
K-means for Evolving Data Streams

1st Arkaitz Bidaurrazaga
Basque Center for Applied Mathematics

Bilbao, Spain

abidaurrazaga@bcamath.org

2nd Aritz Pérez
Basque Center for Applied Mathematics

Bilbao, Spain

aperez@bcamath.org

3rd Marco Capó
Basque Center for Applied Mathematics

Bilbao, Spain

mcapo@bcamath.org

Abstract—Nowadays, streaming data analysis has become a
relevant area of research in machine learning. Most of the data
streams available are unlabeled, and thus it is necessary to
develop specific clustering techniques that take into account the
particularities of the streaming data. In streaming data scenarios,
the data is composed of an increasing sequence of batches of
samples where the concept drift phenomenon may occur. In
this work, we formally define the streaming K-means (SKM)
problem, which implies a restart of the error function when a
concept drift occurs. An approximated error function that does
not rely on concept drift detection is proposed. We prove that
such a surrogate is a good approximation of the SKM error.
Then, we introduce an algorithm to deal with SKM problem
by minimizing the surrogate error function each time a new
batch arrives. Alternative initialization criteria are presented and
theoretically analyzed for streaming data scenarios. Among them,
we develop and analyze theoretically two initialization methods
that search for the best trade-off between the importance that
is given to the past and the current batches. The experiments
show that the proposed algorithm with, the proposed initialization
criteria, obtain the best results when dealing with the SKM
problem without requiring to detect when concept drift takes
place.

I. INTRODUCTION

One of the most relevant unsupervised data analysis prob-

lems is clustering [1], which consists of partitioning the data

into a number of disjoint subsets called clusters. Among a wide

variety of clustering methods, K-means algorithm is one of

the most popular [2]. In fact, it has been identified as one of

the top-10 most important algorithms in data mining. Before

explaining the K-means algorithm, we shall briefly introduce

the K-means problem.

A. K-means Problem

Given a data set of d-dimensional points of size n, X =
{xi}ni=1 ⊂ R

d, the K-means problem is defined as finding a

set of K centroids C = {ck}Kk=1 ⊂ R
d, which minimizes the

K-means error function:

E(X,C) =
1

|X| ·
∑
x∈X

‖x− cx‖2 ; cx = argmin
c∈C

‖x− c‖, (1)

where ‖ · ‖ denotes the Euclidean distance or L2 norm. In

this work, as it is common in most of the K-means problem-

related literature [3]–[6], the number of clusters is assumed to

be predetermined and constant over time.

a) K-means Algorithm: The K-means problem is known

to be NP-hard for K > 1 and d > 1 [7]. The most popular

heuristic approach to this problem is Lloyd’s algorithm [8].

Given a set of initial centroids, Lloyd’s algorithm iterates two

steps until convergence: 1) assignation step and 2) update step.

In the assignation step, given a set of centroids, C = {ck}Kk=1,

the set of points is partitioned into K clusters, P = {Pk}Kk=1,

by assigning each point to the closest centroid. Next, the new

set of centroids is obtained by computing the center of mass

of the points in each partition. This set of centroids minimizes

the K-means error with respect to the given partition of

the set of points. These two steps are repeated until a fixed

point is reached, meaning, when the assignation step does not

change the partition. This process has a O(n · K · d) time

complexity. The combination of an initialization method plus

Lloyd’s algorithm is called the K-means algorithm.

b) K-means Initialization: The solution obtained by

K-means algorithm strongly depends on the initial set of

centroids [9]–[11]. Consequently, in the literature different

initializations have been proposed. One of the most simple,

yet effective, methods is Forgy’s approach [12]. Forgy’s ini-

tialization consists of choosing K data points at random as

initial centroids. The main drawback of this approach is that

it tends to choose data points located at dense regions of

the space, thus these regions tend to be over-represented.

In order to address this problem, probabilistic methods with

strong theoretical guarantees have been proposed. K-means++

(KM++) [5] initialization iteratively selects points from X at

random, where the probability of selection is proportional to

the distance of the closest centroid previously selected. This

strategy has become one of the most popular due its strong

theoretical guarantees. Among other popular alternatives, we

have variations of KM++, such as the K-means|| [6] and the

Markov Chain KM++ [3].

