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Abstract—The overall global death rate for COVID-19 patients
has escalated to 2.13% after more than a year of worldwide
spread. Despite strong research on the infection pathogenesis, the
molecular mechanisms involved in a fatal course are still poorly
understood. Machine learning constitutes a perfect tool to develop
algorithms for predicting a patient’s hospitalization outcome at
triage. This paper presents a probabilistic model, referred to
as a mortality risk indicator, able to assess the risk of a fatal
outcome for new patients. The derivation of the model was done
over a database of 2,547 patients from the first COVID-19 wave
in Spain. Model learning was tackled through a five multistart
configuration that guaranteed good generalization power and
low variance error estimators. The training algorithm made use
of a class weighting correction to account for the mortality
class imbalance and two regularization learners, logistic and
lasso regressors. Outcome probabilities were adjusted to obtain
cost-sensitive predictions by minimizing the type II error. Our
mortality indicator returns both a binary outcome and a three-
stage mortality risk level. The estimated AUC across multistarts
reaches an average of 0.907. At the optimal cutoff for the binary
outcome, the model attains an average sensitivity of 0.898, with
a 0.745 specificity. An independent set of 121 patients later
released from the same consortium attained perfect sensitivity
(1), with a 0.759 specificity when predicted by our model. Best
performance for the indicator is achieved when the prediction’s
time horizon is within two weeks since admission to hospital. In
addition to a strong predictive performance, the set of selected
features highlights the relevance of several underrated molecules
in COVID-19 research, such as blood eosinophils, bilirubin, and
urea levels.

Index Terms—COVID-19, Cost-Sensitive Prognosis, Clinical
Indicator, Multistart Estimation

I. INTRODUCTION

The capacity to early and accurately identify patients at risk

of death has become an urgent yet challenging necessity for the

COVID-19 triage at hospital admission. Artificial intelligence

through machine learning (ML) constitutes the perfect tool to
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Health, and by the Ikerbasque Basque Foundatino for Science.

tackle this problem. ML allows the construction of algorithms

for predicting the hospitalization outcome at the point of

care based on traditional and widely spread clinical tests and

epidemiological inputs.

The World Health Organization’s weekly report on August

3rd, 2021, presented an accumulated total of more than 197

Million worldwide cases of COVID-19, with over 4.2 Million

associated deaths [1]. After a year since the pandemic started

spreading across the globe, the estimated overall death rate ac-

counts therefore for 2.13% of COVID-19 patients. Initial death

figures were however much more elevated, with an estimated

13.8-19.1% death rate during the initial outbreak at Wuhan,

China (192.6 per 100,000 on the general population) [2]. In

the United Kingdom, death rates recorded during the same

period by the National Health Service rose to 32.2% among

infected patients [3]. It became clear very soon that the seek

for potent biomarkers to timely predict COVID-19 infection

outcome was and still is an essential field of research. Since

then, several papers so far have reported such biomarkers

of COVID-19 outcome, both for disease prognosis, and for

risk evaluation [4]. In all cases, these biomarker molecules

are assessed individually and never mixed in a multivariate

fashion.

Another viewpoint to predict the infection’s severity or risk

of death is to infer machine learning models using general epi-

demiological descriptors of the infected patients [5], [6]. This

approach ignores any routine biochemical test or biomarker of

interest. It neither provides clinical guidelines to personalize

the risk of the infection for new patients at time of admission.

Although being a valuable asset to understand the dynamics of

COVID-19 spread, their potential for clinical adoption at the

point of care is limited. Other more sophisticated mathematical

methods including epidemiological and clinical features to

predict COVID-19 outcome are regularly surveyed every six

months by Wynants et al. [7]. Out of this papers corpus,

two works stand out in the prognosis of COVID-19 patients,



namely Yan et al. [8] and Knight et al. [3].

Yan et al. used hospital health records from Tongji Hospital

in Wuhan collected between January and February, 2020. The

database includes biochemical test results for 485 infected

patients and aims at identify crucial predictive biomarkers of

mortality risk [8]. Most patients had multiple blood samples

taken throughout their stay in hospital. However, the model

training and testing use only data records from the last day

in hospital. This modelization cannot be considered an actual

prognosis at triage because the model is learned using patients

data captured just one day before discharge. The authors try

to mitigate the issue by testing the resulting model on all

available patients from the prior 10 days.

