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In December 2019, a severe respiratory syndrome (COVID-19) caused by a new coronavirus (SARS-CoV-2) was identified in
China and spread rapidly around the globe. COVID-19 was declared a pandemic by the World Health Organization (WHO)
in March 2020. With eventually substantial global underestimation, more than 225 million cases were confirmed by the end of
August 2021, counting more than 4.5 million deaths. COVID-19 symptoms range from mild (or no symptoms) to severe
illness, with disease severity and death occurring according to a hierarchy of risks, with age and preexisting health conditions
enhancing the risks of disease severity manifestation. In this paper, a mathematical model for COVID-19 transmission is
proposed and analyzed. The model stratifies the studied population into two groups, older and younger. Applied to the
COVID-19 outbreaks in Spain and in Italy, we find the disease-free equilibrium and the basic reproduction number for each
case study. A sensitivity analysis to identify the key parameters which influence the basic reproduction number, and hence
regulate the transmission dynamics of COVID-19, is also performed. Finally, the model is extended to its stochastic
counterpart to encapsulate the variation or uncertainty found in the transmissibility of the disease. We observe the variability
of the infectious population finding its distribution at a given time, demonstrating that for small populations, stochasticity will
play an important role.

1. Introduction

The coronavirus pandemic and its emerging variants are
currently a major global public health threat. Globalisation
has speeded up the spread of infections over a short period
of time. This has an impact on the public healthcare system
and is also detrimental to the economic development of
many countries. Since the outbreaks began, more than 215
million cases were confirmed by mid of August 2021, with
more than 4 million deaths [1].

COVID-19 symptoms can range from mild (or no symp-
toms) to severe illness, with disease severity and death
occurring according to a hierarchy of risks, with age and pre-
existing health conditions enhancing risks of disease severity
[2]. Vaccines against COVID-19 have been developed in
record time and are now globally distributed [3–8]. The

analysis of the impact of different vaccine administration is
ongoing, mostly using previous research experiences applied
to other infectious diseases [9–17] and will be discussed in
detail in our forthcoming publications [18, 19].

As an example of the impact of the pandemic in Europe,
Spain has reported, up to date, more than 4.7 million cases
with around 83 thousand deaths [20], while in Italy,
although the total number of cases are similar, 4.5 million,
a higher mortality rate was reported, counting more than
128 thousand deaths [21]. It is important to notice that mor-
tality is higher in older than younger individuals in all pop-
ulations [22, 23].

As the COVID-19 pandemic progressed, research on
mathematical modeling became imperative and very influ-
ential to understand the epidemiological dynamics of disease
spreading. Task forces were created to assist public health
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managers and governments, with many research papers
being recently published. Applied to the outbreaks in the
Basque Country, Spain, a flexible framework was developed
within the so-called COVID-19 Basque Modeling Task
Force (BMTF). As an extension of the basic SHAR (Suscep-
tible-Hospitalized-Asymptomatic-Recovered) model, the
SHARUCD models were parameterized and validated with
epidemiological data continuously collected and provided
by the Basque Health Department and the Basque Health
Service (Osakidetza) and have been used (up until now) to
monitor COVID-19 spreading and control over the course
of the pandemic [18, 19, 24–28]. Modeling refinements
and results on the evolution of the epidemic in the Basque
Country are regularly updated and publicly available on
the “SHARUCD Dashboard” [29].

Over the course of the pandemic, a broad spectrum of
research has been produced, e.g., statistical work using two
common approaches, the SIR model and a log-linear model,
analyzing the available empirical data and estimating the
reproduction values for Spain and Italy countries [30].
Deterministic and stochastic models were developed [31,
32] to study the effects of facial masks and hospitalization
of symptomatic people and asymptomatic quarantine of
people on the prevalence of the coronavirus outbreak in
India [31] and the transmission dynamics of the COVID-
19 in Wuhan, China [32]. And still, many questions remain
to be investigated.

In this paper, we present a mathematical model to
describe COVID-19 dynamics in Spain and Italy. The popu-
lation is divided into two groups, young and old. Consider-
ing simple mass action type incidence, the model is
formulated by assuming that the course COVID-19 infec-
tion leads to a different outcome for the elderly population
as compared to the younger population. This paper is orga-
nized as follows. Section 2 describes the model formulation,
followed by the model analysis in Section 3, showing the
existence of equilibrium and basic reproduction number.
Section 4 presents the results for the sensitivity analysis for
the parameters involved in reproduction number. Section 5
describes impact of different parameter on COVID-19 prev-
alence. Section 6 presents the stochastic modeling approach,
and in Section 7, the simulation results are shown. Finally, in
Section 8, we conclude this work, with a discussion on both
modeling approaches.

