

Table 5 
The transition probabilities for the four stochastic events S, H, Ds, Dh the in
tensities λi, i ∈ I = {S,H,Ds,Dh} and the change sizes Δxj given the state xj, j ∈
J = {1,2s,2h} of the system at time t. The changes due to the remaining pro
cesses are assumed deterministic. Mass-balance restrictions make that the steps 
in the three variables xj, j ∈ J are coordinated.   

change sizes Δxj  intensity λi  

S searching  x1→x1 − xε
1    

x2s→x2s − xε
2  I12

k12yε
12

x1x2s   

x2h→x2h + xε
2 + xε

1   

H handling  x2s→x2s + xε
2    

x2h→x2h − xε
2  I12

yε
12

x2h  

Ds loss searchers  x2s→ − xε
2  m2x2s  

Dh loss handlers  x2h→ − xε
2  m2x2h   

Fig. 4. Phase-space analysis with I12 = 5/3, and k12 = 1/3 a,b) and k12 = 1/8 c,d), for PPs-model, a,c), and the PPh-model, b,d) Eq. (5). The additional parameters 
for the PPs-model are yε

12 = 1/40 and xε
1 = 0.00001. There is “convergence” to the stable equilibrium of the PPs-model. In the later case two initial points are used. 

Starting with x1(0) = 0.2 and x2(0) = 0.7 (red curve) there is extinction because the prey population goes extinct due to stochastic effects. Starting with x1(0) = 0.2 
and x2(0) = 0.2 (green curve) gives “convergence” to the stable limit cycle. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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predator population goes to the origin x1 = x2 = 0. In a similar way the 
predator population can go extinct (in the last two loss processes in 
Table 5 x2 becomes negative, that is zero) and the prey population goes 
deterministically to the origin x1 = C0,x2 = 0, possible because m1 = 0. 
This is related to the “paradox of enrichment” (Rosenzweig, 1971) 
phenomenon. 

We compare the stochastic PPs-model realizations with their deter
ministic counterparts PPd-model where xε

1 = 0.0002 and yε
12 = 1 /4 in 

Fig. 5. In the upper panels of Fig. 5a,b we have k12 = 1/3 a stable 
equilibrium and in lower panels of Fig. 5c,d with k12 = 1 /8 an unstable 
equilibrium and stable limit cycle. 

Again the transient dynamics for both models are similar but the 
asymptotic dynamics is not. After the relatively small stochastic fluc
tuations along the trajectory they are much larger when the trajectory 
starts circling around the equilibrium point of the PPd-model on the 
x1-nullcline. 

Figure 6 gives one realization with the long-term result after tran
sient dynamics shown in Fig. 5a. Also the quasi-equilibrium distribution 
approximated by the multivariate normal distribution is shown. In 
Appendix B the expressions for the 80% confidence ellipse of this dis
tribution are derived. 

9. Discussion 

A well known classical predator-prey model is the deterministic RM- 
model (Rosenzweig, 1971) and its dynamics has been studied inten
sively, we mention only (Kot, 2001) with further references there. Sto
chastic formulations have also been studied in the literature, we mention 
for instance (Allen, 2000; Dawes and Souza, 2013; Gardiner, 2009; 
Gurney and Nisbet, 1998; van Kampen, 1992; McKane and Newman, 

2005; Renshaw, 1991; Stollenwerk et al., 2017). The elementary model 
formulation for a single population is by birth-death processes. This 
method has been extended for the predator-prey models such as the 
Lotka-Volterra predator-prey (McKane and Newman, 2005) and also the 
RM-model with Holling type II functional response in Renshaw (1991), 
Dawes and Souza (2013). 

In this paper we discuss an alternative mass-balance PPh-model for 
the RM-model, representing the lowest levels of a aquatic food chain. We 
distinguish the individual and population level and use the ’number of 
individuals’ besides the ’population biomass’ description of the state 

Fig. 5. Phase-space analysis with k12 = 1/3 a,b) and k12 = 1/8 c,d), PPs-model a,c) and PPd-model b,d) Eq. (18). The additional parameters for the PPs-models are 
yε

12 = 1/4 and xε
1 = 0.0002. With k12 = 1/3 (red curve) there is “convergence” to the stable equilibrium of the PPd-model and with k12 = 1 /8, (green curve) to the 

stable limit cycle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Phase-space analysis for the PPs-model k12 = 1/3 with additional 
parameter values yε

12 = 1/4 and xε
1 = 0.0002. The long-term dynamics is 

depicted and the green curve is the 80% confidence ellipse described by Eq. 
(B.6). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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variables like in Gurney and Nisbet (1998), McKane and Newman 
(2005), Dawes and Souza (2013). 