The work by Knight et al. [3] constitutes the largest effort

to build a prognostic indicator based on routinely adopted

clinical tests. The corpus of data is split into 35,463 patients

for training and 22,361 for validating purposes. It uses a lasso

regression model after a filtering process using a generalized

additive model to filter irrelevant features. The final machine

learning model is translated into a classical clinical additive

index by imposing weights to different cutoffs in a set of

8 predictor variables. This index behaves well when ruling

out mortality (92.5% sensitivity), however, it has to pay the

price of being largely unspecific when ruling in mortality risk

(38.6% specificity).

Current and past major works on COVID-19 mortality or

deterioration through machine learning techniques use the

traditional validation scheme in which one train & test split

is used to estimate the performance of their models [3], [8],

[9]. Although extensively used in biomedical domains, this

estimator, also known as single hold-out, produces biased

estimations of the true performance [10]. This bias comes both

from the effect of a fixed divide between train & test sets, and

also from a single random split not being representative of the

original data distribution.

In contrast, this paper presents a COVID-19 mortality risk

indicator that avoids the aforementioned limitations. Specif-

ically, our algorithm was induced over routinely performed

blood tests and clinical data available at patient’s triage. We

developed a training pipeline that uses five different multistart

configurations from the original dataset to achieve a high de-

gree of generalization. Two different L1-penalized regression

methods helped find a consensus subset of relevant features

across multistarts. The model training used class imbalance

corrections, and the cutoff outcome probability was adjusted

in a cost-sensitive manner to achieve both high sensitivity

and specificity. A temporal analysis showed a time horizon

of two weeks for the most effective indication of risk. Lastly,

we compared the performance of our indicator versus those

from Knight et al. [3] and Yan et al. [8], and validated their

predictive algorithms in our own data.

The paper is organized as follows. Section II presents our

working dataset and the curation process to produce a classical

ML dataset. Next, Section III covers the development of the

prediction model and our scale for mortality risk. Results and

conclusions are finally discussed in Sections IV and V. An

interactive COVID-19 risk calculator using our model will be

available online upon acceptance of this manuscript.

II. CLINICAL DATASET

The initial bulk of clinical data was released from the

HM hospitals in Spain on July 20th (2020) through the

Covid Data Save Lives project [11]. Access to the data is

controlled by the source institution. The dataset is comprised

by information retrieved from the electronic health records of

2,547 COVID-19 confirmed patients treated during the first

wave of the pandemic (December 26th (2019) to June 10th

(2020)). Besides the clinical and epidemiological information,

the dataset includes results for each biochemical test a patient

underwent during their inhospital stay. Only values within a

week from admission were used to derive our dataset since

our main goal was to develop an early prognosis algorithm.

In a preliminary inspection, we found a total of 530 distinct

spellings for cellular and chemical tests. Out of these 530

tests, only 200 included systematic values in the database,

suggesting the difference was due to human annotation or

non-widely approved individual tests. Original records in the

database were unstructured mixing text and numerical values,

e.g. entries like ’Positive (>3.0)’. Due to the impossibility

to properly filter these cases, they were marked as missing

values. Finally, after filtering by missing values rates, only

36 blood tests with a percentage of presence beyond 70%

were retained as possible model features. For comorbidities

the following relevant conditions were identified for each

patient: Chronic Cardiac Disease, Chronic Respiratory Disease

(including asthma), Chronic Renal Disease, Mild to Sever

Liver Disease, Dementia, Chronic Neurological Conditions,

Connective Tissue Disease, HIV or AIDS, Cancer, Obesity.

For symptoms, we checked for Dyspnea, Fatigue, Lost of

Consciousness, Myalgia, Sputum, Anosmia, Fever, Diarrhea,

Vomiting, and Cough.

TABLE I
DEMOGRAPHIC CHARACTERISTICS FOR THE FINALIZED DATASET TO

PREDICT IN HOSPITAL MORTALITY. TIME SPAN COVERS FROM DECEMBER

26th (2019) TO JUNE 10th (2020). VALUES FOR THE INTERQUARTILE

RANGE (IQR) SHOW THE 25th AND 75th DATA PERCENTILES.