B. Streaming Data

Although the K-means problem deals with a fixed data set

X , its usage can be generalized to scenarios in which data

evolves over time. We define streaming data (SD) as a set of

data batches that arrive sequentially, where each batch is a

set of d-dimensional points. One of the main concerns when

processing SD is how much data to store, since the volume of

data increases indefinitely. Normally, a maximum number of

stored batches is determined, this way time consumption and

1006

2021 IEEE International Conference on Data Mining (ICDM)

2374-8486/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDM51629.2021.00114

computational load of the clustering algorithm is controlled,

and makes clustering tractable in this situation.

Another main issue when dealing with SD is the concept
drift phenomenon. A concept drift occurs when the underlying

probability distribution, associated to the batches, changes. In

the presence of concept drifts we distinguish between passive

and active approaches. On one hand, an active mechanism

dynamically adjusts stored batches depending on whether a

concept drift has occurred or not. On the other hand, in

the passive approaches, more importance is given to recent

batches. A detailed review on active and passive strategies to

deal with concept drift can be found in [13].

C. Contributions

In this paper, we formally define the Streaming K-means

(SKM) problem. Our proposal deals with the concept drift

phenomenon by assigning exponentially decaying weights to

older batches. We prove that the surrogate error is a good

approximation to the SKM error, using Hoeffding’s inequal-

ity [14]. Due to the importance of the initialization in the

behaviour of weighted K-means, we present two initialization

techniques that search for the best combination between past

and novel information of clusters. We conduct experiments

to compare them with other two straight-forward initialization

strategies, which are to compute KM++ on the novel batch

to obtain initial centroids or simply use previously computed

centroids.

This paper1 is organized in the following way. In section

II the SKM problem is defined. Next, we propose a passive

approach, and prove its suitability to deal with the SKM

problem. In section III we propose some appropriate initializa-

tion methods for the SKM problem. Finally, we conduct the

experiments2 in section IV to compare and discuss the results

obtained for each method under different scenarios.

II. STREAMING K-MEANS PROBLEM

In this section, we define the SKM problem, a natural

adaptation of the K-means problem for SD consisting of the

minimization of the SKM error. We define the SKM error

function as follows:

Definition 1. Given a set of batches, X = {Bt}t≥0 and a set
of centroids C, the SKM error function is defined as

E∗(X , C) =
1

MT
·
T−1∑
t=0

∑
x∈Bt

‖x− cx‖2, (2)

where the index t describes the antiquity of each batch, thus
B0 is the latest batch received, and BT−1 represent the batch
in which the last concept drift occurred, i.e., every batch
{Bt}T−1

t=0 shares the same underlying distribution. MT =∑
t≤T−1

|Bt| is the sum of each batch size.

In order to compute the SKM error function, we need

to know the batch in which the last concept drift occurred,

1This paper is a reduced version of [15].
2Code available at https://github.com/arkano29/Kmeans Streaming Data

BT−1. The complexity of computing the SKM error is

O(MT ·K ·d). Clearly, the performance of an active approach

to the problem will strongly depend on the behavior of the

detection mechanism implemented. On one hand, when a fake

drift is detected the past batches and the last centroids are

discarded unnecessarily. On the other hand, if a concept drift

occurs but is not detected, then the use of previously computed

centroids could lead to a poor initialization and may infer a

bad clustering. In this work, we describe an active algorithm,

which we call Privileged SKM algorithm (PSKM). PSKM is

an ideal baseline to the problem which knows in advance if a

concept drift occurs, thus being able to compute and minimize

the SKM error function. Alternatively, in the following section

we propose a passive mechanism to approximate the solution

of the SKM problem. PSKM will be the reference in the

experimental section since we will simulate streaming data

with concept drifts, and thus we will be able to compute the

SKM error.

A. A Surrogate for SKM Error

Here we propose a surrogate error function for the SKM er-

ror function. This alternative function incorporates a forgetting

mechanism based on a memory parameter, ρ, which assigns

an exponentially decreasing weight ρt to a given batch based

on its antiquity t. Note that t = 0 indicates the last batch

obtained from the stream which has weight 1. In particular,

the approximated error function is defined as follows:

Definition 2. Given a set of batches of data points, X =
{Bt}t≥0, the surrogate error function, for a given set of
centroids C, is defined as

Eρ(X , C) =
1

MX
·
∑
t≥0

ρt ·
∑
x∈Bt

‖x− cx‖2 (3)

where MX =
∑

t≥0 ρ
t · |Bt| is the total weighted mass of the

set of batches X = {Bt}t≥0.