There is in equation for the prey growth of the PPh-model an extra 
term that shows that the prey and the predator population are 
competing for the ambient resources besides the direct predator-prey 
interaction. In the RM-model this term − x1x2 is missing because of 
the descriptive nature of used logistic growth, although correct for the 
prey-resource system also used for food chains longer than two. Similar 
to our result in the mean field description obtained in Dawes and Souza 
(2013) in the prey growth rate also this extra term exists. 

Comparing the results of the PPh-model with those of the RM-model 
shows that the equilibrium biomass of the predator is larger in the 
classical RM-model, see the one parameter bifurcation diagrams Fig. 2a 
and b. When the system oscillates, however, the amplitude of the limit 
cycles is smaller and the minimum values during these cycles is larger 
and therefore there is less prone to extension due to stochastic effects. 
Qualitatively the bifurcation pattern, the position of the Hopf and 
transcritical bifurcation curves in the parameter space, is for the two 
models the same. This is in agreement with results in Dawes and Souza 
(2013). 

In Kooi and Poggiale (2018) the PPh- and RM-model are compared in 
a more extreme case where the prey and predator time scales differ 
orders of magnitude. The RM-model shows complex dynamics when 
passing the Hopf bifurcation. First the originating stable limit cycle at 
the Hopf bifurcation leads to a stable limit cycle of which the amplitude 
grows when the distance from the Hopf bifurcation increases. However, 
suddenly at one critical point changing the bifurcation parameter 
further, there is a canard explosion after which the dynamics is similar to 
the relaxation oscillations predicted in the limiting case where the ratio 
of the predator/prey time scales equals zero, see also Rinaldi and Mur
atori (1992). On the other hand, in the PPh-model this complex dy
namics is absent. 

In Gurney and Nisbet (1998), Dawes and Souza (2013), Stollenwerk 
et al. (2017) the Holling type II functional response expression is derived 
by an ad hoc introduction of a fast time trophic interaction part with the 
small ε in system (10). In these papers the dynamics of the fast 
searching-handling predators is considered independent of the interac
tion with the prey population. In this paper the parameter yε

12, being the 
prey-predator body mass ratio is introduced for the population biomass 
as state variable allowing to use experimental results in Jonsson and 
Ebenman (1998) to get realistic values in food chains. The introduction 
of the new parameter yε

12, revises the inconsistency of the formulation by 
applying the time-scale separation technique with the derivation of the 
Holling type II functional response for the predator-prey interaction. An 
assumption for this application is still that the feeding rate is fast with 
respect to the population dynamics rates. When an ecosystem is close to 
or in equilibrium these rates will be small but this can be violated when 
this ecosystem dynamics is erratic. This is more important for larger 
ecosystems than for just predator/prey systems. Other assumptions 
related to the use of compartmental models, space-homogeneity, and 
unstructured instead of age-, stage- or physiologically structured are not 
discussed. 

With the formulation of the stochastic PPs-model the introduction of 
the prey individual biomass xε

1 leads to three nested model formulations: 
PPh-, PPd- and PPs-model with increasing complexity. The stochastic 
model results are obtained using the direct method of Gillespie (2001) 
like in Stollenwerk et al. (2017) where exponentially distributed waiting 
times are used. This is in contrast with the technique used in Kooijman 
et al. (2007) which is directly based on the Poissonian processes for 
searching, handling or dying. Note that in McKane and Newman (2005) 
also both algorithms were used and they found excellent agreement. 

The one-parameter bifurcation diagrams Fig. 2 show that for low k12 
values the amplitude of the limit cycles are large and furthermore that 
during this oscillatory dynamics the biomasses of the prey and predator 
populations become very low. This is similar to the famous “paradox of 

enrichment” Rosenzweig (1971) phenomenon. The results for the 
PPs-model in the parameter region where large oscillations occur, 
Fig. 4c shows indeed extinction due to stochastic fluctuations often 
claimed in the literature on deterministic predator-prey or ecosystem 
models in nutrient rich situations. 

When xε
1 is small the stochastic predictions of the PPs-model are close 

to those of the deterministic model. For the low yε
12 = 1/40 value, the 

results for the PPs-model are in Fig. 4 compared with those of the PPh- 
model where in the limit yε

12 = 0. For the higher yε
12 = 1/4 value with 

those of the PPd-model in Fig. 5. This indicates that in case of realistic 
body size ratio’s the PPd-model is the preferred mass-balance predator- 
prey model. 

