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A mathematical model to describe the dynamic of a multiserotype infectious disease at the population level is studied. Applied to
dengue fever epidemiology, we analyse a mathematical model with time delay to describe the cross-immunity protection period,
including a key parameter for the antibody-dependent enhancement (ADE) effect, the well-known features of dengue fever
infection. Numerical experiments are performed to show the stability of the coexistence equilibrium, which is completely
determined by the basic reproduction number and by the invasion reproduction number, as well as the bifurcation structures
for different scenarios of dengue fever transmission in a population. The model shows a rich dynamical behavior, from fixed
points and periodic oscillations up to chaotic behaviour with complex attractors.

1. Introduction

Dengue fever (DF) is a mosquito-borne disease, a huge
public health problem affecting specially the tropical and
subtropical countries. With approximately 3 billion people
at risk of acquiring the infection, it is estimated that 390 mil-
lion dengue infections occur every year, of which 96 million
manifest symptoms with any level of disease severity [1].

DF is caused by four antigenically related but distinct
serotypes (DENV-1 to DENV-4) [2, 3]. While a primary
natural dengue infection is often asymptomatic or mild,
the clinical response on exposure to a second serotype is
complex and may depend on factors such as patient age,
dengue serotype, sequence of infection, and the interval
between infection by one serotype and exposure to a second
serotype. Infection by one serotype confers life-long immu-
nity to that serotype and a period of temporary cross-
immunity (TCI) protection to other serotypes. However,

individuals undergoing a secondary dengue infection with
a heterologous serotype have a higher risk of developing
the severe form of the disease. There is good evidence that
sequential infection increases the risk of developing severe
disease, due to a process described as antibody-dependent
enhancement (ADE), where the preexisting antibodies to
previous dengue infection do not neutralize but rather
enhance the new infection [3–8]. Treatment of uncompli-
cated dengue cases is only supportive, and severe dengue
cases require proactive treatment of hemorrhagic symptoms.

Up to date, two tetravalent dengue vaccines have com-
pleted phase 3 clinical trial: Dengvaxia (developed by Sanofi
Pasteur) that is now licensed in several countries [9, 10] and
the DENVax vaccine, developed by Takeda Pharmaceutical
Company [11, 12]. While Dengvaxia has resulted in serious
adverse events in seronegative individuals compared with
age-matched seronegative controls [13–17], long-term
surveillance consisting of prudent and careful observation
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of DENVax vaccine recipients is required [18, 19], since neg-
ative vaccine efficacy was estimated for vaccinated seronega-
tive individuals who were infected with serotype 3, as
opposed to an intermediate efficacy for seropositive [20, 21].

Dengue fever epidemiological dynamics shows large
fluctuations in disease incidence, and several mathematical

models describing the transmission of dengue viruses have
been proposed to explain the irregular behavior of dengue
epidemics. A careful review of deterministic dengue model-
ing was published in 2011 [22], where two main modeling
approaches were considered, the vector-host and the host-
to-host transmission. In the first approach, the fluctuations

Table 1: Stability of the system: for asymmetric parameters.

Basic number Invasion number Disease-free Boundary D1 Boundary D2 Coexistence D3
R1 <R2 RInv

R0 ≤ 1 RInv < 1 GAS No No No

R0 > 1 RInv < 1 Unstable No (if R1 < 1) GAS No

Unstable Unstable (if R1 > 1) GAS No

R0 > 1 RInv > 1 Unstable Unstable Unstable LAS for ϕ < ϕc

Unstable Unstable Unstable HB (stable limit cycle)

Unstable Unstable Unstable Unstable ϕ > ϕc

Table 2: Numerical values of the parameters used for the simulations.

Parameter Meaning Value Reference

d Mortality rate 0:015 y−1 [53]

γ Recovery rate 52 y−1 [2, 54]

βi Infection rate (individuals susceptible) 40 − 200 ⋆
αi Reinfection rate (individuals recovered from j) 40 − 200 ⋆
ϕ ADE factor 0 − 5 [7]
⋆These values were calculated to give reasonable basic reproduction numbers for dengue. For instance, using data for Brazil, Massad et al. [55, 56] estimated
the range of R0 to be between 1:38 and 7:86. Reiner et al. [57] estimated the range of the basic reproduction number to vary from 0:76 to over 5, using data
from Peru, while Fergusson et al. [58] estimated the R0 from 1:38 to 7:70, with average 3:2, using data from Thailand.
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Figure 1: Symmetric case (R0 =R1 > 1). In a vicinity of ϕc = 0:032, the maximum and minimum values for the susceptible population are
plotted.
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in the mosquito dynamics and climate change are included
and assumed to affect the disease transmission [23–27], while
in the second approach, the effect of seasonality (mimicking
the vectorial dynamics) appears to be essential to explain
the intra-annual fluctuations in disease cases [28–31].