2. The Model

This model is a refinement of the model proposed by Srivas-
tav et al. [33]. A new parameter ε is introduced to differenti-
ate the infectivity of young infected individuals ðI1Þ with
respect to the baseline infectivity of elderly individuals I2ðt
Þ in a population of N individuals.

The value of ε can be tuned to reflect different situations:
a value of ε > 1 reflects the fact that young individuals, which
are likely to develop mild disease and higher mobility, have
larger infectivity, than elderly individuals, which are at
higher risk of developing severe disease and are more likely
to be detected and isolated [24]. On the other hand, ε < 1
indicates that young individuals have smaller infectivity than

elderly individuals, and that could be justified due to lower
or higher viral load during the infection, which is correlated
with disease symptoms. Here, the assumption relies on the
epidemiological observation of young population developing
mild or no symptoms with lower viral load, affecting disease
transmissibility, versus severe disease and higher viral load,
mostly observed in older ages.

The total human population NðtÞ is divided into eight
compartments, stratified into two age classes, namely, young
and old: susceptible S1ðtÞ and S2ðtÞ, exposed E1ðtÞ and E2ðtÞ,
and infected I1ðtÞ and I2ðtÞ for the young and for the old,
respectively. Two extra classes to accommodate individuals
from both age groups are also considered: quarantined/hos-
pitalized HðtÞ for those identified as COVID-19-positive
case with symptoms and needing medical assistance and
finally the recovered individual class RðtÞ.

We assume that the transitions/movements, from one
disease related class to another, are different between the
elderly and the young individuals. However, the HðtÞ class
includes both groups. For the mathematical modeling
framework development, we make the following
assumptions:

(1) Total population N is constant

(2) The susceptible young individuals S1 become
exposed to the infection and join the young exposed
class E1 on effective contacts with infectious human
population I1, I2 and H at rates β1 and β3, respec-
tively, with β3 < β1

(3) Exposed people E1 will move to I1 with rate of η1. If
young exposed people E1 will get contact with I1, I2
unknowingly, then exposed people E1 will move fast
into I1 class with rate γ1

(4) The susceptible old individuals S2 become exposed
to the infection and join the old exposed class E2
on effective contacts with infectious human popula-
tion I1, I2 and ðHÞ at the rates β2 and β4, respec-
tively, with β4 < β2

(5) Exposed people E2 will move to I2 with rate of η2; if
old exposed people E2 will get contact with I1, I2
unknowingly, then exposed people E2 will move fast
in I2 with rate γ2

(6) Infected, young I1 and old I2, will move to hospital-
ized class ðHÞ with rates ν1 and ν2, respectively

(7) Hospitalized people ðHÞ will get recovered from
COVID-19 and join recovered class ðRÞ with rate α

The schematic diagram of our proposed model is shown
in Figure 1, and the mathematical model is given as follows:

dS1
dt

= −β1S1 εI1 + I2ð Þ − β3S1H, ð1Þ

dE1
dt

= β1S1 εI1 + I2ð Þ + β3S1H − γ1E1 εI1 + I2ð Þ − η1E1, ð2Þ
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dI1
dt

= η1E1 + γ1E1 εI1 + I2ð Þ − ν1I1 − δ1I1, ð3Þ

dS2
dt

= −β2S2 εI1 + I2ð Þ − β4S2H, ð4Þ

dE2
dt

= β2S2 εI1 + I2ð Þ + β4S2H − γ2E2 εI1 + I2ð Þ − η2E2, ð5Þ

dI2
dt

= η2E2 + γ2E2 εI1 + I2ð Þ − δ2I2 − ν2I2, ð6Þ

dH
dt

= ν1I1 + ν2I2 − δ3H − αH, ð7Þ

dR
dt

= αH: ð8Þ

Here, all the parameters are positive and the description
of these parameters is given in Table 1. Parameter values
given in Tables 2 and 3 are already defined in [33].