We also discussed the approximation of the asymptotic probability 
density function PDF by a multivariate normal distribution, Grasman and 
Herwaarden (1999), Kooijman et al. (2007), Buckingham-Jeffery et al. 
(2018). Furthermore these results show that the bifurcation occuring in 
the deterministic models have to be re-considered when stochasticity is 
taken into account. 

10. Conclusions 

In this paper we re-stated the law of mass action formulation in the 
case of the trophic interactions in the predator-prey system. To solve an 
inconsistency problem in the derivation of the classical Holling type II 
formulation where, when biomasses are used, the same term runs at two 
different time-scales. The formulation of the model using both biomass 
and number dimension yields a natural scaling factor in the stochastic 
model measuring the degree of mean-filed approximation, namely the 
prey individual biomass where the volume of the batch reactor is unit. 
Finally this approach is not only applicable for the modelling and 
analysis of predator-prey systems but also for larger ecosystem models. 

The most important results obtained and answers to the research 
questions posed in the introduction, are:  

1. There is an extra term in the growth rate of the prey population Eq. 
(5a) in the mass balance model with respect to the logistic growth 
description Eq. (6a) in the RM-model. The biological interpretation is 
that the prey uses the ingested resources partly for its own but also an 
extra amount used as building blocks by the predators. Conservation 
law for the total system shows that the prey and predator are also 
(indirectly) competing for the ambient resources and therefore there 
are two negative interaction predator-prey terms. 

2. With formulating the PPd-model using biomass as descriptive vari
able for the size of the populations, an inconsistency occurs when a 
time scale argument is used to derive the Holling type II functional 
response expression. This is solved by using the numbers of (iden
tical) individuals of the populations as well. Only when the ratio of 
the biomasses of prey and predator individuals used a time-scale 
parameter is small enough the time-scale-separation technique can 
be used correctly.  

3. There are no important differences in bifurcation pattern of the 
mechanistic mass-balance PPd-model and the descriptive RM-model. 
Only a transcritical bifurcation and a Hopf bifurcation occur.  

4. The ratio of the biomasses of prey and predator individuals is the 
time-scale separation parameter.  

5. When the ratio of the biomasses of prey and predator individuals is 
small the PPd-model gives very similar results as the PPh-model 
quantitatively in the phase-space: equilibria and limit cycles. 
Hence the use of the Holling type II expression is best for lower 
trophic levels and has to be justified for higher levels. 

6. Prey and predator individual-biomasses are used as additional pa
rameters in the stochastic model. The flow of the predator-prey 
stochastic system form sustained counter-clock oscillations in the 
phase-space plot and they show cycling behaviour where the deter
ministic version predicts a stable equilibrium. 
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7. The well known paradox of enrichments phenomenon has been 
shown.  

8. In the stochastic PPs-model no similar threshold effects occur at the 
transcritical and Hopf bifurcation points of the companion deter
ministic PPh-model. 
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Appendix A. Numerical simulation of stochastic PPs-model 

The numerical simulation method is based on the exponentially distributed waiting time till the next event of the Poissonian process. It is 
essentially the effective Gillespie (1976)’s direct method. The stochastic PPs-model is hybrid because the prey growth between the events is still 
modelled deterministically and solved by an ODE-solver, here the simple explicit first-order Euler method. 

The waiting time Δt in each state is variable in physical time and calculated by 

Δt = −
ln(U)
∑

i∈I λi
. (A.1)  

whereby U is again the uniformly distributed numbers in the range 0 ≤ U ≤ 1. The inter-event time hi for each individual even i equals 

hi = −
ln(U)

λi
, i ∈ I = {S,H,Ds,Dh} . (A.2)  

A second random value for the exponential distributed is calculated and it determines which of the four Poissonian processes i ∈ I actually will occur, 
after which the three state variables are changed according the expressions ΔXj, j ∈ J = {1,2s, 2h} given in Table 5 obeying mass conservation. 
During the inter-event periods the prey population trajectory X1(t) is the numerical solution of the ODE formed by the first two terms of Eq. (18a) where 
X2s and X2h remain constant. 

We recall that the implementation of the events requires the notion of individuals, and this gives xε
1 and xε

2 an independent role whereby still xε
1 /xε

2 
= yε

12. This means an extension with one parameter relative to the PPd-model and with two parameters relative to the PPh-model. 