Multistrain dengue dynamics are generally modelled
with extended SIR- (susceptible-infected-recovered-) type
models, and the combination of biological aspects such as
TCI and ADE effects has been studied by several authors
involving four strains [23, 24, 32, 33], but always limiting
the effect of ADE to increase the contribution of secondary
cases to the force of infection. Aguiar et al. [28, 29, 34–36]
have investigated a minimalistic two-infection dengue

model, an extension of a model initially suggested and pre-
liminary analysed in Ferguson et al. [23], where determinis-
tic chaos was found in wider parameter regions, not needing
to restrict the infectivity on secondary infection to one or
another region in parameter space. Consideration of tempo-
rary cross-immunity protection together with ADE gave
bifurcations up to chaotic attractors in much wider and also
unexpected parameter regions, not predicted by previous
models [37, 38].

Theoretical mathematical analysis of this model was
made by Aguiar et al. [28, 35] and by Kooi et al. [38]. A
detailed time series simulations were investigated, and vari-
ous bifurcation phenomena were observed. Considering
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Figure 2: Asymmetric case (R0 > 1, R1 < 1). Figures show the eigenvalues of the coexistence endemic equilibrium (CEE) in the complex
plane, for each value of ϕ. (d) A purely imaginary eigenvalue appears for ϕ ≈ 2:19.

3Computational and Mathematical Methods



symmetry of strains, the authors have shown the analytic
formulations for the equilibrium, as well as the analysis of
the bifurcation structures observed in the system. Further-
more, using numerical simulations to obtain the bifurcation
points, the analytic steady states and the stability for the
disease-free equilibrium and for the boundary equilibrium
were shown. Aguiar et al. [29] have also shown that the com-
bination of TCI and ADE is the most important feature to
drive the complex dynamics in the system, more than the
detailed number of dengue serotypes to be added in the model.
These models, however, are formulated in terms of Ordinary
Differential Equations (ODE), without incorporating time lags
in any of the state class for the human population, neither for
recovery nor for the incubation period, for example. Consider-
ation of time delay as a mechanism to model the dynamic of
dengue fever would be eventually useful to better describe
the disease immunological response where a short cross-
protection period to related serotypes is observed after the
individual recovers from a primary natural infection.

Simple delay models are frequently used to describe bio-
logical models and infectious disease dynamics. Delay differ-
ential equations are useful to describe, for example, the
population or disease behaviour which intrinsically depends
on a certain period of past time. Models with general time
delay (relapse period) for recovery individuals were used
by Van den Driessche in [39]. A mathematical model
describing a general multistrain disease has also been
recently described by Chen et al. in [40]. The authors pro-
posed a delay diffusive two-strain disease model considering
a SIR structure, constant recruitment rate, and constant time
delay representing the length of the immunity period. A
model for dengue fever that describes a time delay between
infectious and infected hosts was described by Sakdanupahp
and Moore in [41]. This model is relatively simple, with four
equations, but brings two different constant time delays, one
for the infectious host to the infected host and another one
for the vector population. However, this study did not con-

sider different serotypes. Steady states were obtained, stabil-
ity was proven, and numerical analysis and comparison with
empirical data were performed.

The model described by Cai et al. in [25] preserves the
SIR structure, considers multistrain structure, and includes
incubation period time and vector population dynamic.
The authors focused on the evolution of pathogen, and
according to the authors, the model could be used to
describe the dynamics of dengue fever or malaria. Guan
et al. [42] also proposed a dengue fever model with time
delay. The time delay included in the model refers to a time
incubation of the virus in an infected subpopulation and in
the infected mosquito population. In this work, numerical
simulations and analytical results were obtained assuming
four cases for the constant time delay.

Using a simpler SIR model, Huang et al. [43] considered an
infinite distributed delay on complex population network in
order to give some insights on biological and social networks.
Numerical experiments confirmed that, in this case, with the
delay slowing down the extinction of the disease when the
threshold value is smaller than 1, while the delay accelerates
the spreading of the disease if the threshold value is bigger than
1. Distributed delay was also used by Xu et al. [44] in a SVEIR
type model, including vaccination and general incidence func-
tion. Results showed that the distributed delay has no impact
on the qualitative behaviour and global dynamics of the system.