3. Analysis of the Model

We consider the system (1) and find the disease-free equilib-
rium. For our model, we have disease-free equilibrium as

E0 = S1
0, E1

0, I10, S20, E2
0, I10,H0, R0� �

= N0
1, 0, 0,N0

2, 0, 0, 0, 0
� �

:

ð9Þ

We find the basic reproduction number R0 by following
the next-generation matrix method described in [38]. Fol-
lowing the same notations as in [38], we find the vector F

and V as follows:

F =

β1S1 εI1 + I2ð Þ + β3S1H

β2S2 εI1 + I2ð Þ + β4S2H

0
0
0

0
BBBBBBBB@

1
CCCCCCCCA
,

V =

γ1E1 εI1 + I2ð Þ + η1E1

γ2E2 εI1 + I2ð Þ + η2E2

−η1E1 − γ1E1 εI1 + I2ð Þ + ν1I1 + δ1I1

−η2E2 − γ2E2 εI1 + I2ð Þ + δ2I2 + ν2I2

−ν1I1 − ν2I2 + δ3 + αð ÞQ

0
BBBBBBBB@

1
CCCCCCCCA
:

ð10Þ

F = Jacobian of F at

E0 =

0 0 β1εS
0
1 β1S

0
1 β3S

0
1

0 0 β2εS
0
2 β2S

0
2 β4S

0
2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
, ð11Þ

S1

E1

I1
I2

E2

S2

H

R

𝛽1S1(∈I1+I2)+𝛽3S1H
𝛽2S2(∈I1+I2)+𝛽4S2H
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𝛿3𝛼
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Figure 1: Schematic diagram of the model.

Table 1: Description of parameters.

Parameter Description

β1 Transmission rate from I1 or I2 to S1
β2 Transmission rate from I1 or I2 to S2
β3 Transmission rate from H to S1
β4 Transmission rate from H to S2
ε Modification parameter

δ1 Disease-related death rate in I1 compartment

δ2 Disease-related death rate in I2 compartment

δ3 Disease-related death rate in H compartment

ν1 Rate of detection/quarantine in I1 compartment

ν2 Rate of detection/quarantine in I2 compartment

η1 Rate of progression of individuals from E1 to I1
η2 Rate of progression of individuals from E1 to I1
γ1 Rate of reinfection in E1 compartment

γ2 Rate of reinfection in E2 compartment

α Recovery rate of quarantine/hospitalized people
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and V = Jacobian of V at

E0 =

η1 0 0 0 0
0 η2 0 0 0
−η1 0 ν1 + δ1ð Þ 0 0
0 −η2 0 ν2 + δ2ð Þ 0
0 0 −ν1 −ν2 δ3 + αð Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

ð12Þ

And it follows that

FV−1 =

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
, ð13Þ

where

a11 =
β1εS

0
1

ν1 + δ1
+ β3ν1S

0
1

δ3 + αð Þ ν1 + δ1ð Þ ,

a12 =
β1S

0
1

ν2 + δ2
+ β3ν2S

0
1

δ3 + αð Þ ν2 + δ2ð Þ ,

a13 =
β1εS

0
1

ν1 + δ1
+ β3ν1S

0
1

δ3 + αð Þ ν1 + δ1ð Þ ,

a14 =
β1S

0
1

ν2 + δ2
+ β3ν2S

0
1

δ3 + αð Þ ν2 + δ2ð Þ ,

a15 =
β3S

0
1

α + δ3
,

a21 =
β2εS

0
2

ν1 + δ1
+ β4ν1S

0
2

δ3 + αð Þ ν1 + δ1ð Þ ,

a22 =
β2S

0
2

ν2 + δ2
+ β4ν2S

0
2

δ3 + αð Þ ν2 + δ2ð Þ ,

a23 =
β2εS

0
2

ν1 + δ1
+ β4ν1S

0
2

δ3 + αð Þ ν1 + δ1ð Þ ,

a24 =
β2S

0
2

ν2 + δ2
+ β4ν2S

0
2

δ3 + αð Þ ν2 + δ2ð Þ ,

a25 =
β4S

0
2

α + δ3
:

ð14Þ

Three eigenvalues of the above matrix are zero and the
remaining two are the roots of the following quadratic equa-
tion:

λ2 − a11 + a22ð Þλ + a11a22 − a12a21 = 0,

a11a22 − a12a21 =
S01S

0
2

δ3 + αð Þ ν1 + δ1ð Þ ν2 + δ2ð Þ εν2 − ν1ð Þ β1β4 − β2β3ð Þ½ �:

ð15Þ

So the basic reproduction number (R0) is the positive
root of the above quadratic and is given by