The surrogate error is a weighted version of the K-means

error for SD. Furthermore, the following theorem illustrates

the suitability of this alternative function. For the sake of

simplicity, we consider for this theorem that all batches have

the same number of data points, |Bt| = N .

Theorem 1. Let c ∈ R
d be a point, X = {Bt}t≥0 be a set of

batches of points in R
d, where Bt = {xti}Ni=1 and t denotes the

antiquity of Bt. Let the batches before the drift {Bt}t>T−1 be
i.i.d. according to the probability p, where Ep[‖x− c‖2] = E.
Let the batches after the drift {Bt}t≤T−1 be i.i.d according to
p′, where Ep′ [‖x−c‖2] = (1+ε) ·E for ε > 0. Let us assume
that ‖xti − c‖2 is upper-bounded by u ≥ 0, for i = 1, ..., N
and t ≥ 0.

Then, with at least probability 1 − δ, the difference
E∗(X , {c})− Eρ(X , {c}) satisfies:

E∗(X , {c})−Eρ(X , {c}) ∈ (ρT ·ε ·E−γ, ρT ·ε ·E+γ), (4)

where γ = u ·
√

(2·ρT−1)/T+(1−ρ)/(1+ρ)
2·N · ln 2

δ .

1007

Algorithm 1 Forgetful SKM algorithm (FSKM)

1: Predetermined: Maximum number of batches saved

Tmax and forget parameter ρ.

2: Input: Set of previous batches X partitioned by P and

new batch B0.

3: Output: A set of centroids C and its associated partition

P .

4: if |X |==Tmax then
5: Remove the oldest batch from X
6: X ← Append B0

7: C ← Initialization(X ,P)
8: C,P ← Weighted Lloyd(X , C)
9: return C,P

Here we define the (1 + ε)-drift, which occurs when two

underlying distributions p and p′ satisfy Ep′ [‖x− c‖2] = (1+
ε) · Ep[‖x − c‖2], for ε > 0. More importantly, observe that,

according to Theorem 1, the expected value of the alternative

error function tends to the SKM error function exponentially

fast with T for a single centroid, since the mean value of

their difference has the form ρT · ε ·E. In particular, it shows

that the surrogate function can be used to approximate the

error for a single centroid, thus applying this result to every

subgroup of points and their respective centroids yields a good

approximation of the SKM error. In summary, Theorem 1

shows that we can deal with the SKM problem by minimizing

the alternative error without having to detect concept drifts.

III. STREAMING LLOYD’S ALGORITHM

In order to deal with the SKM problem in a passive way, we

propose the Forgetful SKM (FSKM) algorithm (Algorithm

1). FSKM approximates the solution of the SKM problem

by minimizing the approximated error function. When a new

batch B0 arrives, FSKM runs an initialization procedure

to find a set of initial centroids. Next, a weighted Lloyd’s

algorithm is carried out over the available set of batches

X . Recall that the running time of the weighted Lloyd’s

algorithm is O(n · K · d), where n is the total number of

points to be clustered. However, we can compute an arbitrarily

accurate surrogate error function by discarding batches with

a negligible weight, thus defining a maximum number of

batches stored Tmax. By discarding the batches with negligible

weights, the computational complexity of the weighted Lloyd’s

step of FSKM is reduced to O(MTmax
·K ·d), where MTmax

is

the sum of batch sizes of the stored batches. This is a passive

approach, because it does not need to detect concept drifts,

and it inherits the good properties of the surrogate function as

alternative to the real SKM error.

A. Initialization Step

As previously discussed, the initialization stage has a major

effect on the convergence of Lloyd’s algorithm, and therefore

of the FSKM algorithm. For this reason, in this section,

we propose efficient procedures for the initialization step of

FSKM. However, first we describe two simple approaches,

which will be used for comparison. Once a new batch is

received, a straight-forward initialization strategy is to use the

previously computed set of centroids. We call this approach

Previous Centroids (PC), and the set of centroids obtained in

previous iterations will be denoted as C∗ = {c∗k}Kk=1. PC uses

a set of locally optimal centroids for the past set of batches,

which can be a good and efficient choice once a new batch

is presented. An alternative straight-forward initialization is

to use centroids obtained by applying a standard initialization

procedure over the newest batch B0, such as KM++. We call

this approach Current Centroids (CC). The set of centroids

obtained from initializing over the current batch is denoted as

C0 = {c01}Kk=1. Clearly, CC allows FSKM to adapt rapidly

when a concept drift occurs. However, this initialization does

not take into account either the batches from the past or the set

C∗. This could imply a waste of very valuable information,

especially when a concept drift has not occurred for a long

period of time.