Appendix B. Local stationary PDF-solution and approximation 

In this section we follow the analysis of a more complex nutrient-limited producer/consumer system in Kooijman et al. (2007). We collect the 
stochastic variables measured in biomasses in vector X = (X1,X2s,X2h)

T of which the elements are denoted by Xj with index j ∈ J = {1,2s, 2h} and the 
changes in vector dX = (dX1, dX2s, dX2h)

T. The index i ∈ I = {S,H,Ds,Dh} scans the four processes. 
The expected rate of change, given X(t), amounts to d(E(Xj))/dt = b(X). 

dE(X1)

dt
= b1(X) =

μ01

k01
X1
(
C0 − X1 − X2

)
− m1X1 −

I12

k12
X1X2s , (B.1a)  

dE(X2s)

dt
= b2(X) = −

I12

k12yε
12

X1X2s +
I12

yε
12

X2h − m2X2s , (B.1b)  

dE(X2h)

dt
= b3(X) = +

I12

k12yε
12

X1X2s −
I12

yε
12

X2h +
y12I12

k12
X1X2s − m2X2h . (B.1c) 

So, the expected value given X at time t yields E(ΔX|X) = b(X)Δt + O (Δt2)where b is a vector-valued function formed by the right-hand side of the 
system of ODEs Eq. (18) for the deterministic PPd-model. This first moments of the stochastic variable X(t) is the drift b which describes the mean-field 
solution. 

For the second moments we derive the variance-covariance matrix of the change in X which is Cov(ΔX,ΔXT⃒⃒X) = a(X)Δt+ O (Δt2), where a is the 
matrix-valued function: 

a(X) =
I12

k12yε
12

x1x2sxε
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(
yε

12

)2 yε
12 − yε

12

(
1 + yε

12

)

yε
12 1 −

(
1 + yε

12

)

− yε
12

(
1 + yε

12

)
−
(
1 + yε

12

) (
1 + yε

12

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+
I12

yε
12

x2hxε
2

⎛

⎜
⎜
⎝

0 0 0

0 1 − 1

0 − 1 1

⎞

⎟
⎟
⎠+ m2x2sxε

2

⎛

⎜
⎜
⎝

0 0 0

0 1 0

0 0 0

⎞

⎟
⎟
⎠+ m2x2hxε

2

⎛

⎜
⎜
⎝

0 0 0

0 0 0

0 0 1

⎞

⎟
⎟
⎠ .

(B.2) 

We do not formulate the initial value for this function (as is done in Dawes and Souza, 2013) since we are interested only in the stationary dis
tribution of the stochastic variable X found from ∂f/∂t = 0. It can be approximated by solving the system in which the drift and diffusion are 
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approximated with the quasi equilibrium state values, that is near the stable equilibrium X∗ = x∗ for the deterministic system dx /dt = bx. In McKane 
and Newman (2005), Anderson and Kurtz (2011) this is called the Langevin approximation but see also Buckingham-Jeffery et al. (2018) where it is 
called a Gaussian process approximation. We take a linear drift approximation for the deterministic part evaluated at the equilibrium of the x changes 
in the deterministic PPd-model and a constant diffusion for the stochastic part 

b(X) ≃ B(X − X∗) and a(X) = a(X∗) = A , (B.3)  

where B is the Jacobian matrix of the model evaluated at the stable equilibrium point of the PPd-model described by Eq. (18): X = X∗, that is: B =
d bT(X∗)/dX. Locally in the vicinity of this stable equilibrium the system behaves as a three-dimensional Ornstein-Uhlenbeck process (Gardiner, 2009; 
Grasman and Herwaarden, 1999) with a multivariate normal distribution as stationary solution as a sum of that of many random variables and in 
accordance with the central limit theorem. Its covariance matrix S satisfies the matrix equation 

xε
1A + BS + SBT = 0 , (B.4)  

where xε
1 is the scaling factor. The ε-domain is given by the 80% confidence ellipsoid in the X-space with the stationary state in the center given by 

(X − X∗)
T S− 1(X − X∗) = xε

1χ2
3,0.8, (B.5)  

where χ2
3,0.8 = 4.641 is the value for which the distribution function of the Chi-square distribution with 3 degrees of freedom equals 0.8. To construct 

the 80% confidence ellipse in the (x1,x2)-plane we carry out the transformation 

Y = M(X − X∗) with M =

(
1 0 0
0 1 1

)

,

so that YT = (x1,x2). Eq. (B.5) then becomes 

YT (MSMT)− 1Y = xε
1χ2

2,0.8 (B.6)  

where χ2
2,0.8 = 3.219 is when the Chi-square distribution with 2 degrees of freedom equals 0.8. 

Figure 6 gives one realization long-term result after transient dynamics in Fig. 5a and also the approximated quasi-equilibrium distribution. 
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