R0 =
R01 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
01 + 4R2

02
p

2 , ð16Þ

where

R01 =
β1εS

0
1

ν1 + δ1
+ β3ν1S

0
1

δ3 + αð Þ ν1 + δ1ð Þ + β2S
0
2

ν2 + δ2
+ β4S

0
2ν2

δ3 + αð Þ ν2 + δ2ð Þ ,

R02 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S01S
0
2

δ3 + αð Þ ν1 + δ1ð Þ ν2 + δ2ð Þ εν2 − ν1ð Þ β1β4 − β2β3ð Þ½ �
s

:

ð17Þ

Table 2: Values of parameters.

Parameter Value

β3 0.000513 assumed

β4 0.000672 assumed

γ1 0.14 assumed

η1 0.08 (1-14 days) [34]

η2 0.1 (1-14 days) [34]

γ2 0.2 assumed

δ1 0.013 assumed

δ2 0.014 assumed

δ3 0.015 0.001-0.1 [35]

α 0.071 (14-28 days) [36, 37]

Table 3: Values of parameters.

Country Estimated values Value of R0

Italy

β1 = 0:0028

2.644
β2 = 0:0086
ν1 = 0:031
ν2 = 0:058

Spain

β1 = 0:0024

2.137
β2 = 0:0085
ν1 = 0:043
ν2 = 0:053
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4. Sensitivity Analysis

We also perform a sensitivity analysis for the parameters
involved in reproduction number ðR0Þ, which reflects that
the increase or decrease in these parameter values will lead
to the increase or decrease of ðR0Þ. The sensitivity of R0 to
different parameters is shown in Figure 2. This analysis is
performed to evaluate which parameters have the highest
impact on R0 and hence being targeted as the most effective
intervention measures for each case study. The sensitivity
indices allow to measure the relative change in a variable
when parameter changes. For that, we use the forward sensi-
tivity index of a variable with respect to a given parameter,
which is defined as the ratio of the relative change in the var-
iable to the relative change in the parameter. If the variable is
varying with respect to a parameter, then the sensitivity
index is defined using partial derivatives [39]. The normal-
ized forward sensitivity index of R0, which is differentiable

with respect to a given parameter p, is defined by

γR0
p = ∂R0

∂p
p
R0

: ð18Þ

The above formula can be used to compute the analytical
expression for the sensitivity of R0 to each parameter
included in the system. From Figure 2, we can conclude that
βi, νi for i = 1, 2 and p, for both case study, Italy and Spain,
are very sensitive parameters, with small changes in these
parameters leading to a significant change in the value of
R0.

5. Impact of Different Parameters on
Prevalence of COVID-19

From Figures 3 and 4, we observe that the increase of trans-
mission rate β1, from infected young and old individuals to
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Figure 2: Forward sensitivity analysis of the parameters on R0 in (a) Italy and in (b) Spain.
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susceptible young individuals, leads to an increment of the
infected young individuals in Italy and in Spain. However,
the increase of ν1, the detection rate of infected young indi-

viduals, will decrease the number of infections in the young
human population class, but increasing the number of hos-
pitalizations overall. Similarly as described above, Figures 5
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and 6 show that the infections in old populations I2 will
increase as β2, the transmission rate from infected young
and old individuals to susceptible old individuals, increases.
Nevertheless, the increase of ν2, the detection rate of infected
old individuals, will decrease the number of infections in the
old population, but also increasing the overall hospitalizations.

From these figures, we can conclude that controlling the
transmission between human to human and increasing the
detection rates, providing better treatment for the infected
hospitalized people, will be of a major importance to control
the epidemics in Italy and in Spain, with a significant
decrease of number of infections in the population.

Finally, Figure 7 shows the effect of the variation of the
parameter ν1 on the number of infections. As ν1 increases,
the overall infected population decreases. Note that varia-
tions of the parameter ν2 show similar effects on the number
of overall infections.

6. Stochastic Model

As all natural systems are prone to stochastic perturbations,
we extended our deterministic model, equation system (1),
to the corresponding stochastic model. The derivation of
the stochastic model and its analysis are important when
populations are small and hence with the dynamics being
severely affected by small changes in the parameter values.
Thus, for the initial phase of the disease outbreak, such as
COVID-19, the stochastic model setup is the most appropri-
ate modeling approach to be used for a local epidemiological
evaluation.