Infinite distributed delay was used by Steindorf et al. [45]
to describe a general time delay representing the cross-
protection period on dengue modelling. Allowing a general
period of immunity, the time delay was used to model the
phenomenon of temporary cross-immunity protection,
assuming that the individual recovered from a primary
infection may not be immediately susceptible to a heterolo-
gous dengue serotype infection. The model includes a key
parameter ϕ representing ADE, with results showing that
the disease fades out if the basic reproduction number is
smaller than 1. Otherwise, depending on ϕ values, different
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Figure 3: Asymmetric case (R0 > 1,R1 < 1). In the vicinity of ϕc = 2:19, the maximum and minimum values for the susceptible population
are plotted.
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scenarios are observed, including coexistence of serotypes,
prevalence of one serotype, periodic outbreaks, and also
complex dynamics for a certain parameter regions where
the disease transmission is difficult to be predicted.

In this work, we analyse a mathematical model to describe
the propagation of multistrain infectious diseases. We propose
a system of integro-differential equations (IDE), motivated by
dengue fever epidemiology and its well-studied antibody-
dependent enhancement (ADE) phenomenology and tempo-
rary cross-immunity period. Aimed at understanding the effect
of the general time delay on the model, which describes the
length of the temporary cross-immunity protection period

and assuming a constant parameter ϕ representing the ADE
effect, numerical experiments are performed, showing the bifur-
cation structures for different scenarios of dengue fever trans-
mission in a population.

2. Mathematical Model

In this section, we present the modeling framework developed
to describe denguemultistrain dynamics, considering the tem-
porary cross-immunity period and antibody-dependent
enhancement effects. For the sake of simplicity, we evaluate a
two-serotype host-to-host dynamical model.
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Figure 4: Asymmetric case (R0 > 1, R1 > 1). Figures show the eigenvalues of the coexistence endemic equilibrium (CEE) in the complex
plane, for each value of ϕ. (c) A purely imaginary eigenvalue appears for ϕ ≈ 0:244.
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Let NðtÞ be the total host population size in a region,
divided in classes according to the disease-related status. Indi-
viduals are assumed to be susceptible to all serotypes (SðtÞ),
infected by one serotype i (IiðtÞ), temporarily immune to all
serotypes after infection by serotype i (CiðtÞ), and recovered
from serotype i, and after the temporary cross-immunity pro-
tection period, they become susceptible to the other serotype,
RiðtÞ. Secondary infection can occur with a heterologous sero-
type; that is, IijðtÞ represent infected individuals by serotype j
after being recovered from serotype i, with i, j = 1, 2 and i ≠ j.
Finally, recovered individuals for all serotypes RðtÞ at time t.
Let d be the natural mortality.

For the sake of simplicity, the mosquito population is
not considered explicitly in the model. That is supported
by the findings published in [31], showing that the addition
of seasonality into these models can explain well the vector
dynamics, mimicking its abundance and decrease overtime,
without the need of adding many more equations into the
system. In this paper, we focus our analysis into the multi-
strain aspect of dengue epidemiology. We analyze first the
non-seasonal model with already shows a very rich dynam-
ical behaviour. Ongoing refinements consider the use of
seasonal forcing to describe the vector behaviour in endemic
countries. Explicit vector dynamics may be needed to
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evaluate disease control measures such as vector control and
vaccination [46–48].

Let βi be the transmission rate of a primary infection with
serotype i and αi be the transmission rate of a secondary infec-
tion with serotype i. Individuals in the infectious classes IiðtÞ
remain in this class with average time 1/γ, assuming that the
length in this class is exponentially distributed. After the infec-
tious period, individual recovers and remain temporarily
immune to all serotypes in the class CiðtÞ, due to the cross-
immunity protection period, with PiðtÞ being the fraction of
individuals recovered from an infection with serotype i at time
t, remaining cross-immune protected to all serotypes for a
certain amount of time. Here, we assume that Pið0Þ = 1 and
Pið∞Þ = 0 and PiðtÞ is not increasing. Moreover,

ð∞
0
Pi sð Þds =

1
ωi

<∞: ð1Þ

Thus, the number of cross-protected individuals is
given by

Ci tð Þ = C0 tð Þ +
ðt
0
γI sð ÞPi t − sð Þe−d t−sð Þds, ð2Þ

where C0 is the number of protected individuals at time
t = 0. Of course, C0 must satisfy limt⟶∞C0ðtÞ = 0.