B. Weighted Initialization

Considering the trade-off between the PC and CC ap-

proaches, we propose two efficient initialization strategies that

combine information from PC and CC, by minimizing an

upper-bound to the surrogate error function. The next result

defines an upper-bound for the surrogate error function that

will allow us to determine a competitive initialization for the

FSKM algorithm.

Theorem 2. Given two sets of centroids C∗ = {c∗k}Kk=1 and
C0 = {c0k}Kk=1, for any set of centroids C ∈ R

d, the surrogate
function Eρ(X , C) can be upper-bounded as follows:

Eρ(X , C) ≤ fρ(X , C) + const,

where fρ(X , C) is

1

MX
·

K∑
k=1

(
w∗k · ‖ck′ − c∗k‖2 + w0

k · ‖ck′′ − c0k‖2
)
, (5)

for ck′ = argmin
c∈C

‖c∗k − c‖, ck′′ = argmin
c∈C

‖c0k − c‖, where

w∗k =
∑

t≥1 ρ
t · |Bt∩P ∗k | and w0

k = |B0∩P 0
k | are the weights

related to each centroid and const is a value independent of
the set of centroids C. Bt ∩ Pk are the set of points in batch
Bt that belong to the partition Pk.

Theorem 2 shows that the surrogate error is upper-bounded

by fρ(X , C) plus a constant. In fact, observe that fρ has

the form of a weighted K-means error with {c∗k, c0k}Kk=1 as

the data points, and weights W = {w∗k, w0
k}Kk=1. Hence, we

propose an initialization procedure based on the weighted K-

means algorithm over the union of both sets of centroids.

We refer to this initialization as Weighted Initialization (WI,

Algorithm 2), where its computational complexity is O(K ·
max{|B0|,K} · d).
C. Hungarian Initialization

An interesting analytical result can be acquired considering

another assumption along with Theorem 2. Assume that each

1008

Algorithm 2 Weighted K-means initialization (WI))

1: Predetermined:Number of clusters K,forget parameter ρ.

2: Input: A set of batches X = {Bt}t≥0, a set of previous

centroids C∗ which are induced by the partition P∗.
3: Output: A set of new optimized centroids C and its

associated partition P .

4: C0,P0 ← KM++(B0)
5: w∗k, w

0
k ← Compute weights from P∗ and P0

6: C,P ← Weighted K-means(X = {C∗, C0},W =
{w∗k, w0

k}Kk=1)
7: return C,P

centroid ck has a single pair of centroids c∗k, c0σ(k) which are

the closest to itself from both sets C∗ and C0, and are distinct

for each centroid ck. Thus, we can index the centroid ck like

the centroids in C∗, but a different indexation k′ = σ(k)
may be needed for the centroids in C0, represented by the

permutation σ(k). Then, we can re-write the upper-bound

given in (5) as follows:

fρ(X , C = {ck}Kk=1) =
1

MX
·

K∑
k=1

(
w∗k · ‖ck − c∗k‖2+

+ w0
σ(k) · ‖ck − c0σ(k)‖2

)
, (6)

where the weights w∗k and w0
σ(k) are the weights of c∗k and

c0σ(k), respectively. The following theoretical result shows that

the upper-bound fρ(X , C) can be analytically minimized with

respect to ck with this assumption.