The derivation of a stochastic differential equation (SDE)
model is a diffusion approximation from the underlying
state discrete Markov process [26, 40–44]. Let XðtÞ =
ðX1ðtÞ, X2ðtÞ, X3ðtÞ, X4ðtÞ, X5ðtÞ, X6ðtÞ, X7ðtÞ, X8ðtÞÞT be a
continuous random variable for
ðS1ðtÞ, E1ðtÞ, I1ðtÞ, S2ðtÞ, E2ðtÞ, I2ðtÞ,HðtÞ, RðtÞÞT , where T
denotes the transpose of the matrix. Further, let ΔX = Xðt +

ΔtÞ − XðtÞ = ðΔX1, ΔX2, ΔX3, ΔX4, ΔX5ðtÞ, ΔX6ðtÞ, ΔX7ðtÞ,
ΔX8ðtÞÞT denote the random vector for the change in the
random variables during time interval Δt. Here, we will write
the transition maps which define all possible changes
between states in the SDE model. Based on our deterministic
model, see equation system (1), we see that there exist 19
possible changes between states in a small time interval Δt
(see Table 4). Here, it is emphasized that the one and only
possible change is in the time Δt. For example, let us con-
sider the case when one uninfected individual becomes
infected by coronavirus. This will be given by the state
change ΔX, denoted by ΔX = ð−1, 1, 0, 0, 0, 0, 0Þ, and the
change in its probability is given by

prob ΔX1, ΔX2, ΔX3, ΔX4, ΔX5, ΔX6, ΔX7, ΔX8 tð Þð Þ
= −1, 1, 0, 0, 0, 0, 0, 0ð Þ X1, X2, X3, X4, X5, X6, X7, X8ð Þj
= P1 = βX1X2Δt +O tð Þ:

ð19Þ

One can easily determine the expectation change EðΔXÞ
and its covariance matrix VðΔXÞ associated with ΔX by
neglecting the higher order terms OðΔtÞ. The expectation
of ΔX is given by

E ΔXð Þ = 〠
20

i=1
Pi ΔXð ÞiΔt =

−β1X1 εX3 + X6ð Þ − β3X1X7

β1X1 εX3 + X6ð Þ + β3X1X7 − γ1X1 εX3 + I6ð Þ − η1X2

η1X2 + γ1X1 εX3 + I6ð Þ − ν1 + δ1ð ÞX3

−β2X4 εX3 + X6ð Þ − β4X4X7

β2X4 εX3 + X6ð Þ + β4X1X7 − γ2X5 εX3 + X6ð Þ − η2X5

η2X5 + γ2X5 εX3 + X6ð Þ − ν2 + δ2ð ÞX6

ν1X3 + ν2X6 − δ3X7 − αX7

αX7

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

Δt

= f X1, X2, X3, X4, X5, X6, X7, X8ð ÞΔt:
ð20Þ
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Figure 7: Variation of ðI1 + I2Þ with time for different values of ν1.
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Table 4: Possible changes of states and their probabilities.

Possible state change
Probability of state

change

ΔXð Þ1 = −1, 1, 0, 0, 0, 0, 0, 0ð ÞT
P1 = β1εX1X3Δt +O Δtð Þ

Change when people meet young infective I1ð Þ and then population becomes exposed

ΔXð Þ2 = −1, 1, 0, 0, 0, 0, 0, 0ð ÞT
P2 = β1X1X6Δt +O Δtð Þ

Change when people meet old infective I2ð Þ and then population becomes exposed

ΔXð Þ2 = −1, 1, 0, 0, 0, 0, 0, 0, 0ð ÞT
P3 = β3X1X7Δt +O Δtð Þ

Change when people meet hospitalized Hð Þ and then population becomes exposed

ΔXð Þ4 = 0,−1, 1, 0, 0, 0, 0, 0ð ÞT
P4 = γ1εX2X3Δt +O Δtð ÞChange when young exposed with mild symptoms meet young infective I1ð Þ and then population becomes

infected

ΔXð Þ5 = 0,−1, 1, 0, 0, 0, 0, 0ð ÞT
P5 = γ1X2X6Δt +O Δtð Þ

Change when young exposed with mild symptoms meet old infective I2ð Þ and then population becomes infected

ΔXð Þ6 = 0,−1, 1, 0, 0, 0, 0, 0ð ÞT
P6 = η1X2Δt +O Δtð Þ

Change when young exposed people move to young infected class I1ð Þ
ΔXð Þ7 = 0, 0,−1, 0, 0, 0, 0, 1, 0ð ÞT