After the cross-protection period, individual becomes
susceptible again, now to a different serotype, but life-long
protected to the serotype causing the first infection. Thus,
an individual in Ri class can be infected with a rate αj with
a heterologous dengue serotype. After being infected by the
two strains, individual became recovered from all strains,
remaining lifelong immune.

The ADE phenomenon explains the enhanced risk of dis-
ease severity in secondary infections caused by a heterologous
dengue serotype, due to increasing viral replication mediated

by preexisting antibodies that were produced during a primary
infection [2, 7]. According to Katzelnick et al. [7], ADE occurs
at a specific range of antibody concentrations. Furthermore,
Rothman et al. [8] affirms that depending on the specific anti-
body concentration, dengue virus antibodies can inhibit viral
infection by neutralization or enhance the infection, with
increased viral replication, by facilitating the entry of the com-
plex antibody-heterologous virus into target cells. Hence, the
ADE effect enhances infection during a secondary infection
caused by a heterologous serotype due to high
concentrations of preexisting antibodies on individuals who
already recovered from a primary infection.

Here, the epidemiological effect of ADE is described by a
constant parameter ϕ. We assume that this increasing (or
decreasing) of viral load during the secondary infection is
not related to the increased transmissibility but, rather to
the capacity of the immune system to respond to the second-
ary infection, protecting or enhancing the disease. Thus, in
this study, the ADE effect is parametrized with a factor ϕ,
increasing (ϕ > 1) or decreasing (ϕ < 1) the probability of a
recovered individual to acquire a secondary infection with
a heterologous serotype, assuming that the individual recov-
ered from a primary infection carries antibody load levels to
either neutralize or to enhance the infection.

Based on the assumption described above and in the
studies by Van den Driessche in [49, 50] and taking the
derivative of equation (2), assuming C0 = 0, the mathemati-
cal model can be written as follows:

dS tð Þ
dt

= dN tð Þ − dS tð Þ − β1
S tð Þ
N tð Þ I1 tð Þ − β2

S tð Þ
N tð Þ I2 tð Þ

− β2
S tð Þ
N tð Þ I12 tð Þ − β1

S tð Þ
N tð Þ I21 tð Þ,

dI1 tð Þ
dt

= −dI1 tð Þ + β1
S tð Þ
N tð Þ I1 tð Þ + β1

S tð Þ
N tð Þ I21 tð Þ − γI1 tð Þ,
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Figure 9: Asymmetric case (R0 > 1,R1 < 1). Space phase for different values of parameter ϕ. The susceptible population is plotted in the
horizontal axis, while the logarithm of the sum of the infected population (log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted in the vertical axis.
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dI2 tð Þ
dt

= −dI2 tð Þ + β2
S tð Þ
N tð Þ I2 tð Þ + β2

S tð Þ
N tð Þ I12 tð Þ − γI2 tð Þ,

dC1 tð Þ
dt

= γI1 tð Þ − dC1 tð Þ +
ðt
0
γI1 sð ÞP1′ t − sð Þe−d t−sð Þds,

dC2 tð Þ
dt

= γI2 tð Þ − dC2 tð Þ +
ðt
0
γI2 sð ÞP2′ t − sð Þe−d t−sð Þds,

dR1 tð Þ
dt

= −dR1 tð Þ − α2ϕ
R1 tð Þ
N tð Þ I12 tð Þ − α2ϕ

R1 tð Þ
N tð Þ I2 tð Þ

−
ðt
0
γI1 sð ÞP1′ t − sð Þe−d t−sð Þds,

dR2 tð Þ
dt

= −dR2 tð Þ − α1ϕ
R2 tð Þ
N tð Þ I21 tð Þ − α1ϕ

R2 tð Þ
N tð Þ I1 tð Þ

−
ðt
0
γI2 sð ÞP2′ t − sð Þe−d t−sð Þds,

dI12 tð Þ
dt

= −dI12 tð Þ − γI12 tð Þ + α2ϕ
R1 tð Þ
N tð Þ I2 tð Þ + α2ϕ

R1 tð Þ
N tð Þ I12 tð Þ,

dI21 tð Þ
dt

= −dI21 tð Þ − γI21 tð Þ + α1ϕ
R2 tð Þ
N tð Þ I1 tð Þ + α1ϕ

R2 tð Þ
N tð Þ I21 tð Þ,

dR tð Þ
dt

= −dR tð Þ + γI12 tð Þ + γI21 tð Þ:
ð3Þ

3. Results

In Steindorf et al. [45], the model is analysed following
Miller’s [51] results that the limiting system ensures that
the system proposed has an equilibrium and the equilib-
rium of the system coincides with those of their limiting
equation, followed by defining an appropriated Banach
space in order to have a well-posed system and to have
solutions well defined.