Characteristic No. of patients (%) Total No.

Inpatient mortality 276 (15.35%) 1798
Ventilator use 1035 (57.56%) 1798
Female patients 707 (39.32%) 1798
Male patients 1091 (60.68%) 1798
ICU admission 167 (9.29%) 1798

Mean ± Std. Median [IQR]

Age (years) 67.79 ± 15.67 69 [57,80]
No. of selected comorbidities 0.49 ± 0.77 0 [0,1]
ICU stay (days) 8.72 ± 10.50 5 [1,12]
Oxygen saturation 94.67 ± 4.81 95 [94,97]
Heart rate (bpm) 79.28 ± 14.75 78 [70,88]

After a detailed data inspection, it was noted that the

distribution of missing values across patients followed a block

structure of repeated misses. Some patients showed as much

as 17 missing tests individually. We mitigated this loss of

information by removing those patients in which more than



3 tests were lost. The remaining lost values were afterward

imputed by unsupervised similarity (5 neighbors) [12]. A

total of 1798 patients were finally retained (see Table I for

population descriptors). A data dictionary on the initial 36

features and patient identifiers for each multistart are provided

as supplementary material.

A second dataset including 1949 new patients was later

released on April 19th (2021) with admission dates up to the

end of February, 2021. Most of these patients showed empty

test records and we recovered only 121 fully formed instances.

This set of 121 unseen patients was used as an independent

hold-out group to validate the performance estimations re-

trieved during model training.

III. DERIVATION OF THE MORTALITY INDICATOR

A. Multistart Configuration

A high variance in performance estimation leads to unsta-

ble, not reproducible results and it may lead to inconsistent

conclusions when comparing to other models. Our approach

to overcome such inaccuracies was to set a multistart scenario

for all the numerical experiments [13]. The multistart scenario

is even more powerful when preserving the class proportions

of the whole dataset into each one of the subsets. This stratified

multistart helps reduce dataset shift and improves estimation

stability, reducing the overall variance in the process [10]. We

therefore produced 5 multistart datasets by stratified random

sampling the initial data.

Each multistart configuration was afterwards split into a

train & test sets, with 80% and 20% of each multistart data.

These percentages were chosen to mimic a single split of

a 5-fold cross-validation procedure. Internal estimations of

hyperparameters were carried out solely within each train

set using a 5-fold inner cross-validation [14]. The externally

unseen test sets were eventually used to estimate performance

figures over each multistart configuration.

B. Feature Subset Selection

The first stage of our preprocessing pipeline comprised the

selection of relevant blood tests features using the multivariate

recursive feature elimination [15] method over each of our five

multistart configurations. This process ensures the selection

of highly predictive and non-redundant feature subsets. The

feature selection was computed using the values of the 36

blood test kept after data cleaning.

A majority voting policy returned that out of the 36 initial

tests, 34 of them were concurrently selected in the optimal

subset of each multistart. In addition, six clinical descriptors

were included in further analyses: age, sex, heart rate, oxygen

saturation, number of comorbidities, and number of symptoms.

Comorbidities and symptoms were encoded as ordinal four-

valued scales, where 0 maps total absence, and 3 maps three

or more occurrences.

To determine the final set of relevant features to retain out

of the 40 intermediate features, we relied on a consensus over

the regression coefficients of logistic and lasso regressions

computed over each of the multistart training sets. We kept

all those features for which the regression coefficients were

above a regularization cutoff of 10−3 in at least four of the

five multistarts for either regressions. This estimation was

carried out on an inner 5-fold cross-validations on each of

the multistart configurations. A total of 19 features were

eventually withheld.

C. Supervised Learning

Derivation of the mortality indicator followed a binary

supervised classification framework in which a function φ is

induced from the data: φ : (x1, . . . , xn) → {0, 1}, where x =

(x1, . . . , xn) ∈ Rn conforms the observation and {0, 1} are

the possible values for the supervised variable C.

Logistic regression was chosen as the learning technique to

derive our mortality indicator. Briefly, a logistic model returns

the probability p that C = 1 as

pC=1 = S(β0 +

n∑

i=1

βixi), (1)

where S is the sigmoid function. β0 is commonly referred

to as the intercept of the model, whereas each βi are known

as the predictors’ coefficients.