P7 = ν1X3Δt +O Δtð Þ
Change when young infective join hospitalized class

ΔXð Þ8 = 0, 0,−1, 0, 0, 0, 0, 0ð ÞT
P8 = δ1X3Δt +O Δtð Þ

Disease-related death rate of young infected population I1ð Þ
ΔXð Þ9 = 0, 0, 0,−1, 1, 0, 0, 0ð ÞT

P9 = β2εX4X3Δt +O Δtð Þ
Change when old people meet young infective I1ð Þ and then population becomes exposed

ΔXð Þ10 = 0, 0, 0,−1, 1, 0, 0, 0ð ÞT
P10 = β2X4X6Δt +O Δtð Þ

Change when old people meet old infective I2ð Þ and then population becomes exposed

ΔXð Þ11 = 0, 0, 0,−1, 1, 0, 0, 0ð ÞT
P11 = β4X4X7Δt +O Δtð Þ

Change when old susceptible meet hospitalized Hð Þ and then population becomes exposed

ΔXð Þ12 = 0, 0, 0, 0,−1, 1, 0, 0ð ÞT
P12 = γ2εX5X3Δt +O Δtð Þ

Change when old exposed with mild symptoms meet young infective I1ð Þ and then population becomes infected

ΔXð Þ13 = 0, 0, 0, 0,−1, 1, 0, 0ð ÞT
P13 = γ1X5X6Δt +O Δtð Þ

Change when old exposed with mild symptoms meet old infective I2ð Þ and then population becomes infected

ΔXð Þ14 = 0, 0, 0, 0,−1, 1, 0, 0ð ÞT
P14 = η2X2Δt +O Δtð Þ

Change when young exposed people move to young infected class I1ð Þ
ΔXð Þ15 = 0, 0, 0, 0, 0,−1, 0, 0ð ÞT

P15 = δ2X3Δt +O Δtð Þ
Disease-related death rate of young infected population I2ð Þ
ΔXð Þ16 = 0, 0, 0, 0, 0, 0,−1, 1, 0ð ÞT

P16 = ν2X6Δt +O Δtð Þ
Change when old infective join hospitalized class Hð Þ
ΔXð Þ17 = 0, 0, 0, 0, 0, 0, 0,−1, 1ð ÞT

P17 = αX7Δt +O Δtð Þ
Change when hospitalized people Hð Þ join recover class

ΔXð Þ18 = 0, 0, 0, 0, 0, 0,−1, 0ð ÞT
P18 = δ3X3Δt +O Δtð Þ

Disease-related death rate of hospitalized population I2ð Þ
ΔXð Þ19 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0ð ÞT

P19 = 1 − 〠
18

i=1
Δt +O Δtð Þ

No change
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Note that the expectation vector and the function f are
in the same form as those in deterministic system (1). With
the covariance matrix VðΔXÞ = EððΔXÞðΔXÞTÞ − EðΔXÞEð
ðΔXÞTÞ and EðΔXÞEððΔXÞTÞ = f ðXÞð f ðXÞTÞ, it can be
approximated by Ω × Δt by neglecting the term of ðΔtÞ2
such that

E ΔXð Þ ΔXð ÞT
� �

= 〠
19

i=1
Pi ΔXð Þi ΔXð ÞTi
� �

Δt

=

V11 V12 0 0 0 0 0 0

V21 V22 V23 0 0 0 0 0

0 V32 V33 0 0 0 V37 0

0 0 0 V44 V45 0 0 0

0 0 0 V54 V55 V56 0 0

0 0 0 0 V65 V66 V67 0

0 0 V73 0 0 V76 V77 V78

0 0 0 0 0 0 V87 V88

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

· Δt

=Ω · Δt,

ð21Þ

where

V11 = P1 + P2 + P3 = β1 εX1X3 + X1X6ð Þ + β3X1X7,
V12 = V21 = −P1 − P2 − P3 = −β1 εX1X3 + X1X6ð Þ − β3X1X7,

V22 = P1 + P2 + P3 + P4 + P5 + P6

= β1 εX1X3 + X1X6ð Þ + β3X1X7 + γ1 εX1X3 + X1X6ð Þ + η1X2,
V23 = V32 = −P4 − P5 − P6 = −γ1 εX1X3 + X1X6ð Þ − η1X2,