The qualitative analysis of this model is available in
Steindorf et al. [45], where the analytical four equilibria
of the limiting system in the invariant region are pre-
sented. The local stability analysis for the disease-free
equilibria and for the boundary endemic equilibrium was
proven. Using the theory proposed by Brauer [52], the sta-
bility of the solutions of the system was proven and was
completely determined by the basic reproduction number
and by the invasion reproduction number defined mathe-
matically as a threshold value for stability. In this work,
Steindorf et al. [45] used Lyapunov functions to prove
the global dynamics.

It was proven that if the basic reproduction number
R0 = max fR1,R2g =max fβ1/ðd + γÞ, β2/ðd + γÞg ≤ 1, the
disease-free equilibrium is globally asymptotically stable. If
R0 > 1 and the invasion reproduction number RInv = ðR1/
R2Þ + ðR2 − 1Þðα1ϕγM2/β2ðd + γÞÞ ≤ 1, where M2 =

Ð∞
0 P′2

ðsÞe−dðsÞds, the boundary equilibrium related to the the high-
est infection rate, βi, is globally asymptotically stable, while
the other boundary equilibrium is always unstable. Finally,
if R0 > 1 and RInv > 1, the coexistence endemic equilibrium
exists and it is positive in the invariant region.

In order to show the stability of the coexistence equilib-
rium, numerical experiments were performed. Although the
existence of a coexistence endemic equilibrium could be
shown and proven analytically, the theoretical analysis of
the stability using the linearized theory, for this case, was
not successful, since we will have to deal with a transcenden-
tal characteristic equation. Thus, analysis of the local stability
of this equilibrium is studied through numerical approach.

The main results are summarized in Table 1.

4. Numerical Results

The numerical values for the parameters are shown in the
Table 2.
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Figure 10: Asymmetric case (R0 > 1, R1 > 1). In the horizontal axis, the parameter ϕ varies, while in the vertical axis, the logarithm of the
maximum and minimum values for the infected population (log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted.
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Figure 11: Asymmetric case (R0 > 1, R1 > 1). Space phase for different values of parameter ϕ. The susceptible population is plotted in the
horizontal axis, while the logarithm of the sum for the infected population (log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted in the vertical axis.
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We consider a function to represent the cross-immunity
period, assuming that after one year, the individual is no
longer protected to a new infection [2]. For this initial
numerical analysis, we choose to work with the cubic poly-
nomial (in order not to work with infinity time),

P sð Þ = 2s3 − 3s2 + 1, 0 ≤ s ≤ 1,
0, s ≥ 1,

(
ð4Þ

with average time being 1/2 year [2].

4.1. Stability of the Coexistence Endemic Equilibrium (CEE).
The stability of the CEE will be studied using numerical

experiments. The CEE, D3, will be in the positive region only
if the parameters satisfy the conditionRInv > 1. If it satisfied,
then also the boundary equilibrium (BE) will lose the stabil-
ity. In order to study the stability of the CEE, we are going to
analyse numerically the roots of the characteristic equation.
To do that, we choose some values of the parameter ϕ, using
it as a bifurcation parameter.

We evaluate three different case scenarios:

(i) Symmetric Case R0 =R1 > 1

In this case, the infection rates are the same for both
strains. For the simulations, we fixed βi = 180, giving the
value for R0 = 3:46. For the symmetric case scenarios, the
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(a) Symmetric case. Hopf bifurcation at ϕc = 0:032
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(b) Maximum and minimum values for the susceptible population for ϕ ∈ ð0:1,1Þ

Figure 12: Symmetric case (R0 =R1 > 1). In the horizontal axis, the parameter ϕ varies, while in the vertical axis, the maximum and
minimum values for the susceptible population are plotted.
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Figure 13: Symmetric case (R0 =R1 > 1). In the horizontal axis, the parameter ϕ varies, while in the vertical axis, the logarithm of the
maximum and minimum values for the infected population (log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted.
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Figure 14: Symmetric case (R0 =R1 > 1). Space phase for different values of parameter ϕ. The susceptible population is plotted in the
horizontal axis, while the logarithm of the sum of the infected population (log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted in the vertical axis.
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coexistence equilibrium will be always positive in the invari-
ant region. This fact was also proven analytically in [45]. The
equilibrium will be stable for values of ϕ < 0:032; that is, when
the Hopf bifurcation occurs, this is, for ϕc = 0:032, where a
purely imaginary part of eigenvalues appears (Figure 1(a)).