Theorem 3. Let fρ(X , C) be the function defined in (6) for
a set of centroids C = {ck}Kk=1 of size K, where c∗k and
c0σ(k) are given, and they are the closest points to ck of the
sets {c∗k}Kk=1 and {c0σ(k)}Kk=1. Then the set of centroids that
minimizes this function is given by:

ck =
1

w∗k + w0
σ(k)

· (w∗k · c∗k + w0
σ(k) · c0σ(k)), (7)

Theorem 3 shows that, just by making the one-to-one

assumption given by σ(k), the optimal centroids C can be

simply expressed as a linear combination between the elements

of C∗ and C0. Notice that with this assumption we achieve

an analytical minimum of fρ(X , C).
a) Linear Sum Assignment Problem: If we want to

compute the optimal centroids under the previous assumption,

σ(k) must be found. In order to do so, we use the result in

Theorem 3 to rewrite (6):

fρ(X , C) =
1

MX
·

K∑
k=1

w∗k · w0
σ(k)

w∗k + w0
σ(k)

· ‖c∗k − c0σ(k)‖2 (8)

Hence, we define the matrix:

fk,k′ =
w∗k · w0

k′

w∗k + w0
k′
· ‖c∗k − c0k′‖2 ; k, k′ ∈ {1, . . . ,K}, (9)

Algorithm 3 Hungarian Initialization (HI)

1: Predetermined:Number of clusters K,forget parameter ρ.

2: Input: A set of batches X = {Bt}t≥0, a set of previous

centroids C∗ which are induced by the partition P∗.
3: Output: A set of new optimized centroids C.

4: C0,P0 ← KM++(B0)
5: w∗k, w

0
k ← Compute weights from P∗ and P0

6: for k in 1,...,K do
7: for k’ in 1,...,K do
8: fk,k′ ← w∗

k·w0
k′

w∗
k+w0

k′
· ‖c∗k − c0k′‖2

9: σ ← argmin
σ∈Σ

∑K
k=1 fk,σ(k)

10: C ← ∅
11: for k in 1,...,K do
12: ck ← 1

w∗
k+w0

σ(k)

· (w∗k · c∗k + w0
σ(k) · c0σ(k))

13: C ← C ∪ ck
14: return C

and find the permutation σ(k) such that the sum
∑K

k=1 fk,σ(k)
is minimal. This is a linear sum assignment problem and we

can make use of the Hungarian (or Kuhn-Munkres) algorithm

[16] to determine σ(k) with a computational complexity of

O(K3). Thus, we propose another initialization method called

Hungarian Initialization (HI) based on this procedure. HI

firstly computes a set of optimized centroids c0k′ over the new

batch B0. Then the matrix fk,k′ is constructed, which is used

to determine the permutation that maps k → k′ = σ(k), via the

linear sum assignment problem (Algorithm 3). This way, the

sum
∑K

k=1 fk,σ(k) is guaranteed to be the minimum value of

fρ(X , C), and hence the new set of centroids can be computed

as defined in Theorem 3. The computational complexity of this

algorithm is O(K ·max{max{K2,K · d}, |B0| · d}).
IV. EXPERIMENTS

In this section we analyse the performance of the FSKM

algorithm with the proposed initialization procedures: Previous

Centroids (PC), Current Centroids (CC), Hungarian Initial-

ization (HI) and Weighted Initialization (WI). The converged

SKM error obtained by FSKM with different initialization

strategies is compared with the gold-standard PSKM. In order

to control the strength of the drifts, the experiments are

performed using simulated streaming data with (1 + ε)-drifts

generated using real datasets taken from the UCI Machine
Learning Repository [17], for different values of ε. For further

insight on how we simulated streaming data see the extended

version of this paper [15].

A. Experimental Setup

a) Datasets: The experiments have been carried out in

8 different datasets simulated based on real datasets from the

UCI Machine Learning Repository [17], details about each

dataset are available on the extended version of this paper.

The simulated data consists of a sequence of batches with

size N = 500, and a (1 + ε)-concept drift takes place every

10 batches.

1009

ε = 0.5 ε = 1 ε = 2

K
 = 5

K
 = 10

K
 = 25

1 2 4 10 1 2 4 10 1 2 4 10

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Number of batches since last drift, T

PC CC HI WI
Initial surrogate error

Fig. 1: Initial surrogate error for the FSKM algorithm with

different initialization methods. ρ was determined with m = 2,

and errors where normalized as specified in the former section.

b) Procedure: To analyze the behavior of the algorithms

in streaming scenarios, we perform a burning-out step by

storing Tmax batches from the first concept. After this step,

we measure the evolution of the performance of PSKM,

and FSKM with different initialization techniques. To fairly

compare their behaviour, the set of centroids C∗ and C0 are the

same for each initialization procedure each time a new batch

arrives. After the burning-out step, a stream of 100 batches is

processed with concept drifts every 10 batches. This procedure

is repeated for each dataset and value of the hyperparameters.

