
  Abstract—Deep learning (DL) inversion of induction logging 

measurements is used in well geosteering for real-time imaging of 

the distribution of subsurface electrical conductivity. We develop 

a DL inversion workflow to solve 2.5-dimensional (2.5D) inverse 

problems arising in well geosteering. The inversion workflow 

employs three DL modules: a “look-around” fault detection 

module and two inversion modules for reconstructing anisotropic 

resistivity models in the presence or absence of fault planes, 

respectively. Our DL approach is capable of detecting and 

quantifying arbitrary dipping fault planes in real-time. We 

compare inversion performance considering only short logging-

while-drilling (LWD) measurements vs. using both short LWD 

and deep-sensing measurements. The latter measurements 

provide enhanced depth-of-investigation while minimizing 

uncertainty. We also obtain improved results when using multi-

dimensional inversion, especially nearby fault planes. This study 

verifies the applicability of real-time 2.5D DL inversion across 

arbitrary faulted formations for well geosteering. 

Index Terms— Deep learning, fault detection, geosteering, 

induction logging, inverse problem 

I. INTRODUCTION 

ELL geosteering is used for the real-time control of 

underground well trajectories, and it is one of the most 

critical techniques to maximize the contact of drilled wells 

within the target geological units [1], [2].  Borehole 

electromagnetic (EM) induction measurements contain 

information about the surrounding rocks and saturating fluids 

[3] and are often employed for well geosteering purposes. This 

requires interpretation of borehole induction measurements via 

an inversion method.  

One-point-five-dimensional (1.5D) inversion has been widely 

implemented for well geosteering (see, e.g., [4], [5]) because of 

its low computational cost. However, it may cause critical 

misinterpretations in certain geological structures: for example, 

when the well trajectory crosses a geological fault. In such cases, 

a multi-dimensional inversion method has a higher capacity of 

imaging the true resistivity structure [6], [7]. However, multi-

dimensional inversion is often computationally expensive due 

to the need of performing CPU-time consuming forward 

simulations. To achieve multi-dimensional inversion of 
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induction logging measurements in almost real-time, some 

authors have proposed multiple fast forward simulation 

methods (see, e.g., [7]– [9]). Despite these efforts, there is still 

a need for faster and more reliable multi-dimensional inversion 

methods to achieve the true meaning of real-time imaging. 

Meanwhile, modern machine learning methods such as deep 

learning (DL) are now widely employed for solving various 

scientific and engineering problems [10]–[12]. In particular, DL 

methods have recently been applied to solve geophysical 

inverse problems [13], [14]. DL inversion offers the practical 

possibility of real-time imaging of spatially complex subsurface 

structures. Motivated by this real-time inversion alternative, a 

few pioneering studies applied DL inversion of borehole 

induction measurements mostly assuming a piecewise 1.5-D 

subsurface structure [15]–[18]. An extension to two-point-five-

dimensional (2.5D) geometries was proposed in [19], although 

this study was restricted to short-spaced LWD measurements 

and vertical faults. This paper extends the 2.5D DL inversion 

method proposed in [19] to the case of deep-sensing 

measurements and incorporates fault geometries of varying dip 

angles. Thus, we invert simultaneously both short LWD and 

deep-sensing measurements to infer the spatial distribution of 

electrical conductivity around the well trajectory. 

The letter is organized as follows: In section II, we describe 

the DL inversion method, including our multi-dimensional 

inversion workflow composed of three modules. We also 

compare training results obtained with and without utilizing 

deep-sensing measurements. Section III considers a synthetic 

complex model containing a graben structure with two dipping 

faults and compares DL inversion results with and without 

using deep-sensing measurements. Conclusions follow in 

section IV. 

II. METHOD 

A. Inversion workflow 

Our inversion workflow consists of a fault prediction module 

and two inversion modules to predict the resistivity structure 
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with or without fault planes, respectively. First, EM logging 

measurements are segmented with a predefined dimension and 

input to the prediction module. Then, the prediction module 

determines the presence or absence of fault planes in the “look-

around” dichotomic sense. The local resistivity models are 

subsequently reconstructed using the corresponding inversion 

modules based on the fault detection results. The final 

resistivity model is obtained by stacking and “stitching” 

together the local resistivity models.  

B. Subsurface and trajectory parameterization 

We consider two-dimensional earth models composed of 

three layers. Fig. 1 shows two of these models: one without a 

geological fault, and another one with it. The first case in Fig. 