Values for each coefficient were estimated from a database

as a regression for the logarithm of the odds, which maps the

logit of the probability for class 1. Regression estimators were

computed via coordinate descent with an L1-norm penaliza-

tion. The intercept was nullify. In addition, we compensated

for the class imbalance by inserting class weights proportional

to the relative frequencies of each class within the training set.

The final set of features and coefficients learned from data

constitute our consensus model.

D. Cost-Sensitive Calibration

The calibration procedure refers to the determination of an

optimal probability cutoff in order to tamper class membership

and minimize the number of false negatives [16]. In general,

membership to a class is assigned as the class that maximizes

the output probability returned by a trained model φ. For a

binary outcome with C ∈ {0, 1}, this membership assignment

is calculated based on a 0.5 probability cutoff.

Given the nature of the medical problem at hand, it is

desirable to minimize the number of cases in which a patient

with bad outcome (mortality) is predicted as likely to survive.

This minimization of the false negative cases comes with a

price, i.e., an increase in false positives due to the reduction

in prediction specificity. In an effort to set a general and

cost-sensitive cutoff, this process was done using the poste-

rior probabilities of the outcomes for each of our multistart

configurations.

IV. RESULTS

A. Mortality Prognosis

The set of variables included in the mortality predictor are

detailed in Figure 1. It displays the SHAP plot [17] when the

consensus model predicts the mortality outcome of all cases in



TABLE II
PERFORMANCE ESTIMATION OF THE PROGNOSTIC BINARY OUTCOME BASED ON A 5 MULTISTART TRAIN (80%) & TEST (20%) VALIDATIONS.

CONFUSION MATRICES AND FIGURES OF MERIT ARE COMPUTED USING A PROBABILITY OF 0.4 AS CLASSIFICATION THRESHOLD FOR ASSIGNING A

POSITIVE OUTCOME.

Prediction Death Surv. Death Surv. Death Surv. Death Surv. Death Surv.

Positive 51 81 49 73 49 63 49 86 49 85
Negative 4 224 6 232 6 242 6 219 6 220

AUC 0.922 0.916 0.915 0.895 0.886

Accuracy 0.764 0.780 0.808 0.744 0.747
Sensitivity 0.927 0.891 0.891 0.891 0.891
Specificity 0.734 0.761 0.793 0.718 0.721
F1 Score 0.545 0.553 0.587 0.516 0.519
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Fig. 1. Final set of 19 features included in the prediction model. SHAP values
represent each feature relevance to change the model’s output, i.e., the impact
of high or low value can have in the final outcome.

the dataset. Blue and yellow values in the plot correspond to

low and high values for each predictor, respectively. Positive

deviation in SHAP values is a measure of strength towards

mortality outcome, whereas negative SHAP values indicate

strength in favor of survival.

The model calibration was tackled by the analysis of the

output probabilities assigned to each test case for the five

multistarts. All test cases (displayed in Figure 2) were seg-

mented into the four possible categories, namely true and

false, positive and negative predictions, respectively, based on

a probability of 0.5 as positive class cutoff. It is clear that

true negatives and positives show distinct probability densities

with average median values on 0.11 and 0.85. False positives

are concentrated around a probability of 0.64, whereas the few

false negatives showed a high variance with an average median

on 0.34.

Figure 2 provides clues on how the training process pushed

the models to minimize false negatives at the cost of more

false positives. In clinical terms this is a desired effect: avoid

as much as possible a negative prediction when the patient

could be at real risk. To even push this tendency forward, we

inspect the individual probabilities for all the false negatives

and discover that almost 40% of them had a probability in the

interval [0.4, 0.5). We then decide to rescue those by lowering

the probability cutoff for the positive class to be 0.4 instead

of the natural 0.5. The trade-off for gaining 40% of false

negatives by sliding down this probability was to err on a

9% of originally labeled true negatives as new false positives.

The quantitative performance for each multistart model

based on a 0.4 cutoff are presented in Table II, including

areas under the ROC curve and individual confusion matri-

ces. The estimated accuracy of the mortality predictor is of

0.769±0.026, with 0.898±0.016 sensitivity, and 0.745±0.031

specificity. Individual ROC plots are also available as supple-

mentary material.