(ii) Asymmetric Case for R0 > 1, R1 < 1

In this case scenario, with values for the parameters in
Table 2, we fixed β1 = 45 and β2 = 180, which gives R1 =
0:87 and R0 = 3:46. To study the stability of the CEE, it is
necessary that the conditionRInv > 1 it satisfied. This occurs
for ϕ > 1:23. Then, for all values of ϕ > 1:23, we have the
existence of the CEE and the correspondent eigenvalues, as
shown in Figures 2(a)–2(f) .

Figures 2(a)–2(f) show that the characteristic equation
has a pair of conjugated complex roots that change the sign
of the real part as the parameter ϕ increases. As ϕ increases
from small values through critical value, ϕc, the steady state
changes from a stable focus to an unstable steady state.
Therefore, the Hopf bifurcation occurs when the parameter
ϕ ≈ 2:19. Thus, closed periodic orbit will be found in a small
neighbourhood of ϕc. This can also be seen in the bifurcation
diagram shown in Figure 3(a).

(iii) Asymmetric Case for R0 > 1, R1 > 1

The values for the parameters used in the simulations for
this case scenario can be found in Table 2. We fixed β1 = 120
and β2 = 180, which gives R1 = 2:31 and R0 = 3:46, respec-
tively, and thus RInv > 1 for ϕ > 0:205. Therefore, for all
values of ϕ > 0:205, we have the CEE at the positive region,
and we plotted the correspondents’ eigenvalues, as shown
in Figures 4(a)–4(f).

Figures 4(a)–4(f) show that the characteristic equation has
a pair of conjugated complex roots that change the sign of the
real part of the eigenvalues as the parameter ϕ increases. Thus,
the Hopf bifurcation occurs when the parameter ϕ ≈ 0:244.
This can also be seen in Figure 5(a), and for this case scenario,
also the supercritical Hopf bifurcation occurs. Furthermore,
after the Hopf bifurcation, the CEE will be unstable.

4.2. Bifurcation Structure. In the previous section, we have
shown, using numerical experiments, that for a range of
the parameter ϕ, the equilibrium is stable for the three case
scenarios. A Hopf bifurcation occurs for a critical value ϕc,
followed by periodic oscillations. We evaluate bifurcation
diagrams to study the dynamics for the different ϕ values
being farther than ϕc.

(i) Symmetric Case R0 =R1 > 1

Figure 6(a) shows a bifurcation diagram where the max-
imum and minimum values for the infected population are
plotted, while the value for the parameter ϕ is varying. After
the Hopf bifurcation, a chaotic behavior is observed. For big-
ger values, a periodic behavior is found. Figures 7(a)–7(f)
illustrate the space phase for different values of the parame-
ter ϕ, with complicated attractor and limit cycles identified.

(ii) Asymmetric Case for R0 > 1, R1 < 1

The Hopf bifurcation occurs at ϕc = 2:19 (see
Figure 3(a)). The solutions exhibit a small amplitude limit
cycle around the endemic equilibrium. A stable limit cycle
arises close to the critical bifurcation point and goes away
from the unstable equilibrium. Thus, it is possible to con-
clude that a supercritical Hopf bifurcation has occurred.
After the Hopf bifurcation, the diagram shows chaotic
behavior for bigger ϕ values (see Figure 8(a)). Figures 9(a)–
9(f) illustrate the space phase for different values of the
parameter ϕ, with a limit cycle occuring at ϕ = 2:19. For
bigger values of ϕ, chaotic dynamics is observed.

(iii) Asymmetric Case for R0 > 1, R1 > 1

After the Hopf bifurcation, the diagram shows chaotic
behavior and complex dynamics for bigger values of the ϕ
parameter (see Figure 10(a)). Figures 11(a)–11(f) illustrate
the space phase for different values of the parameter ϕ,
showing chaotic dynamics and complicated attractors for
different values of ϕ.

By varying the ADE parameter, the system shows a rich
dynamical behavior for all the three case scenarios. For small
values of ϕ, we have a fixed point; hence, the coexistence
endemic equilibrium is stable. The Hopf bifurcation occurs
for a specific range of ϕ values, from where disease propaga-
tion is possible and periodic solutions are observed. Compli-
cated attractors and chaotic behavior are also observed.