V33 = P4 + P5 + P6 + P7 + P8 = γ1 εX1X3 + X1X6ð Þ + η1X2 + ν1X3 + δ1X3,
V37 = V73 = −P7 = −ν1X3,

V44 = P10 + P11 + P9 = β2X4X6 + β4X4X7 + β2εX4X7,
V45 = V54 = −P10 − P11 − P9 = −β2X4X6 − β4X4X7 − β2εX4X7,

V55 = P10 + P11 + P13 + P12 + P14 = β2X4X6 + β4X4X7 + γ1X5X6 + γ1εX5X3 + η2X2,
V56 = V65 = −P12 − P13 − P14 = −γ1εX5X3 − γ1X5X6 − η2X2,

V66 = P12 + P13 + P14 + P15 + P16 = γ1εX5X3 + γ1X5X6 + η2X2 + δ2X3 + ν2X6,
V67 = V76 = −P16 = −ν2X6,

V77 = P16 + P17 + P18 + P7 = ν2X6 + αX7 + δ3X3 + ν1X3,
V78 = V87 = −P17 = αX7,V88 = P17 = αX7:

ð22Þ

The diffusion matrix Ω is symmetric and positive
definite.

Using the approach of [26, 41, 44], we construct a matrix
M such thatΩ =MMT , whereM is an 8 × 10matrix given as

M =

M1
1 0 0 0 0 0 0 0 0 0

M1
2 M2

2 0 0 0 0 0 0 0 0
0 M1

3 M3
3 M4

3 0 0 0 0 0 0
0 0 0 0 M5

4 0 0 0 0 0
0 0 0 0 M5

5 M6
5 0 0 0 0

0 0 0 0 0 M6
6 M7

6 M8
6 0 0

0 0 M3
7 0 0 0 M7

7 0 M9
7 M10

7

0 0 0 0 0 0 0 0 0 M10
8

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

,

ð23Þ

where

M1
1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 + P2 + P3

p
,

M1
2 = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 + P2 + P3

p
,

M2
2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 + P5 + P6

p
,

M3
2 = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 + P5 + P6

p
,

M3
3 =

ffiffiffiffiffi
P7

p
,

M4
3 =

ffiffiffiffiffi
P8

p
,

M5
4 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P9 + P10 + P11

p
,

M5
5 = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P9 + P10 + P11

p
,

M6
5 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P12 + P13 + P14

p
,

M6
6 = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P12 + P13 + P14

p
,

M7
6 =

ffiffiffiffiffiffiffi
P16

p
,

M7
6 =

ffiffiffiffiffiffiffi
P15

p
,

M3
7 = −

ffiffiffiffiffi
P7

p
,

M7
7 = −

ffiffiffiffiffiffiffi
P16

p
,

M9
7 = −

ffiffiffiffiffiffiffi
P18

p
,

M10
7 =

ffiffiffiffiffiffiffi
P17

p
,

M10
8 = −

ffiffiffiffiffiffiffi
P17

p
:

ð24Þ

Then, the Itô stochastic differential equation system has
the form

d X tð Þð Þ = f X1, X2, X3, X4, X5, X6, X7ð Þdt +M · dW tð Þ,
ð25Þ

with initial condition

X 0ð Þ = X1 0ð Þ, X2 0ð Þ, X3 0ð Þ, X4 0ð Þ, X5 0ð Þ, X6 0ð Þ, X7 0ð Þð ÞT ,
ð26Þ
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Figure 8: Continued.
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and a Wiener process

W tð Þ = W1 tð Þ,W2 tð Þ,W3 tð Þ,W4 tð Þ,W5 tð Þ,W6 tð Þ,W7 tð Þ,W8 tð Þ,W9 tð Þ,W10 tð Þð ÞT :