The overall performance estimation obtained by the mul-

tistart configuration was validated when using the model to

predict the outcome of the 121 patients kept as hold-out group.

Confusion matrix and performance figures are presented in

Table III. There was no false positive in this case, showing how

the calibration process fulfilled the overall aim of not missing

any deadly infection. On the contrary side, the specificity

almost reached to a 76%, indicating that less than 25% of

survivors were warned of a possible serious outcome.

TABLE III
PERFORMANCE OF THE MORTALITY RISK PREDICTOR TESTED ON THE

INDEPENDENT HOLD-OUT DATA.

Prediction Death Survival

Positive 13 26
Negative 0 82

AUC 0.880

Accuracy 0.785
Sensitivity 1.000
Specificity 0.759
F1 Score 0.5



Fig. 2. Categorical beeswarm boxplots of the predictions’ probability for each of the five train & test multistarts. Note that the predictions are segmented
based on a probability cutoff of 0.5, i.e., without any cost-sensitive calibration.
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B. Mortality Risk Assessment

Output probabilities in Figure 2 for true negative and posi-

tive predictions display a clear step wise structure. Such steps

suggest that the derivation of a mapping between the mortality

predictor’s output and a categorical risk scale is possible. To

derive such scale, we computed the average 75th percentile

probability value for the true negatives, and the opposite 25th

percentile value for the true positives. The results were spot

on 0.244 and 0.751, respectively. We accordingly created three

risk categories for mortality:

1) Low – Outcome probability greater or equal than 0 and

lower than 0.25.

2) Medium – Outcome probability greater or equal than

0.25 and lower than 0.75.

3) High – Outcome probability greater or equal than 0.75.

Evaluation of this risk score throughout consecutive weeks

is detailed in Table IV. The time points or horizons are defined

as one, two, three, or more than three weeks since admission to

hospital. Patients for each time window are unique, mapping

total stay times between first visit and discharge.

TABLE IV
MORTALITY RISK ASSESSMENT FOR DIFFERENT TIME HORIZONS OF

INPATIENT STAY. EACH CONTINGENCY TABLE SHOWS MEANS AND

STANDARD DEVIATIONS COMPUTED FROM THE PROGNOSTIC OUTCOMES

OVER THE FIVE MULTISTART TEST SETS.

[0,7) days Death Survival

Low Risk 0.40 ± 0.37% 64.38 ± 5.28%
Medium Risk 5.00 ± 1.29% 16.19 ± 3.49%

High Risk 11.80 ± 2.02% 2.22 ± 1.34%

[7,14) days Death Survival

Low Risk 0.27 ± 0.61% 51.13 ± 3.33%
Medium Risk 3.38 ± 0.92% 33.37 ± 5.10%

High Risk 6.49 ± 1.09% 5.33 ± 2.32%

[14, 21) days Death Survival

Low Risk 0.40 ± 0.91% 35.10 ± 5.10%
Medium Risk 5.78 ± 3.68% 38.42 ± 2.99%

High Risk 9.67 ± 3.32% 10.60 ± 4.77%

≥20 days Death Survival

Low Risk 4.34 ± 2.52% 23.05 ± 4.20%
Medium Risk 13.22 ± 9.47% 44.35 ± 8.60%

High Risk 9.60 ± 3.37% 5.41 ± 3.48%

Applying the risk assessment to the predictions returned

for the hold-out group (see Table III) showed a high precision

for the low risk label with 0 deaths overall on that category.

For the medium risk label, the model was also very effective

during the first three weeks of hospital stay, categorizing as

medium only patients who survived the infection. Only on

those patients with a hospital stay beyond three weeks, the

risk predictor incorrectly tagged as medium risk 5 of them,

who eventually passed.

C. Cross-study Model Performance

A number of short communications already shown the

under performance of mortality prognostic models on external

datasets by using data from other countries different from

where the scores were designed [18]–[20]. Two of the usually

chosen models, either because of their simplicity, or because

TABLE V
PERFORMANCE OF ISARIC 4C MORTALITY SCORE [3] WHEN APPLIED

TO OUR CLINICAL DATASET BASED ON THE REPORTED HIGH MORTALITY

RISK THRESHOLD OF 9 POINTS.