1a is parameterized with 10 variables (mℝ10, where m is a set 

of model parameters): six resistivity values, representing 

horizontal and vertical resistivities of three layers; two dipping 

angles of bed boundaries; and two vertical distances from the 

bed boundaries to the logging instrument at the horizontal 

center of the local trajectory. The second earth model in Fig. 1b 

contains a dipping fault plane and it is parameterized with 22 

variables (mℝ22). Table 1 summarizes the choices of specific 

values for model and trajectory parameters.  

C. Measurements 

We consider two types of tri-axial instruments: (a) a short-

spaced LWD instrument with ten transmitters (Txs) operating 

at 2 MHz and two receivers (Rxs), with minimum and 

maximum Tx-Rx offsets of approximately 0.3 and 1.12 m, 

respectively; and (b) a tri-axial deep-sensing instrument with 

one Tx operating at 10 kHz and one Rx spaced 12 m away from 

the Tx. The latter logging instrument has a larger depth-of-

investigation (DOI) than the LWD instrument because of the 

larger Tx-Rx offset and lower operating frequency. We 

consider both attenuation and phase components of one co-axial, 

two co-planar, and one cross-coupling, the so called Geosignal 

component. We refer to the Appendix in [16] for the 

corresponding postprocessing and [19] for the importance of 

selecting multiple components, especially the cross-coupling 

component, as an input for the multi-dimensional inversion.   

D. Training and test data sets 

We generate two independent datasets: one for the case 

without fault, and one for the case with a fault. For each of them, 

we simulate 20K samples consisting of trajectory, resistivity 

model, and their corresponding 2.5D forward responses 

calculated using a high-order mesh-adaptive simulator [20]. To 

enhance the robustness of DL inversion against measurement 

noise, we follow [21] and take their proposed “augmented 

measurement noise” strategy of triplicating the original data 

sets by contaminating them with zero-mean Gaussian noise 

with maximum intensities of 0.1 dB and 0.4 degrees for the 

short LWD measurements and 0.004 dB and 0.4 degrees for the 

deep-sensing measurements. Each data set then includes 60K 

samples. We employ 85% of those samples for training, and the 

remaining 15% for testing.  

E. Deep learning training process 

We first train for a binary classification problem to determine 

the possible presence or not of a geological fault. For that, we 

build an objective function using cross-entropy with a sigmoid 

function.  

We also train for the two independent modules to determine 

the earth models. We follow [16] and simultaneously train the 

forward and inverse operators instead of training only the 

inverse operator. The approach is realized by minimizing the 

following problem: 

(𝐹𝜙∗ , 𝐼𝜃∗): = arg min
𝜙∈𝛷,𝜃∈𝛩

{
‖(𝐹𝜙 ∘ 𝐼𝜃)(𝑴, 𝑻) − 𝑴‖

2

2

+‖𝐹𝜙(𝑷, 𝑻) − 𝑴‖
2

2 },           (1) 

where P, M, T denote subsurface properties, measurements, 

and well trajectory, respectively, and 𝐹𝜙 and 𝐼𝜃  are DL 

architectures approximating forward and inverse functions that 

contain unknown weights 𝜙 and 𝜃, respectively. The first term 

in the right-hand-side of Eq. (1) is designed to guarantee that 

𝐼𝜃  is the inverse operator of 𝐹𝜙, while the second term ensures 

that the forward operator 𝐹 is properly approximated by 𝐹𝜙.  

We select a deep residual neural network (ResNet) [22] with 

1D convolutional layers to construct the forward, inverse, and 

classification modules with properly varying input and output 

shapes. In addition, we add non-trainable Gaussian noisy layers 

to enhance robustness against measurement noise [21]. By 

using TensorFlow [23] and Keras [24], we independently carry 

out the training process of classification and inversion modules 

for the two types of input measurements: short LWD and both 

short LWD and deep-sensing measurements. Each training 

process takes approximately 6 CPU hours using an Nvidia GTX 

machine equipped with Intel Xeon E5-2620 v4 CPU and four 

Nvidia 1080-TI GPUs. 

F. Training results 

Table 2 compares the accuracy of the binary classification 

over the testing data set when using only short LWD 

measurements vs. both short LWD and deep-sensing 

measurements. When using only short LWD measurements, 

prediction accuracies are approximately 99.67 and 98.67 

percent for the models without and with fault planes, 

respectively. When adding deep-sensing measurements, the 

results slightly increase to 99.70 and 98.74 percent. The 

classification module indicating the possible presence of a 

nearby fault shows high accuracy independently of the use of 

deep-sensing measurements. 