ð27Þ

In view of the above facts, we construct the stochastic
differential equation model as

dS1 = −β1S1 εI1 + I2ð Þ − β3S1Hð Þdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1S1 εI1 + I2ð Þ + β3S1H

q
dW1,

ð28Þ

dE1 = β1S1 εI1 + I2ð Þ + β3S1H − γ1E1 εI1 + I2ð Þ − η1E1½ �dt
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1S1 εI1 + I2ð Þ + β3S1H

q
dW1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1E1 εI1 + I2ð Þ + η1E1

p
dW2,

ð29Þ

dI1 = η1E1 + γ1E1 εI1 + I2ð Þ − ν1I1 − δ1I1½ �dt
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1E1 εI1 + I2ð Þ + η1E1

p
dW2 +

ffiffiffiffiffiffiffiffiffi
ν1I1

p
dW3 +

ffiffiffiffiffiffiffiffi
δ1I1

p
dW4,
ð30Þ

dS2 = −β2S2 εI1 + I2ð Þ − β4S2Hð Þdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2S2 εI1 + I2ð Þ + β4S2H

p
dW5,
ð31Þ

dE2 = β2S2 εI1 + I2ð Þ + β4S2H − γ2E2 εI1 + I2ð Þ − η2E2½ �dt
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2S2 εI1 + I2ð Þ + β4S2H

p
dW5 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2E2 εI1 + I2ð Þ + η2E2

p
dW6,
ð32Þ

dI2 = η2E2 + γ2E2 εI1 + I2ð Þ − ν2I2 − δ2I2½ �dt
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2E2 εI1 + I2ð Þ + η2E2

p
dW6 +

ffiffiffiffiffiffiffiffiffi
ν2I2

p
dW7 +

ffiffiffiffiffiffiffiffi
δ2I2

p
dW8,
ð33Þ

dH = ν1I1 + ν2I2 − αH − δ3H½ �dt −
ffiffiffiffiffiffiffiffiffi
ν1I1

p
dW3

−
ffiffiffiffiffiffiffiffiffi
ν2I2

p
dW7 +

ffiffiffiffiffiffiffi
αH

p
dW10 +

ffiffiffiffiffiffiffiffiffi
δ3H

p
dW9,

ð34Þ

dR = αH½ �dt −
ffiffiffiffiffiffiffi
αH

p
dW10: ð35Þ

7. Stochastic Simulation Results

To emphasize the impact of stochasticity in the system, we
simulate the stochastic model shown in system (28) by using
Euler-Maruyama method [45]. For this purpose, we use the
following set of parameter values given in Tables 2 and 3.
We perform simulations of system (28) for 120 days and
100 simulation runs. First, we compare the mean of 100 runs
of stochastic model simulation with the results of corre-
sponding deterministic model and plot the time series of
all the variables; see Figure 8 for Italy and Figure 9 for Spain.
From these figures, we observe that the mean of 100 runs of
stochastic simulation is very close to the simulation results of
the deterministic model for the susceptible population ðS1Þ
and ðS2Þ, whereas for the other populations a small deviation
between stochastic and deterministic simulations results is
observed.

In order to understand these results better, we also plot
the distributions of the infected young ðI1Þ and old ðI2Þ pop-
ulations at the 50th, 80th, and 120th days. These can be seen
in Figures 10 and 11 for Italy and Spain, respectively. One
can easily see the change in distribution of the population
as time progresses.

8. Results and Discussion

With an unprecedented global health burden, the COVID-
19 pandemic has changed the behavior of societies around
the globe which were significantly affected by the extreme
measures implemented to control disease transmission.

In this paper, a mathematical model for COVID-19
transmission is formulated and analyzed. We computed
the disease-free equilibrium and the basic reproduction
number R0. Sensitivity analysis was performed to find the
key parameters that are most sensitive to basic reproduction
number R0. The deterministic model was extended to its
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stochastic counterpart. Using numerical simulations, the
distributions of young infected and old infected populations
have shown the behaviors of trajectories when the model is
affected by stochastic perturbations.

In this work, we have introduced a new parameter ε that
plays a very important role to reduce the infectivity of the
young population. While ε > 1 represents higher infectivity
of young population than the infectivity of older population,
the assumption of ε < 1 represents a lower infectivity of

young population than the infectivity of older population.
A detailed analysis of this specific parameter is ongoing.

Results presented here support the reduction of the
transmission rate between human to human, by the proper
use of nonpharmaceutical intervention and vaccination, to
affect the most the dynamics of the pandemic. Moreover, a
fast detection of the infected individuals would lead to a bet-
ter treatment, decreasing the disease mortality rate in the
population. We would like to emphasize that this is an
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Figure 10: Distributions of symptomatic infected population I1 and I2 on days 50, 80, and 120 (Italy).
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ongoing work and models will be refined and extended,
using the present model as a baseline for future research.
As an example, applied to the Basque Country, Spain, sce-
nario, the incorporation of asymptomatic classes for both
young and old groups is proposed to evaluate its impact on
the control measures implemented over the pandemic time.
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