Prediction Death Survival

Positive (4C ≥ 9) 272 942
Negative (4C < 9) 4 580

Accuracy 0.474
Precision 0.224

Sensitivity 0.985
Specificity 0.381
F1 Score 0.365

the sample size was large, were Yan et al. [8] and the ISARIC

4C Mortality Score [3]. In the case of Yan et al., a decision tree

with just three nodes predicted the mortality outcome more

than 10 days in advance of the discharge with an accuracy

slightly over 90%. The nodes account for three COVID-

19 related biomarkers, namely lactic dehydrogenase (LDH),

lymphocyte percentage, and high-sensitivity C-reactive protein

(hs-CRP). In the case of the 4C mortality score, it was trained

over more than 35,000 patients and in-house validated with an

extra cohort of over 22,000 extra cases. The 4C score induces

a mortality risk score based on 6 clinical variables and 2 blood

tests. Authors in [3] report an overall accuracy of 70.75%, with

sensitivity and specificity of 92.5 and 38.6, respectively.

Figure 3 and Table V present the results of both models

when predicting mortality on our dataset. Even though both

models share little methodologically, they are similarly con-

servative when predicting, with a sensible imbalance towards

the positive class. Numerically, this effect translates into a

specificity value of 0.193 and 0.381, respectively. The problem

is then the poor performance for the positive class, where the

positive predicted value (PPV) go only up to 0.174 and 0.224.

A direct explanation for this behavior is the large mortality

rate in each work. For Yan et al., it was of 46.4%, whereas in

Knight et al. reached a 32.2% within training sets. Such large

positive class balance and the goal of not missing any critical

case make the models unspecific when the population in which

they were trained changes significantly. A clear example is

also the high relevance in the mortality decision for Yan et al.

of the LDH values (see Figure 3). Relatively high levels of

LDH alone seem to play a crucial role in distinguishing the

vast majority of cases that require immediate medical attention

in our dataset.

In the case of Knight et al., the tendency to be overprotective

and predict a positive outcome over a negative one seems more

of a design decision given how authors chose the translation

between the statistical coefficients of their lasso model and the

linear weights derived to compute the final score. To assess the

method’s performance, only a single random train & test split

was done. It is well documented that this practice can impose

population shifts in the training of clinical models. Other

recent publications also reported substantial disagreements

with the original performance of the 4C score [20], [21].

Conversely, we tried to validate our consensus model over

the datasets collected by the two works. Although Yan et al.
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Fig. 3. Performance of Yan et al. prognostic model [8] when applied to our
clinical dataset. Predictions reflect true (T) or false (F) cases with positive
(deaths, P) or negative (survival, N) outcomes.

provide their database online, not all the variables in our model

are included, making impossible to run any prediction. In the

case of Knight et al., we were unable to access their data

corpus despite our best efforts.

V. DISCUSSION

The set of features in our consensus model (see Figure 1)

includes several tests already reported to be highly relevant

in COVID-19 pathology: Age, Lymphocytes, Heart rate, Lac-

tate Dehydrogenase (LDH), Oxygen saturation, Platelets, C-

reactive protein, Comorbidities, and Leukocytes. More im-

portantly, other tests appear to have a large relevance in the

multivariate prediction, pointing out to new findings. Among

these, we should highlight the importance of high levels of

eosinophils in patients who overcame the infection. It is not the

first time that the importance of blood eosinophils is reported

for COVID-19 [22], although it is a relatively underrated

molecule for the research community. Another significant

finding by our model is how large levels of Bilirubin and

Urea nitrogen correlate with bad outcomes. We hypothesize

that large levels of bilirubin and urea could be early indicators

of hepatic and renal dysfunctions, two typical targets for the

SARS-CoV-2 virus infection [23], [24].

Another popular biomarker of bad prognosis for the

COVID-19 research community is the serum level of D-Dimer.

Our feature selection, on the contrary, systematically rejected

this molecule as relevant when the multivariate prognosis

model is learned. D-Dimer is known to be a key molecule to

monitor a possible course of the infection towards a severe

coagulopathy, however, its values are not as predictive of

mortality at the beginning of the hospital stay. With respect to

epidemiological key features, the male biological sex is com-

monly designated as a risk factor for bad outcome in COVID-

19. Although widely accepted, our data and model point out to

a more nuance finding: the biological sex adds no significant

risk in a patient’s prognosis at time of hospitalization.