Because the results did not vary too much for intermediate

batches, we show measurements for the first and second batch

(indexed by 1 and 2), an intermediate batch and the last batch

before the next concept drift (indexed by 4 and 10).

c) Measurements: We have measured the quality of the

solutions obtained by different procedures in terms of the

SKM and approximated error function. In order to have com-

parable scores for different datasets, the obtained scores (error

values) on initialization and convergence errors are normal-

ized. For each new batch, the score EM obtained with algo-

rithm M ∈M is normalized with respect to the minimum over

every algorithm M as ÊM = (EM− min
M ′∈M

EM ′)/ min
M ′∈M

EM ′ .

The computational load of the methods considered in our

experimental setting is dominated by the number of distance

computations. Therefore, as it is common practice in K-means

problem related articles [3], [18], we use the number of dis-

tances computed to measure their computational performance.

The computed distances DM were also normalized, but we

simply divide by the minimum D̂M = DM/ min
M ′∈M

DM ′ .

d) Hyperparameters: A key parameter is the forget pa-

rameter ρ, since the approximated function directly depends

on this parameter. Theorem 1 shows that the surrogate differs

from the real SKM error with ρT ε, but the confidence interval

grows as ρ decreases, hence a proper balance is necessary.

Assuming that a difference of 0.01 is negligible, we can

determine the ρ value by solving the equality ε ·ρτ/m = 0.01,

where τ is our prior knowledge about the (average) number

of batches in which a concept is stable and m represents the

fraction of the period in which we want the difference to

ε = 0.5 ε = 1 ε = 2

K
 = 5

K
 = 10

K
 = 25

1 2 4 10 1 2 4 10 1 2 4 10

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

Number of batches since last drift, T

PC CC HI WI
Converged surrogate error

Fig. 2: Converged surrogate error for the FSKM algorithm

with different initialization methods. ρ was determined with

m = 2, and errors where normalized.

become negligible. Intuitively, m determines how fast the term

ρT ·ε shrinks relative to the period of when a drift happens, τ .

The magnitude of the concept drift and the number of clusters

can affect how fast each algorithm adapts. For this reason,

when generating streaming data, we use the next set of values

for the parameters ε and K: ε ∈ {0.5, 1, 2}, K ∈ {5, 10, 25}.
Note that for each value of ε and m, we set a different value

of ρ. In this paper, we show results for m = 2, for the sake

of brevity. For m = 2, the values of ρ depended on ε, which

were ρ ∈ {0.457, 0.398, 0.347} in the order of ε given before.

B. Initial and Converged Errors

HI and WI show better initial surrogate errors compared

to PC and CC when a concept drift occurs (see Figure 1,

T = 1), for every ε and K. When a concept drift occurs,

PC performs poorly, since its initial centroids are focused on

minimizing the approximated error function for the previous

concept. For smaller values of ρ, CC gets better results than

PC when a drift occurs, because previous batches contribute

less to the surrogate error. In this sense, CC gets better results

than PC as ε increases, because previously computed centroids

become an even worse approximation for the novel concept.

As new batches arrive, we observe that PC obtains the best

initial surrogate error, because stored batches share the same

underlying distribution and previously converged centroids are

good for initialization.

Figure 2 summarizes the surrogate error function of FSKM

at convergence. HI and WI stand out over the trivial initializa-

tion methods. Moreover, HI obtains median normalized scores

close to 0 for every value of K and ε. In the previous figure,

it was shown that WI obtained a better initialization error,

but now HI obtains a lower converged error. HI initialization

is more restricted than WI, obtaining a worse initialization

error. However, this restriction seems to be reasonable since

the fixed points where HI arrives get a better converged

error. Furthermore, WI executes K-means over centroids, and

completely ignores the structure of data points, which may

lead to re-assignations that increase the error. PC shows a

higher variance, especially for bigger values of K.

1010

ε = 0.5 ε = 1 ε = 2

K
 = 5

K
 = 10

K
 = 25

1 2 4 10 1 2 4 10 1 2 4 10

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

Number of batches since last drift, T

PC CC HI WI PSKM
Converged SKM error

Fig. 3: Converged real SKM error for the FSKM (multiple

initialization) and PSKM algorithms. Here m = 2 and errors

were normalized.