5. Particular Case: Exponential Immunity

We extend our analysis to investigate a particular case of the
proposed model. Here, we assume the length of immunity
being exponentially distributed, that is, considering that
the fraction of temporarily immune individuals remaining
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Figure 15: Symmetric case (R0 =R1 > 1). In the horizontal axis,
the parameter ϕ varies, while in the vertical axis, the logarithm of
the maximum and minimum values for the infected population
(log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted.
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Figure 16: Symmetric case (R0 =R1 > 1). Space phase for different values of parameter ϕ. The susceptible population is plotted in the
horizontal axis, while the logarithm of the sum of the infected population (log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted in the vertical axis.
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in the Ci class is PiðtÞ = e−ωi t , with ωi > 0, for i = 1, 2. In this
case, the integro-differential equation (IDE) system became
an ODE system as follows:

dS tð Þ
dt

= d − dS tð Þ − β1S tð Þ I1 tð Þ + I21 tð Þð Þ − β2S tð Þ I2 tð Þ + I12 tð Þð Þ,
dI1 tð Þ
dt

= − d + γð ÞI1 tð Þ + β1S tð Þ I1 tð Þ + I21 tð Þð Þ,
dI2 tð Þ
dt

= − d + γð ÞI2 tð Þ + β2S tð Þ I2 tð Þ + I12 tð Þð Þ,

dC1 tð Þ
dt

= −dC1 tð Þ + γI1 tð Þ − ω1C1 tð Þ,

dC2 tð Þ
dt

= −dC2 tð Þ + γI2 tð Þ − ω2C2 tð Þ,

dR1 tð Þ
dt

= −dR1 tð Þ − α2ϕR1 tð Þ I12 tð Þ + I2 tð Þð Þ + ω1C1,

dR2 tð Þ
dt

= −dR2 tð Þ − α1ϕR2 tð Þ I21 tð Þ + I1 tð Þð Þ + ω2C2,
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(a) Case: R1 = 2:31. Hopf bifurcation at ϕc = 0:244
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(b) Maximum and minimum population for ϕ ∈ ð0:26,1Þ

Figure 17: Asymmetric case (R0 > 1, R1 > 1). In the horizontal axis, the parameter ϕ varies, while in the vertical axis, the maximum and
minimum values for the susceptible population are plotted.
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Figure 19: Asymmetric case (R0 > 1, R1 > 1). Space phase for different ϕ values. The susceptible population is plotted in the horizontal
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dI12 tð Þ
dt

= − d + γð ÞI12 tð Þ + α2ϕR1 tð Þ I2 tð Þ + I12 tð Þð Þ,

dI21 tð Þ
dt

= − d + γð ÞI21 tð Þ + α1ϕR2 tð Þ I1 tð Þ + I21 tð Þð Þ: ð5Þ

This qualitative analysis of this particular case was only
initially evaluated in Steindorf et al. [45]. Here, a detailed
analysis of the dynamical behaviour is presented.

5.1. Numerical Results. The parameters used for the numer-
ical experiments can be found in Table 2, with ωi = 2y−1.

5.1.1. Bifurcation Structure. To analyse the stability of the
coexistence endemic equilibrium (CEE), we evaluate the
bifurcation structures shown in a diagram where the
parameter ϕ is the varying parameter. The stability for
the CEE using ϕ as a bifurcation parameter is also shown
numerically in [45]. In detail, as ϕ increases from small
values towards the critical value, ϕc, the steady state
changes from a stable focus to an unstable steady state.
Therefore, the Hopf bifurcation occurs and a closed peri-
odic orbit appears in a small neighbourhood of ϕc. In
order to see the limit cycle around the equilibrium, in a
small vicinity of the critical value, bifurcation diagrams
are shown.
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Figure 20: Asymmetric case (R0 > 1, R1 > 1). In the horizontal axis, the parameter ϕ varies, while in the vertical axis, the maximum and
minimum values for the susceptible population are plotted.
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Figure 22: Asymmetric case (R0 > 1,R1 > 1). Space phase for different ϕ. The susceptible population is plotted in the horizontal axis, while
the logarithm of the sum of the infected population (log ðI1 + I2 + I12 + I21ÞðtÞ) is plotted in the vertical axis.
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(i) Symmetric Case R0 =R1 > 1

Figures 12(a) and 12(b) illustrate the bifurcation dia-
grams for the symmetric case scenario of β1 = β2 = 180, with
R0 = 3:46. The fixed point is found for small values of the
parameter ϕ, after the chaotic behaviour is found
(Figures 13(a)–13(b)).

Figures 14(a)–14(f) show the space phase for different
values of the parameter ϕ for the symmetric case scenario,
where chaotic behaviour for ϕ < 1 and limit cycles for larger
values are observed.