Table 3 summarizes the root-mean-squared error (RMSE) of 

the earth model parameters over the test data sets. Regardless 

of the fault presence in the model, results show higher accuracy 

about the host layer resistivities than about the neighboring 

layers resistivities. Horizontal resistivity shows higher accuracy 

than vertical resistivity in both hosting and neighboring layers. 

When deep-sensing measurements are used together with short 

LWD measurements, estimation of resistivities of neighboring 

layers, distances, and angles of layer interfaces improve, while 

the accuracy of the host layer resistivities stays at the same level. 

These results are consistent with the underlying physics 



concerning directional sensitivity and DOI associated with 

different input components and types of logging instruments.  

Comparison of the results obtained for the faulted models 

show slightly higher RMSE—7 to 35 percent—than those 

without fault planes because faulted models involve a larger 

number of unknowns. When adding deep-sensing 

measurements, we observe a similar level of accuracy in terms 

of the horizontal location, but the accuracy of the dip angle 

dramatically improves. 

In summary, LWD measurements are sufficient to determine 

specific parameters such as hosting resistivities, fault presence, 

and horizontal location of fault planes. However, the use of 

deep-sensing measurements significantly enhances the 

inversion results concerning multi-dimensional features, e.g., 

information on neighboring layers, and fault dipping angle. 

III. NUMERICAL APPLICATION 

We now consider a three-dimensional (3D) geological model. 

Fig. 2 shows a cross-section of the 3D model at the center of the 

y-axis and the 3D trajectory projected on the cross-section. The 

model contains two opposite dipping normal faults (with -30 

and 30 degrees of dip angle, respectively) leading to the 

subsidence of a graben. We use the open-source code GemPy 

[25] to generate the 3D geological model with a half-meter grid 

size. We then extract two-dimensional planes along the 

trajectory and interpolate them into a finer centimeter scale for 

2.5D simulations. Figure 3a shows the corresponding horizontal 

and vertical resistivities of the three-layered model. We then 

carry out 2.5D forward modeling using a finite element method. 

The simulated measurements are contaminated with a noise 

level similar to that of the training data set. 

Figs. 3b and 3c show the DL inversion results obtained by 

using only short LWD measurements and both short LWD and 

deep-sensing measurements, respectively. Both results agree in 

terms of the hosting layer resistivities. Fig. 4 shows the 

reconstructed short LWD measurements obtained when using 

the inversion results of Figs. 3b and 3c. We observe accurate 

prediction of the short LWD measurements thanks to good 

reconstructions of hosting resistivities. The overall RMSEs are 

nearby [0.149 dB, 0.424 degrees], when inverting short LWD 

measurements only, and [0.121 dB, 0.401 degrees], when 

inverting both short LWD and deep-sensing measurements, 

which are comparable with added noise level. Besides the well 

reconstruction of hosting resistivities, multi-dimensional 

features such as structure of adjacent layers and fault planes 

differ each other in Figs. 3b and 3c.  When using only short 

LWD measurements, inversion results in Fig. 3b show good 

agreement concerning close layer interfaces at a few locations 

(for example, across horizontal position ranges [0, 10], [20, 30], 

and [120, 140]). In other areas, predictions poorly reconstruct 

layer interfaces and neighboring resistivities. These predictions 

improve when adding deep-sensing measurements: in particular, 

in the reconstruction of neighboring layers and fault-plane dip 

angles.  

Empowered by the low computational cost of DL inversion, 

we evaluate the uncertainty of the deterministic DL inversion 

result by simple performing repetitive calculations. First, we 

reproduce sets of input measurements by multiple times and 

contaminate each reproduced sample with varying 

measurement noise. For the following results, we use 100 times 

for the size of the reproductions. The computation time is about 

4 CPU seconds for each measurement point spaced 10 

centimeter using a laptop equipped with an Intel i7-7700HQ 

processor and an Nvidia GeForce GTX 1050 GPU. By applying 

the inversion workflow and comparing the results obtained 

from each reproduced measurement, we collect the 

distributions of inverse solutions. Then the uncertainty from the 

distributions provides a comprehensive measure of the noise 

effect, and training accuracy of the DL modules.  