In terms of numerical performance, our risk indicator

reaches AUC and sensitivity values around 0.9, with specificity

estimators over 0.75 (see Table II for full details). It should

be noted that several of the false negative patients for which

the model still errs are cases of patients who either died from

non-COVID causes or stay in hospital during extended periods

of time. This fact suggests that the model identifies these

patients as potentially with good prognosis based on their

initial values at triage, although a fatal outcome is eventually

registered. In parallel, and due to the cost-sensitive calibration

process to minimize false negatives, we expected to have an

increase in the number of false positives. Interestingly, most

false positive predictions are associated to people with large

clinical histories, i.e., several comorbidities and immunosup-

pression conditions. The rate of respirator usage for these

patients is significantly higher than in the rest of patients. The

conclusion is that these patients received more active medical

interventions to save their lives when identified as high risk by

healthcare providers. It is worth noting that the risk indicator

was correct in assigning high risk to these patients. It was the

medical intervention which fortunately changed the expected

natural course of the infection. We envision the integration of

all these factors in future evolutions of our mortality indicator.

The time horizon analysis in Section IV-B offers a clear

interval of hospitalization for which our risk assessment is

more accurate, from day 1 to day 14. Beyond two weeks of

stay, the risk assessment at triage loses precision by pooling

most patients into the medium risk category. An important

recommendation can be therefore stated: For those patients

still in hospital two weeks after admission, the mortality risk

assessment should be recomputed using updated biochemi-

cal test values. Although the recommendation for this re-

evaluation is particular to our prognosis model, we believe this

should be the general case for any machine learning-enabled

method used as a clinical aid in COVID-19 care.

All the aforementioned findings and performance estima-

tions obtained from the multistart inference process were

validated by predicting an unseen set of new patients, i.e., a

hold-out group of patients later released by the data producer.

With a sensitivity of 1 and an AUC of 0.880, our model proved

its potential to capture all the patients with an actual severe

prognosis while not penalizing the specificity on the negative

class (0.759 value). In terms of risk assessment, the model also

demonstrated high sensitivity when predicting the mortality

risk of patients who stayed hospitalized at least during three

weeks. It is also noteworthy that the hold-out group of patients

included admissions throughout a year since the pandemic

started, up to the end of February 2021. Predictions from our

model were reliable for all these patients and proved not to be

affected by data biases due to the various outbreaks origins of

this cohort.



VI. CONCLUSIONS

In this paper we have introduced an explainable, highly

sensitive, machine learning model for the prediction of the

mortality risk associated to newly admitted COVID-19 pa-

tients. The model was inferred from commonly available

biochemical tests included in any typical blood panel. A cost-

sensitive analysis during the induction process allowed the

model to be highly accurate to severe infections, while keep

the percentage of false positives under a modest 25%. This is

a key feature in order to be deployed in a clinical setting. The

trade-off between a deadly prediction and the actual outcome

provides reliability to the healthcare provider whose mission is

to assign resources to an individual patient. When a prognostic

model almost always produce a bad prognosis (e.g. seen in

Figure 3 and Table V), such model becomes unusable for the

clinical domain where resources are limited, especially during

a pandemic.

Generalization was obtained by inferring the model over

a multistart framework, which proved to be a successful

approach. The model’s estimated performance was similar to

the performance figures recorded when applying to the hold-

out group, even though training encompassed data from the

initial surge of COVID-19 and the validation cohort ranged

through the first full year of the pandemic.

It is still under scrutiny how the different variants affects

the course of the infection and their severity degrees when in-

fecting genetically different population. Therefore and despite

the reported good performances at training and validation, our

prognostic model should be validated across different pop-

ulations and countries. These independent validations would

have a double-fold aim: to test how it generalizes to a wide

range of population; and also to test whether is able to predict

disease outcomes produced by different virus variants already

existing. To these ends, we make our model available to the

community through a risk calculator on a web frontend, and

provide the full model specification in a single exportable file

for download.
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