Figure 15(a) illustrates the bifurcation diagram for the
symmetric case scenario, with β = 104 andR0 = 1:99. In this
case, the Hopf bifurcation is found for the critical value of
ϕc = 0:08. Figures 16(a)–16(f) show the space phase for dif-
ferent values of the parameter ϕ. A limit cycle is found for
ϕ = 0:08, and chaotic behaviour for value of ϕ < 1 is
observed. For ϕ = 3:5, more complicated limit cycles are
observed, in this case with β = 104, while for β = 180, a limit
cycle is seen.

(ii) Asymmetric Case of R0 > 1, R1 > 1

Figures 17(a)–17(b) illustrate the bifurcation diagrams
for the case where β1 = 120 and β2 = 180. The fixed point
is found for small values of parameter ϕ, after chaotic behav-
iour is observed (Figures 18(a) and 18(b)).

Figures 19(a)–19(f) show the space phase for different
values of the parameter ϕ for the asymmetric case of β1 = 120
and β2 = 180. Chaotic behaviour for ϕ < 1, limit cycle for ϕ =
0:244, and complicated attractors after these values are shown.

(iii) Asymmetric Case for R0 > 1, R1 < 1

Figures 20(a)–20(a) illustrate the bifurcation diagrams
for the case scenario where β1 = 45 and β2 = 180. Hopf
bifurcation occurs for ϕ = 2:52 (Figures 21(a) and 21(b)).

Figures 22(a)–22(f) show the space phase for different
values of the parameter ϕ for the asymmetric case scenario
of β1 = 45 and β2 = 180. Chaotic behaviour for ϕ > 1, limit
cycle for ϕ = 2:52, and complex attractors after these values
are shown.

For the three case scenarios, the equilibrium is stable for a
small range of the ϕ parameter. While for the symmetric case
scenario, the Hopf bifurcation occurs at ϕ = 0:032, for the
asymmetric case scenarios, the bifurcation points are ϕ =
0:244 and ϕ = 2:52, respectively, for scenario ii and scenario
iii. Periodic solutions are found for critical values of ϕ, as it
is shown in Figures 16, 19, and 22. For the symmetric case
scenario, chaotic behaviour is observed for ϕ < 1. For the
asymmetric case scenarios, complex attractors are observed
for wide parameter values below 1 and complicated limit
cycles above 1, for case scenario ii, while chaotic behaviour is
observed only for values above ϕ = 2:52 in case scenario iii.

6. Conclusions

While the qualitative analysis of the particular case consider-
ing exponential immunity was initially evaluated in [45],

here we have performed a detailed analysis for the ADE
parameter, gaining insights into the dynamical behavior of
disease propagation in a population.

In this study, we have shown that the model has an equi-
librium of the coexistence of serotypes. The mechanisms
that can lead to this finding are the cross-immunity protec-
tion period and the ADE effect. These mechanisms have an
important role in dengue modelling, since the disease
exhibits different serotypes cocirculating in a given region.
It was also shown that, if the ADE effect is small enough,
there is a range of ϕ values where if one serotype is endemic;
the other serotype will not be able invade the population. In
that case, the presence of one serotype will eventually protect
the population from the invasion of the other serotype,
decreasing the risk of a secondary infection to occur and
hence decreasing severe disease in that population. Other-
wise, the serotypes will coexist.

If the key parameter describing the ADE reaches the
threshold value, then a supercritical Hopf bifurcation occurs,
leading to periodic solutions. If the parameter is big enough,
then the endemic equilibrium is unstable and a chaotic
behaviour occurs. Within this parameter region where the
complex dynamics scenario is observed, the disease propaga-
tion can only be predicted for a limited period of time.

Results showing complex attractors are of major impor-
tance to describe dengue fever epidemiology dynamics, since
the available empirical data dynamics show irregular behav-
iour resembling chaotic dynamics, as previously described
by Aguiar et al. [26]. We note that this study is an ongoing
work, with many aspects still to be investigated. As an exam-
ple, Lyapunov exponent calculations will certainly comple-
ment the bifurcations diagram analysis and phase space
plots, able to show the exact parameter value where the
chaotic behaviour starts and gets eventually stabilized.

Comparing the particular case of the exponential distrib-
uted function for the immunity period, with the general
delay model, we observed that the qualitative behaviour of
the system was not altered by the choice of the function.
However, the invasion reproduction number depends on
the average cross-protection time, which can affect whether
the infection could coexist or not. Moreover, we observe
slight differences in the numerical experiments for the bifur-
cations at the critical values, as well as for the range of peri-
odic solutions and complex attractors.
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