In Figure 3, we show the SKM error at convergence. Here

the results of PSKM are shown as a reference. Observe that,

in general, the medians of the converged SKM error are

comparable for every algorithm, especially when many batches

of the same concept have already happened (T = 10). Recall

that FSKM does not minimize the SKM error, concluding

that the surrogate is a good approximation and that every

initialization technique (except for CC) works properly. We see

that even though PSKM obtains the best scores when a drift

occurs, after the next batch (index 2) HI and WI already attain

scores comparable to PSKM in terms of medians. In terms of

dispersion, HI and WI are even more stable (smaller variance)

than PSKM. We know from Theorem 1 that the surrogate

error approximates the SKM error better when more batches

occurred since the last concept drift, this can explain why,

even though FSKM does not explicitly minimize the SKM

error, its convergence value is better than the one obtained by

PSKM. We can see that in the last batch, before a concept

drift occurs, FSKM obtains scores comparable to PSKM as

well.

C. Computed Distances

Not needing any extra computation for the initialization

makes PC compute less distances, thus we use PC as a

reference in Figure 4, where the number of distances is

shown relative to PC’s number of computed distances. Because

distances are normalized, what we observe in the Y axis is how

many times more distances have been computed compared to

PC. Considering every boxplot, we conclude that the medians

of HI, WI and CC are around 2, thus they compute twice as

many distances as PC in general. In the previous section we

have observed that HI outperformed in terms of converged

SKM error. Thus, this extra distance computation is a trade-

off in order to adapt to concept drifts more effectively.

ACKNOWLEDGMENTS

This research is supported by the Basque Government

through the BERC 2018-2021 program and by Spanish Min-

istry of Sciences, Innovation and Universities: BCAM Severo

Ochoa accreditation SEV-2017-0718.

ε = 0.5 ε = 1 ε = 2

K
 = 5

K
 = 10

K
 = 25

1 2 4 10 1 2 4 10 1 2 4 10

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Number of batches since last drift, T

PC CC HI WI
Number of computed distances

Fig. 4: Number of computed distances, normalized as D̂M =
DM/ min

M ′∈M
(DM ′). PC’s boxplot is flat since its initialization

needs no computation, thus saving a lot of computed distances.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[2] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[3] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause, “Approximate
K-means in sublinear time,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[4] M. Capo, A. Perez, and J. A. A. Lozano, “An efficient Split-Merge re-
start for the K-means algorithm,” IEEE Transactions on Knowledge and
Data Engineering, 2020.

[5] A. David, “K-means : The Advantages of Careful Seeding,” in 18th
annual ACM-SIAM symposium on Discrete algorithms (SODA), New
Orleans, Louisiana, pp. 1027–1035, 2007.

[6] K. Makarychev, A. Reddy, and L. Shan, “Improved guarantees for K-
means++ and K-means++ parallel,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[7] A. Vattani, “K-means requires exponentially many iterations even in the
plane,” Discrete and Computational Geometry, vol. 45, no. 4, pp. 596–
616, 2011.

[8] S. Lloyd, “Least squares quantization in PCM,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[9] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of
efficient initialization methods for the K-means clustering algorithm,”
Expert Systems with Applications, vol. 40, no. 1, pp. 200–210, 2013.

[10] P. Fränti and S. Sieranoja, “How much can K-means be improved by
using better initialization and repeats?,” Pattern Recognition, vol. 93,
pp. 95–112, 2019.

[11] D. Steinley and M. J. Brusco, “Initializing K-means batch clustering:
A critical evaluation of several techniques,” Journal of Classification,
vol. 24, no. 1, pp. 99–121, 2007.

[12] E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus
interpretability of classifications,” Biometrics, vol. 21, pp. 768–769,
1965.

[13] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR),
vol. 46, no. 4, pp. 1–37, 2014.

[14] W. Hoeffding, Probability inequalities for sums of bounded random
variables, pp. 409–426. The Collected Works of Wassily Hoeffding,
Springer, 1994.

[15] A. Bidaurrazaga, A. Pérez, and M. Capó, “K-means for evolving data
streams,” 2021. arXiv: 2012.03628.

[16] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[17] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[18] M. Capo, A. Perez, and J. A. Lozano, “An efficient approximation to

the K-means clustering for massive data,” Knowledge-Based Systems,
vol. 117, pp. 56–69, FEB 2017.

1011