To analyze uncertainty results, we focus on the point-by-

point standard deviation of the inverted distance to the upper 

boundary. Fig. 5 compares the results obtained from short LWD 

measurements only vs. those from both short LWD and deep-

sensing measurements. We observe lower deviation values 

when both types of measurements are input to the inversion. Fig. 

6 compares the normalized standard deviations for varying 

model parameters across the entire well trajectory. The 

horizontal locations of fault crossings show low standard 

deviation regardless of the use of deep-sensing measurements. 

Other features related to the multi-dimensional structure (e.g., 

dip of fault planes) show the largest decrement of 

approximately 40 percent when considering deep-sensing 

measurements. Horizontal resistivities show lower deviation 

than vertical resistivities.  

IV. CONCLUSION 

We developed a DL inversion workflow that images the 2.5D 

resistivity structure of potentially fractured subsurface 

structures from EM borehole induction measurements for real-

time well geosteering applications. The workflow consists of 

one classification module and two inversion modules—to 

consider the cases without and with fault planes, respectively. 

Using the DL inversion workflow, we investigated the benefits 

of incorporating deep-sensing measurements in the inversion 

results. Two types of input measurements were considered—

one consisting of only LWD measurements and another 

employing both LWD and deep-sensing measurements. We 

showed via synthetic examples that: (1) it is possible to detect 

and reconstruct fault planes and hosting resistivities from LWD 

measurements, and (2) the performance of multi-dimensional 

inversion significantly improves by employing also deep-

sensing measurements. In addition, we were able to produce 

uncertainty results thanks to the fast evaluation of the DL 

inversion method. These results are useful for interpretation and 

decision-making in real field applications.  

The developed workflow assumes that the subsurface 

resistivity structure is a continuum of local three-layer 
structures possibly crossed by non-perpendicular and non-

azimuthal fault planes. Future research will focus on the 

extension of the workflow toward full 3D inversion with more 

flexibility in model assumptions.  
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Figure 1. Graphical representations of the spatial resistivity distributions 

used to describe specific geological conditions in this work. The red line is 

the local well trajectory. (a) Three-layer model without a crossing fault 

between a fault plane and the trajectory. (b) Two three-layer models with a 

fault plane within the local well trajectory.  
 

 

 
Figure 2. Cross-section of a three-dimensional (3D) geological model 

representing a graben fault condition. The blue line describes the 3D 

trajectory projected in x-depth space.  
 

 

 
Table 1. Ranges of model and well trajectory parameters used to generate 

the training and test data sets. 

 



 
Table 2. Results obtained with our classification module trained and tested 

with noise-contaminated data sets. 

 
 

 
Table 3. Root-mean-squared error of test data sets with varying conditions 

for resistivity models and input measurements. Results obtained for 

parameters with analogous physical meaning are grouped. Units for 

resistivities, distances, and angles are log10(Ohm-m), meters, and degrees, 

respectively. “LWD” and “Deep” for input measurements stand for short 

LWD and deep-sensing measurements, respectively. 
 

 
Figure 3. (a) 2.5D three-layered resistivities along the well trajectory shown 

in Fig. 2. Inverted resistivity models obtained from (b) only LWD 

measurements and from (c) both LWD and deep-sensing measurements. 

Upper and lower panels show inverted horizontal and vertical resistivities, 

respectively. Corresponding well trajectory and adjacent bed boundaries are 

shown in blue and black solid lines, respectively. Inversion results of faulted 

segments are zoomed-in with the true geometry of the fault planes marked 

with black dashed lines for horizontal resistivity models.  

 

 

 

Figure 4. Comparison of noise-free measurements (black dashed lines), 

noise-contaminated measurements (black dots), and predicted 

measurements obtained with DL inversion after using only LWD (red solid 

lines) and both LWD and deep-sensing (blue solid lines) measurements. 

Upper and lower panels show attenuation and phase difference, respectively, 

corresponding to the co-axial configuration of the LWD instrument with the 

longest offset. 
 

 

 

 

 

 

 

 
Figure 5. Standard deviation of inverted upper bed boundary positions 

when using short LWD measurements only (red line) and both short 

LWD and deep-sensing measurements (blue line).  

 

 
 

 
Figure 6. Normalized standard deviation of inversion variables obtained 

with deep learning inversion modules trained with only short LWD (red 

bars) and both short LWD and deep-sensing (blue bars) measurements. 
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